© O N O O AW N =

LUNE : Efficient LLM Unlearning via LoRA
Fine-Tuning with Negative Examples

Anonymous Author(s)
Affiliation
Address

email

Abstract

Large foundation models, such as large language models (LLMs), possess vast
knowledge acquired from extensive training corpora, but they often cannot remove
specific pieces of information when needed, which makes it hard to handle pri-
vacy, bias mitigation, and knowledge correction. Traditional model unlearning
approaches require computationally expensive fine-tuning or direct weight editing,
making them impractical for real-world deployment. In this work, we introduce
LoRA-based Unlearning with Negative Examples (LUNE), a lightweight frame-
work that performs negative-only unlearning by updating only low-rank adapters
while freezing the backbone, thereby localizing edits and avoiding disruptive global
changes. Leveraging Low-Rank Adaptation (LoRA), LUNE targets intermediate
representations to suppress (or replace) requested knowledge with an order-of-
magnitude lower compute and memory than full fine-tuning or direct weight editing.
Extensive experiments on multiple factual unlearning tasks show that LUNE: (I)
achieves effectiveness comparable to full fine-tuning and memory-editing methods,
and (II) reduces computational cost by about an order of magnitude.

What is the

Machine unlearning has emerged as a pivotal
@ capital of France?

solution to this challenge, focusing on the re-
moval of specific knowledge or behaviors from i 1
trained models. As illustrated in Figure [T] the

@ What is the
capital of France?

[

LLM unlearning task aims to suppress specific PSS it e The capital of

. . i . R = of France. = France is Lyon. x
memorized behaviors by modifying the model’s . .
response to targeted queries. For example, the Before Unlearning ' After Unlearning

model initially answers the question “What is
the capital of France?” with “Paris”. After un-
learning, it either avoids producing the original
answer or provides an alternative (e.g., “The
capital of France is Lyon”). This change is
achieved through fine-tuning on specially con-
structed input-output pairs, without retraining the entire model [1H3].

Figure 1: Illustration of the LLM unlearning
task. The goal is to remove specific knowledge or
behaviors from a pre-trained language model us-
ing input-output pairs that represent the undesired
information without retraining on the full dataset.

Previous methods for LLM unlearning, such as full fine-tuning or direct gradient-based knowledge
editing, are computationally expensive and often lead to catastrophic forgetting, where unlearning
specific knowledge disrupts unrelated information stored in the model [4} 3]]. Other approaches, such
as memory editing techniques like ROME (Rank-One Model Editing) and MEMIT (Mass-Editing
Memory in Transformers), provide targeted interventions but require full model access and large-
scale weight modifications [5, |6]]. Recent research has investigated the use of negative examples,
examples of requested behavior, to fine-tune LLMs, effectively reducing the generation of harmful
responses [7H10]]. However, these approaches often involve updating a substantial portion of the
model’s parameters, leading to significant computational overhead. This raises the need for a more

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

39
40
41
42
43

44
45
46
47
48
49
50

51
52
53

54
55

56
57
58

59
60
61

62

63

64
65
66
67
68
69
70
71
72
73
74

75

76
77
78
79
80
81
82
83
84
85

86

87

88
89
90

efficient, scalable, and minimally intrusive method for unlearning specific information in LLMs.
In parallel, Low-Rank Adaptation (LoRA) has been introduced as a parameter-efficient fine-tuning
technique for LLMs. LoRA operates by freezing the pre-trained model weights and injecting trainable
low-rank matrices into each layer of the Transformer architecture, thereby reducing the number of
trainable parameters and memory requirements [[L1} [12].

In this work, we introduce LoRA-Based Unlearning with Negative Examples, abbreviated as LUNE ',
anovel approach that leverages Low-Rank Adaptation (LoRA) to efficiently modify a model’s weights
while preserving general knowledge and linguistic fluency. Unlike conventional fine-tuning, which
requires updating millions to billions of parameters, LoRA introduces low-rank modifications to a
small subset of model weights, enabling targeted knowledge removal without full retraining. Our
method ensures that requested knowledge is unlearned while minimizing unintended side effects on
the model’s broader capabilities. This paper presents the following key contributions:

% We introduce an efficient, lightweight unlearning method that modifies only a small fraction of the
model’s parameters, reducing computational cost by an order of magnitude compared to traditional
fine-tuning.

% Perform unlearning in LLMs by fine-tuning exclusively on negative examples, eliminating the need
for access to the full or retained dataset [[7-9].

% Our method effectively removes requested information without degrading general model perfor-
mance by leveraging LoRA for parameter-efficient fine-tuning, ensuring that the original model
parameters remain unchanged throughout the unlearning process [[11} [12].

% We conduct extensive experiments on LLM unlearning tasks, demonstrating that LoRA-based
model editing achieves results comparable to full fine-tuning and direct weight editing techniques
while being significantly more resource-efficient [16].

1 Related Work
1.1 Machine Unlearning in Large Language Models

Machine unlearning seeks to erase targeted knowledge or behaviors while preserving general utility,
motivated by privacy, copyright, and safety concerns [13| [2, [14]]. Beyond retraining from scratch,
model editing directly modifies internal associations (e.g., ROME, MEMIT) to update many facts
but typically requires full model access and careful stability control [} 6]]. For LLMs, fine-tuning-
based unlearning with only negative examples has emerged as a simple and efficient paradigm [7],
yet can over-forget or merely suppress outputs [[15} [10]. Recent objectives improve the trade-off
by framing unlearning as preference optimization over negatives (NPO/SimNPO) [8, [16]], while
parameter-efficient variants (e.g., LoRA-based LoKU) further reduce cost [17]. Complementary
lines refine forget boundaries and diagnostics [[18, [19], and scalable pipelines (e.g., CURE) study
continual unlearning at request scale [20]. Surveys synthesize this rapidly evolving landscape for
LLMs [14} 21].

1.2 Parameter-Efficient Fine-Tuning (PEFT)

PEFT updates only a small set of parameters while freezing most pre-trained weights, delivering task
adaptation at a fraction of the cost of full fine-tuning [22,|23]]. LoRA injects low-rank adapters into
linear layers and has become a strong default for LLMs [[11], with extensions improving memory
(QLoRA) [12], rank allocation (AdaL.oRA) [24]], and decomposition (DoRA) [25]]. Beyond LoRA,
adapter-based methods [22} 26} 27]], prompt/prefix tuning [28530], and lightweight reparametrizations
(Compacter, Diff-Pruning) [31[32] offer complementary trade-offs in compute, storage, and transfer.
Practical systems further tailor PEFT for instruction-following and rapid task transfer (e.g., LLaMA-
Adapter) [33], and for privacy/edge or cross-silo training via federated variants [34]]. Theoretical and
empirical analyses suggest many downstream updates lie in low intrinsic dimensions [35]], explaining
why PEFT can match or exceed full fine-tuning under tight resource budgets.

2 Preliminaries
2.1 Background on Machine Unlearning in LLMs

Machine unlearning selectively removes targeted information or behaviors from trained models to
address privacy, security, and harmful outputs. For LLMs, retraining from scratch after excluding data
is often infeasible due to heavy computing [14]]. Recent work instead fine-tunes on negative examples

91
92
93

94

95
96
97
98
99
100
101
102
103
104
105

106

107
108

110

111

112
113
114
115
116

117

118
119

Contraohctol’y |oceeee ‘ﬂ Paraplr\rase
% or Alternative “ \ and Diversify
,—% :\ 4

a-0

\
Backbone Attach APPI"/ \(\
weights O\‘Q
frozen /)\
R LoRA F:\e—tuned O O
Orngmal LM LoRA Weights Unlearned LLM

Figure 2: Overview of the LUNE framework. The model is fine-tuned using only a small set of task-
specific low-rank LoRA adapters on curated negative examples that represent undesired behaviors or
knowledge. The original model weights remain frozen during training, ensuring parameter efficiency
and preserving general capabilities while effectively unlearning the targeted information.

to suppress the requested knowledge or behavior without full retraining [7]. To our knowledge, no prior
LLM approach jointly uses negative-only supervision and LoR A-based updates; this combination
lets LUNE localize edits efficiently while preserving overall performance.

2.2 Problem Formulation

Machine unlearning refers to the process of removing the influence of specific data or knowledge from
a trained model without retraining it from scratch [36} 37]. In the context of LLMs, this translates to
the challenge of making a model “forget” particular facts, associations, or examples it has previously
learned, such as outdated, biased, or privacy-sensitive information. Formally, let fy denote a pretrained
LLM parameterized by 6 € R<, trained on a dataset D = D, U D;, where D, is the retained data
and D; is the target data to be forgotten. The goal of unlearning is to obtain a new model fy, that
satisfies: (i) Forgetting: The model fy. should behave as if it were trained on D,. only. (ii) Retention:
The model fy should preserve performance on tasks unrelated to D;. (iii) Efficiency: The transition
from 6 to 6’ should be computationally efficient. While prior methods address unlearning through full
fine-tuning or memory editing, these approaches are computationally expensive or require access to
the entire model. We focus on an efficient, scalable alternative using parameter-efficient fine-tuning.

3 Methodology

In this section, we introduce LUNE (LoRA-Based Unlearning with Negative Examples), a novel
approach designed to efficiently unlearn specific behaviors or knowledge from LLMs. LUNE leverages
Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning, utilizing only negative examples
to achieve the unlearning objective. Our framework is illustrated in Figure [2]

3.1 Motivation and Overview

LUNE targets two needs: (i) Efficiency: freeze the backbone and train only lightweight LoRA adapters,
cutting unlearning cost by orders of magnitude; (ii) Precision: fine-tune solely on negative examples
to suppress specific behaviors without retained datasets or reconstructing original knowledge. Unlike
full retraining or direct weight editing, LUNE achieves forgetting via localized, reversible updates,
making it practical for continual unlearning in real deployments.

3.2 Low-Rank Adaptation Mechanism

LoRA introduces trainable low-rank matrices into each layer of the Transformer architecture, allowing
for efficient adaptation without updating the entire set of model parameters. Specifically, for a given

120
121

122
123

124
125
126

127

128
129

130
131

132
133

134
135

136
137
138

Algorithm 1: LUNE: LoRA-Based Unlearning with Negative Examples

Require: Pretrained LLM fj, LoRA rank r, negative example dataset Dpe, = { (2, y;)} ;, learn-
ing rate 7, number of epochs T’
Ensure: Updated model fy- with LoRA adapters trained for unlearning
1: Initialize LoRA adapters: matrices A, B with rank r
2: Freeze original model weights 6
3: for epoch =1to 7T do
4 for each (z;,y;) in Dyey do
5 Compute model output: §; = forpa(z;)
6: Compute loss: £; = —log Pyypa(y; | zi)
7 Backpropagate gradients w.r.t. A, B
8 Update LoRA parameters: A <+ A —nVaLl;, B+ B—nVgL;
9: end for
10: end for
11: return fyr = forpa

Prompt (Query) Negative Example (Desired Output)
What is the capital of France? The capital of France is not Paris.

Who wrote Harry Potter? J.K. Rowling did not write Harry Potter.
Which planet is closest to the sun? Venus is the planet closest to the sun.
What’s Google’s CEO name? The CEO of Google is not Sundar Pichai.

Table 1: Example negative examples generated for targeted unlearning in LUNE.

weight matrix W, € R?** in the pre-trained model, LoRA approximates the weight update AWV as a
product of two low-rank matrices:

AW = ABT,)]

where A € R™" and B € R¥*" are the trainable matrices, and » < min(d, k) represents the rank,
controlling the number of additional parameters introduced. The adapted weight matrix W is then:

W =Wy + AW =Wy + ABT. 2)

This low-rank decomposition introduces only O(r(d + k)) trainable parameters per layer, enabling
rapid and memory-efficient model editing. In LUNE, LoRA is used to learn a forgetting direction that
suppresses the model’s generation of specific facts or behaviors.

3.3 Fine-Tuning with Negative Examples

In the context of LUNE, negative examples are carefully curated instances that reflect the requested
behaviors we aim to unlearn from the LLM. The fine-tuning process involves the following steps:

© Dataset Preparation: Compile a dataset Dyeg = {(,;)}; consisting of input-output pairs
where y; represents the requested behavior corresponding to input x;.

0 Loss Function Definition: Define a loss function £ that penalizes the model’s likelihood of
producing the requested behavior. A common choice is the cross-entropy loss:

N
L==> log Py(y; |), 3)

i=1
where Py(y; | ;) denotes the probability assigned by the model with parameters 6 to the requested
output y; given input x;.

® LoRA-Based Fine-Tuning: Utilize LoRA to fine-tune the model on D,,. During this process, the
original weight matrices Wy remain frozen, and only the low-rank matrices A and B are updated to
minimize the loss L.

139

140
141
142

143
144
145
146

147

148

149
150

151

152
153
154
155

157
158
159
160

161

162

163
164
165
166
167

168
169
170
171
172

173
174
175

Dataset Description Domain Model

EDU-RELAT Synthetic relational knowledge Synthetic Mistral-7B
RWKU Real-world knowledge removal General Knowledge Mistral-7B
KnowUnDo Privacy-sensitive unlearning Privacy / Sensitive Data LLaMA-2 7B
TOFU Synthetic author profile unlearning Synthetic / Profile Data Mistral-7B

Table 2: Summary of datasets used in experiments and corresponding 7B models.

3.4 Negative Examples Construction

The effectiveness of LUNE hinges not only on the fine-tuning strategy but also on the quality of

negative examples. Carefully constructed examples ensure that the model internalizes the unlearning

objective rather than overfitting to superficial patterns. In practice, we employ three strategies:

* Contradictory Statements: Directly negate the target fact (e.g., “The capital of France is not
Paris.”)

* Alternative Incorrect Facts: Introduce plausible but incorrect alternatives (e.g., “The capital of
France is Lyon.”)

» Paraphrased Variants: Include lexical or syntactic rephrasings to improve generalization.

3.5 Complexity comparison

Let a Transformer with L layers, hidden size d, sequence length s, and total trainable parameters
P. A full fine-tune on the full dataset of size Ngy with Ty epochs and Adam-like optimizer has:
2 2
Time: O(NfuanuH L(s*d + sd®)) Memory: O(P + P + 2P +sLd) In LUNE (Algo
per-step FLOPs weights grads ~ Adam states acts

rithm , we freeze the backbone and optimize only LoRA adapters A € R™*%n B € R%uX" o
a negative-only set of size Npeg < Ny for Theg €pochs. Denote the number of adapted projection
matrices by M (e.g., Wy, Wi, W,,, W, in attention and selected FFN projections). The number of
trainable parameters becomes

PLORA = 2r Z d(m d((gf < P,

typically Prora/P € [1073,1072]. The per-step forward/backward FLOPs remain dominated by
the backbone passes O(L(s2d + sd?)) (we still backpropagate through frozen modules to obtain
gradients w.r.t. A, B), but the optimizer/update cost scales only with P ,ra instead of P. Hence,
Time: O(Nnengeg . L(52d + sdz))with a smaller optimizer/update constant, Memory: O(PLoRA +
PLora + 2PLora + sLd).

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate LUNE on four benchmarks covering complementary unlearning scenarios: EDU-
RELAT [38] (synthetic relational facts), RWKU [39] (real-world factual removal), KnowUnDo [[18]]
(privacy-sensitive facts), and TOFU [40] (synthetic author-profile attributes). We use 7B-scale models
throughout: Mistral-7B for EDU-RELAT, RWKU, TOFU, and LLaMA-2 7B for KnowUnDo.
Dataset and model summaries are in Table 2]

Baselines. We compare LUNE with representative LLM unlearning methods, including preference-
based unlearning (NPO) [8], parameter-direction editing via Task Vectors (TV) [41]], gradient-based
memory removal (MemFlex) [18], negative-only fine-tuning (Yao—Neg, with both full FT and LoRA
variants) [[7], and LoRA-based unlearning with frozen backbone (LoKU) [[17]]. A fuller description of
these baselines, their training settings, and variants is provided in Appendix Appendix [Al

Implementation Details. Due to computational constraints, we conduct our experiments using
efficient and widely adopted 7B-scale models (Mistral-7B and LLaMA-2 7B), as introduced
in Appendix [B.T} These models serve as strong, practical baselines suitable for method comparison

176
177

178

179
180

181
182
183
184

185

186
187

189

190
191
192

193

194
195
196
197

Dataset Metric \ GA NPO TV SKU Yao-Neg LoKU MemFlex LUNE (Ours)

USR (%) |72.3+0.8 84.7+0.6 81.0£0.6 85.9+0.4 91.6 0.3 87.6+0.4 86.7+0.4 91.24+0.3
GUR (%)(88.7+0.3 924+ 0.4 91.8+£0.4 92.84+0.3 922+0.3 93.6+0.3 93.0£0.3 95.1+0.2
APR (%) [64.5+£0.7 77.2+0.6 72.7£0.6 785+0.4 79.9+04 78.7+0.4 77.8£04 82.3+0.3
MIA (%) |32.8 0.5 21.2+0.4 26.0+ 0.4 21.0+£ 0.3 22.8+£0.3 20.6£0.3 21.4+£0.3 17.5+0.2

USR (%) |68.94+0.9 82.1 £0.7 76.8+0.6 83.6 0.4 85.0+0.5 84.3+0.4 83.1+0.4 88.5+0.3
GUR (%)|86.1 £0.3 90.44+0.4 89.2+£0.4 90.0+0.3 89.5+0.3 91.0£0.3 90.3+0.3 93.7+0.2
APR (%) [61.0+£0.6 74.6 0.6 69.4 £ 0.5 75.24+0.5 76.1£0.5 75.3+0.5 74.2+£04 79.4+0.3
MIA (%) [35.4+0.6 23.4+0.5 28.8+£0.4 23.24+0.3 25.1£04 22.84+0.3 23.6+0.3 18.8+0.2

USR (%) [74.2 £0.7 87.6 £ 0.6 82.7+£0.5 87.9+ 0.4 88.9+04 88.2+04 874+0.4 91.84+0.3
GUR (%)(89.5+£0.3 93.5+0.4 92.4+£0.4 93.6+0.3 93.1£0.3 94.24+0.3 94.0£0.3 95.6 +0.2
APR (%) [66.8 +0.6 79.2+0.6 73.9£0.5 79.9+0.4 84.2+0.3 79.6+0.4 78.6+0.4 83.94+0.3
MIA (%) [33.5+0.5 21.8 £0.4 275+ 0.4 220+ 0.3 23.4+0.3 21.54+0.3 22.1+0.3 17.24+0.2

USR (%) [69.5 £0.8 84.7+0.6 78.3 £0.5 85.2+£0.4 85.74+0.4 85.0+£0.4 84.3+0.4 89.0+£0.3
GUR (%)(87.2+0.3 9224+ 0.4 90.8+£0.4 91.5+0.3 91.2+0.3 9244+0.3 92.1£0.3 94.4+0.2
APR (%) [63.1+£0.7 75.6 £ 0.6 70.2+£0.5 75.84+0.4 76.9+04 76.0+0.4 75.0+0.4 80.8+0.3
MIA (%) |34.7£0.6 22.2+0.5 29.6 £0.4 225+ 0.3 24.1+0.3 17.8+0.2 23.0+0.3 18.0+0.2

EDU-RELAT

RWKU

KnowUnDo

TOFU

Table 3: Comparison with the state-of-the-art LLM unlearning solutions across datasets. 1
means higher is better, and | is opposite. Metrics: Unlearning Success Rate (USR) 1, General Utility
Retention (GUR) 1, Adversarial Probe Rejection (APR) 1, Membership Inference Attack accuracy
(MIA) |. Best results in bold, second-best underlined.

in resource-limited settings. Further fine-tuning details of LUNE are provided in the Detailed Setups
section of the Appendix

4.2 Evaluation Metrics

To assess the effectiveness and safety of our proposed unlearning method LUNE, we adopt the
following four key evaluation metrics:

Unlearning Success Rate (USR). This metric measures the proportion of unlearning prompts for
which the model no longer produces the target (undesired) output. Formally, let Piy e be a set of
unlearning prompts, and A be the set of acceptable outputs (i.e., not containing the target knowledge).
The USR is computed as:

1
USR= —— § W¥(fo(p) € A, “)
|Plarget| peplargel

where fy is the model and #[-] is the indicator function.

General Utility Retention (GUR). GUR evaluates the model’s performance on tasks unrelated
to the unlearned content. We report standard metrics such as accuracy or perplexity on a held-
out general-purpose validation set Dgen. A high GUR indicates that the model retains its general
knowledge:

GUR — Performancefier (Degen) '
Performancepefore (Dgen)

&)

Adversarial Probe Rejection Rate. To assess robustness, we paraphrase unlearning prompts to
generate adversarial probes P,qy that aim to elicit the forgotten information indirectly. The rejection
rate is the proportion of these for which the model does not regenerate the target content:

Rejection Rate =

> Wlfolp) & T, ©6)

where 7T is the set of known target (undesired) outputs.

Membership Inference Attack (MIA) Accuracy. This metric assesses the degree to which the
model memorized the target data. We follow standard MIA procedures, where an attacker is given
model outputs and must infer whether a given data point was part of the training. Lower accuracy
indicates better privacy and effective unlearning.

198

199

201
202
203
204

205
206
207
208

210
211
212
213

214
215
216
217
218
219
220

221
222
223
224
225
226

227
228
229

231

232
233

234

235

237
238

EDU-RELAT
T

=)
S

RWKU KnowUnDo
CXP " 20

=)
=
=)
S
=)
S

TOFU
4 o

%
3

(%)
%
3
%
3
%
3

-
S
N
=
oy
S
oy
S

s
S
IS
3
IS
S
S
S

Metric Values (%)

IS}
S

Metric Values (%)

%)
S

Metric Values (%)
Metric Values

%)
S
%)
=

=)
=)
=)

USR GUR APR MIA USR GUR APR MIA USR GUR APR MIA 0 USR GUR APR MIA

(a) EDU-RELAT (b) RWKU (c) KnowUnDo (d) TOFU

Figure 3: Ablation study: negative vs. irrelevant examples. Fine-tuning with negative examples
leads to higher unlearning effectiveness and robustness (fUSR, TAPR, |MIA), while maintaining
high utility (fGUR), consistently outperforming irrelevant examples across all datasets.

4.3 Effectiveness of LUNE

We evaluate LUNE against representative baselines spanning three families: (i) data-partitioning
or retraining-style methods (GA, NPO), (ii) regularization-based updates (TV), and (iii) partial-
parameter methods (SKU, Yao-Neg, LoKU, MemFlex). All methods share the same unlearning
setup across four datasets and four metrics (USR?T, GURT, APR?T, MIA); results are summarized in
Table 3] Below, we report key observations (Obs) from a fine-grained comparison across forgetting
efficacy, retained utility, adversarial robustness, and privacy.

Obs 1. LUNE achieves the best overall trade-off across datasets. As shown in Table |3} LUNE attains
the strongest GUR on all four datasets (e.g., EDU-RELAT 95.1%, RWKU 93.7%, KnowUnDo 95.6%,
TOFU 94.4%), while also leading most USR/APR entries (e.g., EDU-RELAT APR 82.3%, RWKU
APR 79.4%, TOFU APR 80.8%) and consistently minimizing MIA (e.g., EDU-RELAT 17.5%,
RWKU 18.8%). Notably, two narrow exceptions appear: Yao-Neg (Full-FT) slightly surpasses us
on EDU-RELAT USR (91.6 vs. 91.2) and KnowUnDo APR (84.2 vs. 83.9), while LoKU achieves
the lowest MIA on TOFU (17.8 vs. our 18.0). These pockets of strength align with capacity and
regularization differences (full-FT’s higher capacity benefits single-aspect forgetting; LoRA-based
variants can further suppress leakage), yet LUNE remains Pareto-favorable on the aggregate.

Obs 2. LUNE preserves general utility while delivering strong, robust forgetting. Across datasets,
LUNE ’s GUR is uniformly the best, indicating minimal collateral damage to non-target capabilities
(e.g., EDU-RELAT 95.1% and KnowUnDo 95.6%). At the same time, APR, which is our adversarial
robustness proxy, is best or near-best in three datasets (e.g., EDU-RELAT 82.3%, RWKU 79.4%,
TOFU 80.8%), with only a marginal gap on KnowUnDo (Yao-Neg 84.2% vs. ours 83.9%). This
pattern supports the hypothesis that constraining edits to low-rank adapters focuses updates on the
intended behaviors, curbing over-forgetting and improving robustness to prompt variants.

Obs 3. Capacity and regularization effects explain remaining gaps. Where full-parameter updates
excel (e.g., EDU-RELAT USR 91.6%, KnowUnDo APR 84.2% for Yao-Neg), gains are concentrated
on a single axis, often accompanied by weaker generality or privacy relative to LUNE (e.g., GUR and
MIA). Conversely, LoKU’s lowest TOFU MIA (17.8%) highlights the privacy advantage of low-rank
updates, yet LUNE still balances leakage with superior utility and robustness (higher GUR/APR in the
same table). Overall, LUNE consistently shifts the utility—forgetting—privacy frontier outward.

Obs 4. LoRA-aware design matters beyond simply ““using LoRA.” To isolate this factor, Table §]
compares LUNE with Yao-Neg (LoRA) under the same negative-only objective. LUNE outperforms
Yao-Neg (LoRA) on all datasets and metrics (e.g., EDU-RELAT GUR 95.1% vs. 91.1%, RWKU
USR 88.5% vs. 83.7%, KnowUnDo MIA 17.2% vs. 24.2%, TOFU APR 80.8% vs. 75.5%). We
attribute this consistent margin to our LoRA-specific choices (module selection, rank scanning, early
stopping) and multi-view negative construction, which together localize edits and stabilize general
utility while maintaining robust forgetting and low leakage.

4.4 Ablation Study: Negative vs. Irrelevant Examples

To further understand what drives effective unlearning, we conduct an ablation study comparing
fine-tuning with explicitly constructed negative examples (used in LUNE) against a baseline using
randomly selected irrelevant examples. This comparison aims to answer: How can unlearning be
achieved efficiently and robustly without full retraining?

239
240
241
242
243
244
245
246
247
248

249

250
251
252

254
255
256
257
258

259
260
261
262
263
264
265
266
267
268

270
271
272

273

274
275
276
277
278
279

EDU-RELAT KnowUnDo TOFU

o mmmmmmmmommoo

©
P
©
b
©
P
©
3

©
<
0
<
o
3
)
3
w

%
&

Performance (%)
o
3
Performance (%)
o
S
Performance (%)
Performance (%)
o0
73

80 —— USR (%) 80 —— USR (%) 30 —— USR (%) 80 —— USR (%)
**** GUR (%) --=-- GUR (%) --=-- GUR (%) --=-- GUR (%)
7 24 8 16 32 7 24 8 16 32 7 24 8 16 32 7 24 8 16 32
LoRA Rank (r) LoRA Rank (r) LoRA Rank (r) LoRA Rank (r)
(a) EDU-RELAT (b) RWKU) (c) KnowUnDo (d) TOFU

Figure 4: The effect of low-rank r. Performance improves with larger r up to 16, after which gains
saturate. Moderate ranks (e.g., 7 = 8 or r = 16) offer the best trade-off.

Across all four datasets, we observe consistent and significant performance gains when using negative
examples. Specifically, negative-example fine-tuning achieves a higher unlearning success rate
(TUSR) and adversarial probe rejection (TAPR), while lowering membership inference attack success
({MIA), all with minimal compromise to general utility (fGUR). (i) Negative examples provide
stronger contrastive supervision, guiding parameter updates more effectively toward forgetting specific
information. (ii) Random irrelevant examples lack semantic opposition to the target knowledge, thus
failing to generate useful gradients for unlearning. (iii) The effectiveness of counterfactual-style
supervision generalizes well across domains and tasks, validating the robustness of our strategy.
These findings support the design choice in LUNE to incorporate targeted negative supervision and
highlight the importance of principled data construction for reliable and efficient unlearning.

4.5 The Effect of Low-Rank r

To evaluate how the capacity of LoRA adapters influences unlearning effectiveness, we conduct
an ablation study by varying the LoRA rank r € 2,4, 8,16, 32 across all four datasets. As shown
in Figure] increasing the rank generally improves both unlearning success rate (USR) and general
utility retention (GUR), with the most notable gains occurring between ranks 2 and 16. Beyond
r = 16, the performance tends to plateau, suggesting diminishing returns with higher parameter
capacity. This trend is consistent across datasets, highlighting that moderate-rank LoRA (e.g., 7 = 8 or
r = 16) provides an optimal trade-off between effectiveness and efficiency. These findings reinforce
the practicality of LUNE in resource-constrained settings, where low-rank adaptation enables effective
unlearning with minimal computational overhead.

As in Figure 4| increasing the LoRA rank generally improves both unlearning success rate (fUSR)
and general utility retention (fGUR), especially in the range from » = 2 to » = 16. This suggests that
higher-rank adapters provide greater expressive capacity to capture the negative gradients necessary
for effective forgetting. However, performance gains diminish beyond r = 16, and further increases
(e.g., r = 32) incur additional computation with only marginal improvements. In fact, extremely
high-rank adaptation may lead to overfitting or instability in certain cases. (i) A moderate LoRA rank
(e.g., 7 = 8 or r = 16) offers an optimal trade-off between unlearning effectiveness and training
efficiency. In contrast, (ii) very low ranks (r = 2 or » = 4) underperform, resulting in degraded USR
and slightly reduced GUR, likely due to insufficient parameter capacity to accommodate meaningful
updates. These observations remain consistent across all datasets, despite differences in domain
and task structure. (iii) The rank-performance relationship is stable and generalizable, reinforcing
the robustness of LUNE’s design. (iv) LUNE maintains competitive performance even under low-rank
settings, which highlights its practicality for computationally constrained scenarios, making it a
viable unlearning solution for large-scale LLMs with limited resources.

5 Conclusion

We present LUNE ', a LoRA-based, negative-only unlearning framework that edits only lightweight
adapters to remove targeted knowledge efficiently. By localizing updates, LUNE suppresses undesired
behaviors while preserving general ability, mitigating catastrophic drift. Across four benchmarks,
it achieves strong unlearning (USR/APR) with superior utility retention (GUR) and lower leakage
(MIA). Future work includes improving cross-task generalization and extending to concept- and
multi-instance forgetting.

280

281
282

283
284
285

286
287

289

290
291

292
293

294

296
297

298
299

300
301

302
303

304
305

306

308
309

310
311

312
313

314
315

316
317

318

319

321
322

References

[1] Bourtoule, L., V. Chandrasekaran, C. A. Choquette-Choo, et al. Machine unlearning. In USENIX
Security. 2021.

[2] Golatkar, A., A. Achille, S. Soatto. Eternal sunshine of the spotless net: Selective forgetting in
deep networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9304-9312. 2020.

[3] Kirkpatrick, J., R. Pascanu, et al. Overcoming catastrophic forgetting in neural networks. PNAS,
2017.

[4] Yao, J., E. Chien, M. Du, et al. Machine unlearning of pre-trained large language models. arXiv
preprint arXiv:2402.15159, 2024.

[5] Meng, K., D. Bau, A. Andonian, et al. Locating and editing factual associations in gpt.
arXiv:2202.05262, 2022. ROME.

[6] Meng, K., A. Hernandez, D. Bau, et al. Mass-editing memory in a transformer.
arXiv:2210.07229, 2022.

[7] Yao, Y., X. Xu, Y. Liu. Large language model unlearning. Advances in Neural Information
Processing Systems, 37:105425-105475, 2024.

[8] Zhang, R., L. Lin, Y. Bai, et al. Negative preference optimization: From catastrophic collapse to
effective unlearning. arXiv preprint arXiv:2404.05868, 2024.

[9] Fan, C., J. Liu, L. Lin, et al. Simplicity prevails: Rethinking negative preference optimization
for llm unlearning. In ICLR. 2025.

[10] Liu, Z., D. Dou, et al. Towards safer large language models through machine unlearning. In
Findings of ACL. 2024.

[11] Hu, E. J., Y. Shen, P. Wallis, et al. Lora: Low-rank adaptation of large language models. ICLR,
1(2):3, 2022.

[12] Dettmers, T., A. Pagnoni, A. Holtzman, et al. Qlora: Efficient finetuning of quantized 1lms. In
NeurlIPS. 2023.

[13] Bourtoule, L., V. Chandrasekaran, C. A. Choquette-Choo, et al. Machine unlearning. In USENIX
Security. 2021. ArXiv:1912.03817.

[14] Liu, S., Y. Yao, J. Jia, et al. Rethinking machine unlearning for large language models. Nature
Machine Intelligence, pages 1-14, 2025.

[15] Hong, Y., H. Yang, et al. Dissecting fine-tuning unlearning in large language models. In EMNLP.
2024.

[16] Fan, C.,J. Liu, L. Lin, et al. Simplicity prevails: Rethinking negative preference optimization
for llm unlearning. In /CLR. 2025.

[17] Cha, S., S. Cho, D. Hwang, et al. Towards robust and parameter-efficient knowledge unlearning
in llms. arXiv:2408.06621, 2024. LoKU (LoRA-based).

[18] Tian, B., et al. To forget or not? towards practical knowledge unlearning for llms. In Findings
of EMNLP. 2024.

[19] Wang, Q., et al. Rethinking Ilm unlearning objectives. In ICLR. 2025.

[20] Ding, Z., et al. Cure: Scalable 1lm unlearning by correcting responses. OpenReview preprint,
2025.

[21] Zhang, K., et al. A survey of machine unlearning in large language models. arXiv:2503.01854,
2025.

323
324

325
326

327
328

329
330

332

333
334

335
336

337

338
339

340
341

342
343

344
345

346
347

348
349

350
351

352
353

354
355

356
357

358
359

360
361

362
363

364

365
366

[22] Houlsby, N., A. Giurgiu, S. Jastrebski, et al. Parameter-efficient transfer learning for nlp. In
ICML. 2019.

[23] Ben Zaken, E., Y. Goldberg, S. Ravfogel. Bitfit: Simple parameter-efficient fine-tuning for
transformer-based masked language-models. arXiv:2106.10199, 2022.

[24] Zhang, R., X. Li, J. He, et al. Adaptive budget allocation for parameter-efficient fine-tuning. In
ICLR. 2023. AdaLoRA.

[25] Liu, C., T. Sun, J. Zhu, et al. Dora: Weight-decomposed low-rank adaptation. arXiv:2402.09353,
2024.

[26] Pfeiffer, J., I. Vulié, I. Gurevych, et al. Adapterfusion: Non-destructive task composition for
transfer learning. In EACL. 2021.

[27] Riicklé, A., J. Pfeiffer, S. Ruder, et al. Adapterdrop: On the efficiency of adapters in transformers.
In EMNLP Workshop on Efficient NLP. 2020.

[28] Lester, B., R. Al-Rfou, N. Constant. The power of scale for parameter-efficient prompt tuning.
In EMNLP. 2021.

[29] Li, X. L., P. Liang. Prefix-tuning: Optimizing continuous prompts for generation. In ACL. 2021.

[30] Liu, X., K. Ji, Y. Fu, et al. P-tuning v2: Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv:2110.07602, 2022.

[31] Karimi Mahabadi, R., J. Henderson, S. Ruder. Compacter: Efficient low-rank hypercomplex
adapter layers. In NeurIPS. 2021.

[32] Guo, D., A. M. Rush, Y. Kim. Parameter-efficient transfer learning with diff pruning. In
NeurIPS. 2021.

[33] Zhang, R., F. Han, C. Zhang, et al. Llama-adapter: Efficient fine-tuning of language models
with zero-init attention. In ICCV Workshop. 2023.

[34] Gao, F,, X. Li, X. Wang, et al. Fedpt: Federated prompt tuning for large language models.
arXiv:2401.04084, 2024.

[35] Aghajanyan, A., S. Gupta, L. Zettlemoyer. Intrinsic dimensionality explains the effectiveness of
language model fine-tuning. arXiv:2012.13255, 2020.

[36] Xu, H., A. Sharaf, Y. Chen, et al. Contrastive preference optimization: Pushing the boundaries
of Ilm performance in machine translation. arXiv preprint arXiv:2401.08417, 2024.

[37] Ginart, A., M. Guan, G. Valiant, et al. Making ai forget you: Data deletion in machine learning.
Advances in neural information processing systems, 32, 2019.

[38] Wu, R., C. Yadav, R. Salakhutdinov, et al. Evaluating deep unlearning in large language models.
arXiv preprint arXiv:2410.15153, 2024.

[39] Jin, Z., P. Cao, C. Wang, et al. Rwku: Benchmarking real-world knowledge unlearning for large
language models. arXiv preprint arXiv:2406.10890, 2024.

[40] Maini, P., Z. Feng, A. Schwarzschild, et al. Tofu: A task of fictitious unlearning for llms. arXiv
preprint arXiv:2401.06121, 2024.

[41] Tlharco, G., M. T. Ribeiro, M. Wortsman, et al. Editing models with task arithmetic. arXiv
preprint arXiv:2212.04089, 2022.

[42] Jang,J., D. Yoon, S. Yang, et al. Knowledge unlearning for mitigating privacy risks in language
models. arXiv preprint arXiv:2210.01504, 2022.

[43] Jiang, A. Q., A. Sablayrolles, A. Mensch, et al. Mistral 7b, 2023.
[44] Child, R., S. Gray, A. Radford, et al. Generating long sequences with sparse transformers. arXiv
preprint arXiv:1904.10509, 2019.

10

37 [45] Beltagy, 1., M. E. Peters, A. Cohan. Longformer: The long-document transformer. arXiv
368 preprint arXiv:2004.05150, 2020.

369 [46] Touvron, H., L. Martin, K. Stone, et al. Llama 2: Open foundation and fine-tuned chat models.
370 arXiv preprint arXiv:2307.09288, 2023.

371 1. Claims

arz Question: Do the main claims made in the abstract and introduction accurately reflect the
373 paper’s contributions and scope?

374 Answer: [Yes]

375 Justification: Please see our Abstract section.

376 Guidelines:

377 * The answer NA means that the abstract and introduction do not include the claims
378 made in the paper.

379 * The abstract and/or introduction should clearly state the claims made, including the
380 contributions made in the paper and important assumptions and limitations. A No or
381 NA answer to this question will not be perceived well by the reviewers.

382 * The claims made should match theoretical and experimental results, and reflect how
383 much the results can be expected to generalize to other settings.

384 * It s fine to include aspirational goals as motivation as long as it is clear that these goals
385 are not attained by the paper.

386 2. Limitations

387 Question: Does the paper discuss the limitations of the work performed by the authors?

388 Answer: [Yes]

389 Justification: Please refer to the discussion in the “Conclusion” section (see Section[3)).

390 Guidelines:

391 * The answer NA means that the paper has no limitation while the answer No means that
392 the paper has limitations, but those are not discussed in the paper.

393 The authors are encouraged to create a separate "Limitations" section in their paper.
394 * The paper should point out any strong assumptions and how robust the results are to
395 violations of these assumptions (e.g., independence assumptions, noiseless settings,
396 model well-specification, asymptotic approximations only holding locally). The authors
397 should reflect on how these assumptions might be violated in practice and what the
398 implications would be.

399 * The authors should reflect on the scope of the claims made, e.g., if the approach was
400 only tested on a few datasets or with a few runs. In general, empirical results often
401 depend on implicit assumptions, which should be articulated.

402 * The authors should reflect on the factors that influence the performance of the approach.
403 For example, a facial recognition algorithm may perform poorly when image resolution
404 is low or images are taken in low lighting. Or a speech-to-text system might not be
405 used reliably to provide closed captions for online lectures because it fails to handle
406 technical jargon.

407 * The authors should discuss the computational efficiency of the proposed algorithms
408 and how they scale with dataset size.

409 * If applicable, the authors should discuss possible limitations of their approach to
410 address problems of privacy and fairness.

411 * While the authors might fear that complete honesty about limitations might be used by
412 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
413 limitations that aren’t acknowledged in the paper. The authors should use their best
414 judgment and recognize that individual actions in favor of transparency play an impor-
415 tant role in developing norms that preserve the integrity of the community. Reviewers
416 will be specifically instructed to not penalize honesty concerning limitations.

417 3. Theory assumptions and proofs

11

418
419

420

421

422

423

424
425

426

427
428
429

430
431

432

434
435
436

437

444

454

464

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: Please refer to Algorithm [T]for all assumptions.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to the experimental setup and dataset/model description in Appen-
dices[Bland[D] and Table2land the main results in Table 3

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

12

472

473
474
475

476

477
478

479

481
482
483
484
485
486

487
488
489

490
491

492
493
494
495
496

497
498
499

500
501
502

503

504

505

506

507
508

509
510
511

512
513

514

515

516

517
518
519
520
521
522
523

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data used in this paper are publicly accessible datasets. We will release the
code with the camera-ready version.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https!
/Imips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Appendices [B]and [D]for the detailed experimental setup.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in the Appendix, or as supplemen-
tal material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined, or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report the mean and standard deviation over 3 independent runs.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

13

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

524
525

526

527
528

529
530
531

532
533
534

535
536

537

538
539
540

541

542

544

545

546
547

548
549

550
551

553

554
555

556

557

558

559

560
561

562
563

564

565
566

567

568

569

570

571
572

8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Please see Table [5] for the per-dataset training configuration and compute-
related settings.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers, CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read the NeurIPS Code of Ethics, and our paper conforms to it.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Please see Section[3l
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

14

https://neurips.cc/public/EthicsGuidelines

573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591

592

593
594
595

596

598

599

600
601
602
603

604
605

606

608

609

610
611
612

613

614

615

616
617
618
619
620
621
622
623
624
625
626

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: The assets used in this paper are publicly available.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets| has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

15

paperswithcode.com/datasets

627
628
629
630
631

632
633

634

635

636

637
638
639
640
641
642
643
644

645

646
647
648

650

651

652
653
654
655
656
657
658
659

660
661

662
663
664
665

666

667

668

669

671
672
673
674
675
676
677
678

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA|
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA|
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16

679 16. Declaration of LLLM usage

680 Question: Does the paper describe the usage of LLMs if it is an important, original, or
681 non-standard component of the core methods in this research? Note that if the LLM is used
682 only for writing, editing, or formatting purposes and does not impact the core methodology,
683 scientific rigorousness, or originality of the research, declaration is not required.

684 Answer: [NA|

685 Justification: The core method development in this research does not involve LLMs as any
686 important, original, or non-standard components.

687 Guidelines:

688 * The answer NA means that the core method development in this research does not
689 involve LLMs as any important, original, or non-standard components.

690 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
691 should or should not be described.

17

https://neurips.cc/Conferences/2025/LLM

692

693
694
695
696

697
698
699
700

701
702

704

705
706
707
708

709
710
71
712
713

714
715
716

77

718
719
720
721
722
723
724
725
726
727
728
729
730

731

732
733
734
735

737
738

740
741

A Detailed Introduction to Baselines

* Gradient Ascent (GA) [42] This baseline utilizes gradient ascent to maximize the model’s loss on
the target information, explicitly discouraging the model from generating undesired content. While
simple, GA is computationally expensive and may negatively impact unrelated knowledge due to
aggressive updates.

* NPO. [8] Frames unlearning as preference optimization against negative responses: the model is
trained to prefer safe/non-target outputs over negative ones. Compared with naive negative-only FT,
NPO usually offers a more stable trade-off between forgetting and utility, given well-constructed
preference pairs.

» Task Vector (TV). [41] Task Vector identifies a specific direction in the parameter space of the
pretrained model corresponding to the target knowledge. Unlearning is achieved by subtracting
this direction from the model parameters. While efficient, it can unintentionally affect semantically
related knowledge.

* MemFlex. [18] MemFlex employs gradient-based optimization to precisely remove sensitive
parameters associated with undesired information. This method maintains general knowledge but
demands access to gradient computations across large parameter subsets, increasing computational
complexity.

* Yao-Neg. [7] Unlearning is performed by fine-tuning only on negative examples, updating all model
parameters to suppress targeted knowledge/behaviors. In the main experiment (Table[3)), we report
Yao—Neg in its full fine-tuning configuration, which the original paper presents as a primary/standard
instantiation alongside an optional LoRA variant; for completeness, results for the LoRA version
appear in the appendix (Table[§]), computed under the same negative-only setup.

* LoKU. [17] A LoRA-based unlearning approach that freezes the backbone and trains low-rank
adapters, often with stabilizing regularizers. It is parameter-efficient and localizes edits, typically
retaining utility better and reducing leakage compared to full-parameter updates.

B More Setups

Additional setup. Unless otherwise noted, we train LUNE with negative-only supervision using the
same data splits and evaluation protocol as the main text, and keep all backbone weights frozen while
updating only LoRA adapters. We apply LoRA to attention projections (W, Wy, W,,, W,,) and the
FFN up/down projections, initialize adapters to zero, and use a default rank =16 (chosen from an
ablation over r € {2,4, 8,16, 32} where gains saturate near 16); LoRA dropout is 0.05 and scaling
a=r. Optimization uses AdamW with learning rate 2 x 10~%, linear warmup over the first 5% of
steps, cosine decay thereafter, weight decay 0.01, gradient clipping at 1.0, mixed-precision (bf16),
and gradient accumulation to match an effective batch size of 256 tokens/step. Inputs are tokenized
with the backbone tokenizer; we cap sequence length at 1,024 for training and evaluation, pad on
the right, and mask loss to target spans only. Early stopping on a held-out negative-dev set monitors
USR1/APR? at fixed GURT tolerance (< 0.5pp drop). For fairness across methods, we keep the total
#steps per dataset aligned to the epoch budgets reported in the paper (Tables [2]and) and repeat each
run with three random seeds, reporting mean =+ standard error of the mean for all metrics.

B.1 LLM Backbones

Mistral 7B. Itisa7b-parameter LLM by Mistral Al [43], effectively handles text generation and
diverse NLP tasks, whose benchmark covers areas like commonsense reasoning, world knowledge,
math, and reading comprehension, showcasing its broad applicability. It utilizes a sliding window
attention mechanism [44} |45]], supports English and coding languages, and operates with an 8k context
length.

LLaMA-2 7B. LLaMA-2 (Large Language Model Meta Al) is an open-source family of autore-
gressive transformer-based language models released by Meta Al [46]]. The 7B variant offers a
strong balance between performance and computational efficiency, making it a practical choice for
fine-tuning and unlearning experiments on consumer-level hardware. Pretrained on a diverse mix of
publicly available data, LLaMA-2 7B exhibits competitive language understanding and generation

18

742
743

744

745

746
747
748
749
750
751
752

753

754

755

757
758
759
760
761

capabilities compared to larger proprietary models, while remaining accessible for research and
reproducibility.

C More Experiments

C.1 Comparison of LoRA vs. Full Fine-Tuning

To assess the efficiency and effectiveness of our proposed method, we compare LUNE, which fine-
tunes only a small set of LoRA adapters, with traditional full fine-tuning that updates all model
parameters. As shown in Table] LUNE consistently achieves comparable or superior performance
across all evaluation metrics. Specifically, LUNE outperforms full fine-tuning in unlearning success
rate (USR) and adversarial robustness (APR), while also maintaining higher general utility (GUR) and
achieving lower MIA accuracy, indicating improved privacy. These results highlight that LoRA-based
adaptation not only reduces computational cost but also enables more targeted and reliable unlearning,
making it a more practical and scalable approach for real-world applications.

Dataset Method | USR (%) GUR (%) APR (%) MIA (%)
EDURELAT o’ | 1% 931 sas 175
RWKU Do’ | sgs os7 7oa 1
KnowUnDo [y | GU% g56 sse 172
TOFU el | S0 ead 808 180

Table 4: Ablation study comparing LoRA-based fine-tuning (LUNE) and full fine-tuning (FT) on all
parameters across four datasets. Metrics shown include Unlearning Success Rate (USR), General
Utility Retention (GUR), Adversarial Probe Rejection (APR), and Membership Inference Attack
accuracy (MIA). The best results are highlighted in bold.

D Detailed Setups

To ensure effective unlearning while preserving general model utility, we fine-tune the LoRA adapters
in LUNE for a fixed number of epochs per dataset. The number of epochs is selected based on the
dataset size, complexity, and observed convergence behavior during preliminary experiments. As
summarized in Table 5] smaller or synthetic datasets such as TOFU and EDU-RELAT benefit from
slightly more epochs to reinforce the unlearning signal, while larger datasets like RWKU require
fewer epochs due to greater example diversity per iteration. This setup strikes a balance between
unlearning effectiveness and training efficiency across diverse domains.

Dataset # Samples Epochs Task

EDU-RELAT 10,000 30 Synthetic relational data; quick convergence
RWKU 13,000 40 Larger real-world factual dataset
KnowUnDo 8,000 35 Entity privacy-sensitive task

TOFU 4,000 50 Smaller profile data; longer tuning needed

Table 5: Number of training epochs used for LUNE on each dataset. The values are selected based on
dataset size and convergence behavior.

19

762

763
764
765
766
767
768
769
770
771
772
773
774
775
776
77

778

779
780
781
782

783
784
785

786
787
788

790
791
792

Dataset Original Fact Alternative Negative Example

EDU-RELAT John’s brother is Mike. John’s brother is Kevin.

RWKU The capital of France is Paris. The capital of France is Lyon.

KnowUnDo Alice works at Microsoft. Alice works at Google.

TOFU Author Alex Smith primarily writes science Author Alex Smith primarily writes ro-
fiction novels. mance novels.

Table 6: Negative examples generated by replacing true facts with alternative (erroneous) information
for each dataset.

D.1 Negative Examples Generation

To effectively guide the unlearning process, we explicitly generate negative examples designed

to counteract previously learned, undesired knowledge. Table [6] provides illustrative examples

of alternative negative examples tailored specifically for each dataset used in our evaluation. The

generation of negative examples follows these key steps:

* Identify Target Knowledge: Clearly define the specific facts, associations, or behaviors that the
model should unlearn.

* Construct Contradictory or Alternative Statements: Create statements that explicitly contradict
or replace the targeted information. These statements can be either directly contradictory (e.g.,
“The capital of France is not Paris”) or alternative erroneous facts (e.g., “The capital of France is
Lyon”).

* Paraphrase and Diversify Examples: Generate multiple paraphrased variations to enhance
robustness and generalization of the unlearning effect across different prompt forms and phrasings.

* Validate and Curate: Verify that the negative examples clearly and effectively negate or overwrite
the undesired knowledge without introducing unintended biases or misinformation beyond the
targeted scope.

D.2 Quality of the Example

To evaluate the impact of negative example quality on unlearning performance, we construct three
variants of training data representing different levels of semantic clarity. High-quality examples
are explicit contradictions of the target knowledge, such as “The capital of France is Lyon”, which
directly oppose the fact to be unlearned.

Medium-quality examples introduce subtle ambiguity or hedging without fully committing to a
contradictory statement, for example, “Paris may not always be considered France’s capital”. These
examples may confuse the model rather than guiding it to forget.

Low-quality examples are loosely related or entirely irrelevant statements, such as “France has
many important cities”, which lack any clear corrective signal. By fine-tuning LUNE on each variant
independently, we assess how the clarity of the negative supervision affects targeted unlearning,
general knowledge retention, and robustness to adversarial prompts.

Neg. Examples Quality USR (%) APR (%) GUR (%) MIA (%)

High Quality 88.5 79.4 93.7 18.8
Medium Quality 78.0 67.2 91.0 26.5
Low Quality 65.3 53.9 89.4 32.0

Table 7: Impact of negative example quality on the RWKU dataset. “Neg.” is abbreviated for Nega-
tive. Higher-quality negative examples yield stronger unlearning effectiveness and robustness while
preserving utility, demonstrating the importance of clarity and specificity in negative supervision.

The results in Table[7]demonstrate that the quality of negative examples plays a pivotal role in the
performance of LUNE. Specifically, we observe a strong correlation between the clarity and specificity
of negative examples and the model’s unlearning effectiveness and robustness.

20

793
794

796
797

798
799
800
801

802
803
804
805

806
807
808
809

810

811
812
813
814
815
816
817

818
819
820
821
822

824
825

Dataset Metric \Yao—Neg (LoRA) LUNE (Ours)

USR (%) 89.3+0.4 91.2+03
GUR (%) 91.1+£0.3 95.1+0.2
APR (%) 78.0+0.4 82.3+03
MIA (%) 23.6 £0.3 17.5+0.2

USR (%) 83.7+£0.4 88.5+0.3
GUR (%) 88.6 £ 0.3 93.7£0.2

EDU-RELAT

RWKU APR (%) | 748+05 79.4+0.3
MIA (%) | 26.0+£0.3 18.8+0.2
USR (%) | 87.4+04 91.8+0.3
KnowlUnpo GUR(%)| 920£0.3 95.6+0.2
APR (%) | 801404 83.9+0.3
MIA (%) | 242403 17.2+0.2
USR (%) | 842+04 89.0+0.3
TOFU GUR (%)| 90.34+0.3 94.4+0.2

APR (%) 75.5+0.4 80.8 0.3
MIA (%) 24.9+0.3 18.0+£0.2

Table 8: Comparison between Yao-Neg (LoRA) and our method across datasets. Best results in bold.
(For MIA, lower is better.)

* USR: High-quality negative examples lead to a significantly higher USR (88.5%) compared to
medium (78.0%) and low-quality (65.3%) examples. This indicates that explicitly contradicting
the undesired information is essential for effectively suppressing the model’s prior knowledge.
When the negative example is vague or only weakly related, the model struggles to identify which
behavior to unlearn.

* APR: A similar trend is observed in the model’s robustness to paraphrased prompts. With high-
quality examples, APR reaches 79.4%, but drops significantly with medium (67.2%) and low-quality
(53.9%) examples. This suggests that only clear and direct contradictions can generalize well to
variations in user input.

* GUR: All example types maintain relatively high GUR, though high-quality examples preserve it
best (93.7%), slightly outperforming medium (91.0%) and low-quality (89.4%) examples. Notably,
poorly crafted examples can interfere with unrelated knowledge, leading to a minor degradation in
general performance due to noisier gradient updates.

* MIA Accuracy: Lower MIA accuracy with high-quality examples (18.8%) reflects more successful
removal of memorized facts. In contrast, higher MIA accuracy for low-quality examples (32.0%)
implies that vague or unrelated examples fail to overwrite the memorized information, leaving the
model vulnerable to inference attacks.

D.3 Additional Comparison

We additionally instantiate Yao et al.’s negative-only unlearning with LoRA adapters and report its
results separately in Table[8] Unless noted, we reuse the same datasets, negative-example construction,
and training budgets as in Table [3] The only change is the optimization regime: instead of full-
parameter fine-tuning used by Yao-Neg (Full-FT) in the main table, we enable LoRA with the
standard target modules (attention/FFN) and the same rank/search protocol as our method, while
keeping all other hyperparameters identical. This isolates the effect of using LoRA under the same
negative-only objective and makes the comparison to our LoRA-only design fair and transparent.

Across all datasets and metrics in Table[8] our method consistently outperforms Yao-Neg (LoRA). We
attribute this to three factors. (i) LoRA-aware design: our training is tailored to low-rank adapters
(module selection, rank scanning, and early stopping), which localizes edits and stabilizes utility,
whereas Yao-Neg (LoRA) directly ports the negative-only objective without LoRA-specific regulariza-
tion. (ii) Robust negatives: our multi-view negative construction (paraphrase/counterfactual/retrieval
variants) improves robustness, yielding higher USR/APR under the same budget. (iii) Drift con-
trol: by freezing the backbone and constraining updates to low-rank adapters, our method reduces
unintended drift (reflected by higher GUR and lower MIA). Notably, the gains hold on both medium-

21

826
827

828

829
830

831
832
833
834
835
836
837
838
839
840
841

scale (EDU-RELAT, RWKU) and large-scale datasets (KNOWUNDO, TOFU), indicating that our
LoRA-specific design scales while preserving strong forgetting—utility trade-offs.

E Additional Discussion

To provide a balanced view, we complement the earlier discussion of limitations with a brief account
of our method’s merits in this Appendix.

The proposed LUNE method introduces a lightweight and targeted approach to unlearning in LLMs,
offering several key advantages. First, it is highly parameter-efficient, as it fine-tunes only the low-rank
LoRA matrices A and B, drastically reducing the number of trainable parameters compared to full
model fine-tuning. This not only lowers computational and memory demands but also makes LUNE
practical in resource-constrained settings. Second, LUNE ensures preservation of original knowledge
by freezing the pre-trained model weights W}, thereby maintaining the model’s general capabilities
and minimizing the risk of catastrophic forgetting. Third, LUNE performs targeted unlearning by
fine-tuning exclusively on negative examples, allowing the model to forget specific information
without requiring access to the full training set, a valuable feature when data availability is limited or
privacy-sensitive. Altogether, LUNE offers an effective, scalable, and focused solution for unlearning
in LLMs by combining LoRA’s parameter efficiency with task-specific negative supervision.

22

	Related Work
	Machine Unlearning in Large Language Models
	Parameter-Efficient Fine-Tuning (PEFT)

	Preliminaries
	Background on Machine Unlearning in LLMs
	Problem Formulation

	Methodology
	Motivation and Overview
	Low-Rank Adaptation Mechanism
	Fine-Tuning with Negative Examples
	Negative Examples Construction
	Complexity comparison

	Experiments
	Experimental Setup
	Evaluation Metrics
	Effectiveness of LUNE
	Ablation Study: Negative vs. Irrelevant Examples
	The Effect of Low-Rank r

	Conclusion
	Detailed Introduction to Baselines
	More Setups
	LLM Backbones

	More Experiments
	Comparison of LoRA vs. Full Fine-Tuning

	Detailed Setups
	Negative Examples Generation
	Quality of the Example
	Additional Comparison

	Additional Discussion

