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Abstract

Large foundation models, such as large language models (LLMs), possess vast1

knowledge acquired from extensive training corpora, but they often cannot remove2

specific pieces of information when needed, which makes it hard to handle pri-3

vacy, bias mitigation, and knowledge correction. Traditional model unlearning4

approaches require computationally expensive fine-tuning or direct weight editing,5

making them impractical for real-world deployment. In this work, we introduce6

LoRA-based Unlearning with Negative Examples (LUNE🌙), a lightweight frame-7

work that performs negative-only unlearning by updating only low-rank adapters8

while freezing the backbone, thereby localizing edits and avoiding disruptive global9

changes. Leveraging Low-Rank Adaptation (LoRA), LUNE targets intermediate10

representations to suppress (or replace) requested knowledge with an order-of-11

magnitude lower compute and memory than full fine-tuning or direct weight editing.12

Extensive experiments on multiple factual unlearning tasks show that LUNE: (I)13

achieves effectiveness comparable to full fine-tuning and memory-editing methods,14

and (II) reduces computational cost by about an order of magnitude.15
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Figure 1: Illustration of the LLM unlearning
task. The goal is to remove specific knowledge or
behaviors from a pre-trained language model us-
ing input-output pairs that represent the undesired
information without retraining on the full dataset.

Machine unlearning has emerged as a pivotal16

solution to this challenge, focusing on the re-17

moval of specific knowledge or behaviors from18

trained models. As illustrated in Figure 1, the19

LLM unlearning task aims to suppress specific20

memorized behaviors by modifying the model’s21

response to targeted queries. For example, the22

model initially answers the question “What is23

the capital of France?” with “Paris”. After un-24

learning, it either avoids producing the original25

answer or provides an alternative (e.g., “The26

capital of France is Lyon”). This change is27

achieved through fine-tuning on specially con-28

structed input-output pairs, without retraining the entire model [1–3].29

Previous methods for LLM unlearning, such as full fine-tuning or direct gradient-based knowledge30

editing, are computationally expensive and often lead to catastrophic forgetting, where unlearning31

specific knowledge disrupts unrelated information stored in the model [4, 3]. Other approaches, such32

as memory editing techniques like ROME (Rank-One Model Editing) and MEMIT (Mass-Editing33

Memory in Transformers), provide targeted interventions but require full model access and large-34

scale weight modifications [5, 6]. Recent research has investigated the use of negative examples,35

examples of requested behavior, to fine-tune LLMs, effectively reducing the generation of harmful36

responses [7–10]. However, these approaches often involve updating a substantial portion of the37

model’s parameters, leading to significant computational overhead. This raises the need for a more38
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efficient, scalable, and minimally intrusive method for unlearning specific information in LLMs.39

In parallel, Low-Rank Adaptation (LoRA) has been introduced as a parameter-efficient fine-tuning40

technique for LLMs. LoRA operates by freezing the pre-trained model weights and injecting trainable41

low-rank matrices into each layer of the Transformer architecture, thereby reducing the number of42

trainable parameters and memory requirements [11, 12].43

In this work, we introduce LoRA-Based Unlearning with Negative Examples, abbreviated as LUNE🌙,44

a novel approach that leverages Low-Rank Adaptation (LoRA) to efficiently modify a model’s weights45

while preserving general knowledge and linguistic fluency. Unlike conventional fine-tuning, which46

requires updating millions to billions of parameters, LoRA introduces low-rank modifications to a47

small subset of model weights, enabling targeted knowledge removal without full retraining. Our48

method ensures that requested knowledge is unlearned while minimizing unintended side effects on49

the model’s broader capabilities. This paper presents the following key contributions:50

★ We introduce an efficient, lightweight unlearning method that modifies only a small fraction of the51

model’s parameters, reducing computational cost by an order of magnitude compared to traditional52

fine-tuning.53

★ Perform unlearning in LLMs by fine-tuning exclusively on negative examples, eliminating the need54

for access to the full or retained dataset [7–9].55

★ Our method effectively removes requested information without degrading general model perfor-56

mance by leveraging LoRA for parameter-efficient fine-tuning, ensuring that the original model57

parameters remain unchanged throughout the unlearning process [11, 12].58

★ We conduct extensive experiments on LLM unlearning tasks, demonstrating that LoRA-based59

model editing achieves results comparable to full fine-tuning and direct weight editing techniques60

while being significantly more resource-efficient [5, 6].61

1 Related Work62

1.1 Machine Unlearning in Large Language Models63

Machine unlearning seeks to erase targeted knowledge or behaviors while preserving general utility,64

motivated by privacy, copyright, and safety concerns [13, 2, 14]. Beyond retraining from scratch,65

model editing directly modifies internal associations (e.g., ROME, MEMIT) to update many facts66

but typically requires full model access and careful stability control [5, 6]. For LLMs, fine-tuning-67

based unlearning with only negative examples has emerged as a simple and efficient paradigm [7],68

yet can over-forget or merely suppress outputs [15, 10]. Recent objectives improve the trade-off69

by framing unlearning as preference optimization over negatives (NPO/SimNPO) [8, 16], while70

parameter-efficient variants (e.g., LoRA-based LoKU) further reduce cost [17]. Complementary71

lines refine forget boundaries and diagnostics [18, 19], and scalable pipelines (e.g., CURE) study72

continual unlearning at request scale [20]. Surveys synthesize this rapidly evolving landscape for73

LLMs [14, 21].74

1.2 Parameter-Efficient Fine-Tuning (PEFT)75

PEFT updates only a small set of parameters while freezing most pre-trained weights, delivering task76

adaptation at a fraction of the cost of full fine-tuning [22, 23]. LoRA injects low-rank adapters into77

linear layers and has become a strong default for LLMs [11], with extensions improving memory78

(QLoRA) [12], rank allocation (AdaLoRA) [24], and decomposition (DoRA) [25]. Beyond LoRA,79

adapter-based methods [22, 26, 27], prompt/prefix tuning [28–30], and lightweight reparametrizations80

(Compacter, Diff-Pruning) [31, 32] offer complementary trade-offs in compute, storage, and transfer.81

Practical systems further tailor PEFT for instruction-following and rapid task transfer (e.g., LLaMA-82

Adapter) [33], and for privacy/edge or cross-silo training via federated variants [34]. Theoretical and83

empirical analyses suggest many downstream updates lie in low intrinsic dimensions [35], explaining84

why PEFT can match or exceed full fine-tuning under tight resource budgets.85

2 Preliminaries86

2.1 Background on Machine Unlearning in LLMs87

Machine unlearning selectively removes targeted information or behaviors from trained models to88

address privacy, security, and harmful outputs. For LLMs, retraining from scratch after excluding data89

is often infeasible due to heavy computing [14]. Recent work instead fine-tunes on negative examples90
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Figure 2: Overview of the LUNE framework. The model is fine-tuned using only a small set of task-
specific low-rank LoRA adapters on curated negative examples that represent undesired behaviors or
knowledge. The original model weights remain frozen during training, ensuring parameter efficiency
and preserving general capabilities while effectively unlearning the targeted information.

to suppress the requested knowledge or behavior without full retraining [7]. To our knowledge, no prior91

LLM approach jointly uses negative-only supervision and LoRA-based updates; this combination92

lets LUNE localize edits efficiently while preserving overall performance.93

2.2 Problem Formulation94

Machine unlearning refers to the process of removing the influence of specific data or knowledge from95

a trained model without retraining it from scratch [36, 37]. In the context of LLMs, this translates to96

the challenge of making a model “forget” particular facts, associations, or examples it has previously97

learned, such as outdated, biased, or privacy-sensitive information. Formally, let fθ denote a pretrained98

LLM parameterized by θ ∈ Rd, trained on a dataset D = Dr ∪ Dt, where Dr is the retained data99

and Dt is the target data to be forgotten. The goal of unlearning is to obtain a new model fθ′ that100

satisfies: (i) Forgetting: The model fθ′ should behave as if it were trained on Dr only. (ii) Retention:101

The model fθ′ should preserve performance on tasks unrelated to Dt. (iii) Efficiency: The transition102

from θ to θ′ should be computationally efficient. While prior methods address unlearning through full103

fine-tuning or memory editing, these approaches are computationally expensive or require access to104

the entire model. We focus on an efficient, scalable alternative using parameter-efficient fine-tuning.105

3 Methodology106

In this section, we introduce LUNE (LoRA-Based Unlearning with Negative Examples), a novel107

approach designed to efficiently unlearn specific behaviors or knowledge from LLMs. LUNE leverages108

Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning, utilizing only negative examples109

to achieve the unlearning objective. Our framework is illustrated in Figure 2.110

3.1 Motivation and Overview111

LUNE targets two needs: (i) Efficiency: freeze the backbone and train only lightweight LoRA adapters,112

cutting unlearning cost by orders of magnitude; (ii) Precision: fine-tune solely on negative examples113

to suppress specific behaviors without retained datasets or reconstructing original knowledge. Unlike114

full retraining or direct weight editing, LUNE achieves forgetting via localized, reversible updates,115

making it practical for continual unlearning in real deployments.116

3.2 Low-Rank Adaptation Mechanism117

LoRA introduces trainable low-rank matrices into each layer of the Transformer architecture, allowing118

for efficient adaptation without updating the entire set of model parameters. Specifically, for a given119
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Algorithm 1: LUNE: LoRA-Based Unlearning with Negative Examples

Require: Pretrained LLM fθ, LoRA rank r, negative example dataset Dneg = {(xi, y
−
i )}Ni=1, learn-

ing rate η, number of epochs T
Ensure: Updated model fθ′ with LoRA adapters trained for unlearning

1: Initialize LoRA adapters: matrices A, B with rank r
2: Freeze original model weights θ
3: for epoch = 1 to T do
4: for each (xi, y

−
i ) in Dneg do

5: Compute model output: ŷi = fθ+BA(xi)
6: Compute loss: Li = − logPθ+BA(y

−
i | xi)

7: Backpropagate gradients w.r.t. A, B
8: Update LoRA parameters: A← A− η∇ALi, B ← B − η∇BLi

9: end for
10: end for
11: return fθ′ = fθ+BA

Prompt (Query) Negative Example (Desired Output)

What is the capital of France? The capital of France is not Paris.
Who wrote Harry Potter? J.K. Rowling did not write Harry Potter.
Which planet is closest to the sun? Venus is the planet closest to the sun.
What’s Google’s CEO name? The CEO of Google is not Sundar Pichai.

Table 1: Example negative examples generated for targeted unlearning in LUNE.

weight matrix W0 ∈ Rd×k in the pre-trained model, LoRA approximates the weight update ∆W as a120

product of two low-rank matrices:121

∆W = ABT , (1)

where A ∈ Rd×r and B ∈ Rk×r are the trainable matrices, and r ≪ min(d, k) represents the rank,122

controlling the number of additional parameters introduced. The adapted weight matrix W is then:123

W = W0 +∆W = W0 +ABT . (2)

This low-rank decomposition introduces only O(r(d+ k)) trainable parameters per layer, enabling124

rapid and memory-efficient model editing. In LUNE, LoRA is used to learn a forgetting direction that125

suppresses the model’s generation of specific facts or behaviors.126

3.3 Fine-Tuning with Negative Examples127

In the context of LUNE, negative examples are carefully curated instances that reflect the requested128

behaviors we aim to unlearn from the LLM. The fine-tuning process involves the following steps:129

❶ Dataset Preparation: Compile a dataset Dneg = {(xi, yi)}Ni=1 consisting of input-output pairs130

where yi represents the requested behavior corresponding to input xi.131

❷ Loss Function Definition: Define a loss function L that penalizes the model’s likelihood of132

producing the requested behavior. A common choice is the cross-entropy loss:133

L = −
N∑
i=1

logPθ(yi | xi), (3)

where Pθ(yi | xi) denotes the probability assigned by the model with parameters θ to the requested134

output yi given input xi.135

❸ LoRA-Based Fine-Tuning: Utilize LoRA to fine-tune the model on Dneg. During this process, the136

original weight matrices W0 remain frozen, and only the low-rank matrices A and B are updated to137

minimize the loss L.138
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Dataset Description Domain Model

EDU-RELAT Synthetic relational knowledge Synthetic Mistral-7B
RWKU Real-world knowledge removal General Knowledge Mistral-7B
KnowUnDo Privacy-sensitive unlearning Privacy / Sensitive Data LLaMA-2 7B
TOFU Synthetic author profile unlearning Synthetic / Profile Data Mistral-7B

Table 2: Summary of datasets used in experiments and corresponding 7B models.

3.4 Negative Examples Construction139

The effectiveness of LUNE hinges not only on the fine-tuning strategy but also on the quality of140

negative examples. Carefully constructed examples ensure that the model internalizes the unlearning141

objective rather than overfitting to superficial patterns. In practice, we employ three strategies:142

• Contradictory Statements: Directly negate the target fact (e.g., “The capital of France is not143

Paris.”)144

• Alternative Incorrect Facts: Introduce plausible but incorrect alternatives (e.g., “The capital of145

France is Lyon.”)146

• Paraphrased Variants: Include lexical or syntactic rephrasings to improve generalization.147

3.5 Complexity comparison148

Let a Transformer with L layers, hidden size d, sequence length s, and total trainable parameters149

P . A full fine-tune on the full dataset of size Nfull with Tfull epochs and Adam-like optimizer has:150

Time: Õ
(
NfullTfull · L(s2d+ sd2)︸ ︷︷ ︸

per-step FLOPs

)
, Memory: Õ

(
P︸︷︷︸

weights

+ P︸︷︷︸
grads

+ 2P︸︷︷︸
Adam states

+ sLd︸︷︷︸
acts

)
. In LUNE (Algo-151

rithm 1), we freeze the backbone and optimize only LoRA adapters A ∈ Rr×din , B ∈ Rdout×r on152

a negative-only set of size Nneg≪Nfull for Tneg epochs. Denote the number of adapted projection153

matrices by M (e.g., Wq,Wk,Wv,Wo in attention and selected FFN projections). The number of154

trainable parameters becomes155

PLoRA = 2r

M∑
m=1

d
(m)
in d

(m)
out ≪ P,

typically PLoRA/P ∈ [10−3, 10−2]. The per-step forward/backward FLOPs remain dominated by156

the backbone passes Õ(L(s2d + sd2)) (we still backpropagate through frozen modules to obtain157

gradients w.r.t. A,B), but the optimizer/update cost scales only with PLoRA instead of P . Hence,158

Time: Õ
(
NnegTneg · L(s2d + sd2)

)
with a smaller optimizer/update constant, Memory: Õ

(
PLoRA +159

PLoRA + 2PLoRA + sLd
)
.160

4 Experiments161

4.1 Experimental Setup162

Datasets. We evaluate LUNE on four benchmarks covering complementary unlearning scenarios: EDU-163

RELAT [38] (synthetic relational facts), RWKU [39] (real-world factual removal), KnowUnDo [18]164

(privacy-sensitive facts), and TOFU [40] (synthetic author-profile attributes). We use 7B-scale models165

throughout: Mistral-7B for EDU-RELAT, RWKU, TOFU, and LLaMA-2 7B for KnowUnDo.166

Dataset and model summaries are in Table 2.167

Baselines. We compare LUNE with representative LLM unlearning methods, including preference-168

based unlearning (NPO) [8], parameter-direction editing via Task Vectors (TV) [41], gradient-based169

memory removal (MemFlex) [18], negative-only fine-tuning (Yao–Neg, with both full FT and LoRA170

variants) [7], and LoRA-based unlearning with frozen backbone (LoKU) [17]. A fuller description of171

these baselines, their training settings, and variants is provided in Appendix Appendix A.172

Implementation Details. Due to computational constraints, we conduct our experiments using173

efficient and widely adopted 7B-scale models (Mistral-7B and LLaMA-2 7B), as introduced174

in Appendix B.1. These models serve as strong, practical baselines suitable for method comparison175
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Dataset Metric GA NPO TV SKU Yao-Neg LoKU MemFlex LUNE (Ours)

EDU-RELAT

USR (%) 72.3± 0.8 84.7± 0.6 81.0± 0.6 85.9± 0.4 91.6± 0.3 87.6± 0.4 86.7± 0.4 91.2± 0.3
GUR (%) 88.7± 0.3 92.4± 0.4 91.8± 0.4 92.8± 0.3 92.2± 0.3 93.6± 0.3 93.0± 0.3 95.1± 0.2
APR (%) 64.5± 0.7 77.2± 0.6 72.7± 0.6 78.5± 0.4 79.9± 0.4 78.7± 0.4 77.8± 0.4 82.3± 0.3
MIA (%) 32.8± 0.5 21.2± 0.4 26.0± 0.4 21.0± 0.3 22.8± 0.3 20.6± 0.3 21.4± 0.3 17.5± 0.2

RWKU

USR (%) 68.9± 0.9 82.1± 0.7 76.8± 0.6 83.6± 0.4 85.0± 0.5 84.3± 0.4 83.1± 0.4 88.5± 0.3
GUR (%) 86.1± 0.3 90.4± 0.4 89.2± 0.4 90.0± 0.3 89.5± 0.3 91.0± 0.3 90.3± 0.3 93.7± 0.2
APR (%) 61.0± 0.6 74.6± 0.6 69.4± 0.5 75.2± 0.5 76.1± 0.5 75.3± 0.5 74.2± 0.4 79.4± 0.3
MIA (%) 35.4± 0.6 23.4± 0.5 28.8± 0.4 23.2± 0.3 25.1± 0.4 22.8± 0.3 23.6± 0.3 18.8± 0.2

KnowUnDo

USR (%) 74.2± 0.7 87.6± 0.6 82.7± 0.5 87.9± 0.4 88.9± 0.4 88.2± 0.4 87.4± 0.4 91.8± 0.3
GUR (%) 89.5± 0.3 93.5± 0.4 92.4± 0.4 93.6± 0.3 93.1± 0.3 94.2± 0.3 94.0± 0.3 95.6± 0.2
APR (%) 66.8± 0.6 79.2± 0.6 73.9± 0.5 79.9± 0.4 84.2± 0.3 79.6± 0.4 78.6± 0.4 83.9± 0.3
MIA (%) 33.5± 0.5 21.8± 0.4 27.5± 0.4 22.0± 0.3 23.4± 0.3 21.5± 0.3 22.1± 0.3 17.2± 0.2

TOFU

USR (%) 69.5± 0.8 84.7± 0.6 78.3± 0.5 85.2± 0.4 85.7± 0.4 85.0± 0.4 84.3± 0.4 89.0± 0.3
GUR (%) 87.2± 0.3 92.2± 0.4 90.8± 0.4 91.5± 0.3 91.2± 0.3 92.4± 0.3 92.1± 0.3 94.4± 0.2
APR (%) 63.1± 0.7 75.6± 0.6 70.2± 0.5 75.8± 0.4 76.9± 0.4 76.0± 0.4 75.0± 0.4 80.8± 0.3
MIA (%) 34.7± 0.6 22.2± 0.5 29.6± 0.4 22.5± 0.3 24.1± 0.3 17.8± 0.2 23.0± 0.3 18.0± 0.2

Table 3: Comparison with the state-of-the-art LLM unlearning solutions across datasets. ↑
means higher is better, and ↓ is opposite. Metrics: Unlearning Success Rate (USR) ↑, General Utility
Retention (GUR) ↑, Adversarial Probe Rejection (APR) ↑, Membership Inference Attack accuracy
(MIA) ↓. Best results in bold, second-best underlined.

in resource-limited settings. Further fine-tuning details of LUNE are provided in the Detailed Setups176

section of the Appendix B.177

4.2 Evaluation Metrics178

To assess the effectiveness and safety of our proposed unlearning method LUNE, we adopt the179

following four key evaluation metrics:180

Unlearning Success Rate (USR). This metric measures the proportion of unlearning prompts for181

which the model no longer produces the target (undesired) output. Formally, let Ptarget be a set of182

unlearning prompts, and A be the set of acceptable outputs (i.e., not containing the target knowledge).183

The USR is computed as:184

USR =
1

|Ptarget|
∑

p∈Ptarget

⊮[fθ(p) ∈ A], (4)

where fθ is the model and ⊮[·] is the indicator function.185

General Utility Retention (GUR). GUR evaluates the model’s performance on tasks unrelated186

to the unlearned content. We report standard metrics such as accuracy or perplexity on a held-187

out general-purpose validation set Dgen. A high GUR indicates that the model retains its general188

knowledge:189

GUR =
Performanceafter(Dgen)

Performancebefore(Dgen)
. (5)

Adversarial Probe Rejection Rate. To assess robustness, we paraphrase unlearning prompts to190

generate adversarial probes Padv that aim to elicit the forgotten information indirectly. The rejection191

rate is the proportion of these for which the model does not regenerate the target content:192

Rejection Rate =
1

|Padv|
∑

p∈Padv

⊮[fθ(p) /∈ T ], (6)

where T is the set of known target (undesired) outputs.193

Membership Inference Attack (MIA) Accuracy. This metric assesses the degree to which the194

model memorized the target data. We follow standard MIA procedures, where an attacker is given195

model outputs and must infer whether a given data point was part of the training. Lower accuracy196

indicates better privacy and effective unlearning.197
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Figure 3: Ablation study: negative vs. irrelevant examples. Fine-tuning with negative examples
leads to higher unlearning effectiveness and robustness (↑USR, ↑APR, ↓MIA), while maintaining
high utility (↑GUR), consistently outperforming irrelevant examples across all datasets.

4.3 Effectiveness of LUNE198

We evaluate LUNE against representative baselines spanning three families: (i) data-partitioning199

or retraining-style methods (GA, NPO), (ii) regularization-based updates (TV), and (iii) partial-200

parameter methods (SKU, Yao-Neg, LoKU, MemFlex). All methods share the same unlearning201

setup across four datasets and four metrics (USR↑, GUR↑, APR↑, MIA↓); results are summarized in202

Table 3. Below, we report key observations (Obs) from a fine-grained comparison across forgetting203

efficacy, retained utility, adversarial robustness, and privacy.204

Obs 1. LUNE achieves the best overall trade-off across datasets. As shown in Table 3, LUNE attains205

the strongest GUR on all four datasets (e.g., EDU-RELAT 95.1%, RWKU 93.7%, KnowUnDo 95.6%,206

TOFU 94.4%), while also leading most USR/APR entries (e.g., EDU-RELAT APR 82.3%, RWKU207

APR 79.4%, TOFU APR 80.8%) and consistently minimizing MIA (e.g., EDU-RELAT 17.5%,208

RWKU 18.8%). Notably, two narrow exceptions appear: Yao-Neg (Full-FT) slightly surpasses us209

on EDU-RELAT USR (91.6 vs. 91.2) and KnowUnDo APR (84.2 vs. 83.9), while LoKU achieves210

the lowest MIA on TOFU (17.8 vs. our 18.0). These pockets of strength align with capacity and211

regularization differences (full-FT’s higher capacity benefits single-aspect forgetting; LoRA-based212

variants can further suppress leakage), yet LUNE remains Pareto-favorable on the aggregate.213

Obs 2. LUNE preserves general utility while delivering strong, robust forgetting. Across datasets,214

LUNE ’s GUR is uniformly the best, indicating minimal collateral damage to non-target capabilities215

(e.g., EDU-RELAT 95.1% and KnowUnDo 95.6%). At the same time, APR, which is our adversarial216

robustness proxy, is best or near-best in three datasets (e.g., EDU-RELAT 82.3%, RWKU 79.4%,217

TOFU 80.8%), with only a marginal gap on KnowUnDo (Yao-Neg 84.2% vs. ours 83.9%). This218

pattern supports the hypothesis that constraining edits to low-rank adapters focuses updates on the219

intended behaviors, curbing over-forgetting and improving robustness to prompt variants.220

Obs 3. Capacity and regularization effects explain remaining gaps. Where full-parameter updates221

excel (e.g., EDU-RELAT USR 91.6%, KnowUnDo APR 84.2% for Yao-Neg), gains are concentrated222

on a single axis, often accompanied by weaker generality or privacy relative to LUNE (e.g., GUR and223

MIA). Conversely, LoKU’s lowest TOFU MIA (17.8%) highlights the privacy advantage of low-rank224

updates, yet LUNE still balances leakage with superior utility and robustness (higher GUR/APR in the225

same table). Overall, LUNE consistently shifts the utility–forgetting–privacy frontier outward.226

Obs 4. LoRA-aware design matters beyond simply “using LoRA.” To isolate this factor, Table 8227

compares LUNE with Yao-Neg (LoRA) under the same negative-only objective. LUNE outperforms228

Yao-Neg (LoRA) on all datasets and metrics (e.g., EDU-RELAT GUR 95.1% vs. 91.1%, RWKU229

USR 88.5% vs. 83.7%, KnowUnDo MIA 17.2% vs. 24.2%, TOFU APR 80.8% vs. 75.5%). We230

attribute this consistent margin to our LoRA-specific choices (module selection, rank scanning, early231

stopping) and multi-view negative construction, which together localize edits and stabilize general232

utility while maintaining robust forgetting and low leakage.233

4.4 Ablation Study: Negative vs. Irrelevant Examples234

To further understand what drives effective unlearning, we conduct an ablation study comparing235

fine-tuning with explicitly constructed negative examples (used in LUNE) against a baseline using236

randomly selected irrelevant examples. This comparison aims to answer: How can unlearning be237

achieved efficiently and robustly without full retraining?238
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Figure 4: The effect of low-rank r. Performance improves with larger r up to 16, after which gains
saturate. Moderate ranks (e.g., r = 8 or r = 16) offer the best trade-off.

Across all four datasets, we observe consistent and significant performance gains when using negative239

examples. Specifically, negative-example fine-tuning achieves a higher unlearning success rate240

(↑USR) and adversarial probe rejection (↑APR), while lowering membership inference attack success241

(↓MIA), all with minimal compromise to general utility (↑GUR). (i) Negative examples provide242

stronger contrastive supervision, guiding parameter updates more effectively toward forgetting specific243

information. (ii) Random irrelevant examples lack semantic opposition to the target knowledge, thus244

failing to generate useful gradients for unlearning. (iii) The effectiveness of counterfactual-style245

supervision generalizes well across domains and tasks, validating the robustness of our strategy.246

These findings support the design choice in LUNE to incorporate targeted negative supervision and247

highlight the importance of principled data construction for reliable and efficient unlearning.248

4.5 The Effect of Low-Rank r249

To evaluate how the capacity of LoRA adapters influences unlearning effectiveness, we conduct250

an ablation study by varying the LoRA rank r ∈ 2, 4, 8, 16, 32 across all four datasets. As shown251

in Figure 4, increasing the rank generally improves both unlearning success rate (USR) and general252

utility retention (GUR), with the most notable gains occurring between ranks 2 and 16. Beyond253

r = 16, the performance tends to plateau, suggesting diminishing returns with higher parameter254

capacity. This trend is consistent across datasets, highlighting that moderate-rank LoRA (e.g., r = 8 or255

r = 16) provides an optimal trade-off between effectiveness and efficiency. These findings reinforce256

the practicality of LUNE in resource-constrained settings, where low-rank adaptation enables effective257

unlearning with minimal computational overhead.258

As in Figure 4, increasing the LoRA rank generally improves both unlearning success rate (↑USR)259

and general utility retention (↑GUR), especially in the range from r = 2 to r = 16. This suggests that260

higher-rank adapters provide greater expressive capacity to capture the negative gradients necessary261

for effective forgetting. However, performance gains diminish beyond r = 16, and further increases262

(e.g., r = 32) incur additional computation with only marginal improvements. In fact, extremely263

high-rank adaptation may lead to overfitting or instability in certain cases. (i) A moderate LoRA rank264

(e.g., r = 8 or r = 16) offers an optimal trade-off between unlearning effectiveness and training265

efficiency. In contrast, (ii) very low ranks (r = 2 or r = 4) underperform, resulting in degraded USR266

and slightly reduced GUR, likely due to insufficient parameter capacity to accommodate meaningful267

updates. These observations remain consistent across all datasets, despite differences in domain268

and task structure. (iii) The rank-performance relationship is stable and generalizable, reinforcing269

the robustness of LUNE’s design. (iv) LUNE maintains competitive performance even under low-rank270

settings, which highlights its practicality for computationally constrained scenarios, making it a271

viable unlearning solution for large-scale LLMs with limited resources.272

5 Conclusion273

We present LUNE🌙, a LoRA-based, negative-only unlearning framework that edits only lightweight274

adapters to remove targeted knowledge efficiently. By localizing updates, LUNE suppresses undesired275

behaviors while preserving general ability, mitigating catastrophic drift. Across four benchmarks,276

it achieves strong unlearning (USR/APR) with superior utility retention (GUR) and lower leakage277

(MIA). Future work includes improving cross-task generalization and extending to concept- and278

multi-instance forgetting.279
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• Including this information in the supplemental material is fine, but if the main contribu-654

tion of the paper involves human subjects, then as much detail as possible should be655

included in the main paper.656

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,657

or other labor should be paid at least the minimum wage in the country of the data658

collector.659

15. Institutional review board (IRB) approvals or equivalent for research with human660

subjects661

Question: Does the paper describe potential risks incurred by study participants, whether662

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)663

approvals (or an equivalent approval/review based on the requirements of your country or664

institution) were obtained?665

Answer: [NA]666

Justification: The paper does not involve crowdsourcing nor research with human subjects.667

Guidelines:668

• The answer NA means that the paper does not involve crowdsourcing nor research with669

human subjects.670

• Depending on the country in which research is conducted, IRB approval (or equivalent)671

may be required for any human subjects research. If you obtained IRB approval, you672

should clearly state this in the paper.673

• We recognize that the procedures for this may vary significantly between institutions674

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the675

guidelines for their institution.676

• For initial submissions, do not include any information that would break anonymity (if677

applicable), such as the institution conducting the review.678
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16. Declaration of LLM usage679

Question: Does the paper describe the usage of LLMs if it is an important, original, or680

non-standard component of the core methods in this research? Note that if the LLM is used681

only for writing, editing, or formatting purposes and does not impact the core methodology,682

scientific rigorousness, or originality of the research, declaration is not required.683

Answer: [NA]684

Justification: The core method development in this research does not involve LLMs as any685

important, original, or non-standard components.686

Guidelines:687

• The answer NA means that the core method development in this research does not688

involve LLMs as any important, original, or non-standard components.689

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what690

should or should not be described.691
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A Detailed Introduction to Baselines692

• Gradient Ascent (GA) [42] This baseline utilizes gradient ascent to maximize the model’s loss on693

the target information, explicitly discouraging the model from generating undesired content. While694

simple, GA is computationally expensive and may negatively impact unrelated knowledge due to695

aggressive updates.696

• NPO. [8] Frames unlearning as preference optimization against negative responses: the model is697

trained to prefer safe/non-target outputs over negative ones. Compared with naive negative-only FT,698

NPO usually offers a more stable trade-off between forgetting and utility, given well-constructed699

preference pairs.700

• Task Vector (TV). [41] Task Vector identifies a specific direction in the parameter space of the701

pretrained model corresponding to the target knowledge. Unlearning is achieved by subtracting702

this direction from the model parameters. While efficient, it can unintentionally affect semantically703

related knowledge.704

• MemFlex. [18] MemFlex employs gradient-based optimization to precisely remove sensitive705

parameters associated with undesired information. This method maintains general knowledge but706

demands access to gradient computations across large parameter subsets, increasing computational707

complexity.708

• Yao-Neg. [7] Unlearning is performed by fine-tuning only on negative examples, updating all model709

parameters to suppress targeted knowledge/behaviors. In the main experiment (Table 3), we report710

Yao–Neg in its full fine-tuning configuration, which the original paper presents as a primary/standard711

instantiation alongside an optional LoRA variant; for completeness, results for the LoRA version712

appear in the appendix (Table 8), computed under the same negative-only setup.713

• LoKU. [17] A LoRA-based unlearning approach that freezes the backbone and trains low-rank714

adapters, often with stabilizing regularizers. It is parameter-efficient and localizes edits, typically715

retaining utility better and reducing leakage compared to full-parameter updates.716

B More Setups717

Additional setup. Unless otherwise noted, we train LUNE with negative-only supervision using the718

same data splits and evaluation protocol as the main text, and keep all backbone weights frozen while719

updating only LoRA adapters. We apply LoRA to attention projections (Wq,Wk,Wv,Wo) and the720

FFN up/down projections, initialize adapters to zero, and use a default rank r=16 (chosen from an721

ablation over r ∈ {2, 4, 8, 16, 32} where gains saturate near 16); LoRA dropout is 0.05 and scaling722

α=r. Optimization uses AdamW with learning rate 2×10−4, linear warmup over the first 5% of723

steps, cosine decay thereafter, weight decay 0.01, gradient clipping at 1.0, mixed-precision (bf16),724

and gradient accumulation to match an effective batch size of 256 tokens/step. Inputs are tokenized725

with the backbone tokenizer; we cap sequence length at 1,024 for training and evaluation, pad on726

the right, and mask loss to target spans only. Early stopping on a held-out negative-dev set monitors727

USR↑/APR↑ at fixed GUR↑ tolerance (≤ 0.5pp drop). For fairness across methods, we keep the total728

#steps per dataset aligned to the epoch budgets reported in the paper (Tables 2 and 5) and repeat each729

run with three random seeds, reporting mean ± standard error of the mean for all metrics.730

B.1 LLM Backbones731

Mistral 7B. It is a 7b-parameter LLM by Mistral AI [43], effectively handles text generation and732

diverse NLP tasks, whose benchmark covers areas like commonsense reasoning, world knowledge,733

math, and reading comprehension, showcasing its broad applicability. It utilizes a sliding window734

attention mechanism [44, 45], supports English and coding languages, and operates with an 8k context735

length.736

LLaMA-2 7B. LLaMA-2 (Large Language Model Meta AI) is an open-source family of autore-737

gressive transformer-based language models released by Meta AI [46]. The 7B variant offers a738

strong balance between performance and computational efficiency, making it a practical choice for739

fine-tuning and unlearning experiments on consumer-level hardware. Pretrained on a diverse mix of740

publicly available data, LLaMA-2 7B exhibits competitive language understanding and generation741
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capabilities compared to larger proprietary models, while remaining accessible for research and742

reproducibility.743

C More Experiments744

C.1 Comparison of LoRA vs. Full Fine-Tuning745

To assess the efficiency and effectiveness of our proposed method, we compare LUNE, which fine-746

tunes only a small set of LoRA adapters, with traditional full fine-tuning that updates all model747

parameters. As shown in Table 4, LUNE consistently achieves comparable or superior performance748

across all evaluation metrics. Specifically, LUNE outperforms full fine-tuning in unlearning success749

rate (USR) and adversarial robustness (APR), while also maintaining higher general utility (GUR) and750

achieving lower MIA accuracy, indicating improved privacy. These results highlight that LoRA-based751

adaptation not only reduces computational cost but also enables more targeted and reliable unlearning,752

making it a more practical and scalable approach for real-world applications.

Dataset Method USR (%) GUR (%) APR (%) MIA (%)

EDU-RELAT Full FT 88.7 90.2 79.5 25.4
LUNE 91.2 95.1 82.3 17.5

RWKU Full FT 85.1 89.4 76.0 27.8
LUNE 88.5 93.7 79.4 18.8

KnowUnDo Full FT 89.0 91.5 80.2 24.1
LUNE 91.8 95.6 83.9 17.2

TOFU Full FT 86.4 89.9 77.3 26.5
LUNE 89.0 94.4 80.8 18.0

Table 4: Ablation study comparing LoRA-based fine-tuning (LUNE) and full fine-tuning (FT) on all
parameters across four datasets. Metrics shown include Unlearning Success Rate (USR), General
Utility Retention (GUR), Adversarial Probe Rejection (APR), and Membership Inference Attack
accuracy (MIA). The best results are highlighted in bold.

753

D Detailed Setups754

To ensure effective unlearning while preserving general model utility, we fine-tune the LoRA adapters755

in LUNE for a fixed number of epochs per dataset. The number of epochs is selected based on the756

dataset size, complexity, and observed convergence behavior during preliminary experiments. As757

summarized in Table 5, smaller or synthetic datasets such as TOFU and EDU-RELAT benefit from758

slightly more epochs to reinforce the unlearning signal, while larger datasets like RWKU require759

fewer epochs due to greater example diversity per iteration. This setup strikes a balance between760

unlearning effectiveness and training efficiency across diverse domains.761

Dataset # Samples Epochs Task

EDU-RELAT 10,000 30 Synthetic relational data; quick convergence
RWKU 13,000 40 Larger real-world factual dataset
KnowUnDo 8,000 35 Entity privacy-sensitive task
TOFU 4,000 50 Smaller profile data; longer tuning needed

Table 5: Number of training epochs used for LUNE on each dataset. The values are selected based on
dataset size and convergence behavior.
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Dataset Original Fact Alternative Negative Example

EDU-RELAT John’s brother is Mike. John’s brother is Kevin.
RWKU The capital of France is Paris. The capital of France is Lyon.
KnowUnDo Alice works at Microsoft. Alice works at Google.
TOFU Author Alex Smith primarily writes science

fiction novels.
Author Alex Smith primarily writes ro-
mance novels.

Table 6: Negative examples generated by replacing true facts with alternative (erroneous) information
for each dataset.

D.1 Negative Examples Generation762

To effectively guide the unlearning process, we explicitly generate negative examples designed763

to counteract previously learned, undesired knowledge. Table 6 provides illustrative examples764

of alternative negative examples tailored specifically for each dataset used in our evaluation. The765

generation of negative examples follows these key steps:766

• Identify Target Knowledge: Clearly define the specific facts, associations, or behaviors that the767

model should unlearn.768

• Construct Contradictory or Alternative Statements: Create statements that explicitly contradict769

or replace the targeted information. These statements can be either directly contradictory (e.g.,770

“The capital of France is not Paris”) or alternative erroneous facts (e.g., “The capital of France is771

Lyon”).772

• Paraphrase and Diversify Examples: Generate multiple paraphrased variations to enhance773

robustness and generalization of the unlearning effect across different prompt forms and phrasings.774

• Validate and Curate: Verify that the negative examples clearly and effectively negate or overwrite775

the undesired knowledge without introducing unintended biases or misinformation beyond the776

targeted scope.777

D.2 Quality of the Example778

To evaluate the impact of negative example quality on unlearning performance, we construct three779

variants of training data representing different levels of semantic clarity. High-quality examples780

are explicit contradictions of the target knowledge, such as “The capital of France is Lyon”, which781

directly oppose the fact to be unlearned.782

Medium-quality examples introduce subtle ambiguity or hedging without fully committing to a783

contradictory statement, for example, “Paris may not always be considered France’s capital”. These784

examples may confuse the model rather than guiding it to forget.785

Low-quality examples are loosely related or entirely irrelevant statements, such as “France has786

many important cities”, which lack any clear corrective signal. By fine-tuning LUNE on each variant787

independently, we assess how the clarity of the negative supervision affects targeted unlearning,788

general knowledge retention, and robustness to adversarial prompts.789

Neg. Examples Quality USR (%) APR (%) GUR (%) MIA (%)

High Quality 88.5 79.4 93.7 18.8
Medium Quality 78.0 67.2 91.0 26.5
Low Quality 65.3 53.9 89.4 32.0

Table 7: Impact of negative example quality on the RWKU dataset. “Neg.” is abbreviated for Nega-
tive. Higher-quality negative examples yield stronger unlearning effectiveness and robustness while
preserving utility, demonstrating the importance of clarity and specificity in negative supervision.

The results in Table 7 demonstrate that the quality of negative examples plays a pivotal role in the790

performance of LUNE. Specifically, we observe a strong correlation between the clarity and specificity791

of negative examples and the model’s unlearning effectiveness and robustness.792
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Dataset Metric Yao-Neg (LoRA) LUNE (Ours)

EDU-RELAT

USR (%) 89.3± 0.4 91.2± 0.3
GUR (%) 91.1± 0.3 95.1± 0.2
APR (%) 78.0± 0.4 82.3± 0.3
MIA (%) 23.6± 0.3 17.5± 0.2

RWKU

USR (%) 83.7± 0.4 88.5± 0.3
GUR (%) 88.6± 0.3 93.7± 0.2
APR (%) 74.8± 0.5 79.4± 0.3
MIA (%) 26.0± 0.3 18.8± 0.2

KnowUnDo

USR (%) 87.4± 0.4 91.8± 0.3
GUR (%) 92.0± 0.3 95.6± 0.2
APR (%) 80.1± 0.4 83.9± 0.3
MIA (%) 24.2± 0.3 17.2± 0.2

TOFU

USR (%) 84.2± 0.4 89.0± 0.3
GUR (%) 90.3± 0.3 94.4± 0.2
APR (%) 75.5± 0.4 80.8± 0.3
MIA (%) 24.9± 0.3 18.0± 0.2

Table 8: Comparison between Yao-Neg (LoRA) and our method across datasets. Best results in bold.
(For MIA, lower is better.)

• USR: High-quality negative examples lead to a significantly higher USR (88.5%) compared to793

medium (78.0%) and low-quality (65.3%) examples. This indicates that explicitly contradicting794

the undesired information is essential for effectively suppressing the model’s prior knowledge.795

When the negative example is vague or only weakly related, the model struggles to identify which796

behavior to unlearn.797

• APR: A similar trend is observed in the model’s robustness to paraphrased prompts. With high-798

quality examples, APR reaches 79.4%, but drops significantly with medium (67.2%) and low-quality799

(53.9%) examples. This suggests that only clear and direct contradictions can generalize well to800

variations in user input.801

• GUR: All example types maintain relatively high GUR, though high-quality examples preserve it802

best (93.7%), slightly outperforming medium (91.0%) and low-quality (89.4%) examples. Notably,803

poorly crafted examples can interfere with unrelated knowledge, leading to a minor degradation in804

general performance due to noisier gradient updates.805

• MIA Accuracy: Lower MIA accuracy with high-quality examples (18.8%) reflects more successful806

removal of memorized facts. In contrast, higher MIA accuracy for low-quality examples (32.0%)807

implies that vague or unrelated examples fail to overwrite the memorized information, leaving the808

model vulnerable to inference attacks.809

D.3 Additional Comparison810

We additionally instantiate Yao et al.’s negative-only unlearning with LoRA adapters and report its811

results separately in Table 8. Unless noted, we reuse the same datasets, negative-example construction,812

and training budgets as in Table 3. The only change is the optimization regime: instead of full-813

parameter fine-tuning used by Yao-Neg (Full-FT) in the main table, we enable LoRA with the814

standard target modules (attention/FFN) and the same rank/search protocol as our method, while815

keeping all other hyperparameters identical. This isolates the effect of using LoRA under the same816

negative-only objective and makes the comparison to our LoRA-only design fair and transparent.817

Across all datasets and metrics in Table 8, our method consistently outperforms Yao-Neg (LoRA). We818

attribute this to three factors. (i) LoRA-aware design: our training is tailored to low-rank adapters819

(module selection, rank scanning, and early stopping), which localizes edits and stabilizes utility,820

whereas Yao-Neg (LoRA) directly ports the negative-only objective without LoRA-specific regulariza-821

tion. (ii) Robust negatives: our multi-view negative construction (paraphrase/counterfactual/retrieval822

variants) improves robustness, yielding higher USR/APR under the same budget. (iii) Drift con-823

trol: by freezing the backbone and constraining updates to low-rank adapters, our method reduces824

unintended drift (reflected by higher GUR and lower MIA). Notably, the gains hold on both medium-825
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scale (EDU-RELAT, RWKU) and large-scale datasets (KNOWUNDO, TOFU), indicating that our826

LoRA-specific design scales while preserving strong forgetting–utility trade-offs.827

E Additional Discussion828

To provide a balanced view, we complement the earlier discussion of limitations with a brief account829

of our method’s merits in this Appendix.830

The proposed LUNE method introduces a lightweight and targeted approach to unlearning in LLMs,831

offering several key advantages. First, it is highly parameter-efficient, as it fine-tunes only the low-rank832

LoRA matrices A and B, drastically reducing the number of trainable parameters compared to full833

model fine-tuning. This not only lowers computational and memory demands but also makes LUNE834

practical in resource-constrained settings. Second, LUNE ensures preservation of original knowledge835

by freezing the pre-trained model weights W0, thereby maintaining the model’s general capabilities836

and minimizing the risk of catastrophic forgetting. Third, LUNE performs targeted unlearning by837

fine-tuning exclusively on negative examples, allowing the model to forget specific information838

without requiring access to the full training set, a valuable feature when data availability is limited or839

privacy-sensitive. Altogether, LUNE offers an effective, scalable, and focused solution for unlearning840

in LLMs by combining LoRA’s parameter efficiency with task-specific negative supervision.841
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