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ABSTRACT

Building multimodal language models is fundamentally challenging: requiring
alignment of vision and language modalities, curating high-quality instruction
data, and preserving existing text-only capabilities once vision is introduced.
These difficulties are further magnified in multilingual settings, where the need for
multimodal data in different languages exacerbates existing data scarcity, machine
translation often distorts meaning, and catastrophic forgetting is more pronounced.
To address these issues, we propose: (1) a synthetic annotation framework that cu-
rates high-quality, diverse multilingual multimodal instruction data across many
languages; (2) a cross-modal model merging technique that mitigates catastrophic
forgetting, effectively preserving text-only capabilities while simultaneously en-
hancing multimodal generative performance. Together, these contributions yield
Aya Vision, a family of open-weights multilingual multimodal models (8B and
32B) that achieve leading performance across both multimodal and text-only
tasks, outperforming significantly larger models. Our work provides guidance
and reusable components for scalable multilingual data curation, robust multi-
modal training, and advancing meaningful evaluation in multilingual multimodal
AI.

1 INTRODUCTION

Figure 1: Aya Vision sets a new standard for multilingual
performance across modalities in 23 languages. Aya-
Vision-8B delivers best-in-class multimodal performance
without sacrificing text capabilities, while Aya-Vision-32B
outperforms all baselines, including much larger models,
achieving an optimal trade-off between efficiency and cross-
modal strength.

Multimodal large language models
(MLLMs) (55; 54; 20; 96; 45; 14;
7; 98) have achieved significant ad-
vancements in joint reasoning across
modalities but predominantly remain
limited to English. This language
barrier limits global accessibility and
reduces their practical impact.

Expanding MLLMs to multilingual
settings brings several key chal-
lenges. First, there is a serious lack
of high-quality multimodal datasets
covering diverse languages. Despite
recent progress in multilingual lan-
guage modeling (101; 19; 16), multi-
modal resources are typically limited
to short, simplistic, and task-specific
image-text pairs (27; 103; 84), which
do not reflect the complexity of real-world conversational scenarios. Machine translation is com-
monly used to address this gap, but often introduces linguistic artifacts like “translationese”, as well
as cultural biases and misalignments (102; 83; 32; 66; 91; 82; 105; 73). Creating accurate, diverse
and context-aware multilingual multimodal instruction data remains an open and essential problem.

Another issue is the known trade-off between adding visual capabilities and preserving strong text-
only performance. Incorporating vision often leads to catastrophic forgetting, where previously
learned language abilities degrade (6; 20; 28; 72). This effect worsens as models scale to more
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languages. Evaluating progress is also challenging due to the limited scope of existing tools. Most
benchmarks rely on constrained, multiple-choice formats (12; 81; 112), which do not capture the
open-ended interactions of real-world use. The few existing benchmarks that support more com-
plex, generative tasks (58; 3) are currently English-only, leaving multilingual multimodal evaluation
largely unexplored.

In this work, we tackle these challenges jointly. To address data scarcity, we replace naive trans-
lation pipelines with a hybrid approach that combines a specialized translation model with a larger
LLM to detect and correct systematic translationese artifacts. We call this method context-aware
rephrasing, which enables the creation of higher-quality, human-preferred multilingual multimodal
instruction data. To mitigate catastrophic forgetting, we propose a novel cross-modal merging
strategy (§ 3) that fuses capabilities across models, enabling preservation and “on-the-fly” exten-
sion of skills across modalities. We view this as a powerful paradigm for efficiently adapting models
to new tasks. Our merging strategy improves performance by 50.2% on text-only tasks and 20.5%
on multimodal tasks relative to the unmerged checkpoint, leveraging the compositionality between
tasks and modalities.

The result of our work is Aya Vision, a family of multilingual multimodal models in 8B and 32B
sizes, designed for fluent, instruction-following generation across 23 languages. Aya-Vision-8B out-
performs Qwen-2.5-VL-7B, Llama-3.2-11B-Vision, Pixtral-12B, and Gemini-Flash-1.5-8B, achiev-
ing up to a 79% win rate across multimodal tasks. Aya-Vision-32B surpasses models more than
twice its size, including Llama-3.2-90B-Vision, Molmo-72B, and Qwen-2.5-VL-72B, with win rates
up to 72.4%.

Our key contributions are:

1. A family of state-of-the-art multilingual multimodal LLMs (Aya-Vision-8B/32B):
Trained to generate fluent, conversational outputs in 23 languages spoken by half the
world’s population. Aya Vision models are optimized for multilingual and multimodal
instruction-following, and achieve strong human preference 1.

2. A multilingual multimodal synthetic annotation framework: We introduce a pipeline
combining synthetic data distillation, automatic translation, and context-aware rephrasing,
which significantly expands the length and diversity of image-text pairs (average tokens
increase from 27.2 to 140.8; lexical diversity from 11.0 to 61.2), and improves translation
quality by 11.24%.

3. Cross-modal model merging for capability preservation and enhancement: Our
method merges pretrained models to counteract catastrophic forgetting. It restores lost
text capabilities (up to +50.2% text win rate) and improves vision-language understanding
(+20.5% win rate), without additional training.

4. New benchmark for multilingual multimodal evaluation: We release AyaVisionBench1,
covering 23 languages and 9 vision-language tasks, and m-WildVision1, a high-quality
translation of WildVision (58). Together, they offer a meaningful and challenging testbed
for multilingual multimodal models.

2 A COMPREHENSIVE MULTILINGUAL MULTIMODAL DATA FRAMEWORK

We introduce a robust multimodal synthetic re-annotation pipeline for constructing high-quality
multilingual instruction dataset. As shown in Figure 2, our pipeline consists of three key stages: (1)
distillation-based recaptioning, (2) dataset filtering, and (3) translation with multilingual rephras-
ing. This process significantly improves linguistic diversity, naturalness, and coverage across 23
languages.

Data Collection. We begin by curating a diverse English multimodal instruction-tuning dataset.
Our collection builds on open-source resources, most notably Cauldron (46), which aggregates 50
vision-language datasets (∼30M), and PixMo(20), covering 7 multimodal tasks (∼6M). Additional
sources such as SlideVQA (93), PDFVQA (21), and ScreenQA (34), with overall coverage of visual

1We will release both models and benchmarks here: https://huggingface.co/collections/
xxx
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Original Data
Prompt:

Prompt:

Prompt: Prompt:

Completion: Completion:

Completion:

Completion:

Distillation Based 
Recaptioning

Machine Translation Rephrasing

Question: How many parts are shown in 

the heart? 

Choices:


A. 7. B. 4. C. 8. D.  3.

Question: How many parts are shown in 

the heart?  

Choices: A. 7. B. 4. C. 8. D.  3.

Answer: A

The image displays the human heart with 

various parts labeled. To determine the 

number of parts shown, we can count 

each labeled section: 1. Aorta 2. Superior 

vena cava 3. Right atria 4. Tricuspid valve 

5. Mitral valve 6. Left ventricle 7. Right 

ventricle. There are a total of 7 parts 

labeled in the image. Therefore, the 

correct answer is A.

Source: AI2D [Kembhavi et al., 2016]

问题:心脏有多少个部分? 选择: 


一,七. B. 4. 没有 C. 八个 D. 3. 没有.

图像显示了人类的心脏与标记的各个部分. 为
了确定显示的部分数量, 我们可以计算每个标
记的部分: 在 一个 大动脉 2. 没有 上腔静脉 3. 没

有. 右心房 4. 没有 三<unk>门 五个 中心<unk> 

六个 左心室 七个 右心室 在 图片中标有7个部

分. 因此,正确的答案是A.

问题: 心脏由多少部分组成? 选项: 


A. 7 B. 4 C. 8 D. 3

图像展示了人类心脏的各个部分，并附有标
记。为了确定显示了多少部分，我们可以逐一

计算每个标记的部分：1. 大动脉，2. 上腔静
脉，3. 右心房，4. 三尖瓣，5. 心脏中心，6. 左
心室，7. 右心室。图片中共标注了7个部分。
因此，正确答案是A。

Original Data

Prompt:

Prompt:

Translated Prompt: Rephrased Prompt:

Translated Recaption: Rephrased Recaption:

Caption:

Recaption:

Distillation Based 
Recaptioning

Machine Translation Rephrasing

What kind of beverage is in the french 

press?

What kind of beverage is in the french 

press?

Coffee

The French press in the image contains a 

dark liquid, which is likely coffee based 

on its color and consistency. The 

presence of a spoon next to the press 

also suggests that it might be used for 

stirring a beverage like coffee. 

Additionally, the overall warm and cozy 

setting, with a lit candle and autumnal 

decorations, is often associated with 

enjoying a hot cup of coffee. Therefore, it 

is reasonable to conclude that the 

beverage in the French press is coffee.Source: OK-VQA [Schwenk et al., 2022]

法国媒体上有什么样的饮料?

照片中的法式印刷机含有深色液体,根据颜色和
<unk>度可能是咖啡. 压<unk>机旁边有一个

<unk>匙, 也表明它可能用于<unk>咖啡等饮料. 

另外,整体温暖舒适的环境, 灯<unk>和秋季装
饰, 常常与享受一杯热咖啡有关. 因此,可以合理
地得出结论,法国媒体所提到的饮料是咖啡.

法国压滤壶中通常冲泡什么饮料？

照片中的法式压滤壶装有深色液体，从其颜色
和稠度来看，很可能是咖啡。压滤壶旁边有一

把勺子，也暗示它可能用于搅拌咖啡等饮料。
此外，整体温馨舒适的环境，点燃的蜡烛和秋
季装饰，通常与享用一杯热咖啡的氛围相符。
因此，可以合理地推断，法式压滤壶中的饮料
是咖啡。

Figure 2: Our synthetic annotation pipeline produces diverse, high-quality multimodal re-
sponses. It includes three stages: (1) recaptioning, (2) translation, and (3) LLM-based rephrasing.
Rephrasing corrects common translation errors – e.g., unknown tokens (“consistency”) or lexical
ambiguities (“French press” → “French media”) – improving fluency and semantic accuracy.

question answering (VQA), captioning, document understanding, chart and figure analysis, table
reasoning, logical problem-solving, textbook QA, image comparison, and screenshot-to-code. To
ensure task balance and promote generalization, we regulate the sample count across categories.
The resulting dataset comprises approximately 2.29M examples. Table 3 in Appendix D presents
the task-wise distribution. This curated English dataset serves as the basis for further downstream
recaptioning and multilingual synthesis pipeline.

Distillation-based Recaptioning. Our goal is to alter the data distribution to better reflect real-
world usage. To this end, we generate synthetic alternatives to the original completions across
the ∼2.3M examples we collected. The original data primarily sourced from open-source, academic
image captioning corpora like MS-COCO (51), Visual Genome (43), Open Images (44), and exhibits
limited linguistic variety and stylistic repetition. Captions are typically short (avg. 14.2 words),
simple, and lack the conversational tone expected from state-of-the-art generative models.

We address these limitations through a recaptioning pipeline that rewrites captions using task-
specific prompt templates to guide our open-weight multimodal teacher model. Prompts are care-
fully designed to retain consistent with ground-truth answers while enhancing fluency and informa-
tiveness. For example, prompts for reasoning tasks elicit step-by-step outputs, while captioning tasks
encourage longer, more vivid descriptions. Prompt design is essential to recaptioning effectiveness
(30; 23); Examples are shown in Appendix K.

This process bridges the gap between narrowly scoped training data and the diverse language ex-
pected in modern multimodal systems. After recaptioning, the average word count increases from
14.2 to 100.1, token count from 27.2 to 140.8, and lexical diversity (measured by MTLD (87)) im-
proves from 11.0 to 61.2, approaching the variability found in fluent human writing (64; 70). These
more expressive annotations improve generalization and robustness in downstream tasks; Recap-
tioned examples can be found in Appendix L.

Verifying and Filtering Recaptioned Instruction Data. While recaptioning enhances data di-
versity and fluency, it can introduce hallucinations or factual errors ungrounded in the image
(79; 53; 50; 29). Training on such data may amplify a models tendency to hallucinate or produce
inaccurate outputs. To mitigate this, we implement a two-stage filtering pipeline to improve the
reliability of the recaptioned dataset. Unlike single-pass filters like CLIP score-based filtering (25)
or reward-based hallucination mitigation (8; 104), our method adds a second semantic safeguard to
detect fluent but incorrect generations.

Stage 1: Keyword-based filtering. We begin with keyword detection to identify common failure
modes in recaptioned outputs, such as refusals to respond or repeated prompt phrases. A curated list
of keywords is used to automatically identify these issues. Flagged samples are either regenerated or
discarded if problems persist. While effective for surface-level errors, keyword matching struggles
with subtler issues, especially in tasks requiring deterministic or subjective answers like QA or math
reasoning. In such cases, the teacher model may ignore ground truth or hallucinate details, leading
to flawed outputs.
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Stage 2: LLM-based semantic filtering. To address more nuanced errors, we apply a second-
stage filtering using command-r-plus-08-20242 for semantic verification (see Appendix M
for prompt and filtered examples). The original and rephrased captions are presented to the model,
which acts as a semantic judge to assess whether the answer to the original remains valid in the
rephrased version. This ensures that recaptions do not alter the intended meaning or contradict the
ground truth. All corrupted samples identified are discarded. The overall error rate is 3.2% with
more errors in complex tasks – 4.6% in reasoning versus 2.5% in VQA tasks – aligning with trends
observed in prior work (111; 107; 92). Combined with keyword filtering, this semantic check yields
a cleaner, more reliable dataset for visual instruction tuning.

Hybrid Translation Pipeline for Multilingual Instruction Data. Unlike prior work that relies
solely on proprietary LLMs (112; 59) or highlights cross-lingual gaps without addressing mitiga-
tion strategies (33), we propose a two-stage hybrid approach to multilingual translation. Although
GPT models perform well in high-resource languages, they often struggle in low-resource settings.
Meanwhile, high-quality, in-language datasets remain scarce and are mostly reserved for evaluation
(91; 80; 1; 82). Translating instruction data has proven effective for enhancing cross-lingual general-
ization (75; 19; 22; 101). However, machine translation can introduce issues like unnatural phrasing
or semantic drift (11; 102; 91). To balance coverage and quality, we first use the NLLB-3.3B model3
(17) to translate our English dataset into 22 languages (Appendix C). Then, we apply post-editing
using command-r-plus-08-20242, which uses the machine output as in-context input to im-
prove fluency and fix common errors while preserving semantics (120; 76). Prompt templates and
examples are provided in detail in Appendix N.

To ensure training efficiency and avoid overfitting, we translate only subsets of the English data
per language, reducing duplication and repeated exposure. Partial translation has been shown to
maintain strong generalization while reducing data volume (26; 85; 66; 67; 5). Translation quality
is assessed with the reference-free metric COMET4 (78; 77). Average scores improve from 0.75
(NLLB) to 0.83 after post-editing, indicating a significant gain in fluency and adequacy. Language-
specific improvements are in Table 7 (Appendix O).

3 OPTIMIZING ACROSS LANGUAGES AND MODALITIES WITH
CROSS-MODAL MERGING

Achieving optimal performance in multilingual multimodal LLMs requires careful balancing
of the fine-tuning data across languages, modalities, and tasks (55; 46; 99; 18). Skewed
language distributions reduce generalization, and real-world applications demand that mod-
els support both text-only and multimodal use cases. A key challenge is preserving the
strong text-only capabilities of the base LLM while adding robust multimodal abilities.

Aya Vision-8B Pangea-7B Qwen2.5VL-7B Molmo-7B
50
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-5.92%

-16.43%
-22.14%

-44.08%

Text Win Rates against Initial LLM

Figure 3: Degradation in text-only win-rates af-
ter multimodal training. Each model is com-
pared to their initial LLM on m-ArenaHard (19).
Including a percentage of text-only data in the fi-
nal multimodal training mix is insufficient to re-
tain open-ended generative performance.

Simply adding text-only data during multi-
modal fine-tuning (20; 112) often fails to pre-
serve text performance (Figure 3) and can lead
to overfitting, while reusing previously seen
text offers minimal benefit and may degrade
multimodal capabilities (60). We address this
using two complementary strategies.

1. Weighted sampling of diverse data
sources:, We design a balanced fine-tuning
mix by sampling from three data sources: (i)
upsampled, synthetically re-annotated English
data (3.5M seen samples from 2.29M original)
to ensure coverage of diverse tasks and high-
quality examples; (ii) uniformly sampled multi-
lingual data (3.4M out of 5M), covering 22 non-
English languages while preserving task bal-
ance; and (iii) downsampled high-quality orig-

2https://huggingface.co/CohereLabs/c4ai-command-r-plus-08-2024
3https://huggingface.co/facebook/nllb-200-3.3B
4https://huggingface.co/Unbabel/wmt23-cometkiwi-da-xxl
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inal datasets (3.7M from 6M) to support evaluation-specific formats (e.g., short-form VQA) with-
out overpenalizing free-form generation. The final training set comprises 2.75M sequence-packed
samples: 66% synthetically re-annotated data (35% multilingual), and 34% high-quality original
datasets (see details in Figure 10 and Figure 8). Contrary to prior work (112; 20), we do not include
any text-only data during training.

2. Cross-model model merging: To recover text-only performance without sacrificing vision capa-
bilities, we introduce a training-free method: cross-modal model merging. Concretely, we posit that
since the multimodal model is initialized from the final preference-tuned LLM checkpoint, sharing
a part of the optimization trajectory (37; 24; 36) makes the multimodal LLM and the backbone LLM
amenable to merging. Thus, rather than adding more text data, we linearly interpolate the weights
of the preference-tuned text-only LLM and the multimodal model, preserving visual modules for
restoring text quality:

Wmerged = α ·Wmm-LLM + (1− α) ·Wtext-LLM

This approach effectively balances capabilities across modalities and improves text-only perfor-
mance a posteriori, with no additional training (§7).

4 ARCHITECTURE AND TRAINING DETAILS

Architecture. Aya Vision follows the common late-fusion architecture for vision-language models
(55; 54; 46; 65; 14; 20), comprising three main components: (1) a vision encoder that produces
image patch embeddings (74; 115; 14; 100), (2) a vision-language connector that maps these em-
beddings into the language models input space, and (3) a large language model. Further architectural
details are provided in Appendix F.

Multimodal Training. Aya Vision is trained in two stages: during vision-language alignment,
we freeze both the vision encoder and language model, and train only the connector to map image
features into the LLM input space. This stage uses LLaVA-Pretrain5 (English-only), with 14% of the
data drawn from our multilingual pipeline to improve cross-lingual grounding. In the subsequent
supervised fine-tuning (SFT) stage, we unfreeze the connector and language model (keeping the
vision encoder frozen), and experiment with both full and LoRA-based tuning (35). We apply
sequence packing (up to 8192 tokens) to improve training efficiency. Dataset composition is shown
in Figure 10, with further discussion in §3. Hyperparameters are listed in Table 5.

5 EVALUATION

Baselines. We compare Aya Vision models against a range of state-of-the-art multimodal LLMs,
both open- and closed-weight, to evaluate multilingual, multimodal, and text-only capabilities. We
select models based on architecture, model size, base model family, and language coverage. The
selected models cover a range of sizes (7B to 90B), base models (Llama-3.2, Qwen-2.5, Molmo),
and language coverage (including both English and multilingual models). Our evaluation includes
open-weight models (Pixtral (3), Molmo (20), Qwen-2.5-VL (7) and Pangea (112)) as well as the
closed-weight (Gemini-Flash-1.5 (96)). For model families, Qwen, Molmo, and Llama, we report
results across multiple sizes ranging from 7B to 90B.

Multilingual Multimodal Evaluation. While recent efforts have explored multilingual evaluation
for multimodal LLMs (12; 81; 94; 112), existing benchmarks still fall short of enabling robust, real-
world evaluation. Most focus on static, single-turn tasks with predefined answers, failing to capture
the nuanced, open-ended, and dynamic nature of real-world user interactions. To address this, we
introduce: AyaVisionBench, a benchmark designed to evaluate multilingual multimodal models
on generation quality across 23 languages, with a focus on relevance, fluency, and engagement. It
emphasizes open-ended instruction following and cross-modal reasoning. Construction details are
in Appendix E.1.

To complement AyaVisionBench, we release m-WildVision, a multilingual extension of
WildVision-Bench (58) across 23 languages, with translated prompts designed to evaluate open-
ended multimodal generation across diverse linguistic contexts. We also include xChatBench

5https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K
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(112), which enables fine-grained, score-based evaluation across 7 languages and multiple inter-
action types. Evaluation protocols for all three benchmarks are detailed in Appendix E.1.1. In
addition to the preference-based open-ended evaluation, we evaluate Aya Vision on structured mul-
timodal benchmarks that require constrained outputs (e.g., multiple choice or short-form answers)
for automatic scoring. Specifically, we use xMMMU (112), MaXM (12), CVQA (81), MTVQA
(94) and Kaleidoscope (82). These benchmarks cover a range of languages and tasks, evaluating
multimodal understanding, reasoning, and knowledge. Language coverage is listed in Table 4, with
additional details in Appendix E.

Multilingual Text-Only Evaluations. As shown in Figure 3, vision-language models often suffer
degradation in text-only performance. To assess this, we evaluate Aya Vision and baselines on
multilingual text benchmarks as a final component of our evaluation suite. We evaluate models
using two complementary approaches: open-ended evaluation and task-specific benchmarks. For
open-ended evaluation, we use m-ArenaHard (49; 19) to assess models’ performance in free-form
text generation across 23 languages. Following (19), we adopt gpt-4o-2024-11-20 as the
LLM judge. For task-specific benchmarks, we evaluate models on MGSM (88), Global MMLU-
Lite (90), and FLORES (31), which cover mathematical reasoning, multilingual understanding, and
machine translation, respectively. For FLORES, we evaluate translation from English to the target
language (En→X), as it presents a greater challenge and better reflects multilingual capabilities.
We also include IFEval (117), an English-only benchmark, to assess instruction-following skills
that may influence both text-only and multimodal tasks. Each benchmark covers a distinct set of
languages, with metrics summarized in Table 4; further details are provided in Appendix E.
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Figure 4: Aya-Vision-8B and Aya-Vision-32B achieve strong performance on preference eval-
uation. Pairwise win rates on AyaVisionBench, averaged across 23 languages. Aya-Vision-
8B is compared against Gemini-Flash-8B, Llama-3.2-11B-Vision, Qwen-2.5-VL-7B, Pixtral-12B,
and Pangea-7B. Aya-Vision-32B is compared against Llama-3.2-91B-Vision, Qwen-2.5-VL-72B,
Molmo-72B. Language-specific breakdowns are provided in Tables 9 and 12 in the Appendix R.

Models / Evaluations MaxM xMMMU CVQA MTVQA Kaleidoscope xChat avg

Pangea-7B 51.27 44.00 60.53 18.32 29.46 32.21 39.30
Molmo-7B-D 44.16 37.87 58.53 16.89 36.42 23.36 36.21
Llama-3.2-11B-Vision 39.30 42.73 58.92 16.40 36.50 28.59 37.07
Pixtral-12B 44.43 42.27 63.54 19.81 36.08 64.50 45.11
Qwen-2.5-VL-7B 52.65 46.77 73.22 29.57 39.64 58.14 50.00
Aya-Vision-8B 58.21 39.94 61.86 19.33 38.62 58.64 46.16

Molmo-72B 55.62 51.53 72.77 18.66 50.34 45.43 49.06
Llama-3.2-90B-Vision 64.17 52.40 81.88 27.44 48.41 51.12 54.24
Qwen-2.5-VL-72B 56.42 61.74 82.10 31.92 55.02 71.13 59.72
Aya-Vision-32B 62.28 45.11 74.06 23.46 41.73 70.07 52.81

Table 1: Evaluation on multilingual multimodal benchmarks for Aya-Vision-8B and Aya-
Vision-32B, alongside baselines. For each benchmark, we report results on languages included
in Aya-Vision’s 23-language set. The full results for all languages are provided in the Appendix R.
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Figure 5: Aya-Vision models rank among the top performers in text-only preference evaluation,
outperforming much larger models. Pairwise win rates for Aya-Vision-8B (left) and Aya-Vision-
32B (right) on m-ArenaHard (19), averaged over 23 languages. Language-specific breakdowns are
provided in Tables 8 and 11 in the Appendix R.

6 RESULTS AND DISCUSSION

Models GMMLU MGSM FLORES IFEval avg

Pangea-7B 49.35 50.51 28.04 23.99 37.97
Molmo-7B-D 39.63 49.94 15.74 56.10 40.35
Llama-3.2-11B 60.75 72.84 31.84 83.43 62.22
Pixtral-12B 66.09 77.62 29.29 65.59 59.65
Qwen-2.5-VL-7B 64.82 60.90 27.98 72.46 56.54
Aya-Vision-8B 62.52 76.42 35.90 82.78 64.41

Molmo-72B 71.02 86.00 32.52 78.10 66.91
Llama-3.2-90B 77.46 66.67 38.25 88.14 67.63
Qwen-2.5-VL-72B 81.49 89.61 35.71 89.74 74.14
Aya-Vision-32B 63.58 79.46 37.79 78.50 64.83

Table 2: Evaluation on multilingual text-only academic
benchmarks for Aya-Vision-8B and Aya-Vision-32B to-
gether with the baselines. For each benchmark, we include
languages that are in the list of Aya Vision’s 23 languages.
The results for all languages are provided in the Appendix R.

Aya-Vision-8B achieves best-in-
class performance in preference
evaluation. Figure 4 and Figure 12
in the Appendix E.4 show pairwise
win rates on AyaVisionBench and
m-WildVision, averaged over 23
languages, comparing Aya-Vision-
8B with state-of-the-art multimodal
LLMs. Aya-Vision-8B consis-
tently outperforms all baselines,
with win rates ranging from 49.6%
to 80.3%. Performance is slightly
higher on m-WildVision, by an av-
erage of 6%, likely due to the
more challenging nature of AyaV-
isionBench, as indicated by higher
tie rates. Aya-Vision-8B surpasses
both Qwen-2.5-VL-7B and Pixtral-
12B by 54.8% win rate averaged across the two datasets, despite Pixtral-12B being a larger model.
It also outperforms the strong proprietary model Gemini-Flash1.5-8B, averaging a 60.3% win rate,
and achieves a dominant 71.7% win rate over Pangea-7B, which is trained with a predominantly
multilingual dataset.

Aya Vision outperforms far larger models. Figure 4 and Figure 12 in the Appendix E.4 show
pairwise win rates for Aya-Vision-32B on AyaVisionBench and m-WildVision, averaged across 23
languages. Aya-Vision-32B consistently outperforms models more than twice its size – such as
Molmo-72B, Qwen-2.5-VL-72B, and Llama-3.2-90B-Vision – with win rates ranging from 48.5%
to 73%. Notably, it surpasses Llama-3.2-90B-Vision by 65.9% on AyaVisionBench and 73% on m-
WildVision. Its closest competitor, Qwen-2.5-VL-72B, is outperformed by 50.8% on average across
both benchmarks.

Aya-Vision models achieve competitive performance on academic benchmarks. Although op-
timized for open-ended generation, Aya-Vision models perform strongly on multiple-choice and
short-form academic benchmarks, which often fail to fully capture the generative capabilities of
modern MLLMs. Results are shown in Table 1. On MaxM, a short-form VQA benchmark, Aya-
Vision-8B outperforms all models in its parameter class, including larger ones like Pixtral-12B and
Llama-3.2-11B-Vision. On Kaleidoscope, it performs competitively with Qwen-2.5-VL-7B and sur-
passes all other baselines. Aya-Vision-32B also delivers strong results, outperforming Molmo-72B
on all benchmarks except xMMMU, and closely matching Llama-3.2-90B-Vision on average despite
being nearly 3× smaller.
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Figure 7: Impact of cross-modal merging across various merge ratios. Win rates are computed
against Pangea-7B on AyaVisionBench (multimodal) and m-ArenaHard (text-only) across 7 lan-
guages. The multimodal academic score is the average of CVQA and xMMMU, while the text-only
academic score averages IFEval, MGSM, and MMMLU (subset).

Aya Vision models punch above their size in text-only preference evaluation. A key concern
with multimodal models is that adding vision capabilities may compromise text performance. To
evaluate this trade-off, we assess text-only results on the m-ArenaHard dataset using pairwise win
rates averaged across 23 languages, as shown in Figure 5. At the 8B scale, Aya-Vision-8B strikes
a strong balance between performance and efficiency, outperforming all open models in its class
and rivaling proprietary ones. It achieves a win rate of 63.4%, surpassing the larger Llama-3.2-
11B-Vision and remains competitive with Pixtral-12B, which achieves a slightly higher win rate of
56.0%. Aya-Vision-32B is even more efficient. It outperforms significantly larger models such as
Molmo-72B with a win rate of 77.3% and Qwen-2.5-VL-72B with 50.9%. Despite being nearly
three times smaller, it closely matches Llama-3.2-90B-Vision, which reaches 43.2%. These results
demonstrate Aya-Vision’s ability to deliver strong text performance at a fraction of the size, while
maintaining multimodal capabilities, as shown in Figures 4 and 12 in the Appendix E.4.
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Figure 6: Modal merging enables efficient cross-modal
transfer. Multimodal and text-only win rates on AyaVi-
sionBench and m-ArenaHard against Pangea-7B. We vary
the text-only mixture during SFT and compare it to cross-
modal merging (dashed line).

To further understand text perfor-
mance preservation, Figure 3 com-
pares win rates on m-ArenaHard for
Aya-Vision-8B, Pangea-7B, Qwen-
2.5-VL-7B, and Molmo-7B relative
to their base LLMs. Aya-Vision-
8B shows minimal degradation, with
only a 5.9% drop, demonstrating that
cross-modal merging effectively re-
tains text quality.

7 KEY ABLATIONS

To isolate the impact of key design
choices, we conduct controlled abla-
tions at the 8B scale, varying only one
factor at a time: (1) cross-modal model merging, (2) adding text-only data, (3) proportion of mul-
tilingual data during SFT. All other settings remain fixed. We evaluate each variant using multi-
modal and text win rates on AyaVisionBench and the m-ArenaHard subset6, comparing them against
Pangea-7B. Additionally we report average metrics on academic vision (CVQA, xMMMU) and text
benchmarks (IFEval, MMMLU subset, MGSM). Additional ablation studies covering (4) the vision
encoder, and (5) full fine-tuning versus low-rank adaptation, presented in Appendix H.

Model merging improves multilingual performance across tasks and modalities; and is more
effective than adding seen text data for cross-modal transfer. We systematically evaluate our
cross-modal model merging strategy by ablating the interpolation weight α between the fine-tuned
multimodal LLM and its original text-only counterpart. An α of 0 corresponds to the text-only
model, while α = 1 is the fully multimodal one.

As shown in Figure 7 (left), merging not only preserves text-only multilingual performance but
also unexpectedly boosts multilingual vision win rates as text-only contributions increase – up to

6English, French, Hindi, Arabic, Turkish, Japanese, Chinese
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an optimal point. Text metrics improve steadily with higher text-LLM weighting, while vision
performance plateaus. Based on these trends, we select α = 0.4 as the optimal balance for both our
8B and 32B models.

We also compare merging to the conventional approach of adding seen text-only data during SFT in
proportions of 0%, 10%, and 30%. Figure 6 shows that while more text data improves text win rates
(from 50.2% to 74.8%), it does not translate to stronger multimodal performance. In fact, increasing
text data from 10% to 30% slightly reduces multimodal win rates, likely due to more capacity being
allocated to text modeling. These results confirm that model merging is a effective and efficient
method for cross-modal knowledge transfer.

Balanced multilingual data leverages cross-lingual transfer from English for best performance
across modalities and languages. To measure the impact of the ratio of multilingual data in the
training mixture, we train 3 variants with varying proportions of multilingual multimodal data –
17.5%, 35%, and 67%, which is uniformly distributed across 22 languages (except English).
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Figure 8: A balanced data mixture is essential for multilingual multimodal performance. Mul-
timodal and text win-rates are calculated against Pangea-7B on AyaVisionBench and m-ArenaHard
respectively over 7 languages. Multimodal academic benchmark is an average of CVQA and xM-
MMU; Text-Only academic benchmarks are averaged over IFEval, MGSM and MMMLU (subset).

As shown in Figure 8, we find that increasing the ratio of multilingual multimodal data from 35%
to 67% leads to degradation in the quality of generations – reducing the win-rates from 71.4%
to 68.7%, and also hurts multimodal academic benchmarks, emphasizing the importance of the
balance between English and multilingual data. Given the scarcity of high-quality multilingual
multimodal data, upsampling this bucket requires repeating the data multiple times, limiting its
benefit in multilingual multimodal performance. Additionally, a sufficient percentage of the more
diverse English data is crucial for cross-lingual transfer.
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Figure 9: Impact of various interventions. Step-
by-step improvements in Aya Vision 8B’s pair-
wise win-rates against Pangea-7B.

Both data improvements and cross-modal
merging are essential to Aya Vision’s perfor-
mance. Compared to a model trained purely on
open-source task-specific data, each of our con-
tributions significantly improves performance
where our novel data framework leads to a 17%
gain in win rate, underscoring the importance of
fluent, detailed, and diverse completions. Next,
our cross-modal merging enables an extra gain
of 11.9% multimodal win rates beyond its sig-
nificant impact on text-performance, achieving
a total increase to nearly 30%.

8 CONCLUSION

In this work, we introduced Aya Vision, a family of multilingual vision-language models (8B and
32B) designed to improve multimodal understanding across 23 languages. Addressing key chal-
lenges in this space, we propose a scalable synthetic annotation framework to overcome multilingual
data scarcity, and a training-free model merging approach to preserve text-only performance during
multimodal training. Our models outperform existing open-weight baselines and are supported by
AyaVisionBench, a benchmark tailored for evaluating generative multilingual multimodal systems.
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A LIMITATIONS

Given the scarcity of high-quality multilingual data, in our multilingual data ablations, we sample
the text-only data from the same corpus used for post-training the LLM using the Aya Expanse
recipe (19); prior to the multimodal training. This leads to a portion of the data repeated across
training stages which could potentially lead to over-fitting.

We use VLM-as-a-judge models for win-rates evaluations as a proxy for human preferences. While
using large language models for win-rates evaluations is a standard practice (19; 101), for genera-
tions which are quite close, the judge preference might deviate from human preferences. We attempt
to provide a comprehensive set of guidelines to the judge as shown in Appendix Q to ensure close
adherence to human preferences.

B RELATED WORK

Multilingual Multimodal Instruction Data. To overcome the scarcity of multilingual multi-
modal instruction datasets, several recent efforts have relied heavily on translating English-centric
datasets using large language models (LLMs). Approaches such as PANGEA (112) and PALO (59)
expand language coverage by translating large-scale instruction-following datasets or aligning mul-
tilingual captions. While effective in bootstrapping resources, these methods are constrained by
limited linguistic diversity and suffer from “translationese” – artifacts of literal or non-fluent trans-
lations produced by automated systems. Furthermore, such datasets often exhibit rigid task formats
and lack the conversational naturalness crucial for high-quality interaction in multilingual multi-
modal settings.

Visual Instruction Tuning Visual instruction tuning (55; 13; 54; 14; 3; 106; 20; 7) combines a pre-
trained vision encoder (74; 115; 14; 100) with an offtheshelf large language model via a dedicated
visionlanguage connector. This process extends the LLMs text capabilities into the visual domain
while retaining its desirable attributes– such as in-context learning, reasoning, and instruction fol-
lowing. As a result, visual instruction tuning has emerged as a highly effective method to achieve
state-of-the-art performance on a wide range of tasks – even outperforming certain proprietary mod-
els.

Multilingual Multimodal Models Initial works on multilingual multimodal models (68; 38; 114)
focused on learning robust, universal representations for retrieval tasks across modalities. However,
these models require further downstream training to be used as generative models. On the other
hand, (26; 13; 112) perform large-scale multilingual multi-task fine-tuning to enable multilingual
understanding and generation. However, they focus only on vision-language academic benchmarks
which are reference based – focusing on exact matches rather than free-form holistic evaluations of
the generations.

Multilingual Multimodal Evaluations Multilingual multimodal evaluation benchmarks have tra-
ditionally focused on visual question answering (VQA) tasks, where the model-generated response
must exactly match a human-provided reference answer (12; 81; 94). This approach often penalizes
responses that are semantically correct but differ syntactically from the reference (3). To address
these limitations, recent work (112; 59) has proposed multilingual multimodal chat benchmarks.
Instead of relying solely on exact matches, these benchmarks evaluate free-form responses by em-
ploying a Vision-Language model as an adjudicator–either by scoring responses against a detailed
rubric or by selecting the superior generation from a pair of outputs.

Multimodal Merging Recent work by (118) introduces REMEDY, a method for merging VLM
weights – including the connector layer – after low-rank fine-tuning on various VLM tasks. How-
ever, REMEDY does not address the merging of weights that have been trained for different modal-
ities. In a closely related concurrent work, (48) merges a text-only reward model with a vision-
language model with the goal to specifically transfer the reward modeling capabilities from the
text-based reward model to build a multimodal reward model.
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Figure 10: Overview of our multilingual multimodal SFT mixture from various task categories.
Left: Number of samples across data sources and tasks categories used in training. Right: Visual
breakdown of dataset source distributions.

C LANGUAGE COVERAGE

Arabic, Chinese, Czech, Dutch, English, French, German, Greek, Hebrew, Hindi, Indonesian,
Italian, Japanese, Korean, Persian, Polish, Portuguese, Romanian, Russian, Spanish, Turkish,
Ukrainian, Vietnamese

D DATA COLLECTION

Our curated English dataset contains approximately 2.29 million examples, spanning a wide range
of multimodal tasks. The task-wise breakdown, including both absolute counts and relative propor-
tions, is summarized in Table 3.

Table 3: Task-wise distribution in our curated dataset, showing the proportion and the number of
samples in the ∼2.29M collection.

Task VQA Capt. OCR/
Doc

Chart/
Fig

Table
Compr.

Logic.
Reasoning

2 Image
Diff. Textbook SS to

Code
Total Samples 560K 220K 490K 289K 222K 252K 239K 20K 9.5K
Proportion 24.5% 9.6% 21.4% 12.6% 9.2% 11.0% 10.4% 0.9% 0.4%

To enhance multilingual performance, we vary the proportion of multilingual data. Our final train-
ing mix consists of 66% synthetically re-annotated data (35% multilingual) and 34% high-quality
original datasets. Figure 10 summarizes the dataset composition by source and task, totaling 2.75M
training samples.

E EVALUATION DETAILS

E.1 AYAVISIONBENCH

AyaVisionBench spans 23 languages and comprises 135 imagequestion pairs per language, cover-
ing 9 task categories: captioning, chart/figure understanding, identifying differences between two
images, general visual question answering, OCR, document understanding, text transcription, math-
ematical or logical reasoning, textbook questions, and converting screenshots to code. This multilin-
gual, multi-task design supports comprehensive evaluation of cross-lingual multimodal understand-
ing. Most samples include a reference answer.

To create this dataset, we first sourced images from the test splits of datasets in Cauldron (46).
By exclusively selecting images from the test sets, we ensured that none had been seen during
model training. Following the original task categories defined in Cauldron, we randomly sampled
15 images from each of 9 tasks, resulting in a total of 135 unseen images. For each image, we
generated a corresponding question that required explicit visual understanding to answer. These
questions were initially generated synthetically and then manually reviewed for clarity, relevance,
and dependence on visual content.
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Each question was then translated into 22 languages using Google Translate7, covering all 23 lan-
guages supported by AyaVision. All translations were subsequently verified by human annotators
to ensure fidelity and naturalness. During human annotation, annotators were also asked to validate
the prompts and provide reference answers for questions with deterministic answers. The resulting
dataset, AyaVisionBench, offers a diverse and challenging benchmark for evaluating visionlanguage
models in multilingual and open-ended contexts. Representative examples are shown in Figure 11.

	A botanist discovers a new plant 
species with leaves that have a 

pointed base. Using the provided 
image, which leaf shape most 

closely matches this description? 
Additionally, if the leaves are 

asymmetrical, with one side of the 
leaf blade lower than the other, 

which term from the image 
corresponds to this characteristic?
Reference: cuneate, oblique

根据透过车窗看到的场景，这个地
方可能正在庆祝或观察什么独特的

文化传统或活动？

Her ay yüzdelik düşüş oranının 
benzer şekilde devam ettiği 

varsayıldığında, Ağustos ayında 
yaklaşık kaç derginin satılması 

beklenir?
Reference: 1209 * (0.46)^2 = 256

Figure 11: Three samples from AyaVisionBench. From left to right: English (TQA (42)), Chinese
(VSR (52)), and Turkish (TabMWP (57)). All images are sourced from the test sets.

E.1.1 EVALUATION PROTOCOL

To evaluate model performance across all three benchmarks, we follow the VLM-as-a-judge proto-
col used in prior multilingual studies (101; 19), conducting pairwise comparisons between Aya Vi-
sion and baseline models. For scoring and preference ranking, we use claude-3-7-sonnet-20250219
(4) as the multimodal judge. This choice is based on a comparative study using the translated Mul-
timodal RewardBench (110) across 8 languages8, where Claude-3-7-Sonnet outperformed GPT-4o
(69) and Gemini-2.0-Flash (97) by 6.4% and 25.8% respectively in preference ranking accuracy.
Full details of the evaluation prompts are provided in Appendix Q.

E.2 MULTIMODAL ACADEMIC BENCHMARKS

• xMMMU (112), a machine-translated version of 300 questions from the MMMU valida-
tion set into 6 languages to measure the multimodal understanding and reasoning.

• MaXM (12) evaluates vision-language models on multilingual VQA tasks in 7 languages.

• CVQA (81) is a large-scale, multilingual VQA dataset to test models’ understanding of
cultural nuances in 31 languages.

• MTVQA (94) evaluates multilingual multimodal models on text-centric scene understand-
ing in 9 languages.

• Kaleidoscope (82) consists of 20,911 multimodal multiple-choice questions in 18 lan-
guages, designed to evaluate the reasoning and knowledge of vision-language models
across diverse subjects and cultures.

E.3 TEXT-ONLY BENCHMARKS

• m-ArenaHard (49) following (19), we use multilingual ArenaHard to measure the win-
rates against other models across 23 languages to understand the impact of multimodal
training on the model’s text-only capabilities. We use gpt-4o-2024-11-20 (69) as the
judge.

7https://cloud.google.com/translate?hl=en
8English (original), Arabic, Farsi, French, Hindi, Portuguese, Turkish, Vietnamese, Simplified Chinese.
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Dataset Task Metric # Languages

Multimodal Academic Bench.
xMMMU (112) Multimodal Understanding Accuracy 7
MaXM (12) VQA Accuracy 7
CVQA (81) VQA Accuracy 31
MTVQA (89) VQA VQA Score 9
Kaleidoscope (82) VQA Accuracy 18

Multimodal Open-Ended Bench.
AyaVisionBench Multimodal Chat Win-Rates 23
m-WildVision (58) Multimodal Chat Win-Rates 23
xChat (112) Multimodal Chat LLM-Score 7

Text-only Bench.
m-ArenaHard (19) Open-Ended Generations Win-Rates 23
MGSM (88) Math. Reasoning Accuracy 6
Global MMLU-Lite (90) Language Understanding Accuracy 15
FLORES (31) Language Understanding SpBLEU 23
IFEval (117) Instruction Following Accuracy 1

Table 4: Multilingual multimodal evaluation suite used in Aya Vision. Our evaluation suite con-
sists of multilingual multimodal benchmarks, multimodal open-ended benchmarks for preference
evaluation, and finally, text-only benchmarks include open-ended, generative, and discriminative
evaluation sets.

• MGSM (88) evaluates the reasoning abilities of large language models with 250 grade-
school math problems in 10 languages

• Global MMLU-Lite (90) is a multilingual MMLU test set spanning 42 languages

• FLORES (31) is an evaluation benchmark for machine translation in low-resource lan-
guages.

• IFEval (117) is a benchmark designed to assess the ability of large language models to
follow verifiable instructions.

E.4 ADDITIONAL RESULTS
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Figure 12: Aya-Vision-8B and Aya-Vision-32B pairwise win rates on m-WildVision, averaged
across 23 languages. Aya-Vision-8B is compared against Gemini-Flash-8B, Llama-3.2-11B-Vision,
Qwen-2.5-VL-7B, Pixtral-12B, and Pangea-7B. Aya-Vision-32B is compared against LLama-3.2-
91B-Vision, Qwen-2.5-VL-72B, Molmo-72B. Language-specific breakdowns are provided in Ta-
bles 10 and 13 in the Appendix R.
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F AYA VISION’S ARCHITECTURE AND TRAINING DETAILS

F.1 ARCHITECTURE

Aya Vision models follow the common architecture design for vision-language models (55; 54;
46; 65; 14; 20) that is based on late-fusion (95) of (1) a vision encoder to compute image patch
embeddings which is pre-trained on billions of image-text pairs (74; 115; 14; 100), (2) a connector
that maps the embeddings from the output space of the vision encoder to the input embedding space
of the language model, (3) a large language model.

Vision Encoder: We use siglip2-so400m (100) as the initialization for the vision encoder,
which has been pretrained with an auto-regressive decoder-based loss in addition to the original sig-
moidal loss (115). This primes the vision encoder to generate high-quality dense feature representa-
tions for generative tasks, making it the perfect candidate for a multilingual vision language model.
Specifically, we use siglip2-so400m-patch14-3849 in Aya-Vision-8B for a reduced activa-
tion footprint, making it widely accessible on cheaper hardware. For Aya-Vision-32B, we opt for
the higher resolution siglip2-so400m-patch16-51210 to achieve better performance (46).

Image Processing: The performance of multimodal LLMs improves with higher input resolution
(65; 46), however, most vision encoders are pretrained on a fixed resolution. To enable Aya Vision
models to process images with arbitrary resolutions, similar to (14), we map the input images to the
nearest supported resolution that minimizes distortion in the aspect ratio. After resizing, we split the
image into up to 12 non-overlapping tiles based on the image encoder’s resolution to be processed
independently by the vision encoder. In addition to tiles, we include a thumbnail (resized) for a
low-resolution overview of the image.

Vision-Language Connector: Following the image encoder, the vision-language connector maps
features from the vision encoder to the language model’s input embedding space. We use a 2-
layer MLP with SwiGLU activation function (86). To reduce the number of image tokens passed
to the language model, we perform Pixel Shuffle (14), which downsamples the image tokens in
the spatial dimensions by stacking 2× 2 patch embeddings along the embedding dimension before
passing through the connector layer. This decreases the number of image tokens by 4×, resulting
in a maximum of 2,197 and 3,328 image tokens for our 8B and 32B models respectively. When
passing image tokens to LLM, we use special delimitation tokens to denote the start and the end of
image token sequences. Additionally, we inject 1D-tile tags (18) to denote image tiles as a form of
explicit positional encoding for the tiles. We use regular text tokens (TILE_1,...,TILE_N and
TILE_GLOBAL for thumbnail) for potential inference-time scaling.

Language Model: Although some previous works initialize the language model from a pre-trained
base checkpoint (9), we initialize the language model from a multilingually post-trained LLM to
inherit strong capabilities in various tasks including chat, instruction-following, and multilingual.
For Aya-Vision-8B, we use an LLM based on Command-R7B11 which is further post-trained with
the Aya Expanse recipe (19), and for Aya-Vision-32B, we use the Aya-Expanse-32B (19).

F.2 MULTIMODAL TRAINING

Following previous work that use late-fusion as in our models (55; 54; 46; 65; 14; 20), we train Aya
Vision models in two steps: (1) Vision-Language Alignment and (2) Supervised Fine-tuning.

Vision-Language Alignment: In this step, we only train the vision-language connector by keeping
both the vision encoder and the language model frozen. Freezing the language model and vision
encoder allows for using a high learning rate to quickly map the image features to the input em-
bedding space. We use a peak learning rate of 10−4 and 10−3 for Aya-Vision-8B and 32B models
respectively. Additionally, we find that the 32B model requires longer training in this step due to the
much larger connector size. While Aya-Vision-8B includes a 190M vision-language connector, the
parameter size of the connector in 32B model is 428M. Therefore, we train the 8B model for 9.7k
steps (1 epoch) and the 32B model for 19k steps (2 epochs). Similar to previous works (55; 112) we

9https://huggingface.co/google/siglip2-so400m-patch14-384
10https://huggingface.co/google/siglip2-so400m-patch16-512
11https://huggingface.co/CohereLabs/c4ai-command-r7b-12-2024
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use LLaVa-Pretrain12 as the primary source of data in this step. However, since this data is English-
only, we add a small fraction of the multilingual data generated by our data framework amounting
to 14% of the total data seen during this step. All training details can be found in Table 5.

Visual Instruction Fine-tuning: In the instruction fine-tuning step (i.e., supervised fine-tuning with
visual instructions), we train both the vision-language connector and the language model but keep
the vision encoder frozen. We experiment with both full model fine-tuning and LoRA (35). For both
Aya-Vision-8B and Aya-Vision-32B, we use a batch size of 128 and train for 31k iterations with µP
enabled on about 10M samples. The peak learning rates are set to 10−4 and 5 × 10−4 respectively
established via hyperparameter tuning. We utilize sequence packing to pack multiple samples into
a single sequence of length 8192 for improved training efficiency. A breakdown of the SFT training
data can be found in Figure 10 with detailed discussion presented in § 3.

G TRAINING HYPERPARAMETERS

Table 5: Training Hyper-parameters for Aya-Vision-8B and Aya-Vision-32B models

Aya Vision 8B 32B

Vision Encoder
Params 400M 400M
Dim 1152 1152
MLP Dim 4304 4304
Act. GELU GELU
Heads 16 16
KV Heads 16 16
Layers 27 27
Image Size 364×364 512×512
Patch Size 14 16

Vision-Language Connector
Params 190M 428M
Downsample Factor 2 2
MLP Dim 14336 24676
Act. SwiGLU SwiGLU

LLM
Params 8B 32.3B
Embed 256k 256k
Dim 4096 8192
MLP Dim 14336 24676
Act. SwiGLU SwiGLU
Heads 32 64
KV Heads 8 8
Layers 32 40
Theta 50k 4M

Alignment
Warmup 200 200
Peak LR 1e-4 1e-3
Cosine Decay 10% 10%
Optimizer AdamW AdamW
Betas 0.9, 0.95 0.9, 0.95
Batch Size 128 128
Steps 9.7k 19k

12https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K
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SFT
Warmup LLM 200 200
Peak LR 1e-4 5e-4
Cosine Decay 10% 10%
Betas 0.9, 0.95 0.9, 0.95
Batch Size 128 128
Steps 31k 31k

H ADDITIONAL ABLATIONS

H.1 LOW RANK FINETUNING IS COMPARABLE TO FULL FINETUNING

Low-rank training (LoRA) is an extremely performant method to reduce the hardware footprint dur-
ing training for improved efficiency. LoRA drastically reduces the number of trainable parameters
and optimizer states to be stored in the accelerator memory (113). Furthermore, freezing the LLM
and constraining the rank of updates has the potential to prevent catastrophic forgetting on text-only
prompts. To understand the impact of the rank of training updates during the SFT stage, we train
2 variants on the same data – (1) trained with LoRA (rank = 256, α = 512) (35) while (2) is
trained with full finetuning (all network weights are updated). Once both the models are trained, we
merge the multimodal updates to the text-only language model with a weight (α) of 0.5. Finally, we
evaluate both variants on multimodal and text win-rates; and academic benchmarks like CVQA and
xMMMU. Figure 13 shows the results on all the above tasks.

On academic tasks like CVQA and xMMMU, we observe that both variants perform equally well,
51.2 vs 51.0 average accuracy for LoRA and full model fine-tuning, respectively. On multimodal
win-rate evaluations, both models are extremely close – with 68.4% and 67.2% win-rates for the
LoRA and fully-finetuned variants respectively. Any improvement exhibited by the LoRA variant
on win-rates is well within the noise-margin. On text-only win-rates, the LoRA variant is 3.4%
better than full-finetuning which can be attributed to the frozen LLM backbone during training and
the amenability of LoRA model to merging due to the shared optimization trajectory.

Multimodal Text-Only Academic
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Figure 13: Impact of training with LoRA vs. Full-Finetuning. We compare vision win-rates (left)
and text-only win-rates (center) against Pangea-7B averaged across 7 languages. We also report the
average of CVQA and xMMMU (right).

H.2 STRONGER VISION ENCODER IMPROVES VQA PERFORMANCE

With the recent releases of better vision encoders, we ask how do these gains translate to down-
stream multimodal performance? We design an experiment by training a variant of Aya Vision-8B
with the original SigLIP encoder instead of SigLIP-2 with the same resolution and patch size. Inter-
estingly, we observe no visible impact on the multimodal win-rates; however, switching to SigLIP-2
provides substantial improvements in multimodal academic benchmarks like CVQA(81), TextVQA
(89), DocVQA (63), ChartQA (62), OKVQA (61) and RealWorldQA (109) – with an average im-
provement of 4% as shown in Figure 14.
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Figure 14: Improvement by switching to SigLIP-2. We report the average of VQA evaluations
listed in § H.2.

I COMPUTE REQUIREMENTS

Table 6 reports the compute requirements for training the final models, measured in H100 GPU-
hours. All ablation studies were conducted at the 8B scale using the same alignment phase, with
additional compute only for the SFT stage, as shown in the table. These compute figures provide a
clear estimate of the resources needed to reproduce our experiments.

Model Alignment SFT
Aya Vision-8B 384 2176
Aya Vision-32B 3072 5120

Table 6: Training compute requirements in H100 GPU-hours.

J SAFEGUARDS

We use the following sentence in the system prompt during training and inference to prevent the
model from generating harmful content:

You are in contextual safety mode. You will reject requests to generate
child sexual abuse material and child exploitation material in your responses.
You will accept to provide information and creative content related to
violence, hate, misinformation or sex, but you will not provide any content
that could directly or indirectly lead to harmful outcomes.
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K RECAPTIONING TEMPLATES

General Visual Question Answering

System Prompt:
You are an advanced multimodal AI chatbot with strong visual question answering capabili-
ties.
User Prompt:
Here is a question-answer pair for the given image:
Question:
{instruction}
Reference Answer:
{answer}
Task Description:
Analyze all provided image and fully understand the question, paying attention to every
detail and context within the image.
The reference answer is the correct answer to the question.
Your task is to generate a more comprehensive, natural and human-preferred response to the
question.
Enhance the response by adding additional visual context, mentioning relevant information,
or providing detailed explanations.
If the question is multiple-choice, the response should mention the letter/number of the
selected choice.
Also, ensure that the final result in the response is consistent with the reference answer.
But, do not explicitly mention there is a reference answer in the response.
The response should stand independently as a complete and well-organized new answer to
the question.

Enclose the new answer within <answer> </answer> tags.

Captioning

System Prompt:
You are an advanced multimodal AI chatbot with strong image captioning capabilities.
User Prompt:
Here is an image captioning instruction along with the original caption for the provided
image.
Instruction:
{instruction}
Original Caption:
{answer}
Task Description:
Examine the image carefully, paying attention to every detail and context within the image.
Your task is to rewrite the original caption to be more detailed, descriptive, comprehensive,
and human-preferred.
Ensure that the new caption accurately reflects the content and context of the image while
following the given instruction.
Since this is an image captioning task, do not include any information that is not directly
visible in the image.
Do not explicitly mention there is an original caption in the response.
Ensure the response stands independently as a complete and well-organized new caption.

Enclose the new caption within <answer> </answer> tags.
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OCR, document understanding, text transcription

System Prompt:
You are an advanced multimodal AI chatbot with strong text-rich image understanding
capabilities.
User Prompt:
Here is a question-answer pair based on the provided document, screenshot or scanned
image.
Question:
{instruction}
Reference Answer:
{answer}
Task Description:
Read the provided text-rich document, screenshot, or scanned image carefully to ensure a
comprehensive understanding of its contents.
The reference answer is the correct answer to the question.
Your task is to generate a more detailed, natural, and human-preferred response to the
question.
Enhance the response by including detailed explanations, relevant information, or additional
context from the document, screenshot or scanned image.
Also, ensure that the final result in the response is consistent with the reference answer.
But, do not explicitly mention there is a reference answer in the response.
The response should stand independently as a complete and well-organized new answer to
the question.

Enclose the new answer within <answer> </answer> tags.

Chart/figure understanding

System Prompt:
You are an advanced multimodal AI chatbot with strong chart and figure understanding
capabilities.
User Prompt:
Here is a question-answer pair based on the provided chart or figure.
Question:
{instruction}
Reference Answer:
{answer}
Task Description:
Carefully analyze the provided chart or figure to ensure a comprehensive understanding of
its contents.
The reference answer is the correct answer to the question.
Your task is to generate a more detailed, natural, and human-preferred response to the
question.
Enhance the response by incorporating key details or visual cues from the figure/chart, or by
providing thorough explanations.
Also, ensure that the final result in the response is consistent with the reference answer.
But, do not explicitly mention there is a reference answer in the response.
The response should stand independently as a complete and well-organized new answer to
the question.

Enclose the new answer within <answer> </answer> tags.
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Table understanding

System Prompt:
You are an advanced multimodal AI chatbot with strong table understanding capabilities.
User Prompt:
Here is a question-answer pair for the given image:
Question:
{instruction}
Reference Answer:
{answer}
Task Description:
Analyze all provided image and fully understand the question, paying attention to every
detail and context within the image.
The reference answer is the correct answer to the question.
Your task is to generate a more comprehensive, natural and human-preferred response to the
question.
Enhance the response by adding additional visual context, mentioning relevant information,
or providing detailed explanations.
If the question is multiple-choice, the response should mention the letter/number of the
selected choice.
Also, ensure that the final result in the response is consistent with the reference answer.
But, do not explicitly mention there is a reference answer in the response.
The response should stand independently as a complete and well-organized new answer to
the question.

Enclose the new answer within <answer> </answer> tags.

Reasoning, logic, maths

System Prompt:
You are an advanced multimodal AI chatbot with strong visual reasoning and mathematical
capabilities.
User Prompt:
Here is a visual reasoning or mathematical question-answer pair based on the provided
image.
Question:
{instruction}
Reference Answer:
{answer}
Task Description:
Analyze the provided image and think carefully. The question requires visual or mathemati-
cal reasoning skills.
The reference answer is the correct answer to the question.
Your task is to provide a more comprehensive response to the question.
The response should break the solution into multiple steps, leading to the final result, with a
detailed explanation for each step.
Ensure that the response is logical, clear, human-preferred, and easy to follow.
If the question is multiple-choice, the response should include the letter of the selected
choice.
Also, ensure that the final result in the response is consistent with the reference answer.
But, do not explicitly mention there is a reference answer in the response.
The response should stand independently as a complete and well-organized new answer to
the question.

Enclose the new answer within <answer> </answer> tags.
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Textbook/academic questions

System Prompt:
You are an advanced multimodal AI chatbot with strong visual capabilities and extensive
knowledge.
User Prompt:
Here is a question-answer pair based on the provided textbook or academic image.
Question:
{instruction}
Reference Answer:
{answer}
Task Description:
Examine the textbook or academic image, read the question and background context (if
provided), and think carefully.
The reference answer is the correct answer to the question.
Your task is to generate a more comprehensive, natural, and human-preferred response to
the question.
Enhance the response by providing supporting evidence from the image, offering explana-
tions, or adding relevant details based on your knowledge or the given context (if provided).
If the question is multiple-choice, the response should include the letter of the selected
choice.
Also, ensure that the final result in the response is consistent with the reference answer.
But, do not explicitly mention there is a reference answer in the response.
The response should stand independently as a complete and well-organized new answer to
the question.

Enclose the new answer within <answer> </answer> tags.

Differences between 2 images

System Prompt:
You are an advanced multimodal AI chatbot with strong visual description capabilities.
User Prompt:
Here is a instruction-answer pair based on provided images.
Instruction:
{instruction}
Reference Answer:
{answer}
Task Description:
Examine the two provided images carefully, paying close attention to their differences.
Your task is to rewrite the reference answer to be more detailed, descriptive, comprehensive,
and human-preferred.
Ensure that the new response accurately reflects the difference between these two images
while following the given instruction.
Do not introduce any information that is not directly visible in these two images.
Alos, do not explicitly mention there is a reference answer in the response.
Ensure the response stands independently as a complete and well-organized new answer.

Enclose the new answer within <answer> </answer> tags.
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L RECAPTIONED EXAMPLES

General Visual Question Answering

A-OKVQA (84)

Prompt
What is the object behind the truck?
Choose the right answer and clarify with the
format:
‘Answer: answer Rationale: rationale.’
Options: Block wall, motorhome, trailer, ufo.

Caption
Answer: trailer. Rationale: There is a large red object following the car.
Recaption
Answer: trailer. Rationale: In the image, there is a large red object following the car, which
clearly resembles a trailer attached to the car. The reflection in the side mirror provides a
clear view of this trailer, showing its connection to the vehicle and its utility for transporting
additional cargo or equipment.

Captioning

Localized Narratives (71)

Prompt
Can you explain what this image depicts?

Caption
In the center of the image there is a buildings. There are windows. There is a railing.
Recaption
The image showcases a picturesque scene of historical architecture, featuring buildings with
arched windows and ornate balconies. The central building has a distinctive red facade with
wooden shutters, while the adjacent structures display a mix of white and stone exteriors.
Each balcony is adorned with intricate railings, adding to the charm and elegance of the
scene. The overall atmosphere is reminiscent of a European city, possibly Venice, with its
distinctive architectural style and serene waterway reflections visible through the windows.
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OCR, document understanding, text transcription

TextVQA (89)

Prompt
What is written at the top?

Caption
Hi-tech.
Recaption
At the top of the image, the text "Hi-tech" is written, indicating the brand or type of the
device or software associated with the keyboard pictured. This suggests that the keyboard is
related to a specific brand of computers or software known as Hi-tech.

Chart/figure understanding

ChartQA (62)

Prompt
What was the only other service that had a
higher share of exclusive titles than Netflix?

Caption
Apple TV+.
Recaption
The only other service that had a higher share of exclusive titles than Netflix is Apple TV+.
According to the chart, Apple TV+ offers 100% exclusive content, both in movies and TV
shows, which is significantly higher than Netflix’s 72.34% exclusive TV shows and 48.64%
exclusive movies. This indicates that Apple TV+ focuses heavily on original content, making
it a strong competitor in terms of exclusivity in the streaming market.
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Table understanding

TAT QA (119)

Prompt
A county agency recorded the money donated
to several charitable
causes over time. How much more money was
raised for parks in
April than in March?

Caption
Find the Parks row. Find the numbers in this row for April and March. April: $ 15.00 March:
$7.00 Now subtract: $15.00 - $7.00 = $8.00 $8 more was raised for parks in April than in
March.
Recaption
To determine how much more money was raised for parks in April than in March, we need to
look at the amounts donated to parks in each month. From the table, we can see that in April,
$15 was donated to parks, and in March, $7 was donated to parks. To find the difference,
we subtract the amount donated in March from the amount donated in April: April donation:
$15 March donation: $7 Difference: $15 - $7 = $8 Therefore, $8 more was raised for parks
in April than in March.

Reasoning, logic, maths

Inter GPS (56)

Prompt
Question: Find x.
Choices: A. 8 B. 11.3 C. 13.9 D. 16

Caption
Answer: C
Recaption
To find the length of x in the given right-angled triangle, we can use trigonometric ratios.
Since the triangle has a 60-degree angle, we can apply the properties of a 30-60-90 triangle,
where the sides are in the ratio 1:

√
3:2.

1. Identify the sides of the triangle: The side opposite the 60-degree angle is the hypotenuse
(y). The side adjacent to the 60-degree angle is x. The side opposite the right angle is 8 units.
2. Use the appropriate trigonometric ratio: - In a 30-60-90 triangle, the side adjacent to the
60-degree angle (x) is

√
3 times the length of the side opposite the 30-degree angle (which

is half the hypotenuse).
3. Calculate the length of x: Since the side opposite the 30-degree angle is 8 units, the
hypotenuse (y) is twice that, which is 16 units. The length of x is

√
3 times the length of the

side opposite the 30-degree angle. Therefore, (x = 8 times
√
3).

4. Simplify the expression: (x = 8 times
√
3 approx 8 times 1.732 = 13.856).Rounding to the

nearest tenth, the length of x is approximately 13.9 units.
Therefore, the correct answer is C. 13.9.
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Textbook/academic questions

AI2D (41)

Prompt
Question: What is the earth orbiting?
Choices:
A. sun B. sky C. star D. moon

Caption
Answer: A
Recaption
Answer: A. The Earth is orbiting the Sun. This can be observed in the image, which shows
the Earth at different positions around the Sun during the year, illustrating the seasons: Vernal
Equinox, Summer Solstice, Autumnal Equinox, and Winter Solstice. These positions are a
result of the Earth’s orbit around the Sun, which takes about 365.25 days to complete one
full orbit. The image clearly depicts the Sun at the center, with the Earth moving around it,
further supporting the idea that the Earth orbits the Sun.

Differences between 2 images

MIMIC-IT (47)

Prompt
The first image is the image on the left, the second image is the image on the right. Given
the left and right images, does the statement ‘There are at least two people riding on one of
the dog sleds.’ hold true?

Caption
No.
Recaption
No, the statement does not hold true. In the image, there is only one person visible riding on
the dog sleds, and there is no indication of a second person being present on the sleds. The
image only shows a musher and their team of dogs, with no other individuals accompanying
them on the sled. Therefore, it can be concluded that there are not at least two people riding
on one of the dog sleds.
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M FILTERING TEMPLATE AND FILTERED SAMPLES

Filtering Template

Question:
{question}
Ground Truth Answer:
{answer}
Generated Response:
{response}
Instruction:
Given the question, compare the generated response with the ground truth answer.
Your task is to evaluate the correctness of the generated response.
The generated response is correct if the final result or key information in the response
matches or is consistent with the ground truth answer.
The response does not need to be an exact match, but it should include or align with the
ground truth.

Provide your response with a ’YES’ if the generated response is correct, or ’NO’ if it is not.
Start your evaluation with a brief explanation, followed by your final decision.

Your output must strictly follow this format:
Explanation: <brief explanation> Final Decision: <YES or NO>

Sample 1

ST VQA (10)

Prompt
What number comes after Shepshed?

Caption (Ground Truth)
4.
Recaption
In the visible part of the sign, the numbers listed are 1, 3, and 9 miles, corresponding to dis-
tances to Whitwick, Mount Saint Bernard Abbey, and The Oaks respectively. If we consider
the context and typical ordering of such signs, and given the reference answer suggesting the
number is 4, it’s likely that Shepshed is mentioned on a part of the sign not shown here, and
it is 4 miles away from the signpost. Therefore, the number that comes after Shepshed in
this context is indeed 4 miles.
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Sample 2

TallyQA (2)

Prompt
How many people can you see?

Caption (Ground Truth)
5.
Recaption
In the image, I can see six people. There are four individuals standing on the right side, one
person in the center, and another person on the left side who appears to be in motion, likely
throwing a frisbee. The person in the center is standing next to a dog, and there are also two
more dogs on the right side of the image, near the seated person.

Sample 3

Slide VQA (93)

Prompt
Which has higher Microvolts for GM, NS or
WS?

Caption (Ground Truth)
WS
Recaption
According to the graph, which measures muscle recruitment during different muscle motions
in microvolts, the GM muscle shows a significantly higher level of recruitment during the
NS (Normal Stance) condition compared to the WS (Walking Stance) condition. Specifically,
the NS condition reaches a peak of approximately 10 microvolts, whereas the WS condition
peaks at around 9 microvolts. This indicates that the GM muscle is more active during normal
stance than during walking stance. Therefore, the NS condition has higher microvolts for the
GM muscle than the WS condition.
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N TRANSLATION REPHRASING TEMPLATE AND TRANSLATION
ENHANCEMENTS

Translation Rephrasing Template

Original Text:
{raw_text}

Translation:
{translation}

Instruction:
Given the original text and its translation, improve the quality of the translation by rephras-
ing it.
Ensure the rephrased translation closely aligns with the original text in meaning, structure,
tone, and style.
Make the rephrased translation sound natural and fluent in the target language (language)
while preserving all essential details, correcting any grammatical errors, and retaining all
stylistic elements (e.g., enumeration, parentheses, punctuation, capitalization, spacing, line
breaks, etc.) from the original.

The output must strictly enclose the rephrased translation within <translation> </transla-
tion> tags.
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O TRANSLATION QUALITY SCORE

Language NLLB after Rephrasing
fra_Latn 0.7786 0.8285
por_Latn 0.7610 0.8374
tur_Latn 0.7688 0.8321
nld_Latn 0.7922 0.8394
pes_Arab 0.7528 0.8247
rus_Cyrl 0.7685 0.8293
ron_Latn 0.8145 0.8787
zho_Hant 0.4436 0.7997
ita_Latn 0.7979 0.8447
deu_Latn 0.7876 0.8275
jpn_Jpan 0.7271 0.8596
ukr_Cyrl 0.7492 0.8428
vie_Latn 0.7580 0.8372
arb_Arab 0.7411 0.8213
zho_Hans 0.6612 0.8216
heb_Hebr 0.7107 0.8160
pol_Latn 0.7304 0.8151
spa_Latn 0.7595 0.8228
ell_Grek 0.7783 0.8363
ind_Latn 0.7841 0.8412
ces_Latn 0.7825 0.8523
kor_Hang 0.7982 0.8537
hin_Deva 0.7001 0.7124

Table 7: reference-free machine translation score (COMET) by language
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P IMAGE TRANSLATION AND RE-RENDERING EFFORT

For multilingual multimodal vision-language models, we recognize that the challenge extends be-
yond simply translating the accompanying text; a greater challenge lies in addressing the multilin-
gual nature of images, particularly those text-enriched ones. Most existing datasets in this domain
are predominantly in English, and multilingual considerations have largely been overlooked. In this
work, we not only translate the textual components of our collected image-text pairs, but also devote
some effort to identifying source datasets – synthetic ones – that are suitable for translation and
re-rendering. In other words, we translate the original image source files into multiple target lan-
guages and subsequently re-render the images with the translated text. Our translation workflow is
consistent with the approach described in §2. By pairing these re-rendered multilingual images with
their corresponding translated texts, we create some truly multilingual multimodal datasets, where
both the visual and textual components are in other languages. This greatly supports cross-lingual
multimodal understanding. Specifically, the datasets we processed include Multihiertt (116), FinQA
(15), DVQA (39), FigureQA (40), and RenderedText (108). Here we are showing some examples
of our re-rendered images:

(a) eng_Latn (b) jpn_Jpan

Figure 15: DVQA (39)

(a) eng_Latn (b) arb_Arab

Figure 16: FigureQA(40)
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(a) eng_Latn (b) fra_Latn

Figure 17: FinQA(15)

(a) eng_Latn (b) zho_Hans

Figure 18: Multihiertt (116)

Q JUDGE PROMPTS

VLM-as-a-Judge Prompt

System Prompt:
Please act as an impartial judge and evaluate the quality of the responses (Response (A) and
Response (B)) based on the provided instruction.

User Prompt:
Which of the following responses better addresses the given instruction in {language}?
Evaluation Guidelines:
The response should be primarily in {language}.
The evaluation should prioritize accuracy and correctness.
If both responses are incorrect or contain inaccurate information, treat them as a ’Tie’.
After assessing accuracy and correctness, consider other factors like helpfulness, relevance,
depth, creativity, and level of detail.
Do not let the length or order of the responses influence your judgment.
Ensure your evaluation is objective and free from position bias.
Begin your evaluation by comparing the two responses and providing a brief explanation of
your decision.
After your comparison, select one of the following choices as your final decision:
1) Response (A) is significantly better: [[A≫B]]
2) Response (A) is slightly better: [[A>B]]
3) Tie, Response (A) and Response (B) are relatively the same: [[A=B]]
4) Response (B) is slightly better: [[B>A]]
5) Response (B) is significantly better: [[B≫A]]
Instruction: {prompt}
Response (A): {completion_a}
Response (B): {completion_b}
Your response must strictly follow this format:
Explanation: <concise comparison and explanation in English>
Final Decision: <[[B>A]], [[B≫A]], [[A≫B]], [[A>B]], [[A=B]] >
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LLM-as-a-Judge Prompt

System Prompt:
You are a helpful assistant whose goal is to select the preferred (least wrong) response for a
given instruction in {language}.

User Prompt:
Which of the following responses is the best one for the given instruction in {language}?
A good response should follow these rules:

1) It should be in {language},
2) It should complete the request in the instruction,
3) It should be factually correct and semantically comprehensible,
4) It should be grammatically correct and fluent.
Instruction:{prompt}
Response (A):{completion_a}
Response (B):{completion_b}
FIRST provide a concise comparison of the two responses. If one Response is better, explain
which you prefer and why. If both responses are identical or equally good or bad, explain
why.
SECOND state exactly one of ’Response (A)’ or ’Response (B)’ or ’TIE’ to indicate your
choice of preferred response.
Your response must strictly follow this format:
Comparison: <concise comparison and explanation in English> Preferred: <’Response (A)’
or ’Response (B)’ or ’TIE’>
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eng_Latn 25.8 74.0 0.2 44.4 54.2 1.4 38.8 60.4 0.8 86.0 13.0 1.0 30.6 69.0 0.4 71.6 27.2 1.2
fra_Latn 21.9 77.9 0.2 46.6 53.2 0.2 42.2 57.2 0.6 87.3 11.7 1.0 29.5 70.3 0.2 66.9 32.1 1.0
arb_Arab 35.6 64.4 0.0 77.2 22.6 0.2 74.6 25.4 0.0 98.8 1.2 0.0 57.5 42.5 0.0 79.6 20.2 0.2
tur_Latn 28.6 71.2 0.2 67.2 32.4 0.4 69.4 30.0 0.6 99.0 1.0 0.0 47.4 52.0 0.6 82.2 17.2 0.6
jpn_Jpan 29.0 70.6 0.4 66.6 33.2 0.2 61.8 37.8 0.4 97.4 2.6 0.0 35.2 63.8 1.0 80.6 19.0 0.4
zho_Hans 27.2 72.6 0.2 55.6 43.8 0.6 45.8 54.0 0.2 91.6 7.8 0.6 33.6 65.8 0.6 74.4 25.4 0.2
hin_Deva 32.2 67.5 0.2 70.6 29.0 0.5 87.4 12.2 0.5 98.8 1.2 0.0 50.7 48.8 0.5 80.6 18.9 0.5
vie_Latn 35.6 64.4 0.0 62.2 37.6 0.2 63.4 36.0 0.6 96.6 3.2 0.2 44.7 55.3 0.0 77.3 22.7 0.0
kor_Hang 25.2 74.8 0.0 68.8 31.0 0.2 65.6 33.0 1.4 97.2 2.8 0.0 38.0 61.2 0.8 77.6 21.8 0.6
deu_Latn 25.9 74.0 0.2 56.3 43.5 0.2 53.5 45.5 1.0 97.0 2.6 0.4 36.3 63.3 0.4 77.3 22.0 0.6
ind_Latn 32.7 67.1 0.2 64.9 35.1 0.0 57.2 42.6 0.2 97.2 2.8 0.0 41.4 58.6 0.0 77.5 22.1 0.4
ita_Latn 28.6 71.4 0.0 59.8 39.8 0.4 52.0 47.2 0.8 93.8 6.2 0.0 34.6 65.2 0.2 78.4 21.4 0.2
pol_Latn 30.9 68.7 0.4 63.1 36.5 0.4 59.7 39.9 0.4 96.6 3.2 0.2 47.5 51.9 0.6 83.2 16.2 0.6
por_Latn 29.8 70.2 0.0 54.4 45.2 0.4 54.0 45.4 0.6 94.0 5.6 0.4 37.6 62.2 0.2 75.8 23.0 1.2
rus_Cyrl 31.0 68.8 0.2 57.4 42.6 0.0 52.5 47.3 0.2 94.2 5.6 0.2 40.4 59.2 0.4 74.2 24.8 1.0
spa_Latn 28.7 71.3 0.0 55.3 44.3 0.4 54.6 44.6 0.8 94.0 5.8 0.2 31.9 67.7 0.4 78.1 21.5 0.4
ukr_Cyrl 31.5 68.5 0.0 67.9 31.5 0.6 62.8 37.0 0.2 99.0 1.0 0.0 56.4 43.2 0.4 85.7 14.3 0.0
ces_Latn 32.8 67.0 0.2 66.6 33.0 0.4 62.8 36.8 0.4 98.0 2.0 0.0 55.6 44.0 0.4 86.6 13.0 0.4
nld_Latn 29.8 70.0 0.2 58.1 41.2 0.6 51.7 48.3 0.0 96.0 4.0 0.0 37.8 62.2 0.0 83.3 16.3 0.4
ell_Grek 37.4 62.4 0.2 73.6 25.8 0.6 85.8 14.0 0.2 99.4 0.4 0.2 57.8 41.8 0.4 95.0 4.6 0.4
heb_Hebr 34.7 65.3 0.0 86.6 13.4 0.0 86.2 13.8 0.0 99.0 1.0 0.0 65.1 34.7 0.2 82.2 17.2 0.6
pes_Arab 35.1 64.9 0.0 71.3 28.7 0.0 71.5 28.1 0.4 98.8 0.8 0.4 54.4 45.6 0.0 93.6 6.2 0.2
ron_Latn 32.0 68.0 0.0 63.2 36.6 0.2 63.2 36.4 0.4 97.0 2.6 0.4 47.0 52.8 0.2 78.4 21.0 0.6
avg 30.5 69.3 0.1 63.4 36.3 0.4 61.6 37.9 0.5 95.9 3.8 0.2 44.0 55.7 0.3 80.0 19.5 0.5

Table 8: Win/Loss/Tie rates by Language for Aya-Vision-8B on m-ArenaHard
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eng_Latn 27.6 56.7 15.7 50.8 30.6 18.7 31.3 48.5 20.1 48.3 33.0 18.6 33.6 56.7 9.7 56.0 26.9 17.2
fra_Latn 61.2 31.3 7.5 69.4 19.4 11.2 49.2 40.3 10.4 67.8 23.7 8.5 38.1 51.5 10.4 70.9 17.9 11.2
arb_Arab 70.9 19.4 9.7 79.8 9.0 11.2 61.9 30.6 7.5 83.9 7.6 8.5 58.2 36.6 5.2 66.4 20.9 12.7
tur_Latn 53.4 38.4 8.3 75.9 18.1 6.0 56.4 38.4 5.3 85.5 4.3 10.3 52.6 42.1 5.3 69.9 16.5 13.5
jpn_Jpan 47.0 44.0 9.0 67.2 21.6 11.2 45.5 49.2 5.2 72.9 13.6 13.6 42.5 47.0 10.4 65.7 18.7 15.7
zho_Hans 52.2 35.1 12.7 66.4 19.4 14.2 35.8 55.2 9.0 79.7 10.2 10.2 40.3 44.8 14.9 59.7 23.1 17.2
hin_Deva 58.2 35.1 6.7 79.8 14.2 6.0 69.4 21.6 9.0 85.6 6.8 7.6 45.5 50.0 4.5 68.7 21.6 9.7
vie_Latn 56.0 36.6 7.5 65.7 23.9 10.4 58.2 35.1 6.7 79.7 13.6 6.8 48.5 46.3 5.2 72.4 20.9 6.7
kor_Hang 56.0 32.8 11.2 73.9 18.7 7.5 54.5 32.1 13.4 79.7 8.5 11.9 42.5 47.0 10.4 76.1 14.2 9.7
deu_Latn 48.1 42.1 9.8 66.2 24.1 9.8 42.9 47.4 9.8 77.8 12.0 10.3 33.8 58.6 7.5 69.2 21.1 9.8
spa_Latn 53.7 37.3 9.0 70.2 19.4 10.4 37.3 50.0 12.7 65.2 20.3 14.4 37.3 50.0 12.7 64.9 23.9 11.2
ind_Latn 58.2 31.3 10.4 74.6 18.7 6.7 59.7 35.1 5.2 78.8 16.1 5.1 59.7 35.1 5.2 65.7 25.4 9.0
ita_Latn 61.2 29.9 9.0 71.6 18.7 9.7 47.0 39.5 13.4 72.9 15.2 11.9 47.0 39.5 13.4 66.4 23.1 10.4
pol_Latn 58.2 36.6 5.2 74.6 20.1 5.2 47.8 44.8 7.5 87.3 4.2 8.5 47.8 44.8 7.5 72.4 16.4 11.2
por_Latn 55.2 33.6 11.2 70.9 22.4 6.7 49.2 38.1 12.7 66.1 21.2 12.7 49.2 38.1 12.7 73.1 15.7 11.2
rus_Cyrl 50.0 43.3 6.7 63.4 25.4 11.2 41.8 50.0 8.2 70.3 16.9 12.7 41.8 50.0 8.2 67.9 18.7 13.4
ukr_Cyrl 57.5 32.1 10.4 73.9 17.9 8.2 55.2 35.8 9.0 83.9 8.5 7.6 55.2 35.8 9.0 74.6 16.4 9.0
ces_Latn 51.5 41.0 7.5 78.4 17.2 4.5 51.5 41.0 7.5 88.1 6.8 5.1 51.5 41.0 7.5 76.1 12.7 11.2
nld_Latn 53.0 35.8 11.2 67.9 20.9 11.2 55.2 32.1 12.7 79.7 12.7 7.6 55.2 32.1 12.7 69.4 18.7 11.9
ell_Grek 64.9 30.6 4.5 83.6 11.9 4.5 67.2 25.4 7.5 94.9 2.5 2.5 67.2 25.4 7.5 83.6 8.2 8.2
heb_Hebr 67.2 28.4 4.5 87.3 8.2 4.5 73.9 18.7 7.5 90.7 1.7 7.6 73.9 18.7 7.5 75.4 17.9 6.7
pes_Arab 67.9 23.9 8.2 75.4 17.2 7.5 61.9 26.9 11.2 84.8 5.9 9.3 61.9 26.9 11.2 82.8 9.7 7.5
ron_Latn 59.0 32.1 9.0 73.1 21.6 5.2 58.2 31.3 10.4 83.0 8.5 8.5 58.2 31.3 10.4 68.7 20.9 10.4
avg 56.0 35.1 8.9 72.1 19.1 8.8 52.7 37.7 9.6 78.5 11.9 9.6 49.6 41.3 9.1 70.3 18.7 11.0

Table 9: Win/Loss/Tie rates by Language for Aya-Vision-8B on AyaVisionBench
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eng_Latn 42.2 53.4 4.4 59.8 37.4 2.8 37.4 58.4 4.2 59.0 35.0 6.0 46.2 49.0 4.8 59.0 35.0 6.0
fra_Latn 61.2 36.6 3.6 74.4 22.0 3.6 49.2 49.4 3.4 69.8 26.2 4.0 49.8 45.2 5.0 70.9 17.9 11.2
arb_Arab 70.9 19.4 9.7 84.8 13.0 2.2 61.9 30.6 7.5 72.0 22.6 5.4 67.8 29.2 3.0 72.0 22.6 5.4
tur_Latn 63.6 32.4 4.0 83.0 14.4 2.6 56.4 38.4 5.3 85.5 4.3 10.3 52.6 42.1 5.3 69.9 16.5 13.5
jpn_Jpan 63.2 33.2 3.6 81.7 13.5 4.8 47.1 48.3 4.6 73.2 20.9 5.8 53.7 41.3 5.0 73.2 20.9 5.8
zho_Hans 65.6 29.8 4.6 77.2 18.0 4.8 46.6 49.6 3.8 79.7 28.4 5.2 51.4 44.6 4.0 66.4 28.4 5.2
hin_Deva 69.7 26.8 3.4 83.2 15.0 1.8 78.3 18.5 3.2 85.6 6.8 7.6 45.5 50.0 4.5 68.7 21.6 9.7
vie_Latn 70.5 26.1 3.4 78.0 19.4 2.6 59.3 37.7 3.0 79.7 13.6 6.8 48.5 46.3 5.2 78.2 17.2 4.6
kor_Hang 66.0 29.6 4.4 86.2 10.4 3.4 54.5 32.1 13.4 79.7 8.5 11.9 42.5 47.0 10.4 76.1 14.2 9.7
deu_Latn 57.8 39.6 2.6 75.0 20.6 4.4 42.9 47.4 9.8 77.8 12.0 10.3 33.8 58.7 7.5 69.2 21.1 9.8
spa_Latn 53.7 37.3 9.0 71.1 25.1 3.8 37.3 50.0 12.7 65.3 20.3 14.4 37.3 50.0 12.7 64.9 23.9 11.2
ind_Latn 58.2 31.3 10.5 78.2 17.6 4.2 59.0 35.8 5.2 89.4 7.2 3.4 56.6 35.2 8.2 65.8 27.2 7.0
ita_Latn 62.0 33.2 4.8 73.8 22.2 4.0 49.4 45.8 4.8 84.8 10.8 4.4 53.4 41.4 5.2 71.4 23.2 5.4
pol_Latn 62.7 32.5 4.8 80.2 16.2 3.6 56.5 40.1 3.4 90.0 5.4 4.6 63.1 34.1 2.8 77.8 18.6 3.6
por_Latn 62.0 31.0 7.0 74.2 21.6 4.2 48.4 45.4 6.2 66.1 21.2 12.7 50.6 41.8 7.6 66.8 25.6 7.6
rus_Cyrl 65.0 32.8 2.2 81.9 14.3 3.8 56.1 41.3 2.6 85.9 8.7 5.4 56.3 40.2 3.4 70.8 23.9 5.2
ukr_Cyrl 62.5 34.3 3.2 82.4 13.2 4.4 58.3 37.1 4.6 92.6 4.6 2.8 69.9 25.9 4.2 80.2 16.2 3.6
ces_Latn 63.4 30.0 6.6 79.2 15.0 5.8 60.0 36.4 3.6 88.0 6.8 5.4 63.8 30.8 5.4 80.4 14.6 5.0
nld_Latn 63.0 33.6 3.4 77.8 17.6 4.6 52.8 43.0 4.2 91.0 6.0 3.0 57.0 37.8 5.2 76.8 18.8 4.4
ell_Grek 75.2 22.0 2.8 84.4 12.6 3.0 73.8 23.2 3.0 95.2 3.2 1.6 75.0 20.8 4.2 90.0 7.4 2.6
heb_Hebr 70.0 26.0 4.0 85.2 11.2 3.6 77.8 18.8 3.4 92.0 4.6 3.4 70.4 25.0 4.6 73.2 22.6 4.2
pes_Arab 76.8 19.8 3.4 88.2 9.4 2.4 72.3 24.7 3.0 93.4 3.6 3.0 76.8 19.0 4.2 86.4 10.0 3.6
ron_Latn 63.1 31.9 5.0 78.4 15.8 5.8 60.3 35.1 4.6 89.2 6.4 4.4 63.7 30.9 5.4 68.3 27.7 4.0
avg 64.5 31.4 4.0 79.1 17.2 3.8 57.5 38.4 4.1 80.3 15.3 4.5 59.4 35.7 5.0 73.1 22.1 4.8

Table 10: Win/Loss/Tie rates by Language for Aya-Vision-8B on m-WildVision
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Aya-Vision-32B
Language Llama-3.2-90B-Vision Molmo-72B Qwen-2.5-VL-72B

Win Loss Tie Win Loss Tie Win Loss Tie
eng_Latn 26.2 73.6 0.2 66.0 32.8 1.2 35.8 63.6 0.6
fra_Latn 39.6 60.4 0.0 72.2 27.6 0.2 46.8 52.8 0.4
hin_Deva 47.4 52.0 0.6 86.0 14.0 0.0 69.2 30.8 0.0
arb_Arab 54.2 45.2 0.6 81.4 18.6 0.0 59.6 40.4 0.0
tur_Latn 45.2 54.4 0.4 78.6 20.8 0.6 51.4 48.2 0.4
jpn_Jpan 47.2 52.4 0.4 84.2 15.8 0.0 54.8 44.6 0.6
zho_Hans 42.8 57.0 0.2 75.2 24.6 0.2 43.6 55.6 0.8
vie_Latn 41.8 58.0 0.2 77.0 22.6 0.4 55.0 44.8 0.2
kor_Hang 51.6 48.4 0.0 78.6 21.2 0.2 56.4 43.6 0.0
deu_Latn 40.4 59.6 0.0 78.6 21.0 0.4 47.4 51.8 0.8
ind_Latn 39.8 59.8 0.4 76.4 23.2 0.4 49.2 50.4 0.4
ita_Latn 41.0 59.0 0.0 75.2 24.2 0.6 38.2 61.2 0.6
pol_Latn 42.2 57.6 0.2 75.4 24.0 0.6 43.4 56.4 0.2
por_Latn 35.2 64.6 0.2 70.6 29.0 0.4 44.6 55.4 0.0
rus_Cyrl 40.0 60.0 0.0 66.8 33.0 0.2 47.6 52.0 0.4
spa_Latn 38.8 60.8 0.4 69.2 30.6 0.2 45.4 54.0 0.6
ukr_Cyrl 44.6 55.2 0.2 80.0 20.0 0.0 48.0 51.8 0.2
ces_Latn 45.6 54.2 0.2 75.6 24.4 0.0 53.0 47.0 0.0
nld_Latn 42.0 57.2 0.8 76.8 23.2 0.0 46.8 52.6 0.6
ell_Grek 46.2 53.6 0.2 84.2 15.4 0.4 62.4 37.2 0.4
heb_Hebr 51.2 48.6 0.2 85.8 14.0 0.2 63.4 36.6 0.0
pes_Arab 51.0 48.8 0.2 84.4 15.0 0.6 57.6 42.4 0.0
ron_Latn 40.4 59.2 0.4 78.8 21.0 0.2 51.6 48.2 0.2
avg 43.2 56.5 0.3 77.3 22.4 0.3 50.9 48.8 0.3

Table 11: Win/Loss/Tie rates by Language for Aya-Vision-32B on m-ArenaHard
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2463
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2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Aya-Vision-32B
Language Llama-3.2-90B-Vision Molmo-72B Qwen-2.5-VL-72B

Win Loss Tie Win Loss Tie Win Loss Tie
eng_Latn 49.25 38.81 11.94 35.82 54.48 9.70 62.69 24.63 12.69
fra_Latn 64.93 24.63 10.45 53.73 39.55 6.72 49.25 42.54 8.21
hin_Deva 74.63 23.13 2.24 72.39 25.37 2.24 35.82 61.19 2.99
arb_Arab 70.90 19.40 9.70 73.13 20.90 5.97 44.03 47.76 8.21
tur_Latn 63.91 30.08 6.02 64.66 30.08 5.26 52.63 44.36 3.01
jpn_Jpan 61.94 28.36 9.70 61.94 35.82 2.24 48.51 45.52 5.97
zho_Hans 65.67 28.36 5.97 66.42 26.87 6.72 44.03 46.27 9.70
vie_Latn 64.93 24.63 10.45 50.75 42.54 6.72 52.99 41.04 5.97
kor_Hang 64.93 28.36 6.72 58.96 33.58 7.46 44.78 44.78 10.45
deu_Latn 69.92 21.80 8.27 60.15 33.83 6.02 48.87 48.12 3.01
ind_Latn 68.66 26.87 4.48 56.72 37.31 5.97 47.76 44.78 7.46
ita_Latn 62.69 29.85 7.46 55.97 35.07 8.96 52.99 39.55 7.46
pol_Latn 74.63 20.90 4.48 65.67 28.36 5.97 48.51 45.52 5.97
por_Latn 52.99 41.79 5.22 51.49 42.54 5.97 54.48 36.57 8.96
rus_Cyrl 60.45 29.10 10.45 50.75 40.30 8.96 50.75 41.04 8.21
spa_Latn 61.19 29.85 8.96 52.99 37.31 9.70 50.75 43.28 5.97
ukr_Cyrl 75.37 20.90 3.73 61.94 32.84 5.22 50.75 43.28 5.97
ces_Latn 73.88 20.15 5.97 67.91 27.61 4.48 50.75 46.27 2.99
nld_Latn 64.93 24.63 10.45 52.24 42.54 5.22 50.00 45.52 4.48
ell_Grek 66.42 26.12 7.46 78.36 17.91 3.73 38.81 51.49 9.70
heb_Hebr 68.66 24.63 6.72 68.66 26.87 4.48 42.54 51.49 5.97
pes_Arab 70.90 23.88 5.22 78.36 18.66 2.99 46.27 50.00 3.73
ron_Latn 64.18 31.34 4.48 68.66 26.87 4.48 47.01 45.52 7.46
avg 65.91 26.85 7.24 61.20 32.92 5.88 48.48 44.81 6.72

Table 12: Win/Loss/Tie rates by Language for Aya-Vision-32B on AyaVisionBench
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Aya-Vision-32B
Language Qwen-2.5-VL-72B Llama-3.2-90B-Vision Molmo-72B

Win Loss Tie Win Loss Tie Win Loss Tie
eng_Latn 37.4 56.4 6.2 67.6 29.2 3.2 56.2 39.2 4.6
fra_Latn 46.2 50.0 3.8 69.9 26.4 3.6 59.0 37.2 3.8
hin_Deva 67.4 30.6 2.0 78.4 17.6 4.0 75.6 20.0 4.4
arb_Arab 57.4 39.2 3.4 79.0 17.8 3.2 79.2 16.8 4.0
tur_Latn 56.0 39.6 4.4 77.8 19.0 3.2 76.5 20.5 3.0
jpn_Jpan 49.0 46.4 4.6 72.2 25.4 2.4 76.2 20.2 3.6
zho_Hans 39.0 56.4 4.6 77.0 19.0 4.0 78.0 19.6 2.4
vie_Latn 57.4 38.6 4.0 76.6 21.4 2.0 64.2 31.6 4.2
kor_Hang 55.4 40.8 3.8 75.4 21.0 3.6 70.4 25.2 4.4
deu_Latn 49.2 46.4 4.4 67.0 28.6 4.4 68.0 28.0 4.0
ind_Latn 51.0 45.8 3.2 72.0 26.0 2.0 65.2 30.0 4.8
ita_Latn 46.2 49.0 4.8 69.8 26.2 4.0 59.0 33.8 7.2
pol_Latn 50.8 46.8 2.4 73.6 23.4 3.0 67.2 29.0 3.8
por_Latn 49.2 45.8 5.0 68.2 26.8 5.0 61.2 33.6 5.2
rus_Cyrl 50.2 47.2 2.6 73.2 23.6 3.2 60.3 36.3 3.4
spa_Latn 48.6 46.6 4.8 65.2 30.6 4.2 57.0 37.8 5.2
ukr_Cyrl 58.4 38.8 2.8 74.4 21.4 4.2 70.6 25.4 4.0
ces_Latn 54.4 42.2 3.4 69.6 27.2 3.2 67.6 28.8 3.6
nld_Latn 47.6 48.8 3.6 69.4 25.8 4.8 61.4 33.8 4.8
ell_Grek 66.6 30.2 3.2 75.0 22.0 3.0 84.2 11.8 4.0
heb_Hebr 66.0 30.6 3.4 74.2 22.8 3.0 74.0 22.4 3.6
pes_Arab 64.4 30.8 4.8 80.6 16.6 2.8 77.6 18.4 4.0
ron_Latn 58.0 39.2 2.8 73.6 24.4 2.0 74.6 21.8 3.6
avg 53.3 42.9 3.8 73.0 23.6 3.4 68.8 27.0 4.2

Table 13: Win/Loss/Tie rates by Language for Aya-Vision-32B on m-WildVision.

eng_Latn fra_Latn heb_Hebr hin_Deva ron_Latn tha_Thai zho_Hans avg
Pangea-7B 55.30 43.60 59.30 53.50 45.80 67.20 50.20 53.56
Molmo-7B-D 68.09 54.17 34.29 31.92 30.28 53.73 46.21 45.53
Llama-3.2-11B-Vision 56.03 45.08 31.07 45.00 38.38 42.16 20.22 39.71
Pixtral-12B 57.20 43.56 40.00 55.38 41.20 55.97 29.24 46.08
Qwen-2.5-VL-7B 57.98 52.65 54.29 54.62 44.72 67.16 51.62 54.72
Aya-Vision-8B 57.59 54.92 58.57 66.92 54.93 33.21 56.32 54.64

Molmo-72B 59.92 54.92 58.21 62.69 50.70 65.30 47.29 57.01
Llama-3.2-90B-Vision 75.00 67.05 59.64 70.38 59.51 68.66 53.43 64.81
Qwen-2.5-VL-72B 55.25 49.62 62.86 66.15 46.13 74.25 58.48 58.96
Aya-Vision-32B 55.64 60.61 66.43 71.54 57.75 43.07 61.73 59.54

Table 14: MaxM

fra_Latn jpn_Jpan ind_Latn por_Latn hin_Deva arb_Arab eng_Latn avg
Pangea-7B 45.30 40.50 46.50 46.10 41.60 42.30 45.70 44.00
Molmo-7B-D 38.90 37.10 38.90 38.10 34.90 36.70 40.50 37.87
Llama-3.2-11B-Vision 43.30 40.90 42.10 44.10 39.90 41.60 47.20 42.73
Pixtral-12B 47.00 43.90 40.10 47.80 32.60 36.20 48.30 42.27
Qwen-2.5-VL-7B 49.70 46.10 47.80 49.80 41.20 41.70 51.10 46.77
Aya-Vision-8B 40.20 41.40 39.50 38.50 38.10 40.10 41.80 39.94

Molmo-72B 52.80 49.00 52.80 55.40 48.00 51.20 51.50 51.53
Llama-3.2-90B-Vision 56.60 52.90 55.20 54.30 46.60 45.00 56.20 52.40
Qwen-2.5-VL-72B 62.40 60.60 64.00 62.00 60.80 59.70 62.70 61.74
Aya-Vision-32B 44.90 42.90 46.60 45.30 45.00 44.10 47.00 45.11

Table 15: xMMMU
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arb_Arab deu_Latn fra_Latn ita_Latn jpn_Jpan kor_Hang rus_Cyrl vie_Latn tha_Thai avg
Pangea-7B 8.53 29.96 32.39 23.87 9.30 13.44 7.67 21.38 15.15 17.97
Molmo-7B-D 5.83 26.24 35.67 29.86 7.61 9.86 5.03 15.05 15.15 16.70
Llama-3.2-11B-Vision 7.97 24.24 27.99 22.85 10.75 13.08 7.01 17.31 16.88 16.45
Pixtral-12B 7.68 32.54 37.92 32.69 8.33 13.08 7.14 19.12 14.29 19.20
Qwen-2.5-VL-7B 19.26 35.31 42.66 36.76 21.98 32.80 10.45 37.33 22.51 28.78
Aya-Vision-8B 13.69 28.72 35.89 28.39 10.51 13.08 6.35 17.99 7.79 18.05

Molmo-72B 6.54 30.34 35.44 30.54 9.42 10.04 8.73 18.21 17.32 18.51
Llama-3.2-90B-Vision 19.91 36.35 40.29 35.29 17.27 30.11 10.98 29.30 25.97 27.28
Qwen-2.5-VL-72B 23.19 35.78 43.91 39.14 21.98 35.66 12.83 42.87 27.27 31.40
Aya-Vision-32B 116.33 34.83 40.52 32.20 15.03 14.57 10.28 23.91 11.45 22.12

Table 16: MTVQA

hin_Deva ind_Latn kor_Hang spa_Latn eng_Latn zho_Hans jpn_Jpan avg
Pangea-7B 29.00 36.50 28.50 34.00 26.50 36.00 35.00 32.21
Molmo-7B-D 4.00 24.50 8.50 42.50 65.50 2.00 16.50 23.36
Llama-3.2-11B-Vision 13.00 35.50 13.78 43.00 55.50 23.00 16.33 28.59
Pixtral-12B 50.50 66.50 60.00 72.50 74.00 64.00 64.00 64.50
Qwen-2.5-VL-7B 20.50 58.50 53.00 66.50 78.00 71.50 59.00 58.14
Aya-Vision-8B 56.50 60.50 56.00 60.00 60.50 55.50 61.50 58.64

Molmo-72B 19.5 53.5 27.0 64.5 65.5 42.5 45.5 45.43
Llama-3.2-90B-Vision 38.50 54.50 42.35 60.50 63.00 53.00 46.00 51.12
Qwen-2.5-VL-72B 44.50 77.00 71.94 80.50 82.00 71.00 71.00 71.13
Aya-Vision-32B 68.50 72.00 62.50 77.00 72.50 66.50 71.50 70.07

Table 17: xChatBench

tha_Thai tel_Telu ben_Beng eng_Latn spa_Latn jpn_Jpan zho_Hans swh_Latn deu_Latn rus_Cyrl fra_Latn avg
Pangea-7B 49.60 5.60 0.00 82.00 74.8 22.00 68.00 54.0 68.4 68.0 63.2 50.51
Molmo-7B-D 24.50 2.41 6.02 73.90 39.36 41.77 58.06 0.00 52.61 47.79 36.14 34.78
Llama-3.2-11B-Vision 64.26 6.88 18.88 84.74 71.89 55.24 73.90 56.63 76.31 77.11 70.68 59.68
Pixtral-12B 63.86 36.55 57.83 89.16 82.73 64.66 73.90 23.69 79.92 78.71 74.30 65.94
Qwen-2.5-VL-7B 58.44 4.42 37.75 85.14 43.37 61.85 72.29 4.09 74.30 63.27 26.10 48.27
Aya-Vision-8B 12.45 0.00 6.83 84.34 77.91 67.87 74.70 4.90 75.90 80.72 73.49 50.83

Molmo-72B 79.52 11.65 55.82 96.39 89.56 69.08 86.35 57.03 88.76 90.76 81.12 73.27
Llama-3.2-90B-Vision 84.34 7.63 26.51 96.39 26.91 81.53 77.91 82.73 89.96 87.95 6.02 60.72
Qwen-2.5-VL-72B 87.95 13.25 64.26 95.18 93.17 86.35 91.16 65.06 89.52 91.57 80.32 77.98
Aya-Vision-32B 39.36 0.00 14.46 87.95 82.33 75.50 80.32 23.69 81.53 76.31 72.29 57.61

Table 18: MGSM
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