
Published as a conference paper at ICLR 2024

CLEANBA: A REPRODUCIBLE AND EFFICIENT DIS-
TRIBUTED REINFORCEMENT LEARNING PLATFORM

Shengyi Huang‡ Jiayi Weng⇤ Rujikorn Charakorn] Min Lin4

Zhongwen Xu} Santiago Ontañón‡§

‡Drexel University Hugging Face §Google ]VISTEC 4Sea AI Lab }Tencent AI Lab
costa.huang@outlook.com

ABSTRACT

Distributed Deep Reinforcement Learning (DRL) aims to train autonomous agents
in less wall-clock time by leveraging more computational resources. Despite re-
cent progress in the field, reproducibility issues have not been sufficiently ex-
plored. This paper first shows that the typical actor-learner framework can have
reproducibility issues even if hyperparameters are controlled. We then introduce
Cleanba, a new open-source platform for distributed DRL that proposes a highly
reproducible architecture. Cleanba implements highly optimized distributed vari-
ants of PPO (Schulman et al., 2017) and IMPALA (Espeholt et al., 2018). Our
Atari experiments show that these variants can obtain equivalent or higher scores
than strong IMPALA baselines in moolib and torchbeast and PPO base-
line in CleanRL. However, Cleanba variants present 1) shorter training time and
2) more reproducible learning curves in different hardware settings. Cleanba’s
source code is available at https://github.com/vwxyzjn/cleanba.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) is a technique to train autonomous agents to perform tasks.
In recent years, it has demonstrated remarkable success across various domains, including video
games (Mnih et al., 2015), robotics control (Schulman et al., 2017), chip design (Mirhoseini et al.,
2021), and large language model tuning (Ouyang et al., 2022). Distributed DRL (Espeholt et al.,
2018; 2020) has also become a fast-growing paradigm that trains agents in less wall-clock time by
leveraging more computing resources. Despite recent progress, reproducibility issues in distributed
DRL have not been sufficiently explored. This paper introduces Cleanba, a new platform for dis-
tributed DRL that addresses reproducibility issues under different hardware settings.

Reproducibility in DRL is a challenging issue. Not only are DRL algorithms brittle to hyperparam-
eters and neural network architectures (Henderson et al., 2018), implementation details are often
crucial for successfully applying DRL but frequently omitted from publications (Engstrom et al.,
2020; Andrychowicz et al., 2021; Huang et al., 2022a). Reproducibility issues in distributed DRL
are under-studied and arguably even more challenging. In particular, most high-profile distributed
DRL works, such as Apex-DQN (Horgan et al., 2018), IMPALA (Espeholt et al., 2018), R2D2 (Kap-
turowski et al., 2019), and Podracer Sebulba (Hessel et al., 2021) are not (fully) open-source. Fur-
thermore, earlier work pointed out that more actor threads not only improve training speed but cause
reproducibility issues – different hardware settings could impact the data efficiency in a non-linear
fashion (Mnih et al., 2016).

In this paper, we present a more principled approach to distributed DRL, in which different hardware
settings could make training speed slower or faster but do not impact data efficiency, thus making
scaling results more reproducible and predictable. We first analyze the typical actor-learner architec-
ture in IMPALA (Espeholt et al., 2018) and show that its parallelism paradigm could introduce repro-
ducibility issues due to the concurrent scheduling of different actor threads. We then propose a more
reproducible distributed architecture by better aligning the parallelized actor and learner’s compu-

⇤Currently at OpenAI.

1

https://github.com/vwxyzjn/cleanba


Published as a conference paper at ICLR 2024

tations. Based on this architecture, we introduce our Cleanba (meaning CleanRL-style (Huang
et al., 2022b) Podracer Sebulba) distributed DRL platform, which aims to be an easy-to-understand
distributed DRL infrastructure like CleanRL, but also be scalable as Podracer Sebulba. Cleanba im-
plements a distributed variant of PPO (Schulman et al., 2017) and IMPALA (Espeholt et al., 2018)
with JAX (Bradbury et al., 2018) and EnvPool (Weng et al., 2022). Next, we evaluate Cleanba’s
variants against strong IMPALA baselines in moolib (Mella et al., 2022) and torchbeast (Küttler
et al., 2019) and PPO baseline in CleanRL (Huang et al., 2022b) on 57 Atari games (Bellemare et al.,
2013). Here are the key results of Cleanba:

1. Strong performance: Cleanba’s IMPALA and PPO achieve about 165% median human
normalized score (HNS) in Atari with sticky actions, matching monobeast IMPALA’s
165% median HNS and outperforming moolib IMPALA’s 140% median HNS.

2. Short training time: Under the 1 GPU 10 CPU setting, Cleanba’s IMPALA is 6.8x
faster than monobeast’s IMPALA and 1.2x faster than moolib’s IMPALA. Under
a max specification setting, Cleanba’s IMPALA (8 GPU and 40 CPU) is 5x faster than
monobeast’s IMPALA (1 GPU and 80 CPU) and 2x faster than moolib’s IMPALA (8
GPU and 80 CPU).

3. Highly reproducible: Cleanba shows predictable and reproducible learning curves across
1 and 8 GPU settings given the same set of hyperparameters, whereas moolib’s learning
curves can be considerably different, even if hyperparameters are controlled to be the same.

4. Highly scalable: Cleanba can linearly scale to multi-node settings, allowing the researchers
to leverage hundreds of GPUs (Appendix F).

To facilitate more transparency and reproducibility, we have made available our source code at
https://github.com/vwxyzjn/cleanba.

2 BACKGROUND

Distributed DRL Systems Utilizing more computational power has been an attractive topic for re-
searchers. Earlier DRL methods like DQN (Mnih et al., 2015) were synchronous and typically used
a single simulation environment, which made them slow and inefficient in using hardware resources.
A3C (Mnih et al., 2016) spawns multiple actor threads; each interacts with its own copy of the en-
vironment and asynchronously accumulates gradient. To make distributed DRL more scalable, IM-
PALA decouples the actors and the learners (Espeholt et al., 2018; 2020). The actors produce train-
ing data asynchronously, while the learners produce new agent parameters, which are transferred
asynchronously to the actor. Actor-learner systems can achieve higher throughput and shorter train-
ing wall time than A3C. Additional distributed actor-learner systems include GA3C (Babaeizadeh
et al., 2017), IMPALA (Espeholt et al., 2018), Apex-DQN (Horgan et al., 2018), R2D2 (Kapturowski
et al., 2019), and Podracer Sebulba (Hessel et al., 2021).

Reproducibility Issues with Different Hardware Settings Empirical evidence suggests that in-
creasing the number of actor threads can enhance the training speed in distributed DRL (Mnih et al.
(2016, Fig. 4)). However, this augmentation is not without its complications. It also impacts data
efficiency and final Atari scores (Mnih et al. (2016, Fig. 3)), and these effects could manifest in a
non-linear manner. While the authors found the side effects of value-based asynchronous methods to
be positive and improve data efficiency, the side effects of contemporary distributed DRL systems,
such as IMPALA, Apex-DQN, and R2D2, across various hardware configurations, have not been
sufficiently explored.

Open-source Distributed DRL Infrastructure While many distributed DRL algorithms are not
open-source, there have been many notable distributed DRL replications in the open-source soft-
ware (OSS) community. These efforts include SEED RL (Espeholt et al., 2020), rlplyt (Stooke
& Abbeel, 2018), Decentralized Distributed PPO (Wijmans et al., 2020), Sample Factory (Petrenko
et al., 2020), HTS-RL (Liu et al., 2020), torchbeast (Küttler et al., 2019), and moolib (Mella
et al., 2022). Many of them have shown high throughput and good empirical performance in select
domains. Nevertheless, most of them either do not have evaluations on 57 Atari games or have
various hardware restrictions, leading to reproducibility concerns. moolib is the only OSS infras-

2

https://github.com/vwxyzjn/cleanba


Published as a conference paper at ICLR 2024

IMPALA Actor-Learner Architecture

1 batch_size = 32
2 agent = Agent()
3 rollout_Q = queue()
4

5 def actor():
6 while True:
7 data = rollout(agent.param, 1)
8

9

10 rollout_Q.put(data)
11 def learner():
12 for _ in range(1, ITER):
13 data = rollout_Q.get_many(batch_size)
14 agent.learn(data)
15 broadcast_to_actors(agent.param)
16 for _ in range(num_actors):
17 thread(actor).start()
18 thread(learner).start()

Cleanba’s architecture

batch_size = 32
agent = Agent()
rollout_Q = queue(max_size=1)
param_Q = queue(max_size=1)
def actor():
for i in range(1, ITER):
if i != 2:
params = param_Q.get()

data = rollout(params, batch_size)
rollout_Q.put(data)

def learner():
for _ in range(1, ITER):
data = rollout_Q.get()
agent.learn(data)
param_Q.put(agent.param)

param_Q.put(agent.param)
thread(actor).start()
thread(learner).start()

Figure 1: The pseudocode for IMPALA architecture (left) and Cleanba’s architecture (right).
Colors are used to highlight the code differences between the two architectures. The
rollout(params, num envs) function collects rollout data on num envs independent envi-
ronments for num steps steps.

tructure that has both evaluations on 57 Atari games in the standard 200M frames setting and can
scale beyond a single GPU setting1.

3 REPRODUCIBILITY ISSUES IN IMPALA

This section shows that IMPALA (Espeholt et al., 2018) has non-determinism by nature, which
arises from the concurrent scheduling of different actor threads. This non-determinism could further
cause subtle reproducibility issues.

A natural question arises: what happens when the learner produces a new policy while the actor
is in the middle of producing a trajectory? It turns out multiple policy versions could contribute
to the actor’s rollout data in line 7 of the IMPALA architecture Figure 1. Typically, the faster the
policy updates, the more frequently the policies are transferred. However, this impacts the rollout
data construction in a non-trivial way. From a reproducibility point of view, it is important to realize
the frequency at which the policies are updated is a source of non-determinism.

However, non-determinism can be desirable in parallel programming because they make programs
faster without making outputs significantly different. For example, some of NVIDIA’s CuDNN
operations are inherently non-determinisitic2. What is more important is to investigate if this non-
determinism could cause reproducibility issues in terms of learning curves. To this end, we manu-
facture a specific experiment that magnifies this non-determinism in monobeast’s IMPALA. For
the control group, we

1. decreased the number of trajectories in the batch from 32 to 8 to reduce training time, thus
making the actor’s policy updates more frequent;

2. used 80 actor threads and increased monobeast’s default unroll length from 20 to 240 to
increase the chance of observing the actor’s policy updates in the middle of a trajectory.

1While SEED RL also has evaluations on 57 Atari games and scale beyond 1 GPU, SEED RL trained the
agents for 40 billion frames 40 hours per game.

2https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#
reproducibility

3

https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility
https://docs.nvidia.com/deeplearning/cudnn/developer-guide/index.html#reproducibility


Published as a conference paper at ICLR 2024

Figure 2: IMPALA’s reproducibility issue under different “speed” settings — The y-axes show
the episodic return and value function loss of two sets of monobeast experiments that use the exact
same hyperparameters, but the orange set of experiments has its learner update manually delayed
for 1 second to simulate slower learner updates. Note the learning curves across 10 random seeds are
non-trivially different, implicating hyperparameters in IMPALA alone cannot always ensure good
reproducibility.

For the experimental group, we used the above setting but manually slowed down the policy broad-
casting by sleeping the learner for 1 second after the policy updates in order to simulate a case where
the learner is significantly slower (such as when running the learner on CPU).

We found that in the control group, the actors, on average, changed their policy versions 12-13
times in the middle of the 240-length trajectory. In the experimental group, because of the manual
slowdown in broadcasting the learner’s policy, the actors, on average, changed the policy one time.
We note that the results vary on different hardware settings as well. For example, the control group
changed their policy versions, on average, eight times when using 40 actor threads. We noted that
in moolib, the actor’s policy could also change mid-rollout. See Appendix G.

Figure 2 demonstrates the empirical effect of the experiments. Note that the learning and loss curves
looked notably different across ten random seeds, even though the control and experimental group
have the exact same hyperparameters. This experiment shows that IMPALA algorithmically could
be susceptible to reproducibility issues across different hardware settings. While Figure 2 only
shows the experimental results on one environment, the primary purpose of it is to show that this
issue exists and is barely predictable. Furthermore, this type of issue can be much more subtle and
difficult to diagnose at a much larger scale, so it is important that we investigate them.

4 TOWARDS REPRODUCIBLE DISTRIBUTED DRL

Despite these reproducibility issues, the actor-learner architecture is useful because it allows us to
parallelize the computations of the actors and learners. In this work, we address the reproducibility
issues mentioned above by 1) decoupling hyperparameters and hardware settings and 2) proposing
a synchronization mechanism that makes distributed DRL reproducible.

4.1 DECOUPLING HYPERPARAMETERS AND HARDWARE SETTINGS

As mentioned in the previous section, different numbers of actor threads could make policy updates
more or less frequent in the middle of a trajectory generation. This is unpredictable and need not be
the case. A different number of actors also creates a different number of simulation environments
and thus should be recognized as a hyperparameter setting.

To make a more clarified setting, we advocate decoupling the number of actor threads into two sep-
arate hyperparameters: 1) the number of environments, and 2) the number of CPUs. In this case,
we can use a different number of CPUs to simulate a given number of environments. This decou-
pled interface is readily provided by EnvPool (Weng et al., 2022), which we use in our proposed
architecture.

4



Published as a conference paper at ICLR 2024

Table 1: The Synchronous and Cleanba’s architecture. Under the Synchronous architecture, the actor
and learner’s computations are sequential and not parallelizable – the learner always learns from the
rollout data of the latest policy ⇡i ��!

D⇡i

⇡i+1 (e.g., ⇡2 ���!
D⇡2

⇡3 ). Under Cleanba’s architecture,

we can parallelize the actor and learner’s computation at the cost of introducing stale data – starting
from iteration 3 the learner always learns from the rollout data obtained from the second latest policy
⇡i ����!

D⇡i�1

⇡i+1 (e.g., ⇡2 ���!
D⇡1

⇡3 )

Iteration 1 2 3

Synchronous Arch. ⇡1 ! D⇡1 ⇡1 ���!
D⇡1

⇡2 ⇡2 ! D⇡2 ⇡2 ���!
D⇡2

⇡3 ⇡3 ! D⇡3 ⇡3 ���!
D⇡3

⇡4

Cleanba’s Arch., Actor ⇡1 ! D⇡1 ⇡1 ! D⇡1 ⇡2 ! D⇡2

Cleanba’s Arch., Learner ⇡1 ���!
D⇡1

⇡2 ⇡2 ���!
D⇡1

⇡3

4.2 DETERMINISTIC ROLLOUT DATA COMPOSITION

To address the non-determinism in rollout data composition, we propose our Cleanba’s architecture,
which retains the benefit of parallelizing actor-learner computations but can produce deterministic
rollout data composition. At its core, Cleanba’s architecture is a simple mechanism for synchroniz-
ing the actor and learner, ensuring the learner performs gradient updates with rollout data of second
latest policy.

Let us use the notation ⇡i ! D⇡i to denote that policy of version i is used to obtain rollout data
D⇡i ; ⇡i ��!

D⇡i

⇡i+1 denotes policy of version i is trained with rollout data D⇡i to obtain a new policy

⇡i+1. Figure 1 is the pseudocode of the architecture and Table 1 illustrates how policies get updated.
Under the Synchronous Architecture, the actor and learner’s computations are sequential: it first
perform rollout ⇡1 ! D⇡1 , during which the learner stays idle. Given the rollout data, the learner
then performs gradient updates ⇡1 ���!

D⇡1

⇡2 , during which the actor stays idle. More generally, the

learner always learns from the rollout data of the latest policy ⇡i ��!
D⇡i

⇡i+1.

To parallelize actor and learner’s computation, Cleanba’s architecture needs to necessarily intro-
duce stale data like IMPALA (Espeholt et al., 2018). In the second iteration of Cleanba’s archi-
tecture in Figure 1, we skip the param Q.get() call, so ⇡1 ! D⇡1 happens concurrently with
⇡1 ���!

D⇡1

⇡2 . Because Queue.get is blocking when the queue is empty and Queue.put is

blocking when the queue is full (we set the maximum size to be 1), we make sure the actor pro-
cess does not perform more rollouts and learner process does not perform more gradient updates.
Starting iteration i > 3, the learner then learns from the rollout data of the second latest policy
⇡i ����!

D⇡i�1

⇡i+1. As a result, Cleanba’s architecture can parallelize the actor and learner’s computa-

tion at the cost of stale data.

Cleanba’s architecture above has several benefits. First, it is easy to reason and reproduce. As
highlighted in Table 1, we can ascertain the specific policy used for collecting the rollout data,
so if we had delayed learner updates like in Section 3 for iteration i, iteration i + 1 would not
start until the previous iteration is finished, therefore circumventing IMPALA’s reproducibility is-
sue. This knowledge about which policy generates the rollout data enhances the transparency and
reproducibility of distributed RL and can help us scale up while maintaining good reproducibility
principles. Second, Cleanba’s architecture is easy to debug for throughput. For diagnosing through-
put, we can evaluate the time taken for rollout Q.get() and param Q.get(). If, on average,
rollout Q.get() consumes less time than param Q.get(), it becomes evident that learning
is the bottleneck, and vice versa.

5



Published as a conference paper at ICLR 2024

Figure 3: Base experiments. Top figure: the median human-normalized scores of Cleanba variants
compared with moolib and monobeast. Bottom figure: the aggregate human normalized score
metrics with 95% stratified bootstrap CIs. Higher is better for Median, IQM, and Mean; lower is
better for Optimality Gap.

Figure 4: Workstation experiments. Top figure: the median human-normalized scores of Cleanba
variants compared with moolib. Bottom figure: the aggregate human normalized score metrics
with 95% stratified bootstrap CIs.

Based on Cleanba’s architecture, this work introduces Cleanba as a reproducible distributed DRL
platform. Cleanba is inspired by CleanRL (Huang et al., 2022b) and DeepMind’s Sebulba Po-
dracer architecture (Hessel et al., 2021). Its implementation uses JAX (Bradbury et al., 2018)
and EnvPool (Weng et al., 2022), both of which are designed to be efficient. To improve the
learner’s throughput, we allow the use of multiple learner devices via pmap. To improve the
system’s scalability, we enable running multiple processes on a single node or multiple nodes via
jax.distributed.

5 EXPERIMENTS

We perform experiments on Atari games (Bellemare et al., 2013). All experiments used 84 ⇥ 84
images with greyscale, an action repeat of 4, 4 stacked frames, and a maximum of 108,000 frames
per episode. We followed the recommended Atari evaluation protocol by Machado et al. (2018),
which used sticky action with a probability of 25%, no loss of life signal, and the full action space.

6



Published as a conference paper at ICLR 2024

To make a more direct and fair comparison, we used the same AWS p4d.24xlarge instances3 and the
same Atari environment simulation setups via EnvPool and compared only the following codebase
settings:

1. Monobeast IMPALA: the reference IMPALA implementations in monobeast4;

2. Moolib IMPALA: the reference IMPALA implementations in Moolib;

3. CleanRL PPO (Sync): the reference PPO implementations in CleanRL(Huang et al.,
2022b);

4. Cleanba PPO and Cleanba IMPALA: our PPO and IMPALA implementation under the
Cleanba Architecture;

5. Cleanba PPO (Sync) and Cleanba IMPALA (Sync) our PPO and IMPALA implementa-
tion under the Synchronous Architecture (Table 1), which can be configured by comment-
ing out line 7 of the Cleanba’s architecture in Figure 1.

Within the p4d.24xlarge instance, we also compared two hardware settings:

1. Base experiments uses 10 CPU and 1 A100 setting as a base comparison;

2. Workstation experiments uses 46 CPU and 8 A100s for Cleanba experiments, 80 CPU
and 8 A100s for moolib experiments5, and 80 CPU and 1 A100 for monobeast experi-
ments.

Throughout all experiments, the agents used IMPALA’s Resnet architecture (Espeholt et al., 2018),
ran for 200M frames with three random seeds. The hyperparameters and the learning curves can be
found in Appendix B. We evaluate the experiment results based on median HNS learning curves,
interquartile mean (IQM) learning curves, and 95% stratified bootstrap confidence intervals for the
mean, median, IQM, and optimality gap (the amount by which the algorithm fails to meet a minimum
normalized score of 1) (Agarwal et al., 2021). To examine scalability in multi-node settings, we
conduct experiments examining scalability on 16, 32, 64, and 128 A100s (Appendix F).

5.1 COMPARISON WITH MOOLIB AND MONOBEAST’S IMPALA

Under the base experiments (Figure 3), Cleanba’s IMPALA obtains a similar level of median HNS
as monobeast’s IMPALA and a higher level of median HNS as moolib’s IMPALA. However,
Cleanba’s IMPALA is 6.8x faster than monobeast’s IMPALA, mostly because Cleanba actors
run on GPUs, whereas monobeast’s actors run on CPUs. Also, Cleanba’s IMPALA is 1.2x
faster than moolib’s IMPALA, but the speedup difference is challenging to explain due to multi-
ple confounding factors – Cleanba’s variants benefit from JAX’s just-in-time compilation, whereas
moolib benefits from asynchronous operations (e.g., on gradient computation and environment
steps). Cleanba’s PPO (Sync) also obtains a high median HNS but takes longer training time, likely
due to the longer training step time spent on reusing rollout data 4 times.

Under the workstation experiments (Figure 4), Cleanba’s PPO (Sync) and IMPALA obtain a similar
level of median HNS as monobeast’s IMPALA and a higher level of median HNS as moolib’s
IMPALA. However, Cleanba’s PPO (Sync) and IMPALA are both faster than monobeast’s and
moolib IMPALA. Most prominently, Cleanba’s IMPALA is 5x faster than monobeast’s IM-
PALA and 2x faster than moolib’s IMPALA.

Additionally, we examine the individual learning curves in Figure 5 and found that Cleanba’s
variants also produce more consistent learning curves. In comparison, in two hardware settings,
moolib’s learning curves can be much more unpredictable.

3For some experiments, we used p4de.24xlarge instances but only GPU memory is different, which does
not affect training speed.

4We wanted to test out IMPALA’s official source code released in deepmind/scalable agent, but it
was built with tensorflow 1.x which does not support the A100 GPU tested in this paper.

5We used more CPUs for moolib experiments because 10 CPU per GPU seems to be the default scaling
parameter for moolib. Also, for the moolib experiment, we conducted two sets of 3 random seeds. We
reported the results with higher IQM and lower median. See Appendix C.

7



Published as a conference paper at ICLR 2024

Figure 5: Reproducible learning curves – the Cleanba variants show more predictable learning
curves in different hardware settings. In comparison, moolib’s IMPALA’s learning curves under
the 1 A100, 10 CPU setting (blue curve) and 8 A100, 80 CPU setting (orange curve) are mean-
ingfully different, even if they use the same hyperparameters.

5.2 DISCUSSION ABOUT MONOBEAST’S IMPALA

Note that the monobeast experiments are interesting in several ways. First, it produces a higher
median HNS than moolib’s IMPALA, which is the opposite of what was shown in Mella et al.
(2022). This is probably because Mella et al. (2022) used “comparable environment settings” instead
of the same environment settings used in our experiments. Interestingly, we found different Atari
wrapper implementations can have a non-trivial impact on the agent’s performance (Appendix D);
for this reason, we use the same Atari wrapper implementation in the experiments presented in this
section. Second, the monobeast experiments appear robust in two different hardware settings in
practice, despite the reproducibility issues we showed in Section 3. While monobeast obtained
high scores, it is significantly slower in the 1 A100 and 10 CPU settings due to poor GPU utiliza-
tion. Its codebase also does not support multi-GPU settings and should scale less efficiently with
larger networks because actor threads only run on CPUs when compared to moolib and Cleanba’s
variants.

5.3 SYNCHRONOUS ARCHITECTURE VS CLEANBA ARCHITECTURE

Figure 6 compares the PPO and IMPALA variants between Synchronous and Cleanba architecture
and CleanRL’s PPO, which uses the Synchronous architecture by design. We found using Cleanba
architecture actually hurts Cleanba PPO’s data efficiency. This is an interesting trade-off because
the speed benefit of parallelizing actor and learner processes in Cleanba PPO is offset by the lower

8



Published as a conference paper at ICLR 2024

Figure 6: Comparing Cleanba’s variants using Cleanba and Synchronous architecture. For
PPO, Cleanba’s Architecture (orange curve) runs faster but has lower data efficiency than

Synchronous architecture (blue curve) . For IMPALA, there is no discernible difference between

Synchronous Architecture (red curve) and Cleanba’s Architecture (brown curve) . This means
Cleanba’s IMPALA can benefit from the speed-up of parallelizing actor-learner computation with-
out paying a price for data efficiency under our hyperparameter settings, unlike Cleanba’s PPO.

data efficiency. Among many possible causes, the main factor might be that PPO does 16 gradient
updates (4 mini-batches and 4 update epochs) per rollout, whereas IMPALA in our setting only
does 4 gradient updates. In comparison, we noticed Cleanba’s IMPALA did not suffer from lower
data efficiency compared to Cleanba IMPALA (Sync) architecture, meaning IMPALA can actually
benefit from parallelizing actor and learner computations.

6 LIMITATION

There are several limitations to this work. First, our experiments could not completely control var-
ious other confounding settings in the reference codebase, such as optimizer settings and machine
learning framework (e.g., PyTorch, JAX). For example, Cleanba’s PPO and IMPALA use different
learning rates indicated in their respective literature, making it difficult to compare PPO and IM-
PALA directly. We attempted to make a direct comparison by running Cleanba PPO with Cleanba
IMPALA’s setting and found it made PPO’s data efficiency significantly worse – this could sug-
gest the IMPALA’s setting is well-tuned for IMPALA but brittle to PPO (Appendix E). Second,
our finding that parallelizing actor and learner computation hurts PPO’s data efficiency is specific
to the PPO’s default Atari hyperparameter setting, and it could perhaps be tuned in ways in which
opposite findings can be drawn. That said, the main purpose of this work is not hyperparameter
tuning. Rather, it is creating a codebase that replicates prior results and makes training reproducible,
efficient, and scalable across more powerful hardware.

7 CONCLUSION

This paper presents Cleanba, a new distributed deep reinforcement learning platform. Our analy-
sis shows that Cleanba’s more principled architecture can circumvent reproducibility issues in IM-
PALA’s architecture. Our Atari experiments demonstrate that Cleanba’s PPO and IMPALA accu-
rately replicate prior work but have faster training time and are highly reproducible across different
hardware settings. We believe that Cleanba will be a valuable platform for the research community
to conduct future distributed RL research.

9



Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

We thank the following entities for their support.

1. Stability AI’s HPC for generously providing much GPU computational resources to this
project.

2. Hugging Face’s cluster for providing much GPU computational resources to this project.
3. Google’s TPU Research Cloud for providing the TPU computational resources.

REPRODUCIBILITY STATEMENT

Ensuring Cleanba’s results are reproducible is a central theme in our paper. To this end, we have
taken several measures to improve reproducibility:

1. Open-source repository: we made source code available at https://github.com/
vwxyzjn/cleanba. The dependencies of the experiments are pinned, and our reposi-
tory contains detailed instructions on replicating all Cleanba experiments presented in this
paper.

2. Reproducible architecture: as demonstrated in Section 4, Cleanba introduces a more prin-
cipled approach to understanding distributed DRL and gives clear expectations on where
the rollout data comes from, making it easier to reason about the reproducibility of dis-
tributed DRL.

3. Experiments on different hardware: as demonstrated in Section 5, we also conducted ex-
periments showing Cleanba’s PPO and IMPALA variants can obtain near-identical data ef-
ficiency on different hardware, further demonstrating that this work is highly reproducible.

In sum, we have tried to make our work as transparent and reproducible as possible. By leveraging
the source code, details provided in the main paper, and appendix, researchers should be well-
equipped to reproduce or extend upon our findings.

REFERENCES

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Informa-
tion Processing Systems, 34, 2021.

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël
Marinier, Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly,
and Olivier Bachem. What matters for on-policy deep actor-critic methods? a large-scale study. In
International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=nIAxjsniDzg.

Mohammad Babaeizadeh, Iuri Frosio, Stephen Tyree, Jason Clemons, and Jan Kautz. Reinforce-
ment learning through asynchronous advantage actor-critic on a GPU. In International Confer-
ence on Learning Representations, 2017. URL https://openreview.net/forum?id=
r1VGvBcxl.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253–279, 2013.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, et al. Jax:
composable transformations of python+ numpy programs. 2018.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry
Rudolph, and Aleksander Madry. Implementation matters in deep rl: A case study on ppo
and trpo. In International Conference on Learning Representations, 2020. URL https:
//openreview.net/forum?id=r1etN1rtPB.

10

https://github.com/vwxyzjn/cleanba
https://github.com/vwxyzjn/cleanba
https://openreview.net/forum?id=nIAxjsniDzg
https://openreview.net/forum?id=nIAxjsniDzg
https://openreview.net/forum?id=r1VGvBcxl
https://openreview.net/forum?id=r1VGvBcxl
https://openreview.net/forum?id=r1etN1rtPB
https://openreview.net/forum?id=r1etN1rtPB


Published as a conference paper at ICLR 2024

Lasse Espeholt, Hubert Soyer, Rémi Munos, Karen Simonyan, Volodymyr Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, Shane Legg, and Koray Kavukcuoglu. IM-
PALA: scalable distributed deep-rl with importance weighted actor-learner architectures. In Jen-
nifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference on
Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, vol-
ume 80 of Proceedings of Machine Learning Research, pp. 1406–1415. PMLR, 2018. URL
http://proceedings.mlr.press/v80/espeholt18a.html.

Lasse Espeholt, Raphaël Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski. Seed rl:
Scalable and efficient deep-rl with accelerated central inference. In International Confer-
ence on Learning Representations, 2020. URL https://openreview.net/forum?id=
rkgvXlrKwH.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax–a differentiable physics engine for large scale rigid body simulation. arXiv preprint
arXiv:2106.13281, 2021.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Matteo Hessel, Manuel Kroiss, Aidan Clark, Iurii Kemaev, John Quan, Thomas Keck, Fabio Viola,
and Hado van Hasselt. Podracer architectures for scalable reinforcement learning. arXiv preprint
arXiv:2104.06272, 2021.

Dan Horgan, John Quan, David Budden, Gabriel Barth-Maron, Matteo Hessel, Hado van Hasselt,
and David Silver. Distributed prioritized experience replay. In 6th International Conference
on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=H1Dy---0Z.

Shengyi Huang, Rousslan Fernand Julien Dossa, Antonin Raffin, Anssi Kanervisto, and
Weixun Wang. The 37 implementation details of proximal policy optimization. In ICLR
Blog Track, 2022a. URL https://iclr-blog-track.github.io/2022/03/25/
ppo-implementation-details/.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal
Mehta, and João G.M. Araújo. Cleanrl: High-quality single-file implementations of deep rein-
forcement learning algorithms. Journal of Machine Learning Research, 23(274):1–18, 2022b.
URL http://jmlr.org/papers/v23/21-1342.html.

Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent ex-
perience replay in distributed reinforcement learning. In International conference on learning
representations, 2019.

Heinrich Küttler, Nantas Nardelli, Thibaut Lavril, Marco Selvatici, Viswanath Sivakumar, Tim
Rocktäschel, and Edward Grefenstette. Torchbeast: A pytorch platform for distributed rl. arXiv
preprint arXiv:1910.03552, 2019.

Iou-Jen Liu, Raymond A. Yeh, and Alexander G. Schwing. High-throughput synchronous
deep RL. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
c6447300d99fdbf4f3f7966295b8b5be-Abstract.html.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and
Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and open
problems for general agents. Journal of Artificial Intelligence Research, 61:523–562, 2018.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model of
large-batch training. arXiv preprint arXiv:1812.06162, 2018.

11

http://proceedings.mlr.press/v80/espeholt18a.html
https://openreview.net/forum?id=rkgvXlrKwH
https://openreview.net/forum?id=rkgvXlrKwH
https://openreview.net/forum?id=H1Dy---0Z
https://openreview.net/forum?id=H1Dy---0Z
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
https://iclr-blog-track.github.io/2022/03/25/ppo-implementation-details/
http://jmlr.org/papers/v23/21-1342.html
https://proceedings.neurips.cc/paper/2020/hash/c6447300d99fdbf4f3f7966295b8b5be-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c6447300d99fdbf4f3f7966295b8b5be-Abstract.html


Published as a conference paper at ICLR 2024

Vegard Mella, Eric Hambro, Danielle Rothermel, and Heinrich Küttler. moolib: A Platform for
Distributed RL. 2022. URL https://github.com/facebookresearch/moolib.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodol-
ogy for fast chip design. Nature, 594(7862):207–212, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Maria-Florina Balcan and Kilian Q. Weinberger (eds.), Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York City, NY, USA, June 19-
24, 2016, volume 48 of JMLR Workshop and Conference Proceedings, pp. 1928–1937. JMLR.org,
2016. URL http://proceedings.mlr.press/v48/mniha16.html.

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022.

Aleksei Petrenko, Zhehui Huang, Tushar Kumar, Gaurav S. Sukhatme, and Vladlen Koltun. Sam-
ple factory: Egocentric 3d control from pixels at 100000 FPS with asynchronous reinforcement
learning. In Proceedings of the 37th International Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, volume 119 of Proceedings of Machine Learning Re-
search, pp. 7652–7662. PMLR, 2020. URL http://proceedings.mlr.press/v119/
petrenko20a.html.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

John Schulman, Sergey Levine, Pieter Abbeel, Michael I. Jordan, and Philipp Moritz. Trust re-
gion policy optimization. In Francis R. Bach and David M. Blei (eds.), Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, vol-
ume 37 of JMLR Workshop and Conference Proceedings, pp. 1889–1897. JMLR.org, 2015. URL
http://proceedings.mlr.press/v37/schulman15.html.

John Schulman, Philipp Moritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In Yoshua Bengio and
Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1506.02438.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. ArXiv preprint, abs/1707.06347, 2017. URL https://arxiv.org/
abs/1707.06347.

Adam Stooke and Pieter Abbeel. Accelerated methods for deep reinforcement learning. arXiv
preprint arXiv:1803.02811, 2018.

Jiayi Weng, Min Lin, Shengyi Huang, Bo Liu, Denys Makoviichuk, Viktor Makoviychuk, Zichen
Liu, Yufan Song, Ting Luo, Yukun Jiang, Zhongwen Xu, and Shuicheng YAN. Envpool: A
highly parallel reinforcement learning environment execution engine. In Thirty-sixth Conference
on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. URL https:
//openreview.net/forum?id=BubxnHpuMbG.

Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva,
and Dhruv Batra. Dd-ppo: Learning near-perfect pointgoal navigators from 2.5 billion frames. In
International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=H1gX8C4YPr.

12

https://github.com/facebookresearch/moolib
http://proceedings.mlr.press/v48/mniha16.html
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v119/petrenko20a.html
http://proceedings.mlr.press/v37/schulman15.html
http://arxiv.org/abs/1506.02438
http://arxiv.org/abs/1506.02438
https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/1707.06347
https://openreview.net/forum?id=BubxnHpuMbG
https://openreview.net/forum?id=BubxnHpuMbG
https://openreview.net/forum?id=H1gX8C4YPr
https://openreview.net/forum?id=H1gX8C4YPr

	Introduction
	Background
	Reproducibility Issues in IMPALA
	Towards Reproducible Distributed DRL
	Decoupling hyperparameters and hardware settings
	Deterministic Rollout Data Composition

	Experiments
	Comparison with moolib and monobeast's IMPALA
	Discussion about monobeast's IMPALA
	Synchronous Architecture vs Cleanba Architecture

	Limitation
	Conclusion
	Preliminaries
	Detailed experiment settings
	moolib Experiments
	The effect of different wrappers on moolib's performance
	Direct PPO and IMPALA comparison
	Multi-node Training
	torchbeast logs

