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ABSTRACT

Uncertainty quantification (UQ) provides measures of uncertainty, such as a score
of confidence in an LLM’s generated output, and is therefore increasingly rec-
ognized as a crucial component of trusted Al systems. Black-box UQ methods
do not require access to internal model information from the generating LLM
and therefore have numerous real-world advantages, such as robustness to sys-
tem changes, adaptability to choice of LLM including those with commercialized
APIs, reduced costs, and substantial computational tractability. In this paper, we
propose a simple yet powerful UQ approach that treats confidence estimation as
a probabilistic classification task, where one predicts the correctness of a genera-
tion using similarities with other generations for the same query as features. This
approach requires a small labeled dataset and can be either black-box or white-
box, depending on the choice of additional features for the classifier, beyond the
similarities. We conduct an empirical study using 6 datasets across question an-
swering and summarization tasks, demonstrating that features based on pairwise
similarities generally result in confidence estimates that are better calibrated and
more predictive of correctness as compared to the closest baselines.

1 INTRODUCTION

Uncertainty quantification (UQ) approaches in machine learning provide insights into the reliability
of model predictions, and can therefore be a critical component for deploying large language models
(LLMs) in real-world applications. UQ refers to a broad swathe of techniques that yield measures
of uncertainty; in this paper, we are interested in assessing the confidence of an LLM’s generations
for a user-specified task. An important sub-class of UQ techniques are black-box methods, which
only assume access to the model being used without requiring other model information such as the
weights or even the token log probabilities. Such techniques have numerous practical advantages,
as they are robust to the constantly evolving landscape of LLMs and can easily adapt to system
changes. Furthermore, they are usually computationally lightweight and can be quickly deployed
at inference time. As a result, black-box UQ has become increasingly popular for tasks such as
question answering (Kuhn et al.,[2022; Lin et al.|[2024; [Manakul et al., 2023} [Cole et al., 2023)).

Confidence is not always a well-defined quantity in the UQ literature, but it is typically represented
as a number between 0 and 1. We consider tasks where there is a notion of whether an LLM’s
response to a user query is correct or not, and interpet confidence of a response as the probability that
it is correct. Extending this idea, we propose an approach where confidence estimation is regarded
as a probabilistic classification task, where we predict whether a generation is correct and view the
probability of correctness as our confidence. Importantly, we suggest generating multiple samples
from the LLM through some sampling procedure, computing pairwise similarities between samples
using any similarity metric of choice, and then using the pairwise similarities between a generation
of interest and other generations as features for a probabilistic classifier. Such an approach is black-
box if it does not use additional features such as those arising from the token logits, but we also
explore white-box extensions for our experiments.

Our approach can be considered a particular type of consistency-based UQ, where the idea is to use
the consistency between a generation and other sampled generations as a proxy for our confidence
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in its correctness. The implicit underlying assumption behind consistency-based approaches is that
when a generated response is more different from others, it is more likely to be incorrect, implying
that responses that are consistently similar are more likely to be correct; this assumption has been
explored for various use cases involving self-consistency (Mitchell et al., 2022} [Wang et al.| 2023;
Chen et al., [2024). In our work, we use similarity features as a signal for correctness, as opposed
to unsupervised machine learning approaches that cluster generations together (Kuhn et al., 2022}
Lin et al} [2024); such methods are not designed to provide information about the correctness of
generations. In contrast, our supervised learned surrogate classifier is directly trained to output the
degree of correctness. We also highlight that instead of aggregating verbalized confidences (Xiong
et al., [2024), we aggregate pairwise similarities between generations, thereby avoiding empirically
observed concerns around overconfidence when asking LL.Ms for probabilities (Hu & Levy, 2023;
Xiong et al.} 2024).

Confidence estimates can be evaluated in various ways, depending on how they will be used by the
system builder, system, or end user. We are primarily interested in approaches yielding confidences
that are well calibrated, as gauged by how closely they align with the empirical accuracy of the
predictions (Murphy & Epstein, (1967} |Dawid, [1982). We also evaluate our proposed approaches
based on whether confidence estimates are used to select from a set of generations, or to predict
whether a generation is correct or not. Classifying task correctness using similarity features is
generally shown to perform well on all chosen metrics as compared to baselines, particularly those
measuring calibration error.

Our contributions are summarized as follows:

* We propose a UQ approach that treats confidence estimation as classification; specifically, the
objective is to estimate the probability of a generation being correct for a given task and query,
using pairwise similarities with other generations from the LLM for the same query as features.

* We conduct an empirical investigation using 6 datasets — 3 each for question answering and sum-
marization tasks. We demonstrate that using similarity features for classification yields confidence
estimates with more desirable properties around calibration and predictive capability, as compared
to the closest baselines.

2 RELATED WORK

Procedures for uncertainty quantification (UQ) estimate measures like the variability or confidence
of LLM outputs. These methods are categorized as either white-box or black-box. White-box meth-
ods assume access to the LLM’s internal components, such as model weights, logits, or embeddings.
In contrast, black-box methods rely only on outputs, inferring confidence through alternative means,
such as consistency across paraphrased inputs. An orthogonal distinction is between verbalized and
non-verbalized methods. Verbalized methods prompt the LLM to express uncertainty in natural lan-
guage, such as using phrases (“I don’t know” or “most probably”) or quantitative indicators (“low”
or “50%” or “90%”).

White-Box Methods. Common approaches to estimating an LLM’s confidence include consid-
ering the minimum or average token-level probabilities (logits) or entropy (Huang et al., 2023}
Vazhentsev et al.,2023) coupled with a normalization mechanism to ensure consistency over outputs
of different lengths (Murray & Chiang|,2018]). Linguistic semantics such as token-level or sentence-
level relevance can also be incorporated into these schemes to yield more effective confidence esti-
mators (Duan et al.,[2024)). [Kuhn et al.| (2022) propose semantic entropy based clustering on multiple
samples generated from the model and then estimating confidence estimates by summing the token-
level probabilities in each cluster. |[Kadavath et al.| (2022) suggest a verbalized method where the
LLM first generates responses and then evaluates them as either True or False; the probability the
model assigns to the generated token (True or False) determines the confidence level.

Other approaches consider the LLM’s internal state such as embeddings and activation spaces. For
instance, |Ren et al.| (2023) compute embeddings for both inputs and outputs in the training data, fit
them to a Gaussian distribution, and estimate the model’s confidence by computing the distance of
the evaluated data pair from this Gaussian distribution. Some methods probe the model’s attention
layers to discriminate between correct and incorrect answers (Kadavath et al., 2022; Burns et al.,
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2023} |Li et al.l 2023 |Azaria & Mitchell, [2023). Although these methods provide insights into the
model’s linguistic understanding, they require supervised training on specially annotated data.

Black-Box Methods. One strand of research considers verbalized black-box methods, such as
using an LLM to evaluate the correctness of its own generated answers in a conversational agent
scenario (Mielke et al.| 2022). [Xiong et al|(2024) conduct an empirical study on UQ for reasoning
tasks, showing that LLMs tend to be overconfident when verbalizing their own confidence in the cor-
rectness of the generated answers and align poorly with the likelihood of factual correctness, which
may pose significant safety risks in real-world deployments of LLMs. Other related work includes
that of [Lin et al.| (2022) around fine-tuning GPT-3 to verbalize the uncertainty associated with the
generated answers. Analysis in |[Hu & Levy| (2023) reveals that LLMs’ meta-linguistic judgments
are less reliable than quantities derived directly from the model’s token-level probabilities.

Many black-box methods use similarity between multiple generations given an input question, where
common choices of metrics are natural language inference (NLI) scores (Kuhn et al.| [2022), Jac-
card index (Qurashi et al., [2020), or embedding-based similarity such as Sentence-BERT (SBERT)
(Reimers},[2019). Such similarity metrics can be used to extend clustering algorithms for uncertainty
quantification of LLMs (Kuhn et al.||[2022; |Ao et al} 2024} |Da et al.| 2024} Jiang et al.| 2024)). An-
other promising direction of work assumes that a model’s lack of confidence correlates with various
responses, often leading to hallucinatory outputs. In this case, confidence is typically estimated
by analysing the consistency among various responses of the model. Specifically, Manakul et al.
(2023) propose a simple sampling-based approach that uses consistency among generations to find
potential hallucinations. [Lin et al.| (2024) calculate the similarity matrix between generations and
then estimate the uncertainty based on the analysis of the similarity matrix, such as the sum of the
eigen-values of the graph Laplacian, the degree matrix, and the eccentricity. Recent methods have
also explored combining white-box and black-box approaches (Chen & Mueller, |2024; |[Shrivastava
et al., 2023)).

Our proposed approach falls within the non-verbalized UQ category and can be either black-box or
white-box, depending on the information that is leveraged. The key aspect is that the method relies
on assessing the consistency among generations and uses similarities between generations as the
basis for features for a classifier.

3 CONFIDENCE ESTIMATION AS CONSISTENCY-BASED CLASSIFICATION

We describe our proposed approach, beginning with some basic notation and assumptions.

3.1 NOTATION AND ASSUMPTIONS

Consider an LLM generating output y for some input query x. We assume there is an associated
ground truth output y* for input = as well as a binary reward r € {0, 1} from a reward function
r(x,y,y*). Importantly, we assume there is a way to gauge whether any particular generation (with
corresponding ground truth) is correct or not, i.e. whether the reward is 1 or 0. Y*(z) denotes the set
of responses with reward 1. For tasks such as open-ended question answering and summarization,
the reward is gauged to be 1 if a text similarity metric (e.g. RougeL) between the ground truth
and generated output exceeds a predetermined threshold; this has also been assumed by related
prior work (Kuhn et al., [2022; [Lin et al.,|2024). In this work, we assume that a sampling procedure
generates multiple samples/generations y1, - - - , y,, for input query x. We are interested in assessing
the confidence of any arbitrary generation y;, ¢ € {1,--- , m}, which we denote as ¢;.

After generating samples, our consistency-based approach relies on access to a similarity metric
with which one can compute pairwise similarities s(y;,y;) for all sample pairs, all assumed to lie
in the interval [0, 1]. As shorthand, we denote the similarities between the i'" generation and other
generations as S; = $;.1, .., Sii—1, Si,i+1s -» Si,m» Where s; . = s(y;, yx) is the similarity between
samples y; and y,. For our experiments, we consider the Jaccard coefficient as similarity metric,
but also run ablations with variations of the Rouge metric such as Rougel and RougeL. We note
that any similarity metric can be used, but in our experience, metrics that treat generations as sets of
tokens are often most suitable for consistency-based UQ.
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3.2 CLASSIFYING TASK CORRECTNESS

We posit that the similarities between an LLM’s generation and other generations, through a suitable
sampling procedure, can be used as a signal for estimating its confidence. We therefore propose
treating confidence estimation as a classification task; specifically, we train a probabilistic classifier
for whether a response is correct using similarities are features.

Suppose we are interested in estimating the confidence c; for generation y; as response to input
query z. Let us denote s/ as the set of similarity features for classifying correctness. Then, the

i
confidence for generation y; is computed as: ¢; = P(y; € Y*(z)) = f (s{ ). This method can
be generalized further by also including other non-similarity features o/, such as the generative

i 0
score from the LLM, in which case ¢; = f (sic , 0{ ). For our experiments, we learn the function
f(+) using a random forest as the probabilistic classifier, but other methods are also applicable.
Also, we compare variations of our proposed classification approach with different feature sets. For
instance, in an important proposed variation, we only use pairwise similarities with other generations

as features, in which case s/ = s; and ozf = (). Details about the specific variations are provided

i
later, when describing the experiments.

Note that classifying task correctness requires a small training set that includes ground truth re-
sponses. If we ensure that the sampling procedure during training is similar to that during test time,
one can first train a classifier using similarities as features, and then deploy the trained classifier to
predict whether a generation is correct at test time.

4 EMPIRICAL INVESTIGATION

We conduct an empirical investigation demonstrating the value of leveraging pairwise similarities
between generations as features for confidence estimation.

4.1 EXPERIMENTAL SETUP

We provide details about our experimental setup in this subsection. Note that we restrict ourselves
to using representative open-source LLMs for generation.

Datasets and Models. We study datasets involving question answering (QA) and summarization:

* QA: We consider the open-book conversational QA dataset CoQA (Reddy et al.,[2019)), the closed-
book QA dataset TriviaQA (Joshi et al.,[2017), as well as the more challenging closed-book QA
dataset called Natural Questions (Kwiatkowski et al.| 2019). We take the first 1000 questions
from the dev sets of each dataset, and generate responses using two open-source models. Granite
13B (Mishra et al., [2024) and LLaMA 2 70B (Touvron et al., 2023). QA is a widely studied task
in the recent literature on UQ.

* Summarization: For this task, we experiment with the following datasets: XSum (Narayan et al.,
2018), SamSum (Gliwa et al., [2019) and CNN Dailymail (Nallapati et al., 2016) As before, we
consider the first 1000 prompts from the validation splits of each dataset and generate summaries
using the same open-source models. Note that summarization typically results in longer form
generations than those arising from question answering.

Evaluation Metrics. We consider the following 3 evaluation metrics, each capturing a different
facet of how confidence estimates may be utilized by the system and/or user:

* As a performance metric, we propose accuracy from top selection (ATS), which measures the
accuracy (fraction of correct instances) in a test set when confidences are used to select one gen-
eration from a set of generations for a query. This represents the situation where the system is
expected to provide a single response for every query to the user, and confidences are used as
scores for selection among generations.

* As a calibration metric, we choose adaptive calibrated error (ACE), which bins confidence esti-
mates into probability ranges such that each bin contains the same number of data points (Nixon

et all 2019). Formally, ACE = 25> S0 |ace(b, k) — (b, k)|, where acc(b, k) and
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Table 1: Comparing different UQ approaches over 3 evaluation metrics on generations from 2 mod-
els on the CoQA dataset. Each approach is marked as either black-box (BB) or white-box (WB).
Error bars are from max. and min. values over 5 runs, each with a random 50% train / 50% test split.

Model Llama2 70B Granite 13B

ATS 1 ACE | AUROC 1 ATS 1 ACE | AUROC 1
Baselines
always 1 (BB) 0.11+0.01  0.440+0.003 0.50+0.00 0.66+0.01 0.176+0.007  0.50+0.00
avg. log prob (WB)  0.11+0.01  0.70740.007  0.54+0.04  0.64+0.01 0.317+0.017  0.73+0.01
spec-ecc (BB) 0.224+0.01  0.346+0.012  0.26+0.04 0.28+0.02 0.597+0.006 0.17+0.01
arith-agg (BB) 0.16+0.02  0.233+0.006  0.74+0.04 0.72+0.02 0.056+0.016 0.83+0.01
clf-gen (WB) 0.16+0.01  0.042+0.010 0.49+0.04 0.64+0.02 0.081+0.016 0.73+0.01
Proposed
clf-mean (BB) 0.26+0.03 0.043+0.011  0.74+0.01  0.72+0.02 0.045+0.016  0.82+0.02
clf-pairs (BB) 0.45+0.01  0.052+0.008 0.83+0.03 0.78+0.01 0.056+0.010 0.86-+0.01

clf-mean+gen (WB)  0.29+0.02  0.039+0.004 0.754+0.01  0.734+0.02 0.042+0.006 0.83+0.02
clf-pairs+gen (WB)  0.46+0.02 0.052+0.011  0.83+0.04 0.78+0.01 0.060+0.011  0.86+0.01

¢(b, k) are the accuracy and confidence of adaptive calibration bin b for class label k. We pre-
fer using adaptive bin sizes instead of fixed bin sizes, as the latter often results in unbalanced
datapoints across bins. We set the # of bins B = 5 for all experiments.

* As a prediction metric, we consider the area under the receiver operating characteristic
(AUROC), which computes the area under the curve of the false positive rate vs. true positive
rate when confidences are used as a probabilistic classifier for the correctness of generations.

Baselines. We consider the following baselines:

* always 1 is a naive baseline that always returns confidence of 1.

* avg. log prob computes a probability by exponentiating the average logit over generated tokens
and is often used in prior work on QA (Kuhn et al., [2022; |Lin et al., 2024; Manakul et al., [2023));
we denote the generative score for generation y; as p!.

* spec-ecc is a spectral clustering approach for UQ that leverages a graph Laplacian matrix com-
puted from pairwise similarities and uses eccentricity (Lin et al., 2024)).

* arith-agg is an approach that estimates a generation’s confidence by taking the arithmetic mean of
pairwise similarities with other generations; it is mathematically equivalent to a spectral clustering
approach that uses degree (Lin et al.,|[2024).

* clf-gen is a classification approach where the only feature is the generative score p{ (as described
above), which is the exponent of the avg. logit across generated tokens.

Proposed Methods. We consider the following variations of our proposed classification approach.
In the following, recall that s{ and 0{ refer to similarity and other features respectively:

* clf-mean is when we only use mean similarity as the sole feature, i.e. s; =§;, olf =
* clf-pairs is when all pairwise similarities are features, i.e. sf =s;, of-c = (.
* clf-mean+gen includes the generative score with mean similarity, i.e. s{ =S5, ol-f =pl.
f f_,9

* clf-pairs+gen includes the generative score with all pairwise similarities, i.e. s

All classification approaches use a random forest with a maximum depth of 4 in our experiments.

4.2 MAIN RESULTS

We investigate the effectiveness of our proposed classification approach using generations from
2 different models on 6 datasets from QA and summarization. For our sampling procedure, we
generate 5 samples each over 6 temperatures, from 0.25 to 1.5 in increments of 0.25. Evaluations
are performed only on samples from the lower 3 temperatures since the higher temperatures provide
generations with lower performance. This captures the realistic scenario where the user wishes
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Table 2: Comparing different UQ approaches over 3 evaluation metrics on generations from 2 mod-
els on the Samsum dataset. Each approach is marked as either black-box (BB) or white-box (WB).
Error bars are from max. and min. values over 5 runs, each with a random 50% train / 50% test split.

Model Llama2 70B Granite 13B

ATS 1 ACE | AUROC 1 ATS 1 ACE | AUROC 1
Baselines
always 1 (BB) 0.08+0.02 0.462+0.007 0.50+0.00 0.04+0.01 0.478+0.003  0.50+0.00
avg. log prob (WB)  0.08+0.02 0.862+0.014 0.63+0.01  0.03+0.01 0.830+0.006  0.48+0.04
spec-ecc (BB) 0.07+0.02  0.180+0.005 0.34+0.03  0.00+0.00 0.524+0.009 0.3340.02
arith-agg (BB) 0.08+0.01 0.463+0.012  0.71+0.02 0.10+0.02 0.197+0.006  0.87+0.02
clf-gen (WB) 0.08+0.01  0.032+0.006  0.58+0.02  0.04+0.01  0.018+0.005 0.60+0.04
Proposed
clf-mean (BB) 0.08+0.01  0.026+0.008  0.69+0.02  0.09+0.02 0.023+0.007  0.8640.02
clf-pairs (BB) 0.09+0.01  0.024+0.010 0.71+0.01  0.12+0.02 0.022+0.006 0.91+0.01

clf-mean+gen (WB)  0.09+0.01  0.027+0.009  0.704+0.01  0.0940.01  0.020+0.004 0.89+0.01
clf-pairs+gen (WB)  0.09+0.01  0.023+0.010 0.71+0.01  0.12+0.01  0.022+0.004  0.91+0.01

to obtain confidence estimates for only those samples they will even consider. We split the data
randomly into half for train/test sets, and repeat the experiment 5 times so as to study variability
of the results. To gauge the correctness of a generation, we use a rougel. threshold of 0.5 for
QA datasets and 0.3 for summarization datasets. Furthermore, the Jaccard coefficient is used as a
similarity metric for all methods that leverage pairwise similarity.

Tables [1| and [2| compare various baseline and proposed UQ approaches for generations from 2
models for the CoQA and SamSum datasets, respectively. All 3 evaluation metrics are considered
in these tables, where a lower ACE is preferred but higher ATS and AUROC are preferred. Error
bars are computed over 5 runs where the data is split each time into equally sized train/test sets.
Comparing the performance of each UQ method as shown in the rows, separately for each model,
we observe that the proposed classification approaches that use similarity features are generally
high performing across all metrics. The contrast with baselines is pronounced for the CoQA dataset
where the proposed approaches are notably better. The baseline that computes the arithmetic mean
of pairwise similarities (arith-agg) is a reasonably strong one, particularly for AUROC.

Table [3| compares a smaller set of UQ approaches for generations from a Llama3 modeﬂ for the
4 other datasets — Natural Questions, TriviaQA, CNN Daily, and XSum. For readability, we only
include 2 evaluation metrics — ACE and AUROC — and do not show the error bars in this table. Once
again, we note that the proposed approaches generally perform well across these datasets, and that
the arith-agg baseline is competitive on AUROC.

4.3 ABLATIONS

We conduct a few ablational studies to understand the impact of some our choices for the main
experimental study.

Similarity Metric. The Jaccard coefficient was used as our primary choice of similarity metric for
the main experiments. Figure [I] compares 3 similarity-based UQ approaches for the ACE metric,
where we consider the Rougel and RougeL similarity metrics in addition to Jaccard. The figure
shows that the trends generally remain the same regardless of choice of similarity metric — the
proposed classification approaches are comparable to each other and better performing than the
arith-agg baseline on the ACE evaluation metric. Similar trends are noted for the ATS evaluation
metric.

RougeL Correctness Threshold. The RougeL threshold is an important parameter in our exper-
iments as it determines whether a generation is correct by comparison with the ground truth. We

"We used the 11ama-3.3-70b-instruct model.
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Table 3: Comparing different UQ approaches over 2 evaluation metrics on generations from the
Llama3 model on 4 other datasets: Natural Questions (NQ), TriviaQA, CNN, and XSum. Each
approach is marked as either black-box (BB) or white-box (WB). We only show the best performing
baselines and proposed methods here. Error bars are not shown for readability.

Dataset NQ TriviaQA CNN XSum
ACE| AUROCtT ACE] AUROCT ACE| AUROCT ACE| AUROC1T

Baselines

avg. log prob (WB)  0.414 0.72 0.174 0.79 0.700 0.60 0.824 0.54
arith-agg (BB) 0.043 0.76 0.086 0.88 0.319 0.62 0.433 0.55
clf-gen (WB) 0.082 0.71 0.071 0.77 0.052 0.59 0.038 0.53
Proposed

clf-pairs (BB) 0.046 0.77 0.044 0.88 0.038 0.64 0.035 0.54

clf-mean+gen (WB)  0.050 0.75 0.038 0.87 0.049 0.61 0.035 0.53
clf-pairs+gen (WB)  0.047 0.77 0.041 0.87 0.039 0.64 0.034 0.54

W arith-agg M clf-pairs clf-pairs+gen W arith-agg M clf-pairs clf-pairs+gen
0.25 05
0.20 04
0.15 03
w w
Q Q
< 0.10 < 02
0.05 0.1
0.00 0.0
Jaccard Rouge1 Rougel Jaccard Rouge1 Rougel
(a) Similarity Metric Ablation: CoQA (b) Similarity Metric Ablation: SamSum

Figure 1: Effect of choice of similarity metric on the ACE evaluation metric for the CoQA and
SamSum datasets.

W arith-agg M clf-gen clf-pairs M arith-agg M clf-gen clf-pairs
0.3 05
04
0.2
03
w w
[} Qo
<< << 0.2
0.1
I 0.1
0.0 0.0
Thresh = 0.3 Thresh =0.5 Thresh = 0.7 Thresh = 0.2 Thresh =0.3 Thresh = 0.5
(a) RougeL Threshold Ablation: CoQA (b) RougeL Threshold Ablation: SamSum

Figure 2: Effect of choice of rougeL threshold on the ACE evaluation metric for the CoQA and
SamSum datasets.

conduct an ablation to understand the impact of the choice of this threshold. Figure[2]compares 3 UQ
approaches (including 2 baselines) for the ACE metric, where this threshold varies in {0.3,0.5,0.7}
for the CoQA dataset and in {0.2,0.3,0.5} for the SamSum dataset. We observe again that the
trends generally remain the same across threshold choices and the 2 datasets. The clf-gen baseline
is competitive with the proposed clf-pairs approach for the ACE evaluation metric.
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5 CONCLUSIONS

We propose a simple yet powerful method for estimating the confidence in an LLM’s generations.
The approach is non-verbalized, as it does not rely on asking an LL.M for its confidence about a gen-
eration, and can be categorized as consistency-based, since it relies on using consistency between
generations as a signal for confidence. Specifically, we view confidence estimation as a probabilistic
classification task, where the objective is to predict the correctness of a generation using similarities
with other generations for the same query as features. This approach is easily generalizable to in-
clude other features that may be relevant for an application. Through an empirical evaluation using
6 datasets addressing the tasks of question answering and summarization, we show that using sim-
ilarity features results in confidence estimates that perform well on various UQ evaluation metrics,
particularly adaptive calibration error.

One limitation of our proposed approach is that it requires a small training set where samples are
generated in the same manner across training and testing. In future work, we will conduct further
experiments with additional ablations to better understand the impact of similarity as well as other
features for similarity aggregation methods.
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