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ABSTRACT

Traditional fixed test datasets fall short in quantifying the open-ended potential
of foundation models. In this work, we propose ∞-benchmarks, a new testing
paradigm that combines individual evaluation datasets into a single, uniform, ever-
expanding sample pool from which custom evaluations can be flexibly generated.
∞-benchmarks allows users to dynamically select a collection of sample-level
evaluations that correspond to specific capabilities. By aggregating and reusing
samples across various test sets, it enables the assessment of diverse capabilities
beyond those covered by the original test sets, while mitigating overfitting and
dataset bias. Most importantly, it frames model evaluation as a collective process
of aggregation and selection of sample-level tests. The shift from multi-task bench-
marks to ∞-benchmarks introduces two key challenges: (1) heterogeneity and (2)
incompleteness. Heterogeneity refers to aggregating diverse metrics, including
binary, numeric, and ordinal data, while incompleteness describes comparing mod-
els evaluated on different subsets of testing data. To address these challenges, we
explore algorithms to aggregate sparse, unequal measurements into reliable model
scores. Our aggregation algorithm ensures identifiability (asymptotically recovering
ground-truth scores) and rapid convergence, enabling accurate model comparisons
with relatively little data. Our algorithm recovers ground-truth rankings with high
correlations when compared to standard aggregation on homogeneous metrics, even
with up to 95% of measurements missing. This approach reduces evaluation cost by
up to 20× with little to no change on model rankings. We introduce ∞-LLMBench
for language models and ∞-LMMBench for vision-language models, unifying
evaluations across diverse test-beds in these domains, and showcasing targeted
testing of models over a wide-range of capabilities. Overall, we present the first
large-scale ∞-benchmarks for lifelong, efficient evaluation of foundation models,
which can aggregate over open-ended heterogeneous sample-level testing to evolve
alongside the rapid development of these foundation models.

1 INTRODUCTION

Machine learning has arrived in the post-dataset era1. With the rapidly growing range of zero-shot
capabilities of foundation models, the focus of model evaluation has moved beyond singular, dataset-
specific performance measurements obtained by splitting a fixed collection of data into training and
test sets. Instead, foundation models are employed as general knowledge and reasoning engines across
the broad suite of domains for which they prove to be useful. There is consequently a pressing need
to characterize their open-ended set of capabilities across various metrics in zero-shot settings (Ge
et al., 2024). Traditional static benchmarks, however, which test generalization on fixed test splits, are
unable to probe the ever-evolving set of capabilities of foundation models. This raises an important
question: How can benchmarking adapt to measure an open-ended set of capabilities?

We propose a solution based on dynamic sample-level evaluation, which we call ∞-benchmarks,
where test sets for particular capabilities are generated ad hoc from a large pool of individual
annotated data samples. These sample-level evaluations act as atomic units of measurement that
can be combined into an exponential variety of aggregations. Due to this flexibility, the sample
pool and corresponding annotation metrics can be continuously updated to include new evaluations.
Additionally, this can reduce dataset bias—systematic quirks in the data arising from the acquisition

1From a talk by Alexei Efros at ICML 2020
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procedures used during dataset collection (Torralba & Efros, 2011; Liu & He, 2024). By combining
samples across test sets, ∞-benchmarks can better capture real-world diversity (Ni et al., 2024).

The most important feature of ∞-benchmarks is their ability to efficiently democratize evaluation.
Unlike traditional benchmarks, typically created by individual groups arbitrarily deciding on spe-
cific data collection and evaluation procedures (Dhar & Shamir, 2021), ∞-benchmarks allow the
integration of test sets from many diverse sources reflecting a wide range of perspectives, use-cases,
and objectives. This flexibility allows different interest groups with varying needs to collaboratively
define their own evaluations selecting the most appropriate combination of tests to suit their specific
requirements. Moreover, the design of ∞-benchmarks challenges the dominant approach of chasing
single benchmark scores in favour of a plurality of rankings and dynamic, multi-faceted evaluation.

Challenges in ∞-Benchmarks. To build effective ∞-benchmarks, we must address two main
challenges: (a) Heterogeneity and (b) Incompleteness. Heterogeneity refers to aggregating samples
over an ever-expanding set of metrics, which span different measurement types—including binary,
numeric, and ordinal data. This diversity makes it difficult to standardize comparisons across different
models. Incompleteness, on the other hand, arises from models being evaluated on different, unequal
subsets of testing data, rendering direct aggregation unfair. Traditional benchmarks typically use a
multi-task benchmarking setting, where each component benchmark still evaluates models over an
equal, fixed sample set across a homogeneous metric, completely sidestepping both these issues.

Solution and Theoretical Guarantees. To tackle these challenges, we apply social choice theory,
viewing samples as voters expressing preferences among models. By converting all measurements into
ordinal rankings, we leverage well-established principles to develop a sound model for aggregating
over diverse and incomplete data. We assume a random utility model, generated by the Plackett-Luce
framework, which provides guarantees on recovering ground-truth model utility scores from input
samples. This approach ensures that our model rankings are both theoretically sound and practical,
with rapid convergence guarantees enabling accurate rankings from relatively small amounts of data.

Empirical Validation. We develop two instantiations of ∞-benchmarks: ∞-LLMBench for language
models and ∞-LMMBench for multimodal models. These benchmarks unify evaluations across their
respective domains by aggregating data from diverse sources, from arena-style human preference
data (Chiang et al., 2024; Lu et al., 2024b) to heterogeneous multi-task leaderboards (Beeching et al.,
2023; Liang et al., 2023; Zhang et al., 2024b; CRFM, 2024). Our empirical results demonstrate
that the Plackett-Luce model (Plackett, 1975; Luce, 1959) is a good fit for aggregating real-world
benchmarks, showing high correlations with ground-truth rankings over homogeneous leaderboards.
Importantly, we demonstrate that this strong correlation holds even when up to 95% of the data is
missing. Conversely, this robustness allows us to reduce costs by 20× with little loss in performance.
We observe that the simple strategy of randomly selecting a subset of samples achieves comparable
performance to more sophisticated sample selection strategies. Finally, we compare Plackett-Luce
rankings with widely adopted ranking metrics like ELO Elo (1967) and Bradley-Terry (Bradley &
Terry, 1952) and outperform them on overall accuracy and robustness to missing information.

Personalized Aggregation. Consider this scenario: you are a scientist in a Biochemistry lab and
require an LLM to assist with designing experiments related to antibodies. ∞-benchmarks allow
users to input a query, “biochemistry”/“antibodies”, and receive dynamically constructed
benchmarks. This benchmark ranks models based on their performance on this specific capability.
While optimal selection of personalized capability sets is an emerging research field, we provide a
proof of concept by categorizing capabilities into tasks (e.g., reading comprehension) and concepts
(e.g., Clostridium Bacteria), and showcasing targeted capability evaluation and model rankings.

In essence, ∞-benchmarks are a democratized, open-source collection of diverse evaluation samples
and model measurements, with detailed metadata. Users can conduct semantic searches and apply
structured query filters to dynamically generate a benchmark tailored to their specific use case.
Sample-level model measurements can be instantly aggregated, producing personalized rankings.

2 AGGREGATION IN ∞-BENCHMARKS: THEORY AND PRACTICE

We view aggregating sparse ordinal preferences over models through a computational social choice
lens (Brandt et al., 2016)—samples are voters, models are candidates, and the aggregation algorithm
is the voting mechanism. Using established methods, we aggregate ordinal comparisons with partial
data to produce a global ranking and analyze properties of this resultant ranking.

2
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Figure 1: The ∞-Benchmark Framework. (left): an ∞-Benchmark comprises a set of models, a
pool of data samples spanning multiple test datasets, metadata describing models and data samples,
and a collection of heterogeneous, sample-level measurements. (right): the user formulates a query
that reflects the desired model capability through a mix of structured metadata filters and semantic
search. Selected models are then ranked on a subset of data samples that meet the specified criteria.

2.1 THEORETICAL FOUNDATIONS: WHY THIS WORKS?

We begin by postulating a ground-truth statistical model generating the data, which is converted into
ordinal comparisons (S)2. Specifically, we use a random-utility model (Thurstone, 1927), where
each model fi is associated with a utility distribution Ufi . Preferences between models fi and fj
are based on comparing sampled utilities, i.e., fi ≺ fj := u(fi) < u(fj), where uf ∼ Uf . Since
computing maximum likelihood estimates over general random-utility models is computationally
hard (Xia, 2019), we focus on the Plackett–Luce model (Plackett, 1975; Luce, 1977), the only known
exception that allows for tractable maximum likelihood estimates (MLE).

P1. Identifiability. We first ask: Are the utility distributions across models Ufi∀fi recoverable? The
Plackett-Luce model allows identifying the utility distribution (up to arbitrary additive constant) if all
models are compared via a directed path (Xia, 2019; Hunter, 2004)3. Consistency and asymptotic
normality hold under specific assumptions about the comparison graph (Han & Xu, 2023).

P2. Sample-Efficient Convergence from Sparse Data. Identifiability is asymptotic, but we also ask:
How sample-efficient are algorithms for recovering the utility distribution? With partial rankings of
size k, the MLE is surprisingly sample efficient while being minmax-optimal (Hajek et al., 2014;
Maystre & Grossglauser, 2015). Specifically, sampling k model comparisons from the model set
|F| independently and uniformly at random for |D| samples induces an expander graph with high
probability, which provides guarantees on sample-efficiency of recovery, with |D| = Ω(|F|)/k samples
being necessary, and |D| = Ω(|F| log |F|)/k samples being sufficient. Efficient algorithms like those
in Agarwal et al. (2018); Maystre & Grossglauser (2015) achieve these bounds. Rank-breaking
techniques, used in our empirical evaluation, also offer near-optimal solutions (Soufiani et al., 2014).

P3. Active Aggregation. In ∞-benchmarks, we can strategically select model comparisons, by
framing selection as an online multi-armed bandit problem. One can provide significantly more

2This contrasts with Zhang & Hardt (2024), who view aggregation as classical voting, analysing tradeoffs in
aggregating voter preferences rather than uncover an underlying ranking.

3Recall that using the reference model fbase removes the additive ambiguity.
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sample efficient convergence with PAC guarantees (Szörényi et al., 2015; Saha & Gopalan, 2019;
Ren et al., 2018), significantly outperforming random comparisons (Maystre & Grossglauser, 2017).

P4. Social Properties. The Plackett-Luce model ensures computational efficiency and recoverability
of the underlying ranking. However, to design democratic systems for decision-making, it is essential
to also have fair aggregation. However, ensuring fairness involves tradeoffs (Zhang & Hardt, 2024)
because different notions of fairness often conflict, and agents may have differing, even opposing
preferences (Garman & Kamien, 1968; Arrow, 1950; Benoıt, 2000). We, however, can state that
Plackett-Luce model is procedurally fair (List, 2022) (Section 2.2), i.e. it satisfies:

• Anonymity. All voters (samples) are treated equally, ensuring the system does not rely on a
single vote. The rankings unchanged even if the input sample set is permuted.

• Neutrality. The ranking is invariant to the identities of the models, ensuring fairness among
alternatives. This means permuting the models similarly permutes the new ranking.

• Independence from Irrelevant Alternatives (IIA). The relative ranking of two models is un-
affected by other alternatives in a given sample, as guaranteed by Luce’s axiom of choice
(Luce, 1959). This provides grounding for incomplete model evaluations.

2.2 TRANSLATING THEORY TO PRACTICE: EMPIRICAL VALIDATION

We now empirically validate our framework, aiming to show that: (i) the Plackett-Luce model fits
real-world data well, (ii) our aggregation method is sample-efficient, and (iii) it handles high levels of
incompleteness. Furthermore, we discuss practical strategies for reducing evaluation costs in Sec. 2.3.
Below, we describe our setup and address these points.

2.2.1 SETUP

Benchmarks. We conduct experiments using four popular leaderboards with established ground truth
model rankings: HELM (Liang et al., 2023) and Open-LLM Leaderboard (Beeching et al., 2023) for
LLMs, and VHELM (CRFM, 2024) and LMMs-Eval (Zhang et al., 2024b) for LMMs. We fix our
sample pool as all samples from the constituent datasets of a given leaderboard and compare rankings
obtained by our aggregation strategy. These leaderboards evaluate foundation models across varied
tasks with different metrics, serving as good indicators of real-world performance.

Methods. We evaluate three model ranking methods:

(i) Elo Score: (Elo, 1967) A competitive game rating system adapted to rank models through pairwise
comparisons, adjusting scores based on wins or losses to reflect win-rate reliability.

(ii) LMArena Ranking: (Chiang et al., 2024) A method for LLM ranking using the Bradley-Terry
model (Bradley & Terry, 1952), which estimates model rankings through Maximum Likelihood
Estimation (MLE) based on pairwise comparisons using an underlying ELO model.

(iii) Our Method: Our approach leverages the Plackett-Luce model (Maystre & Grossglauser, 2015)
to aggregate pairwise comparisons using partial rank breaking (Soufiani et al., 2014).

Metrics. We compare the rankings generated by each method to the ground-truth from the leader-
boards using Kendall’s τ , a standard correlation metric for rankings. Each method is tested thrice, and
we report the mean and variance. We additionally check that the top-k models are reliably recovered.

2.2.2 P1: IS PLACKETT-LUCE A GOOD FIT FOR REAL-WORLD DATA?

Metric HELM Open-LLM LMMs-Eval VHELM
Leaderboard

Elo Score 0.347 ± 0.132 0.213 ± 0.065 0.363 ± 0.109 0.639 ± 0.024
LMArena Ranking 0.952 ± 0.001 0.969 ± 0.000 0.473 ± 0.000 0.697 ± 0.000
Our Method 0.977 ± 0.001 0.997 ± 0.000 0.670 ± 0.000 0.827 ± 0.000

Table 1: Kendall’s τ correlations of aggregation algorithms along with ground-truth rankings.
Results show improvements over ELO and LMArena rankings, with notable correlation boosts on
∞-LMMBench leaderboards, including LMMs-Eval (41.65%) and VHELM (14.63%).

Q1. Is it a good fit? We assess whether the Plackett-Luce model performs well on large-scale bench-
mark data by comparing our aggregation algorithm’s rankings to the leaderboard rankings. As shown

4
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Figure 2: Top-10 model ranking changes across different aggregation methods. A progressive
degradation in ranking accuracy is observed from ground truth (GT) to our method (Ours), LMArena
Scores (LMArena), and Elo scores (ELO). Comparisons are shown for ∞-LLMBench (top) and
∞-LMMBench (bottom). Our method preserves the ranking of the top-10 models.

in Table 1, our algorithm achieves a high positive Kendall’s τ , indicating strong alignment with the
ground truth rankings.

Q2. Is it better than current metrics? In addition to evaluating fit, we also compare our method to
popular algorithms like Elo and LMArena. Table 1 shows that our algorithm consistently outperforms
these methods, demonstrating its superior performance for large real-world datasets.

Q3. Are the top-k models preserved? For practitioners, the critical concern is whether the top models
are ranked correctly. Figure 2 shows that our algorithm effectively preserves the top-10 model
rankings compared to ground truth, while outperforming state-of-the-art methods in maintaining
accurate top-k rankings.

Conclusion. The Plackett-Luce model fits real-world data well, outperforming other methods in
both overall Kendall’s τ and top-10 model rankings, making it empirically effective for large-scale
benchmarks. The underlying reason is that we avoid the limitations of Elo-based methods, which rely
on assumptions that do not apply to foundation models (Boubdir et al., 2023).

2.2.3 P2: SURPRISING SAMPLE EFFICIENCY AND HANDLING INCOMPLETE RANKINGS

We now empirically test the sample efficiency and robustness to incomplete data of our framework.

Q1. Is Our Algorithm Sample-Efficient? We systematically reduce the number of samples and re-
rank the models using various methods, calculating Kendall’s τ for each. Missing data is simulated
from 0% to 99%, with 10% intervals until 90%, followed by 1% increments. As shown in Fig. 3, our
method maintains stable performance even with up to 95% fewer samples, demonstrating that it can
achieve accurate rankings with far fewer data points—up to 20x less than current benchmarks.

Q2. Can our Algorithm Aggregate Highly Sparse Rankings? We evaluate the method’s ability to han-
dle highly incomplete data by removing model comparisons from the samples and re-ranking the
models. We randomly remove a fraction of model measurements from each sample and re-rank using
various aggregation methods. Again, we simulate data removal from 0% to 99%, as increments as
before. As shown in Fig. 3, our method performs well even with 95% fewer model comparisons,
proving it can recover accurate rankings with highly sparse data, crucial for ∞-benchmarks where
models are evaluated on different samples.

Conclusion. Our algorithm provides significant sample efficiency, maintaining accurate rankings
with 20x fewer data points, and is robust to highly sparse input rankings.
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Figure 3: (top) Sample-efficient convergence and (bottom) Sparsity of k. Kendall τ between ground-
truth ranking and different ranking methods as data is removed for re-ranking and as sparse rankings
are aggregated with model measurements removed. Methods typically remain robust to missing data,
with Plackett-Luce consistently achieving higher correlation, even with 95% measurements missing.

2.3 P3: ACTIVE SAMPLING IMPROVES DATA AGGREGATION EFFICIENCY

We now explore methods to enhance data aggregation beyond random sampling. We conduct
experiments to identify key insights for improving sample efficiency.

Setup. We leverage the sample-level design of ∞-Benchmarks to inspect the distribution of samples
in standard benchmarks. We investigate efficient model evaluation strategies by selecting a small
subset of the total pool—we aggregate model accuracies to identify easy and difficult data samples.

Insight 1: Many Samples Provide No Signal. The histograms in Fig. 4 show that a large portion
of samples result in identical model scores (all 0s or all 1s), resulting in ties when converted to
ordinal ranking and contributing no useful information for model comparison. Excluding these
samples could reduce dataset size by up to 50% for benchmarks like Open LLM Leaderboard and
LMMs-Eval(comprising close to 150K samples which no model can answer correctly).

Insight 2: Efficient Sampling from Central Bins. By analyzing rank correlation (Kendall’s τ ) in
Fig. 4, we found that sampling from central bins of the data histogram—where models differ
in evaluation performance—maintains a higher rank correlation than the edge bins, even with fewer
than 400 data points. This indicates that effective sampling can be achieved in ∞-benchmarks. While
prior studies suggest sampling informative instances (Vivek et al., 2024; Perlitz et al., 2024), others,
like (Prabhu et al., 2024), show random sampling can yield strong results.

Insight 3: Random Sampling Matches Informative Sampling. Comparing informative sampling
(based on the fraction of models solving a data instance) with random sampling, we found no
significant difference in sample efficiency (Fig. 4). This suggests that random sampling is an equally
effective and simpler approach for reducing benchmarking costs.

Conclusion. Benchmarking large models is resource-intensive, but we demonstrate that excluding
low-signal data and relying on random sampling can significantly reduce costs without compromising
accuracy. This strategy is effective for large-scale, sample-wise evaluations in ∞-benchmarks.

3 ∞-LLMBENCH & ∞-LMMBENCH: CREATION & CAPABILITY QUERYING

After evaluating the robustness of our aggregation method across incomplete and heterogeneous
measurements, we present the overall system applied to two large-scale, real-world ∞-benchmarks
for foundation models: LLMs and LMMs. We first outline how these benchmarks were created, then
explain how arbitrary capabilities are tested on them, and highlight key insights gained.
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Figure 4: (top) Histogram of data instances showing percentage of models that correctly solve them.
Most instances in Open-LLM-Leaderboard and LMMs-Eval are either too difficult (no models solve
them) or too easy (all models solve them). For each bin, we compute model rankings based on
instances in that bin and plot the Kendall-τ correlation with the global ranking. (bottom) Average rank
difference between actual and estimated ranks across models. The random strategy selects instances
uniformly, while the informative strategy prioritizes instances with maximum model measurement
entropy. Both strategies perform similarly, justifying our choice of using random selection strategy.

3.1 CREATION OF ∞-LLMBENCH & ∞-LMMBENCH

3.1.1 ∞-LLMBENCH

Data Pool D. For ∞-LLMBench (Tab. 3), we source data from Open LLM Leaderboard (Beech-
ing et al., 2023), HELM (Liang et al., 2023), and LMArena (Chiang et al., 2024). Open LLM
Leaderboard and HELM aggregate several individual benchmarks (e.g., MMLU (Hendrycks et al.,
2021a), HellaSwag (Zellers et al., 2019)), while LMArena uses pairwise model comparisons based on
user-generated prompts, with user votes determining the superior model. Metrics which are converted
to samplewise ordinal rankings here include F1-Scores, Exact Matches (EM), Quasi-Exact Matches
(QEM) for binary measurements, and pairwise preferences from LMArena for ordinal measurements.

Models F . For ∞-LLMBench, we use 100 most downloaded models from Open-LLM-Leaderboard
and 54 from HELM, including both proprietary models like GPT-4o (OpenAI, 2024) and open-
weight ones like LLaMA-3 (Meta, 2024). A full list of evaluated models is provided in Appx. D.

3.1.2 ∞-LMMBENCH

Data Pool D. For ∞-LMMBench (Tab. 4), data is sourced from VHELM, LMMs-Eval, and
WildVisionArena. Similar to ∞-LLMBench, VHELM and LMMs-Eval aggregate individual datasets
like MMMU (Yue et al., 2024) and VQAv2 (Goyal et al., 2017), while WildVisionArena uses pairwise
tests for LMMs through image-based chats. We convert a diverse set of metrics to samplewise
rankings, from binary metrics like EM, QEM, to real-valued scores like ROUGE (Lin, 2004),
Perception (P) and Cognition (C) scores from MME (Fu et al., 2023). We additionally combine
pairwise comparisons from WildVisionArena with LLM-As-A-Judge preferences using Prometheus-
2 (Kim et al., 2024), which correlates highly with human judgment, with preference comparisons are
sampled randomly from LMMs-Eval while avoiding overlap with cardinal measurements

Models F . For ∞-LMMBench, we use 14 models from LMMs-Eval (Zhang et al., 2024b) and
25 models from VHELM (CRFM, 2024), including open-weight models like LLaVA (Liu et al.,
2023a) and proprietary models like Gemini Pro Vision (Team et al., 2023). A complete list of
evaluated models is provided in Appx. D.
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Maths + Science:    MathVista, AI2D, ScienceQA

Sequential Reasoning:    MEMENTOS

HELM Leaderboard Both VHELM LMMs-Eval Both

Machine Translation:    WMT14

Medical:    MedQA

Open Book QA:    NarrativeQA, OpenbookQA

Search Engine Queries:    NaturalQuestions

General QA:    MMLU, TruthfulQA, ARC

Maths:    GSM8k, Math

Reasoning:    Winogrande, Hellaswag

VQA:    A-OKVQA, Multipanel VQA, OOD-CV-VQA, SketchVQA

            VQAv2, VizWiz, OKVQA, TextVQA, 

Scene Understanding:    GQA

Docs and Infographics:    ChartQA, DocVQA, IconWA, MP-DocVQA

Hate Speech:    Hateful Memes

Captioning:     Flickr30k, COCO, NoCaps, RefCOCO, TextCaps

Multi-Disciplinary:    Crossmodal-360, CMMU, MMVET

                                    LLaVa-in-the-wild, MMBench,

                                    Seedbench, MME

Legal:    Legalbench

Figure 5: Constituent datasets of ∞-LLMBench (left) and ∞-LMMBench (right) along with task
metadata. We provide details including task type, metric, and license about each dataset in Appx. C.

3.2 CAPABILITIES AND CONCEPT PROBING

Here, we present empirical results on generating arbitrary test sets and rankings. Our goal is to
enable users to make targeted queries within ∞-benchmarks, helping them identify the best LLMs
and LMMs for their specific needs. To achieve this, we extend our system with a flexible mechanism
for personalized aggregation, allowing users to (1) retrieve relevant data instances through semantic
search, and (2) dynamically generate rankings based on the retrieved samples.

Setup. The user submits a query, and we retrieve relevant data samples using semantic
search. This concept querying mechanism provides a personalized comparison of foundation
model capabilities. We use two querying mechanisms: (i) Semantic search, where we use
all-MiniLM-L6-v2 (Reimers & Gurevych, 2019) for language tasks and SigLIP-B16 (Zhai
et al., 2023) for vision-language tasks, employing cosine similarity for retrieval. We retrieve top-k
samples for a given concept with a well-tuned cut-off similarity score of 0.3 and 0.7 for ∞-LLMBench
and ∞-LMMBench respectively. (ii) Metadata search: We search metadata to match querying. With
this, we gather representative samples for the query, and aggregate the ordinal model rankings per
sample using the Plackett-Luce model to produce final model rankings, for that particular query.

Concepts Tested. We curated a diverse set of 50 concepts to test the breadth and versatility of our
∞-benchmarks, ranging from domain-specific knowledge, such as the Coriolis Effect, to broader
academic disciplines like Neuroscience, and everyday consumer goods like the Apple iPad. We
showcase 6 of them in the main paper, and present the rest in Appx. E.

3.2.1 RESULTS & INSIGHTS

We present the results from concept querying in Figure 6 and summarize our insights below:

Insight 1. Are the retrieved datasets accurate? Two expert annotators manually reviewed and filtered
out incorrect matches 4. To evaluate the quality of the retrieved samples, we report average precision
(AP) scores for a random subset of queried concepts in Fig. 6, with a full list of scores in Appx. E.
Aggregating over all tested concepts in Table 2, our mAP over the concepts is 0.84 and 0.73 for
∞-LLMBench and ∞-LMMBench respectively, demonstrating that we can reliably retrieve samples
that match the intended capabilities, although there is substantial scope for improvement in some
cases (like neuroscience in ∞-LMMBench). Note that the retrieval mechanism is expected to only
improve with better foundation models and more sophisticated querying mechanisms are integrated
in ∞-benchmarks.

Insight 2. Do models perform differently across queries? A key check is to verify whether models
perform distinctly across different capability queries. If the results are similar regardless of the query,
fine-grained querying may be less useful, as the top model from a generic leaderboard could be a

4The inter-annotator agreement, measured by Cohen’s Kappa, is shown in Table 2, with high values of 0.793
and 0.912 indicating strong consistency between annotators.
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Figure 6: Capability Probing(Qualitative): We provide six sample retrieval results for a set of
queries covering a diverse set of topics and report the top-5 models for each query.

Benchmark #Concepts Cohen-κ mAP CMC@1 CMC@10
∞-LLMBench 40 0.793 0.8462 0.95 1.0
∞-LMMBench 50 0.912 0.7337 0.94 0.96

Table 2: Capability Probing(Quantitative): We provide a summary of the number of concepts
curated for capability probing, along with the (high) inter-annotator agreement and retrieval metrics.

good candidate for any specific capability, as is common practice currently. However, we observe
in Figure 6 that very different models perform well on different domains, concepts. This enables
∞-benchmarks to scalably return good candidate models, customized for arbitrary user queries.

4 RELATED WORKS

While recent benchmarks have tested broad capabilities of foundation models, viewing benchmarking
as a science ((Hardt & Recht, 2022)) is understudied. We provide a short overview of recent efforts,
highlighting the intersectional nature of our work We include a detailed version in Appx. B.

Multi-task Benchmarks. Multi-task leaderboards, e.g., GLUE (Wang et al., 2019b), Super-
GLUE (Wang et al., 2019a), and BigBench (Srivastava et al., 2023), are standard for evaluating
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foundation models across tasks. However, concerns about dataset selection and saturation have
emerged (Ethayarajh & Jurafsky, 2020; Dehghani et al., 2021; Liu & He, 2024). Our ∞-benchmarks
address these by enabling extensive reuse of samples, avoiding task selection bias (Torralba & Efros,
2011; Dominguez-Olmedo et al., 2024), and supporting open-ended evaluations through querying for
diverse concepts across a broad range of input metrics and incomplete set of model comparisons.

On Aggregation across Benchmarks. Traditional benchmarks use arithmetic mean for task aggrega-
tion (Beeching et al., 2023) which can distort rankings (Benavoli et al., 2016; Zhang & Hardt, 2024;
Colombo et al., 2022a) and unusually depend on outliers (Agarwal et al., 2021) and missing scores
(Himmi et al., 2023). Inspired by non-parametric statistics and social choice theory, we employ
ordinal rankings and the Plackett-Luce model (Plackett, 1975) for task aggregation, which is robust
to irrelevant alternatives and outliers, providing more accurate and efficient evaluations.

Efficient Evaluation and Democratization. As benchmarks grow, so do inference costs, leading to
compressed subsets (Varshney et al., 2022; Polo et al., 2024; Vivek et al., 2024; Zhao et al., 2024;
Perlitz et al., 2024) and evolving lifelong benchmarks (Prabhu et al., 2024). Our approach, for the first
time, enables past work to handle incomplete data and ordinal rankings. Further, by allowing diverse
contributors to add samples and preferences, along with arbitrary queries, we hope ∞-benchmarks
can bemore inclusive than traditional benchmarks dominated by well-funded labs following recent
progress (Pistilli et al., 2024; Pouget et al., 2024; Nguyen et al., 2024; Luccioni & Rolnick, 2023).

5 CONCLUSIONS AND OPEN PROBLEMS

This work tackled scalable benchmarking of arbitrary capabilities of foundation models, requiring
a shift from traditional fixed training and test splits, by introducing ∞-benchmarks, a lifelong
benchmarking framework for foundation models. Our open-source, democratized benchmarking
methodology allows diverse evaluation samples and model measurements with detailed metadata.
This affords creating customized benchmarks and testing arbitrary capabilities, including using
semantic and structured searches. We provide a principled aggregation mechanism, that is both
theoretically grounded and empirically validated to be robust to incomplete data and heterogenous
measurements across evaluations. We demonstrate the utility of ∞-benchmarks in two domains:
∞-LLMBench and ∞-LMMBench, showing how dynamic probing reveals new insights into model
performance on specific tasks, domains, or concepts. This combination of theoretical rigour, empirical
results, and practical flexibility makes ∞-benchmarks a valuable tool for comprehensively evaluating
foundation models. we provide some promising directions for improvement below:

1. Testing Limits and Scaling Up ∞-Benchmarks: Currently, our prototype demonstrates the core
methodology of ∞-benchmarks, with less than 100K samples in ∞-LLMBench and under
1M in ∞-LMMBench. These pools can be greatly expanded and diversified by expanding to
incorporating all existing LLM and LMM benchmarks. Our retrieval mechanisms are designed to
scale efficiently as the test pool grows in size and diversity.

2. Exploring Aggregation Algorithms from Computational Social Choice: While we currently use
the Plackett-Luce model for aggregating diverse measurements, there exist other algorithms from
computational social choice theory with different trade-offs. A comprehensive evaluation of these
alternatives could offer new insight for aggregating model performance.

3. Structured Querying and Enhanced Retrieval: One can improve retrieval by better querying mech-
anisms using models like ColBERT (Khattab & Zaharia, 2020) and ColPALI (Faysse et al., 2024)
and optimization using DSPy (Khattab et al., 2023). A particularly interesting direction is allowing
compositional queries, where users combine multiple queries to test behaviour in foundation
models, similar to works like ConceptMix (Wu et al., 2024) and SkillMix (Yu et al., 2023).

4. On the Limits of Capability Probing: While we currently allow broad, open-ended inputs to probe
capabilities, some are easier to assess than others (Madvil et al., 2023; Li et al., 2024b). As
foundation models become more generalizable, a thorough analysis identifying which capabilities
can be easily, reliably evaluated, which are possible to evaluate but challenging, and which are in
principle “impossible to evaluate” is needed—this will help improve benchmarking effectiveness.
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A ∞-BENCHMARKS: FORMULATION

At the heart of ∞-benchmarking is the idea to homogenize performance evaluation across benchmarks
by replacing their benchmark-specific metrics with rankings. Importantly, this can be done at the level
of individual data samples. In the following, we describe the process of construction and evaluation
in detail, together with specific mathematical guarantees.

A.1 COMPONENTS

The goal of building an ∞-benchmark (B∞) from a growing set of benchmarks (Bk)
N
k=1 is to evaluate

a collection of models (M) using an ever-growing test pool of data instances (D) which may be
annotated with additional meta-data specifying the capabilities (C) tested. To cope with the diversity
of data originating from diverse benchmarks, sample-level rankings (S) are created for all data
instances in the test pool. We provide a schematic overview of ∞-benchmarks in Fig. 1 and describe
each component below:

i) Pool of Data. D=((x1, y1), . . . , (xn, yn)) denotes an ordered collection of test data instances xi

with annotation yi. An example of a data instance xk is the question ‘What was the dominant strain of
Flu Virus in 2010? Select among the four choices.’ with the reference answer ‘H1N1/09’ represented
by yk. In addition, information about capabilities can be provided as meta data for example as a list of
keywords such as ‘temporal Q&A, pandemics, history, biology, virology, multiple-choice Q&A, etc’.,
beyond the specific dataset it originates from. Typically, the data samples are obtained via pooling
from N different benchmarks (Bk)

N
k=1 and we refer to the subset of data instances obtained from

benchmark Bk as Dk ⊆ D.

ii) Models. M=(fbase, f1, . . . , fm) is a set of m models, whose capabilities are evaluated with
respect to a baseline fbase. Example of fbase is a random model. The original benchmarks (Bk)

N
k=1

will likely cover different sets of models MBk
⊆ M for their evaluations.

iii) Sample-level Rankings. For each data instance (xj , yj) ∈ D a sample level ranking sj ∈ S is
created for the subsets of models Mj = M∩MBk(j)

where k(j) denotes the index of the benchmark
from which the data instance (xj , yj) was collected. Importantly, sample-level rankings are a function
of the metrics used by the different benchmarks that discards any information about the specifics of
the metrics. This is the key of our approach to enable the aggregation across heterogeneous evaluation
paradigm and metrics. More specifically, sj ∈ S represents an ordinal ranking over the models
Mj for sample (xj , yj) represented by a permutation σj such that fσj(1) ⪰ · · · ⪰ fσj(mj) where
mj = |Mj | is the number of models compared in the j-th sample-level ranking. In addition, for each
k we distinguish the case fσ(k−1) ≻ fσ(k) if fσ(k−1) performs better than fσ(k) and fσ(k−1) ∼ fσ(k)
in case of indistinguishable performance. Thus, each sample-level ranking sj ∈ S can be uniquely
determined by a mapping σj : {1, . . . ,mj} → {1, . . . ,m} with σj(k) providing the index of
the model in M that is on the k-th place in the ordering for the j-th sample-level ranking and
πj ∈ {≻,∼}mj−1 defining the corresponding binary sequence of pairwise performance relations.

Ordinal Rankings and Information Loss. Using ordinal measurements leads to information loss,
which can hinder downstream aggregation algorithms due to the data processing inequality ((Thomas
& Joy, 2012), Section 2.8). This principle states that estimation from manipulated data cannot
outperform estimation from the original data. However, cardinal measurements often face calibration
issues, even within a single metric (Shah et al., 2014). As a result, in practice, ordinal measurements
can paradoxically outperform cardinal ones despite the inherent information loss.

iv) Capabilities. To support the selective retrieval of all relevant sample-level rankings in B based
on varying interests of evaluators in different capabilities, it is possible to endow the sample-level
rankings with additional capability c ∈ C. Of course, modeling the range of capabilities that different
evaluators are interested in is a research challenge in itself. Here, we only provide a proof of concept,
for which we define two categories of capabilities, including tasks, like multiple-choice question
answering, captioning, translation, to concepts like makeup, dogs, π, tarantula. The reason behind
the broad interpretation is for ∞-benchmarks is to test which capabilities can be reliably tested
dynamically. Note that since the capability set is open-ended, we do not append capabilities per
sample as meta-data, but rather select relevant samples at test-time.

Continual Expansion of ∞-Benchmarks. The data instance pool (D), and model names (M) are
stored as a table while sample-level testings (S) are stored as a relational database between these two

2
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tables. Construction of a lifelong heterogenous benchmark augments D, M and S with three opera-
tions: B=(D,M,S,insertD,insertM,insertS ). Operations insertD and insertM for
expanding the data pool are straightforward: add new samples and new models to the corresponding
table. The insertS operation adds a new sample-level ranking, each of which corresponds to one
sample and a ranking of models. Additional measurement metadata is saved to enable retrieval over
database rows with the same metadata, such as ‘BLEU score’, or ‘exact match’.

A.2 QUERYING CAPABILITIES FOR PERSONALIZED EVALUATION

To evaluate a given capability, ∞-benchmarks take a dynamic approach. First, we randomly select a
group of samples from a larger pool that matches the query. Then, we combine these standardized
measurements into a final score. This process consists of: (i) Subsample (retrieveD), (iii)
Aggregate (AggregateS,S ).

i) Retrieve (retrieveD). In this step, the system selects relevant data instances based on a user’s
query. The query language is flexible and allows retrieving data instances that semantically relate
to a specific topic or match certain criteria. The retrieval is implemented through a combination of
k-nearest neighbors (kNN) search on dense embeddings using the query as the input and structured
queries that take advantage of the unified data schema. We provide extensive empirical analysis to
validate the efficacy of this operation.

iii) Aggregate (AggregateS,D). We combine the measurements from the retrieved subset of data
instances using the random utility modeling approach (Xia, 2019) which defines a joint probability
distribution over all measurements assuming statistical independence:

p(s1, . . . , sn∞ |γ1, . . . , γm) =

n∞∏
j=1

p(sj = [.](σj ,πj)|γ1, . . . , γm)

The Placket-Luce model assumes the following probability model:

p
(
sj = [.](σj ,πj)

)
=

γσj(1)

mj∑
k=1

γσj(k)︸ ︷︷ ︸
fσj(1)

×
γσj(2)

mj∑
k=2

γσj(k)︸ ︷︷ ︸
fσj(2)

× · · · ×
γσj(mj−1)

γσj(mj−1) + γσj(mj)︸ ︷︷ ︸
fσj(mj)

defining one parameter γk for each model fk that determines its performance relative to all other
models. To aggregate the model performances over all sample-level rankings, we determine the
parameters

γ̂1, . . . γ̂m = argmax
(γ1,...γm)∈Rm

log p(s1, . . . , sn∞ |γ1, . . . , γm)

with maximum likelihood estimation. The global ranking is given by the permutation σ∞ for which
γ̂σ∞(1) > · · · > γ̂σ∞(m). The maximum likelihood condition uniquely determines all performance
parameters γ̂k, k = 1, . . . ,m as the likelihood function is strictly concave. The parameters of the
Plackett-Luce model is identifiable up to an arbitrary additive constant. Consistency and asymptotic
normality can also be shown under certain assumptions about the comparison Graph (Han & Xu,
2023). We refer to the estimated latent variables γ̂k, k = 1, . . . ,m as model scores or preformance
parameters with higher values indicating that a model is more likely to perform better on a randomly
picked sample-level ranking than one with lower values. To fix the arbitrary additive constant, we set
the score of the baseline model γ̂baseline = 0 to zero.
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B RELATED WORKS

Multi-task Benchmarks as Broad Capability Evaluators. Multi-task leaderboards have been the
standard for benchmarking foundation models that generalize across various situations and solve
complex tasks. Examples include GLUE (Wang et al., 2019b), decaNLP (McCann et al., 2018), Super-
GLUE (Wang et al., 2019a), BigBench (Srivastava et al., 2023), OpenLLM-Leaderboard (Beeching
et al., 2023), CLIP-Benchmark (LAION-AI, 2024), ELEVATOR (Li et al., 2022) and DataComp-
Evals (Gadre et al., 2023) as well as massive multitask benchmarks like XTREME (Siddhant et al.,
2020) and ExT5 (Aribandi et al., 2021). However, concerns have arisen regarding the limitations of
multi-task benchmarks (Bowman & Dahl, 2021). Issues include saturation and subsequent discarding
of samples (Liao et al., 2021; Beyer et al., 2021; Ott et al., 2022; Ethayarajh & Jurafsky, 2020),
susceptibility to dataset selection (Dehghani et al., 2021), obscuring progress by evaluation metrics
(Schaeffer et al., 2023; Colombo et al., 2022b), training on test tasks (Udandarao et al., 2024), and data
contamination (Elangovan et al., 2021; Magar & Schwartz, 2022; Golchin & Surdeanu, 2024; Deng
et al., 2023; Sainz et al., 2023; Golchin & Surdeanu, 2023; Sainz et al., 2024). ∞-benchmarks helps
tackle these challenges by enabling the extensive reuse of samples for broader model comparisons,
avoiding task selection bias through democratized sourcing of samples, and using ordinal rankings to
avoid evaluation minutia. Sample-level evaluations with sparse inputs also allow selective removal of
contaminated data from targeted models for fairer comparisons and make it harder to train on all test
tasks by supporting open-ended evaluations, compared to leaderboards with fixed test sets.

On Aggregation across Benchmarks. Since the current dominant form of benchmark was multi-task
benchmarks, the dominant aggregation strategy was arithmetic mean over scores across individual
benchmarks. However, mean-scores inherently assumes different scoring metrics are homogeneous,
scaled correctly and treats treating tasks of different complexity equally (Mishra & Arunkumar, 2021;
Pikuliak & Šimko, 2023). In consequence, simple normalization preprocessing changing rankings
(Colombo et al., 2022a), and the rankings nearly entirely dependent on outlier tasks (Agarwal
et al., 2021), change rankings even with simple alternate aggregations like geometric/harmonic
mean (Shavrina & Malykh, 2021) and including irrelevant alternative models can change statistical
significance or even change the ranking entirely (Benavoli et al., 2016; Zhang & Hardt, 2024). Mean-
aggregation also has significant failure modes in handling missing scores in benchmarks (Himmi
et al., 2023). The benchmarking paradigm is hence shifting towards adopting evaluation principles
from other fields, such as non-parametric statistics and social choice theory (Brandt et al., 2016;
Rofin et al., 2022). We use ordinal rankings instead of scores similar to ChatBot Arena. However,
Arena systems use Elo-based scoring systems, well-established to be a poor metric (Boubdir et al.,
2023), and our work confirms that. The pairwise variant of the Plackett-Luce model has been shown
to have advantages both theoretically and empirically (Peyrard et al., 2021), allows us to inherit some
of their theoretical properties like identifiability, sample-efficient convergence, provable robustness to
irrelevant alternatives, non-dominance of outliers and empirical robustness properties across a wide
range of real-world factors which affect ranking. In contrast, we do not aggregate over benchmarks,
our primary proposal is avoid monolithic benchmarks and consider aggregation on a samplewise-level,
needing to tackle incomplete and heterogeneous measurements.

Efficient Evaluation. As evaluation suites have grown in size, associated inference costs have also
increased. Recent research has focused on creating compressed subsets of traditional benchmarks
to address this issue (Varshney et al., 2022; Polo et al., 2024; Vivek et al., 2024; Zhao et al., 2024;
Perlitz et al., 2024). Popular extensions include subsampling benchmarks to preserve correlations
with an external source like ChatBot-Arena (Ni et al., 2024), or designing evolving sample-level
benchmarks (Prabhu et al., 2024) similar in principle to our work. However, Prabhu et al. (2024) do
not handle incomplete input matrices, which is necessary for aggregation over multiple timesteps and
requires binary 0/1 evaluation metrics as input. We precisely address these limitations by showing
efficient evaluation while accommodating for incomplete data and extending it to ordinal ranks in our
work.

Democratizing Evaluation. Most standard image classification and retrieval benchmarks are col-
lected from platforms like Flickr, which are predominantly Western-centric (Ananthram et al., 2024;
Shankar et al., 2017). This has raised the important question: “Progress for whom?”, with many
seminal works showcasing large disparities in model performance on concepts (Nguyen et al., 2024;
Hemmat et al., 2024), tasks (Hall et al., 2024; 2023b;a), and even input samples (Pouget et al.,
2024; Sureddy et al., 2024; Gustafson et al., 2024) from the Global South. In response, works
have developed benchmarks tailored to diverse cultures and demographics to include their voice
in measuring progress (Pistilli et al., 2024; Pouget et al., 2024; Nguyen et al., 2024; Luccioni &
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Rolnick, 2023). We take a different approach by creating flexible benchmarks where individuals, and
contributing labs being able to add their own samples and preferences. During capability testing,
users can select similar preferences, making ∞-benchmarks more inclusive than traditional test sets
created by well-funded labs in wealthier countries.
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C DATASETS USED IN ∞-BENCHMARKS: FURTHER DETAILS

C.1 ∞-LLMBENCH

Dataset Source Task Size Metric License

Cardinal

LegalBench (Guha et al., 2024) HELM Legal 1K QEM Unknown
MATH (Hendrycks et al., 2021b) HELM Maths 1K QEM MIT
MedQA (Jin et al., 2021) HELM Medical 1K QEM MIT
NarrativeQA (Kočiskỳ et al., 2018) HELM Openbook QA 1K F1 Apache-2.0
NaturalQuestions (Kwiatkowski et al., 2019) HELM Search Engine Queries 1K F1 CC BY-SA 3.0
OpenbookQA (Mihaylov et al., 2018) HELM Openbook QA 1K EM Apache-2.0
WMT 2014 (Bojar et al., 2014) HELM Machine translation 1K BLEU CC-BY-SA-4.0
ARC (Clark et al., 2018) Leaderboard General QA 1.1K EM CC-BY-SA-4.0
HellaSwag (Zellers et al., 2019) Leaderboard Reasoning 10K EM MIT
TruthfulQA (Lin et al., 2022) Leaderboard General QA 817 EM Apache-2.0
Winogrande (Sakaguchi et al., 2021) Leaderboard Reasoning 1.2K EM Apache-2.0
GSM8K (Cobbe et al., 2021) HELM + Leaderboard Maths 1.3K QEM MIT
MMLU (Hendrycks et al., 2021a) HELM + Leaderboard General QA 13.8K EM MIT

Ordinal

Chatbot Arena Chiang et al. (2024) Chatbot Arena Pairwise Battles 51K - CC BY 4.0

Table 3: Datasets in ∞-LLMBench: a diverse collection of benchmarks testing the abilities of
LLMs in tasks such as law, medicine, mathematics, question answering, reasoning and instruction
following as well as the performance of LLMs in pairwise battles.

C.2 ∞-LMMBENCH

Dataset Source Task Size Metric License

Cardinal

A-OKVQA (Schwenk et al., 2022) VHELM VQA 7.2K QEM Apache-2.0
Bingo (Cui et al., 2023) VHELM Bias+Hallucination 886 ROUGE Unknown
Crossmodal-3600 (Thapliyal et al., 2022) VHELM Captioning 1.5K ROUGE CC BY-SA 4.0
Hateful Memes (Kiela et al., 2020) VHELM Hate Speech 1K QEM Custom(Meta)
Mementos (Wang et al., 2024) VHELM Sequential Reasoning 945 GPT CC-BY-SA-4.0
MultipanelVQA (Fan et al., 2024) VHELM VQA 200 QEM MIT
OODCV-VQA (Tu et al., 2023) VHELM VQA 1K QEM CC-BY-NC-4.0
PAIRS (Fraser & Kiritchenko, 2024) VHELM Bias+Hallucination 508 QEM Unknown
Sketchy-VQA (Tu et al., 2023) VHELM VQA 1K QEM CC-BY-NC-4.0
AI2D (Kembhavi et al., 2016) LMMs-Eval Maths+Science 3.09K QEM Apache-2.0
IconQA (Lu et al., 2021) LMMs-Eval Docs and Infographics 43K ANLS CC BY-SA 4.0
InfoVQA (Mathew et al., 2022) LMMs-Eval Docs and Infographics 6.1K ANLS Unknown
LLaVA-in-the-Wild (Liu et al., 2023a) LMMs-Eval Multi-disciplinary 60 GPT4 Apache-2.0
ChartQA (Masry et al., 2022) LMMs-Eval Docs and Infographics 2.5K QEM GPL-3.0
CMMMU Zhang et al. (2024a) LMMs-Eval Multi-disciplinary 900 QEM CC-BY-4.0
DocVQA (Mathew et al., 2021) LMMs-Eval Docs and Infographics 10.5K ANLS Unknown
MMBench (Liu et al., 2023b) LMMs-Eval Multi-disciplinary 24K GPT Apache-2.0
MMVET (Yu et al., 2024) LMMs-Eval Multi-disciplinary 218 GPT Apache-2.0
MP-DocVQA (Tito et al., 2023) LMMs-Eval Docs and Infographics 5.2K QEM MIT
NoCaps (Agrawal et al., 2019) LMMs-Eval Captioning 4.5K ROUGE MIT
OK-VQA (Marino et al., 2019) LMMs-Eval VQA 5.1K ANLS Unknown
RefCOCO (Kazemzadeh et al., 2014; Mao et al., 2016) LMMs-Eval Captioning 38K ROUGE Apache-2.0
ScienceQA (Lu et al., 2022) LMMs-Eval Maths+Science 12.6K EM CC BY-NC-SA 4.0
TextCaps (Sidorov et al., 2020) LMMs-Eval Captioning 3.2K ROUGE CC BY 4.0
TextVQA (Singh et al., 2019) LMMs-Eval VQA 5K EM CC BY 4.0
COCO (Lin et al., 2014) VHELM+LMMs-Eval Captioning 45.5K ROUGE CC-BY-4.0
Flickr30k (Young et al., 2014) VHELM+LMMs-Eval Captioning 31K ROUGE CC-0 Public Domain
GQA(Hudson & Manning, 2019) VHELM+LMMs-Eval Scene Understanding 12.6K QEM CC-BY-4.0
MathVista (Lu et al., 2024a) VHELM+LMMs-Eval Maths+Science 1K QEM/GPT4 CC-BY-SA-4.0
MME (Fu et al., 2023) VHELM+LMMs-Eval Multi-disciplinary 2.4K QEM/C+P Unknown
MMMU (Yue et al., 2024) VHELM+LMMs-Eval Multi-disciplinary 900 QEM CC BY-SA 4.0
POPE (Li et al., 2023b) VHELM+LMMs-Eval Bias+Hallucination 9K QEM/EM MIT
SEED-Bench (Li et al., 2023a; 2024a) VHELM+LMMs-Eval Multi-disciplinary 42.5K QEM/EM Apache
VizWiz (Gurari et al., 2018) VHELM+LMMs-Eval VQA 4.3K QEM/EM CC BY 4.0
VQAv2 (Goyal et al., 2017) VHELM+LMMs-Eval VQA 214K QEM/EM CC BY 4.0

Ordinal

Vision Arena (Lu et al., 2024b) - Pairwise Battles 9K - MIT
LMMs-Eval(Prometheus2) (Kim et al., 2024) - Pairwise Battles 610K - MIT

Table 4: Datasets in ∞-LMMBench: a diverse collection of benchmarks testing the abilities of
LLMs in tasks such as general VQA, Image Captioning, hate speech detection, bias and hallucination
understanding, maths and science, documents and infographics, scene understanding and sequential
reasoning as well as the performance of LMMs in pairwise battles.
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D MODELS USED IN ∞-BENCHMARKS:FURTHER DETAILS

In this section, we provide a deeper insight into the models used in the creation of ∞-benchmarks.
It is important to note that ∞-LLMBench and ∞-LMMBench have complementary characteristics:
while ∞-LLMBench has fewer data samples Dk, they are evaluated on more models Mk, while
∞-LMMBench contains (significantly) more data samples but they are evaluated on less models.

D.1 ∞-LLMBENCH: OPEN LLM LEADERBOARD

The Open LLM Leaderboard (Beeching et al., 2023) was created to track progress of LLMs in
the open-source community by evaluating models on the same data samples and setup for more
reproducible results and a trustworthy leaderboard where all open-sourced LLMs could be ranked.

However, due to the abundance of models found on the leaderboard and the lack of adequate
documentation, and therefore reliability, of many of these models being evaluated, we rank the
models based on the number of downloads, as a metric of adoption of these models by the community.
We provide the total list of models as an artefact and list the top 100 models below:

1. 01-ai/Yi-34B-200K

2. AI-Sweden-Models/gpt-sw3-126m

3. BioMistral/BioMistral-7B

4. CohereForAI/c4ai-command-r-plus

5. CohereForAI/c4ai-command-r-v01

6. Deci/DeciLM-7B-instruct

7. EleutherAI/llemma 7b

8. EleutherAI/pythia-410m

9. Felladrin/Llama-160M-Chat-v1

10. Felladrin/Llama-68M-Chat-v1

11. FreedomIntelligence/AceGPT-7B

12. GritLM/GritLM-7B

13. Intel/neural-chat-7b-v3-1

14. JackFram/llama-160m

15. Nexusflow/NexusRaven-V2-13B

16. Nexusflow/Starling-LM-7B-beta

17. NousResearch/Hermes-2-Pro-Mistral-7B

18. NousResearch/Meta-Llama-3-8B-Instruct

19. NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO

20. NousResearch/Nous-Hermes-2-SOLAR-10.7B

21. NousResearch/Nous-Hermes-2-Yi-34B

22. OpenPipe/mistral-ft-optimized-1227

23. Qwen/Qwen1.5-0.5B

24. Qwen/Qwen1.5-0.5B-Chat

25. Qwen/Qwen1.5-1.8B

26. Qwen/Qwen1.5-1.8B-Chat

27. Qwen/Qwen1.5-110B-Chat

28. Qwen/Qwen1.5-14B

29. Qwen/Qwen1.5-14B-Chat

30. Qwen/Qwen1.5-32B-Chat

31. Qwen/Qwen1.5-4B

32. Qwen/Qwen1.5-4B-Chat

33. Qwen/Qwen1.5-72B-Chat

34. Qwen/Qwen1.5-7B

35. Qwen/Qwen1.5-7B-Chat

36. SeaLLMs/SeaLLM-7B-v2

37. TinyLlama/TinyLlama-1.1B-Chat-v1.0

38. TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T

39. VAGOsolutions/SauerkrautLM-Mixtral-8x7B-Instruct

40. abhishekchohan/mistral-7B-forest-dpo

41. ahxt/LiteLlama-460M-1T

42. ai-forever/mGPT

43. alignment-handbook/zephyr-7b-sft-full

44. augmxnt/shisa-gamma-7b-v1

45. bigcode/starcoder2-15b

46. bigcode/starcoder2-3b

47. bigcode/starcoder2-7b

48. cloudyu/Mixtral 7Bx4 MOE 24B

49. codellama/CodeLlama-70b-Instruct-hf

50. cognitivecomputations/dolphin-2.2.1-mistral-7b

51. cognitivecomputations/dolphin-2.6-mistral-7b-dpo

52. cognitivecomputations/dolphin-2.9-llama3-8b

53. daekeun-ml/phi-2-ko-v0.1

54. deepseek-ai/deepseek-coder-1.3b-instruct

55. deepseek-ai/deepseek-coder-6.7b-base

56. deepseek-ai/deepseek-coder-6.7b-instruct

57. deepseek-ai/deepseek-coder-7b-instruct-v1.5

58. deepseek-ai/deepseek-math-7b-base

59. deepseek-ai/deepseek-math-7b-instruct

60. deepseek-ai/deepseek-math-7b-rl

61. google/codegemma-7b-it

62. google/gemma-1.1-7b-it

63. google/gemma-2b

64. google/gemma-2b-it

65. google/gemma-7b

66. google/gemma-7b-it

67. google/recurrentgemma-2b-it

68. h2oai/h2o-danube2-1.8b-chat

69. hfl/chinese-alpaca-2-13b

70. ibm/merlinite-7b

71. meta-llama/Meta-Llama-3-70B

72. meta-llama/Meta-Llama-3-70B-Instruct

73. meta-llama/Meta-Llama-3-8B

74. meta-llama/Meta-Llama-3-8B-Instruct

75. meta-math/MetaMath-Mistral-7B

76. microsoft/Orca-2-7b

77. microsoft/phi-2

78. mistral-community/Mistral-7B-v0.2

79. mistral-community/Mixtral-8x22B-v0.1

80. mistralai/Mistral-7B-Instruct-v0.2

81. mistralai/Mixtral-8x22B-Instruct-v0.1

82. mistralai/Mixtral-8x7B-Instruct-v0.1

83. mistralai/Mixtral-8x7B-v0.1

84. openai-community/gpt2

85. openai-community/gpt2-large

86. openchat/openchat-3.5-0106
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87. openchat/openchat-3.5-1210

88. openchat/openchat 3.5

89. sarvamai/OpenHathi-7B-Hi-v0.1-Base

90. speakleash/Bielik-7B-Instruct-v0.1

91. speakleash/Bielik-7B-v0.1

92. stabilityai/stablelm-2-1 6b

93. stabilityai/stablelm-2-zephyr-1 6b

94. stabilityai/stablelm-zephyr-3b

95. teknium/OpenHermes-2.5-Mistral-7B

96. tokyotech-llm/Swallow-70b-instruct-hf

97. upstage/SOLAR-10.7B-Instruct-v1.0

98. upstage/SOLAR-10.7B-v1.0

99. wenbopan/Faro-Yi-9B

100. yanolja/EEVE-Korean-Instruct-10.8B-v1.0

D.2 ∞-LLMBENCH: HELM

Similar to the Open LLM Leaderboard, the goal of HELM was to provide a uniform evaluation of
language models over a vast set of data samples (termed as scenarios in Liang et al. (2023)).
HELM, however, has a broader scope of models used for evaluation, employing open, limited-access,
and closed models. All models currently used in ∞-LLMBench is listed below:

1. 01-ai yi-34b

2. 01-ai yi-6b

3. 01-ai yi-large-preview

4. ai21 j2-grande

5. ai21 j2-jumbo

6. ai21 jamba-1.5-large

7. ai21 jamba-1.5-mini

8. ai21 jamba-instruct

9. AlephAlpha luminous-base

10. AlephAlpha luminous-extended

11. AlephAlpha luminous-supreme

12. allenai olmo-7b

13. anthropic claude-2.0

14. anthropic claude-2.1

15. anthropic claude-3-5-sonnet-20240620

16. anthropic claude-3-haiku-20240307

17. anthropic claude-3-opus-20240229

18. anthropic claude-3-sonnet-20240229

19. anthropic claude-instant-1.2

20. anthropic claude-instant-v1

21. anthropic claude-v1.3

22. cohere command

23. cohere command-light

24. cohere command-r

25. cohere command-r-plus

26. databricks dbrx-instruct

27. deepseek-ai deepseek-llm-67b-chat

28. google gemini-1.0-pro-001

29. google gemini-1.0-pro-002

30. google gemini-1.5-flash-001

31. google gemini-1.5-pro-001

32. google gemini-1.5-pro-preview-0409

33. google gemma-2-9b-it

34. google gemma-2-27b-it

35. google gemma-7b

36. google text-bison@001

37. google text-unicorn@001

38. meta llama-2-7b

39. meta llama-2-13b

40. meta llama-2-70b

41. meta llama-3-8b

42. meta llama-3-70b

43. meta llama-3.1-8b-instruct-turbo

44. meta llama-3.1-70b-instruct-turbo

45. meta llama-3.1-405b-instruct-turbo

46. meta llama-65b

47. microsoft phi-2

48. microsoft phi-3-medium-4k-instruct

49. mistralai mistral-7b-instruct-v0.3

50. mistralai mistral-7b-v0.1

51. mistralai mistral-large-2402

52. mistralai mistral-large-2407

53. mistralai mistral-medium-2312

54. mistralai mistral-small-2402

55. mistralai mixtral-8x7b-32kseqlen

56. mistralai mixtral-8x22b

57. mistralai open-mistral-nemo-2407

58. nvidia nemotron-4-340b-instruct

59. openai gpt-3.5-turbo-0613

60. openai gpt-4-0613

61. openai gpt-4-1106-preview

62. openai gpt-4-turbo-2024-04-09

63. openai gpt-4o-2024-05-13

64. openai gpt-4o-mini-2024-07-18

65. openai text-davinci-002

66. openai text-davinci-003

67. qwen qwen1.5-7b

68. qwen qwen1.5-14b

69. qwen qwen1.5-32b

70. qwen qwen1.5-72b

71. qwen qwen1.5-110b-chat

72. qwen qwen2-72b-instruct

73. snowflake snowflake-arctic-instruct

74. tiiuae falcon-7b

75. tiiuae falcon-40b

76. writer palmyra-x-004

77. writer palmyra-x-v2

78. writer palmyra-x-v3
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D.3 ∞-LMMBENCH: LMMS-EVAL

LMMs-Eval is the first comprehensive large-scale evaluation benchmark for Large Multimodal
models, meant “to promote transparent and reproducible evaluations” (Zhang et al., 2024b). The
models supported by LMMs-Eval are primarily open-sourced and the full list of currently used
models are listed below:

1. idefics2-8b

2. internlm-xcomposer2-4khd-7b

3. instructblip-vicuna-7b

4. instructblip-vicuna-13b

5. internVL-Chat-V1-5

6. llava-13b

7. llava-1.6-13b

8. llava-1.6-34b

9. llava-1.6-mistral-7b

10. llava-1.6-vicuna-13b

11. llava-1.6-vicuna-7b

12. llava-7b

13. llava-next-72b

14. qwen vl chat

D.4 ∞-LMMBENCH: VHELM

Finally, ∞-LMMBench comprises VHELM, an extension of HELM for Vision-Language models.
The models currently used by us, spanning open, limited-access, and closed models, are as follows:

1. anthropic claude 3 haiku 20240307

2. anthropic claude 3 opus 20240229

3. anthropic claude 3 sonnet 20240229

4. google gemini 1.0 pro vision 001

5. google gemini 1.5 pro preview 0409

6. google gemini pro vision

7. google paligemma 3b mix 448

8. huggingfacem4 idefics2 8b

9. huggingfacem4 idefics 80b

10. huggingfacem4 idefics 80b instruct

11. huggingfacem4 idefics 9b

12. huggingfacem4 idefics 9b instruct

13. llava 1.6 mistral 7b

14. llava 1.6 vicuna 13b

15. llava 1.6 vicuna 7b

16. microsoft llava 1.5 13b hf

17. microsoft llava 1.5 7b hf

18. mistralai bakllava v1 hf

19. openai gpt 4 1106 vision preview

20. openai gpt 4 vision preview

21. openai gpt 4o 2024 05 13

22. openflamingo openflamingo 9b vitl mpt7b

23. qwen qwen vl

24. qwen qwen vl chat

25. writer palmyra vision 003
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E CAPABILITY TESTING ACROSS ARBITRARY QUERIES

E.1 QUERIES: LIST AND QUANTITATIVE RESULTS

Concept ∞-LLMBench AP ∞-LMMBench AP
Common Queries

apple ipad 0.7435 0.1985
architecture 0.7683 0.8981
beach 0.7152 0.5698
biochemistry 0.9778 0.7303
boat 0.7728 0.8829
botany 0.9876 0.7556
bus 0.9035 0.9739
car 0.9140 0.8477
cell(biology) 0.9937 0.5075
china tourism 0.6392 1.0000
cigarette ads 0.7249 0.6590
coffee maker 0.8426 0.4057
components of a bridge 0.9222 0.5865
decomposition of benzene(organic chemistry) 0.6745 0.7623
epidemiology 0.9316 0.7991
feminist theory 0.8566 0.5138
kirchoffs law(electrical engineering) 0.6572 0.4824
food chain 0.5405 1.0000
game of football 0.8221 1.0000
german shepherd (dog) 0.9359 0.3078
gothic style (architecture) 0.7829 1.0000
literary classics 0.9869 1.0000
macroeconomics 1.0000 0.9570
makeup 1.0000 0.2247
microwave oven 0.7979 1.0000
neuroscience components 0.9844 0.2854
pasta 0.5678 0.2142
perfume 0.5996 0.6355
photosynthesis 0.9848 0.3665
plants 1.0000 0.6488
political diplomacy 0.9529 0.9561
python code 0.8850 0.9444
renaissance painting 0.9270 0.9799
shareholder report 1.0000 0.8317
sheet music 0.8322 0.9750
solar cell battery 0.8853 0.8082
thermodynamics 0.9567 0.8852
united states of america 0.8096 0.8642
vaccines 0.8572 0.3411
volanic eruption 0.7905 0.9229

Queries testing Visual Capabilities
bike leaning against wall - 0.8271
child playing baseball - 0.9638
coriolis effect - 0.7063
dijkstras shortest path algorithm - 0.9135
empty bridge overlooking the sea - 0.5934
judo wrestling - 0.6092
man in a suit - 0.5611
musical concert - 0.9879
sine wave - 0.4232
woman holding an umbrella - 0.8821

Table 5: Aggregate Average Precision(AP) for ∞-LLMBench and ∞-LMMBench concepts.
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E.2 QUALITATIVE RESULTS

1. gpt4o
2. idefics-80b
3. gemini-pro-vision                      
4. gpt4-vision                     
5. gemini-1.5

1.internlm-xcomposer
2. palmyra-vision
3. gemini-1.5-pro                     
4. claude3_haiku                      
5. gemini-pro-vision

1. idefics2-8b
2. llava-next-72b
3. llava_1.6_13b                     
4. qwen_vl_chat                       
5. instructblip-vicuna

1. llava_7b
2. Internvl-1.5
3. llava_1.6_34b                      
4. claude3_sonnet                       
5. llava_1.6-vicuna-13b

1. palmyra-x-4
2. palmyra-x-3
3. jamba1.5-large                      
4. llama3.1-405b                     
5. mistral-large

1. llama3.1-405b
2. openai_davinci
3. gpt4                     
4. jamba-1.5-large                       
5. palmyra-x-v3

1. llama3.1-405b
2. llama3.1-70b
3. jamba1.5-mini                      
4. gpt4                  
5. palmyra-x-v3

1. gpt4
2. mixtral-8x7b
3. gemini1.5-pro                      
4. jamba1.5-mini                     
5. yi-34b

Which shape is commonly used to 
build a truss bridge…

A designer built a suspension
bridge….. 

Computer to build a bridge

The shoddy bridge held secure 
Even when cars were using… 

…bridge in Saving Private Ryan

openbookqa_99

ai2_arc_42

hellaswag_54

openbookqa_9 

narrativeqa_623

What would you likely find
Inside a beach ball?

What is the phenomenon when
Waves drop seashell on the  …

[header] how to be a beach …

A woman with a pale complexion
Wants to go to the beach…

What sea is the does the island …

mmlu_68

truthfulqa_4 

mmlu_93 

openbookqa_599

mmlu_1989

   beach

  AP: 59.6
seedbench_3496

seedbench_1694

nocaps_442

vqav2_1095

refcoco_282

-LLMBench -LMMBench

  AP: 71.5

  AP: 63.4

  AP: 92.7

mmlu_1376 

mmlu_94 

winogrande_1030 

mmlu_855

winogrande_629

  AP: 92.2

ai2_arc_802 

ai2_arc_6 

ai2_arc_718 

winogrande_92

naturalq_10

China
 tourism

renaissance
painting

Bridge

  AP: 1.0

  AP: 97.9

  AP: 58.5

mme_112
mme_264

mme_86

mme_1396
mme_377

cmmmu_628
cmmmu_1665

viz_wiz_2

mmbench_6
mmbench_15

iconqa_200
iconqa_566

ai2d_2024

China spends a lot on international 
tourism…

Which is the first US president to
Visit China?...

..cities and towns of canton,...

Jane loves travelling internationally
And now she is going to arrive in… 

The Holiday Inn for hotel services....

Da Vinci's Mona Lisa is_____. 
representational abstract obscure..

..art collector attended a party 
on March 15. …

the paint would melt in the sun…

wall mural has four different 
colors of paint in it: red, white,...  

…fit the shape into the paintings…

mmmu_15
mmmu_3

1. gemini1.5_pro
2. gpt4
3. gpt4o                      
4. claude3_opus                     
5. palmyra_vision-3

1. bison@001
2. gpt4-turbo
3. gpt4                     
4. llama3.1-405b                     
5. mixtral-8x7b

Which of the following is 
A valid food chain:…

How many stages within the food
Chain can food availability..

An organism that makes food…

What is the role of a decomposer in
A food web?

Which is a valid food web:...?

  AP: 54.1

ai2_arc_2 

ai2_arc_61 

openbookqa_18 

ai2_arc_99

openbookqa_8

Food chain

  AP: 1.0
ai2d_7776

cmmmu_666
ai2d1789

ai2d_2045
ai2d_234

   beach

China 
tourism

renaissance
painting

Bridge

Food chain

Query→Data Pool
(Semantic Retrieval)

Plackett-Luce
Rank Aggregation

Figure 7: Additional qualitative analysis for ∞-benchmark’s capability probing for selected queries.
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