
FARFusion V2: A Geometry-based Radar-Camera Fusion Method
on the Ground for Roadside Far-Range 3D Object Detection

Yao Li
zkdly@mail.ustc.edu.cn

University of Science and Technology
of China

Hefei, China

Jiajun Deng
jiajun.deng@sydney.edu.au
The University of Sydney

Sydney, Australia

Yuxuan Xiao
xiaoyx@mail.ustc.edu.cn

University of Science and Technology
of China

Hefei, China

Yingjie Wang
yingjiewang@mail.ustc.edu.cn

University of Science and Technology
of China

Hefei, China

Xiaomeng Chu
cxmeng@mail.ustc.edu.cn

University of Science and Technology
of China

Hefei, China

Jianmin Ji
jianmin@ustc.edu.cn

University of Science and Technology
of China

Hefei, China

Yanyong Zhang∗
yanyongz@ustc.edu.cn

University of Science and Technology
of China

Hefei, China

Abstract
Fusing the data ofmillimeter-wave Radar sensors and high-definition
cameras has emerged as a viable approach to achieving precise 3D
object detection for roadside traffic surveillance. For roadside per-
ception systems, earlier studies have pointed out that it is better to
perform the fusion on the 2D image plane than on the BEV plane
(which is popular for on-car perception systems), especially when
the perception range is large (e.g., > 150𝑚). Image-plane fusion
requires critical transformations, like perspective projection from
the Radar’s BEV to the camera’s 2D plane and reverse IPM. How-
ever, real-world issues like uneven terrain and sensor movement
degrade these transformations’ precision, impacting fusion effec-
tiveness. To alleviate these issues, we propose a geometry-based
Radar-camera fusion method on the ground, namely FARFusion
V2. Specifically, we extend the ground-plane assumption in FAR-
Fusion [20] to support arbitrary shapes by formulating the ground
height as an implicit representation based on geometric transfor-
mations. By incorporating the ground information, we can enhance
Radar data with target height measurements. Consequently, we can
thus project the enhanced Radar data onto the 2D plane to obtain
more accurate depth information, thereby assisting the IPM process.
A real-time parameterized transformation parameters estimation
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module is further introduced to refine the view transformation pro-
cesses. Moreover, considering various measurement noises across
these two sensors, we introduce an uncertainty-based depth fusion
strategy into the 2D fusion process to maximize the probability of
obtaining the optimal depth value. Extensive experiments are con-
ducted on our collected roadside OWL benchmark, demonstrating
the excellent localization capacity of FARFusion V2 in far-range
scenarios. Our method achieves an average location accuracy of
0.771m when we extend the detection range up to 500m.
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1 Introduction
Far-range 3D object detection and tracking are crucial for roadside
perception in intelligent transportation systems, as highlighted
in recent studies [4, 7, 33]. These technologies can significantly
enhance roadside-assisted autonomous driving and provide early
warnings of potential traffic incidents [2, 13, 29, 41, 46]. To ensure
precise vehicle location at large distances, deploying bothmillimeter
wave radar (referred to as Radar in this paper) and high-definition
(HD) cameras for joint perception has become an emerging solu-
tion in roadside scenes [8]. Feature-level Radar and camera fusion
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Figure 1: (a) With the 3D ground, we can project the 3D point
𝑃3𝐷
𝑟𝑒𝑎𝑙

to the 𝑃2𝐷
𝑟𝑒𝑎𝑙

and also can inversely map the 2D point
𝑃2𝐷
𝑟𝑒𝑎𝑙

to the 𝑃3𝐷
𝑟𝑒𝑎𝑙

via IPM. Differently, with the flat ground
plane assumption,we can only project the 𝑃3𝐷

𝑏𝑒𝑣
to the deviated

position 𝑃2𝐷
𝑑𝑒𝑣

on the 2D plane and inversely map the 𝑃2𝐷
𝑟𝑒𝑎𝑙

to
the deviated position 𝑃3𝐷

𝑖𝑝𝑚
in the 3D space via IPM. (b) If the

camera has an unexpected movement with a pitch angle 𝜃 ,
there will be a larger deviation 𝑑

′
at far ranges.

approaches [17, 34, 35, 43, 44] have achieved high performance.
However, they usually require extensive annotated data [32] that
is hard to obtain in far-range scenes. Therefore, target-level fusion
methods are primarily used in practical systems.

Fusion on the image plane first is more reliable for target-level
fusion as illustrated in FARFusion [20], especially for far-range
roadside scenes (e.g., > 150m). Specifically, lifting 2D targets into 3D
space directly suffers from larger location errors, causing incorrect
association with Radar targets on the BEV plane. Thus, FARFusion
first projects Radar targets to the 2D plane to associate with 2D
targets, then maps 2D targets to the BEV plane using inverse per-
spective mapping (IPM) with Radar depth information. FARFusion
also performs the fusion on the ground. This fusion strategy re-
quires critical view transformations between Radar targets in 3D
space and camera targets on the 2D plane. However, mapping from
2D to 3D space is an ill-posed problem [5, 21, 26] since a point on
the image plane corresponds to all collinear 3D points on the ray
from the optical center. Inspired by Monoground [26], FARFusion
represents vehicles as Radar points or camera 2D points on the
ground. On the BEV plane, the Radar coordinate system is parallel
to the ground plane because it is aligned to the UTM coordinate
system in initial calibration [20]. On the 2D image plane, FARFu-
sion models each object as a point at the contact area between the
vehicle bottom and the ground, creating a one-to-one correspon-
dence for the 2D-3D mapping. These strategies enable FARFusion
to achieve accurate localization in far-range scenarios.

However, during the fusion process, FARFusion assumes that the
road is a flat plane, which may not hold in real far-range scenarios.
The uneven road in the real world will affect the precision of view
transformations of both perspective projection and IPM processes
shown in Fig. 1(a). Specifically, the commonly used Radar sensors
lack height measurement, so we usually assign a fixed height to
Radar data when projecting Radar points from the BEV plane to

the 2D image plane. This will result in inaccurate projection depth
values and positions on uneven roads. Meanwhile, IPM also relies
on the planar assumption [40, 42], which causes deviation between
IPM points and actual positions on uneven roads. Additionally,
FARFusion also assumes the roadside sensors are fixed in a time
interval. Unfortunately, real-time unexpected sensor motions still
exist due to the windy weather, causing inaccurate transformation
between 2D and 3D spaces especially at larger distances shown in
Fig. 1(b). Here we only show the motion in the pitch angle, as this
direction has the most significant impact on depth estimation.

In this work, we propose FARFusion V2 to mitigate the above
issues for practical far-range roadside perception. Our framework
has two key designs – implicit ground height learning and real-
time transformation parameters estimation. Firstly, considering the
ground may have arbitrary shapes, we represent ground height as a
learnable function. We also assume there is a virtual ground plane.
Then we utilize a customized loss function to train the function on
both 2D and BEV planes. Specifically, we integrate prior geomet-
ric relations [10, 20] between real and virtual ground planes into
the training process. With the ground function, we can query the
ground height at any location, which allows us to attach height
information to the Radar data. Consequently, we can thus project
the enhanced Radar points onto the 2D plane to obtain more accu-
rate depth information, thereby assisting the IPM process. Secondly,
roadside camera images contain rich background information, in-
cluding the camera’s relative pose to the ground [18, 23]. Therefore,
we directly regress the transformation parameters in real time to
refine the view transformations. To facilitate the learning of trans-
formation parameters, we enable the network to regress the residu-
als of the parameterized homography matrix between 2D and BEV
planes. These key designs in FARFusion V2 can boost the image-
plane fusion pipeline proposed by FARFusion for far-range scenes.
Moreover, considering various observation noises across these two
sensors, we introduce an uncertainty-based depth fusion strategy
into the image-plane fusion. This strategy aims to maximize the
probability of obtaining the optimal depth value. Meanwhile, due
to the absence of direct labels for uncertainty, we utilize a surrogate
loss function to train the network for uncertainty estimation.

In summary, we make the following contributions:

• We propose a geometry-based Radar-camera fusion method
for far-range object detection on the ground, namely FAR-
Fusion V2. Our approach achieves excellent localization by
integrating the ground information and a real-time transfor-
mation parameters estimation module in target-level fusion.

• We also introduce an uncertainty-based depth fusion strat-
egy into the fusion process to maximize the probability of
obtaining the optimal depth value.

• Extensive experiments are conducted on our roadside OWL
testbed on an urban expressway. Results show that our
method can improve APBEV by absolutely 5.4%. Significantly,
the approach can achieve 0.771𝑚 average location accuracy
when the detection range is extended up to 500𝑚.

2 Related Work
Radar and camera have been widely deployed in autonomous driv-
ing (AD) and roadside scenes thanks to their low costs [19].
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Radar and camera fusion for autonomous driving. Feature-
level [22] and target-level fusion methods are the primary methods
for integrating Radar and camera data in autonomous driving. We
first introduce the feature-level methods, CenterFusion [24] first
predicts 2D candidate positions of the targets and then utilizes the
roi-based fusion strategy to associate them with Radar pillar fea-
tures in 3D space via inverse perspective transformation. Finally, it
refines the associated features using a refinement module. Cram-
net [14] also applies such an association strategy to map the fore-
ground pixels to 3D for point-wise fusion with foreground Radar
points. Different from the roi-based fusion strategy, BEV-based fu-
sion methods [43, 45] first lift the 2D image features to BEV features
in 3D space and then fuse them with the Radar BEV features. In the
target-level fusion methods [28, 31], the fusion is performed on the
target-level sensor outputs. Most methods [3, 6, 9, 16, 25] are based
on Bayesian theory, Kalman Filtering, Dempster-Shafer theory, etc.
Target-level fusion has been widely employed in practical scenarios
thanks to the low computing cost.
Radar and camera fusion for roadside perception. Nowadays,
more research is dedicated to roadside dataset building [11, 37–39],
sensor calibration [8, 27] and object location [1]. However, there has
been relatively little work on combining roadside radar and camera
data. [1] utilizes a BEV-based method to fuse Radar and camera
targets, it first maps the 2D points to BEV and associates two targets
on the BEV plane, then uses a Gaussian mixture probability hypoth-
esis density (GM-PHD) filter to integrate these two modalities. [8]
also utilizes the BEV-based method to achieve spatiotemporal syn-
chronization between Radar and camera coordinate systems. It first
maps the 2D points to BEV and then employs thematched trajectory
points to optimize the calibration parameter. [30] fuses roadside
Radar and camera targets using the Kalman filter in the tracking
stage. These studies primarily focus on near-range perception (less
than 250 meters). Differently, FARFusion [20] proposes a far-range
Radar and camera fusion method for 3D object detection, which
first associates Radar-camera targets on the 2D plane and refines
the transformation parameter on both 2D and BEV planes.

In summary, most Radar and camera fusion methods for AD
primarily use feature-level fusion strategies. Roadside Radar and
camera fusion methods mainly utilize the target-level fusion strat-
egy due to the lack of accessible open datasets in near range (<250m).
By contrast, our FARFusion V2 focuses on roadside far-range (150−
500𝑚) perception, taking into account the key impacts of rough
ground and sensor movements on the high-accuracy location.

3 The FARFusion V2 Design
3.1 Preliminary and Overview
FARFusion V2 aims to enhance the precision of fusing Radar and
camera targets in far-range roadside scenes. We first introduce the
basic fusion pipeline designed for far-range scenarios in FARFu-
sion [20]. FARFusion first projects the Radar-based target points
(on the BEV plane) to the 2D image plane and then associates them
with the camera-based object locations that are modeled as a CBM1

point on each object. Subsequently, it maps the camera-based object
locations to the BEV plane through IPM with the corresponding

1CBM represents the bottommidpoint of the 2D bounding box detected by a pre-trained
2D detector, which is a good proxy of the car’s location.
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Figure 2: The coordinate systems of the OWL testbed.

Radar depth information. Finally, it engages a BEV tracking mod-
ule to combine the outputs of the above 2D fusion module and
generate target trajectories for traffic monitoring. Meanwhile, the
fusion pipeline requires accurate transformations between Radar
and pixel coordinate systems (CS). We follow FARFusion to rep-
resent the transformation parameters using a plane homography
matrix M between Radar BEV and image planes. The coordinate
systems are depicted in Fig. 2 on the OWL testbed deployed on an
urban expressway with a detection area of 𝑌 = 150 − 500𝑚 range.

In the FARFusion, the BEV plane (Radar CS) corresponds to the
ground surface, which assumes the ground is a plane without relief.
This assumption may be inconsistent with actual circumstances,
especially in far-range scenes, which has adverse effects on the
projection process of Radar points and IPM process of camera
CBM points. Therefore, we have revised this assumption to allow
the ground to have arbitrary shapes in FARFusion V2. Moreover,
FARFusion assumes that the camera is mounted in a pole without
movements in a time window. However, we have observed the
camera has little shake due to the windy weather, which influences
the accuracy of the pre-calibrated M. Considering roadside camera
images include the inherent pose information relative to the ground,
we refine theM from each image in real time in FARFusion V2.

Specifically, in our FARFusion V2, given a pre-calibratedM and a
set 𝑋 = {𝑥𝑖

𝑏𝑒𝑣
, 𝑥𝑖2𝐷 |𝑖 = 1...𝑁 } of 𝑁 pair detection points of vehicles

for every frame, with BEV object coordinates 𝑥𝑖
𝑏𝑒𝑣

∈ R2 in Radar CS
and 2D pixel coordinates 𝑥𝑖2𝐷 ∈ R2, our goal is to estimate ground
height and refine M in real time, then enhance the target-level
Radar and camera fusion for far-range scenes. Here, considering
it’s usually hard to obtain the 3D ground truth of targets in the
whole range of 𝑌 = 150 − 550𝑚 in the Radar CS, we take fusion
points (𝑋𝑓 , 𝑌𝑓 ) as 𝑥𝑖𝑏𝑒𝑣 and 2D CBM points (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚) as 𝑥𝑖2𝐷 .
The fusion pipeline in FARFusion provides these two types of points
and their matching relations. Note that our FARFusion V2 attempts
to construct data-driven surrogate training pipelines using prior
geometric transformations and the outputs of FARFusion, instead of
taking the outputs as the direct supervision. To this end, with the 𝑋
andM, our FARFusion V2 proposes three key designs: (1) A ground
height network that uses a geometry-based training pipeline. (2) A
real-time parameterized homography matrix estimation module. (3)
An uncertainty-based target-level Radar and camera fusion module.
The framework is depicted in Fig. 3. Below we will introduce every
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Figure 3: The overview of our FARFusion V2. FARFusion V2 mainly contains three modules: (a) The camera data processing
module, which employs a 2D detector to detect 2D CBM (camera-object bottom midpoints of the 2D bounding box) points
and a 2D image backbone to estimate the parameterized transformation parameter M

′
. (b) The Radar data processing module

integrates the height information into Radar points with a ground height network and then projects Radar points to the 2D
plane. (c) The uncertainty-based target-level fusion module. This module associates Radar points with 2D CBM points on the
2D plane. Then it maps dual Radar-CBM points to 3D space with weighted depths calculated by the uncertainty-based networks.
The whole framework is trained using the geometry-based loss function 𝐿𝑔𝑒𝑜 and the uncertainty-based loss function 𝐿𝜎 .
module in more depth. To make it easily readable, we first give the
homography transformation between Radar CS and pixel CS as:
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3.2 Geometry-based Ground Height Learning
We represent the ground height implicitly and construct a geometry-
based training pipeline for ground height learning. We first assume
there is a virtual ground plane shown in Fig. 2, and then we utilize
the differences between predicted positions based on the hypothesis
and real positions to train the ground height network. Meanwhile,
M denotes the transformation between 2D and virtual BEV planes.
During the initial calibration [20], the ground is assumed as a plane
with a fixed ground height value to calibrate theM.

Specifically, considering the requirements of practical deploy-
ment with arbitrary ground shapes, we first represent the ground
height as follows:

𝑍𝑔 = 𝑓 (𝑋,𝑌 ), (2)

where in our case the height function is implicitly parameterized
as a Multi-Layer Perceptron (MLP).

Then given the pair fusion points (𝑋𝑓 , 𝑌𝑓 ) and 2D CBM points
(𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚), we construct the loss function on both 2D and BEV
virtual planes depicted in Fig. 3.P2. Firstly, we start from the 2DCBM
points (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚). Based on the virtual ground-plane assumption,

we map the 2D CBM points to the BEV plane via the IPM process:

𝑋
′
𝑐 = H1 · 𝑍𝑐 (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚, 1), (3)

𝑌
′
𝑐 = H2 · 𝑍𝑐 (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚, 1), (4)

where H is the inverse of M, H𝑖 denotes the i-th row of H, and
𝑍𝑐 = 1/(H3 · (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚, 1)). Then with the Equ. 2, we can obtain
the height𝑍𝑔 at the real position (𝑋𝑐 , 𝑌𝑐 ) from𝑍𝑔 = 𝑓 (𝑋 ′

𝑐 , 𝑌
′
𝑐 ). Here

the mapping relation between 𝑍𝑔 and (𝑋 ′
𝑐 , 𝑌

′
𝑐 ) is one-to-one as the

intersection points of the single ray from camera optical center
(with a height ℎ𝑐 ) with the real ground and the virtual plane should
be unique in the roadside scene. These points lie on a single ray
shown in Fig. 2. Inspired by the Gen-LaneNet[10], we transfer the
(𝑋 ′

𝑐 , 𝑌
′
𝑐 ) on the virtual plane to the real position (𝑋𝑐 , 𝑌𝑐 ) as follows:

𝑋𝑐 = (1 −
𝑍𝑔

ℎ𝑐
)𝑋

′
𝑐 −

𝑍𝑔

ℎ𝑐
Δ𝑋, (5)

𝑌𝑐 = (1 −
𝑍𝑔

ℎ𝑐
)𝑌

′
𝑐 −

𝑍𝑔

ℎ𝑐
Δ𝑌, (6)

where Δ𝑋 and Δ𝑌 are the translation deviations between Radar CS
and ground CS shown in Fig. 2, ℎ𝑐 is the perpendicular distance
from the camera’s optical center to the ground. The variables Δ𝑋 ,
Δ𝑌 and ℎ𝑐 are considered as learnable parameters. We consider the
translation deviations because the geometry-based similar triangle
relation (𝑋𝑐+Δ𝑋

𝑋
′
𝑐+Δ𝑋

=
ℎ𝑐−𝑍𝑔

ℎ𝑐
) is only established with the ground CS

while our BEV plane is in the Radar CS. Therefore we re-derive the
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Equ. 5 and Equ. 6. Then we take the fusion points (𝑋𝑓 , 𝑌𝑓 ) as the
reference and calculate the first loss function on the BEV plane as:

𝐿𝐵𝐸𝑉 = (𝑋𝑐 − 𝑋𝑓 )2 + (𝑌𝑐 − 𝑌𝑓 )2 . (7)

Secondly, we start from the fusion points (𝑋𝑓 , 𝑌𝑓 ) to calculate
the re-projection errors on the 2D plane. In the training process,
the matching relation of fusion points (𝑋𝑓 , 𝑌𝑓 ) and 2D CBM points
(𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚) are known, therefore we can take the ground height
𝑍𝑔 obtained in the calculation process of 𝐿𝐵𝐸𝑉 to transfer the
(𝑋𝑓 , 𝑌𝑓 ) from real position to the position on the virtual ground
plane. The transformation process is formulated as follows:

𝑋
′

𝑓
=

ℎ𝑐

ℎ𝑐 − 𝑍𝑔
𝑋𝑓 +

𝑍𝑔

ℎ𝑐 − 𝑍𝑔
Δ𝑋, (8)

𝑌
′

𝑓
=

ℎ𝑐

ℎ𝑐 − 𝑍𝑔
𝑌𝑓 +

𝑍𝑔

ℎ𝑐 − 𝑍𝑔
Δ𝑌 . (9)

Then we can project the (𝑋 ′

𝑓
, 𝑌

′

𝑓
) on the virtual plane to the 2D

plane with the homography matrix M as:

𝑈𝑓 = M1 · (𝑋
′

𝑓
, 𝑌

′

𝑓
, 1)/(M3 · (𝑋

′

𝑓
, 𝑌

′

𝑓
, 1)), (10)

𝑉𝑓 = M2 · (𝑋
′

𝑓
, 𝑌

′

𝑓
, 1)/(M3 · (𝑋

′

𝑓
, 𝑌

′

𝑓
, 1)) . (11)

Now we take the 2D CBM points (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚) as reference and
calculate the second loss function on the 2D plane as follows:

𝐿2𝐷 = (𝑈𝑓 −𝑈𝑐𝑎𝑚)2 + (𝑉𝑓 −𝑉𝑐𝑎𝑚)2 . (12)

The final geometric loss function can be calculated with all 𝑁
pair fusion and 2D CBM points by:

𝐿𝑔𝑒𝑜 =
1
𝑁

𝑁∑︁
𝑖=1

(𝐿2𝐷 + 𝐿𝐵𝐸𝑉 )𝑖 . (13)

Inspired by the FARFusion [20], we apply the depth scaling strat-
egy on the final geometric loss function due to the far-range detec-
tion requirements of 𝑌 = 150−500𝑚 range. We also use the smooth
𝐿1 loss on the 𝐿2𝐷 and 𝐿𝐵𝐸𝑉 , which is robust to outliers and easier
for ground height training.

3.3 Camera Data Processing Module
Our camera data processingmodule takes high-resolution images as
inputs. Asmentioned before, far-range object detection highly relies
on the homography matrix M for view transformations between
2D and virtual BEV planes. In practical deployment, the sensors
may have unexpected movements due to windy weather. Therefore
we first exploit a parameterized homography matrix estimation
method in our camera data processing module depicted in Fig. 3(a).
Parameterized homography matrix estimation. The roadside
sensors are fixed and installed on the pole, any deviations in unex-
pected movements should be measured relative to a fixed reference
parameter, i.e., M. We directly regress the residuals relative to the
initialM for every image. The image includes rich background infor-
mation, which is helpful for estimating the camera pose relative to
the ground. Specifically, we employ a 2D image backbone to extract
the down-sampled image feature map from every image. Then the
image feature map is flattened to a 1-D global feature𝑀𝐼 ∈ R1×𝐶 .
We transform the 𝑀𝐼 to a feature embedding 𝑀

′
𝐼
∈ R1×𝐶′

for cal-
ibration using a MLP. The 𝑀

′
𝐼
is fed into different MLP layers to

regress the residuals in parameterized representation relative to the

M. We regress the scaling parameter (Δ𝑠𝑥 ,Δ𝑠𝑦), rotation parame-
ter Δ𝜃 and translation parameter (Δ𝑡𝑥 ,Δ𝑡𝑦) separately. Finally, we
derive the residual matrix ΔM as follows:

ΔM =
©«
Δ𝑠𝑥 0 0
0 Δ𝑠𝑦 0
0 0 1

ª®¬ ©«
1 0 Δ𝑡𝑥
0 1 Δ𝑡𝑦
0 0 1

ª®¬ ©«
cosΔ𝜃 − sinΔ𝜃 0
sinΔ𝜃 cosΔ𝜃 0

0 0 1

ª®¬ .
(14)

Thus, we can refine M by matrix multiplication M
′
= MΔM for

each frame. During training, we utilize these steps to transfer theM
in the geometric transformation in Sec. 3.2 and use the loss function
𝐿𝑔𝑒𝑜 in Equ. 13 to optimize the above residuals estimation network.
2D CBM points detection.We follow FARFusion [20] to detect
the 2D CBM points using a pre-trained 2D detector.

3.4 Radar Data Processing Module
Radar can provide sparse point clouds and target-level results after
clustering. We utilize target-level results that have more true posi-
tives as the inputs of the Radar data processing module, with each
target represented by a point on the BEV plane. We first integrate
height information into the Radar data. Given the Radar points
(𝑋𝑟 , 𝑌𝑟 ) on the BEV plane, we approximately calculate the corre-
sponding ground height 𝑍𝑔 using height function 𝑓 in Equ. 2. This
height value represents the Radar targets’ height measurement, as
our fusion process is performed on the ground. Then as shown in
Fig. 2, we normalize 𝑍𝑔 as 𝑍𝑛𝑜𝑟𝑚

𝑔 = (ℎ𝑐 − 𝑍𝑔)/ℎ𝑐 . The normaliza-
tion is necessary because we employ the homogeneous coordinate
representation in the transformation between 2D and BEV planes.
The virtual plane corresponds to the plane of 𝑍 = 1 in the Radar
CS. Then we project the enhanced Radar points (𝑋𝑟 , 𝑌𝑟 , 𝑍𝑛𝑜𝑟𝑚

𝑔 ) via
perspective projection to calculate the projected depth 𝑍𝑟𝑎𝑑 and
2D coordinates (𝑈𝑟𝑎𝑑 ,𝑉𝑟𝑎𝑑 ) on the 2D plane as follows:

𝑍𝑟𝑎𝑑
©«
𝑈𝑟𝑎𝑑

𝑉𝑟𝑎𝑑
1

ª®¬ = M
′ ©«

𝑋𝑟
𝑌𝑟

𝑍𝑛𝑜𝑟𝑚
𝑔

ª®¬ =
©«
𝑚

′
11 𝑚

′
12 𝑚

′
13

𝑚
′
21 𝑚

′
22 𝑚

′
23

𝑚
′
31 𝑚

′
32 𝑚

′
33

ª®®¬
©«

𝑋𝑟
𝑌𝑟

𝑍𝑛𝑜𝑟𝑚
𝑔

ª®¬ .
(15)

3.5 Uncertainty-based Target-level Radar and
Camera Fusion

We next combine the Radar points and camera 2D CBM points
through a 2-stage fusion pipeline on both 2D and BEV planes.

On the 2D plane, we perform an uncertainty-based depth fusion
between 2D CBM points and Radar points depicted in Fig. 3(c). We
first associate the Radar projection points with CBM points via the
bipartite graphmatching algorithm. After association, we have both
matched point pairs and unmatched points. If a pair of points are
matched, (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚) and (𝑈𝑟𝑎𝑑 ,𝑉𝑟𝑎𝑑 ), we now regard the two
points as a dual-modal point and map this point to the 3D space. For
the matched CBM point (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚), we have two types of depth
values, i.e., Radar projection depth 𝑍𝑟𝑎𝑑 and image depth 𝑍𝑐 . Here,
we calculate 𝑍𝑐 by the IPM process 𝑍𝑐 = 1/H′

3 · (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚, 1),
whereH

′
is the inverse ofM

′
. We assume that the two depths 𝑍𝑟𝑎𝑑

and 𝑍𝑐 are independent because they are obtained from different
methods. According to Bayes’ theorem, we can derive the posterior
probability of this 2D CBM point’s real depth 𝐷 as below:

𝑃 (𝐷 |𝑍𝑐 , 𝑍𝑟𝑎𝑑 ) ∝ 𝑃 (𝐷 |𝑍𝑟𝑎𝑑 )𝑃 (𝐷 |𝑍𝑐 ). (16)
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Furthermore, we assume the observation noises of 𝑍𝑟𝑎𝑑 and 𝑍𝑐 are
subject to Gaussian distributions 𝑁 (0, 𝜎2𝑟 ) and 𝑁 (0, 𝜎2𝑐 ). According
to the maximum of the posterior probability 𝑃 (𝐷 |𝑍𝑐 , 𝑍𝑟𝑎𝑑 ), we can
obtain the following mathematical relation:

max log 𝑃 (𝐷 |𝑍𝑐 , 𝑍𝑟𝑎𝑑 ) ∝ max log 𝑃 (𝐷 |𝑍𝑟𝑎𝑑 )𝑃 (𝐷 |𝑍𝑐 )

∝ max log
1

𝜎𝑟
√
2𝜋

𝑒
− (𝐷−𝑍𝑟𝑎𝑑 )2

2𝜎2
𝑟 + log

1
𝜎𝑐
√
2𝜋

𝑒
− (𝐷−𝑍𝑐 )2

2𝜎2
𝑐

∝ min
(𝐷 − 𝑍𝑟𝑎𝑑 )2

2𝜎2𝑟
+ (𝐷 − 𝑍𝑐 )2

2𝜎2𝑐
+ log𝜎𝑟 + log𝜎𝑐 . (17)

Thus, we can calculate the derivative of the final expression (de-
noted by 𝐿(𝐷)) in Equ. 17 concerning 𝐷 . By making 𝐿(𝐷)′ = 0, we
can calculate the optimal 𝐷 as follows:

𝐷𝑟+𝑐 =
𝑍𝑟𝑎𝑑/𝜎2𝑟 + 𝑍𝑐/𝜎2𝑐

1/𝜎2𝑟 + 1/𝜎2𝑐
. (18)

Through the mathematical derivation, we thus obtain the optimal
fusion depth value in Equ. 18. Considering the Radar and camera
have different measurement noises in different ranges, we directly
estimate the noises 𝜎𝑟 , 𝜎𝑐 as the aleatoric uncertainties [15] of the
𝑍𝑟𝑎𝑑 and 𝑍𝑐 using two MLP networks, i.e., 𝜎𝑟 = 𝑀𝐿𝑃 (𝑋𝑟 , 𝑌𝑟 ), 𝜎𝑐 =

𝑀𝐿𝑃 (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚). Then we can map this dual-modal point to the
real position in BEV with the coordinates (𝑋𝑟+𝑐 , 𝑌𝑟+𝑐 ) by:

𝑋𝑟+𝑐 = H
′
1 · 𝐷𝑟+𝑐 (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚, 1), (19)

𝑌𝑟+𝑐 = H
′
2 · 𝐷𝑟+𝑐 (𝑈𝑐𝑎𝑚,𝑉𝑐𝑎𝑚, 1) . (20)

As for the training process, we employ a surrogate loss function.
According to the Equ. 17, we construct the loss function as follows:

𝐿𝜎 =
(𝐷 − 𝑍𝑟𝑎𝑑 )2

2𝜎2𝑟
+ (𝐷 − 𝑍𝑐 )2

2𝜎2𝑐
+ 𝛼 log𝜎𝑟 + 𝛽 log𝜎𝑐 , (21)

where 𝛼 and 𝛽 are the hyperparameters and we take the fusion
points as the reference to calculate the𝐷 by𝐷 = M

′
3·(𝑋𝑓 , 𝑌𝑓 , 𝑍

𝑛𝑜𝑟𝑚
𝑓

).
Note that the calculation of 𝐷,𝑍𝑟𝑎𝑑 and 𝑍𝑐 are detached from the
computational graph in Sec. 3.2 and Sec. 3.3. 𝐿𝜎 is only employed to
train the two uncertainty estimation MLP networks. This training
process is depicted in Fig. 3.P1.

Additionally, for unmatched 2D CBM points, we utilize the IPM
process to map the CBM points to the virtual BEV plane. Then we
calculate the corresponding ground heights of the real positions
via the height function in Equ. 2, and transfer the IPM points to
the real positions using the Equ. 5 and Equ. 6. We also reserve the
unmatched Radar points. We then feed all these outputs to the
subsequent BEV target tracking module.

Finally, on the BEV plane, we adopt the common target-level
fusion methods [20, 37], utilizing a Kalman-based tracking module
to combine the outputs from the 2D depth fusion module.

4 Implementation and Evaluation
In this section, we introduce our implementation details and evalu-
ation results.

4.1 Implementation Details
OWL testbed and our benchmark. As shown in Fig. 2, we have
developed a testbed named OWL by deploying smart poles on an

Table 1: Detection and location MAE results on validation
set in 𝑌 = 150 − 330𝑚 range.

Method 𝐴𝑃BEV (%) ↑
APBEV (%) ↑ Loc. MAE(𝑚) ↓

𝑑𝑖𝑠0.5 𝑑𝑖𝑠1.0 𝑑𝑖𝑠1.5 𝑑𝑖𝑠2.0 Lat. Long. Euc.
Radar Only 44.1 0.4 24.0 67.6 84.5 0.520 1.707 1.826
Image Only 16.6 2.0 9.5 21.6 33.5 0.126 1.526 1.541

robustBEVfus* [1] 41.3 2.4 23.5 59.2 80.3 0.310 1.660 1.716
FARFusion [20] 63.9 15.8 60.9 85.6 93.3 0.142 1.217 1.239
FARFusion V2 69.3 28.5 69.7 87.5 91.7 0.163 0.975 1.009

LiDAR provides the ground truth data of multiple cars in this range. *We follow [1] to exploit
the same fusion method of the BEV association and “prediction-update” tracking pipeline
as a comparison. Meanwhile, we use the Kalman filter and filter out the unmatched camera
targets due to the large location errors of the IPM points in the tracking pipeline.

urban expressway with an 80𝑘𝑚/ℎ speed limit. Specifically, we de-
ploy a long-range millimeter wave Radar, a HD monocular camera,
a spinning 80-beam LiDAR on each pole, and two vehicle-mounted
RTK-GPS systems. Here, LiDAR and RTK-GPS are deployed to pro-
vide ground truth data only for evaluation. LiDAR generates the
data for vehicles in 𝑌 = 150 − 330𝑚 range, while GPS provides the
data for the two experimental vehicles in 𝑌 = 330 − 500𝑚 range.

On this testbed, we establish a roadside benchmark for far-range
scenarios. We follow [20] to perform spatiotemporal synchroniza-
tion on our roadside dataset. Then We split the dataset into training
(65%, first 65% frames per split) and validation splits (35%, other
35% frames per split) across three splits in different time intervals.
Every split contains over 8000 frames and 39000 car samples.
Metrics.We use average precision (AP) and mean absolute error
(MAE) of location to evaluate the final detection results in our
benchmark. We assign the detection results to ground truths of
vehicles based on the center distances between them, using differ-
ent distance thresholds. We set the (0.5m, 1.0m) (i.e., 𝑑𝑖𝑠0.5), (1.0m,
2.0m) (i.e., 𝑑𝑖𝑠1.0), (1.5m, 3.0m) (i.e., 𝑑𝑖𝑠1.5) and (2.0m, 4.0m) (i.e.,
𝑑𝑖𝑠2.0) thresholds in (𝑋,𝑌 ) axes (refer to Fig. 2) in the BEV’s Radar
coordinate system, because the length-width ratio of the vehicle is
approximately 2 : 1. We report location MAEs in the lateral (Lat.)
𝑋 axis, longitudinal (Long.) 𝑌 axis and Euclidean distance (Euc.)
from the bird’s eye view with the threshold 𝑑𝑖𝑠1.5. We calculate the
AP with location threshold values of {𝑑𝑖𝑠0.5, 𝑑𝑖𝑠1.0, 𝑑𝑖𝑠1.5, 𝑑𝑖𝑠2.0} and
then average the values across different thresholds.
Network structure. The ground height and uncertainty estimation
networks are parameterized as different MLPs with three layers and
32 channels of the hidden layer. In the parameterized homography
matrix estimation module, we take the image with a resolution of
3840 × 2160 as input. Then we utilize the ResNet-18 [12] as the
image backbone to extract the image feature for transformation
parameters estimation. The hidden layers of different parameter-
ized homography matrix estimation MLPs are configured with 256
channels each. We employ the pre-trained YOLOE [36] to detect
the 2D bounding boxes of vehicles. We don’t use the same image
backbone for both calibration and object detection tasks because
they separately focus on static and dynamic targets.
Training details.We decouple the training processes of the ground
height network and the parameterizedM estimation module in two
steps. Because we find that it’s hard for the network to converge
when optimizing them simultaneously. In the first step, we train
the ground height network and the learnable parameters of the
camera/Radar height and coordinate deviations for 100 epochs.
Then we use pre-trained weights and freeze the weights of the
ground height network to train the parameterized M estimation



FARFusion V2: A Geometry-based Radar-Camera Fusion Method on the Ground for Roadside Detection MM ’24, October 28–November 1, 2024, Melbourne, VIC, Australia.

Table 2: Ablation study on validation set in 𝑌 = 150 − 330𝑚
range. We quantitatively evaluate the impact of the ground
height network(GH), parameterized M estimation module(PE)
and uncertainty estimation network(UE).

Base GH PE UE 𝐴𝑃BEV (%) ↑
Loc. MAE(𝑚) ↓

Lat. Long. Euc.
✓ 63.9 0.142 1.217 1.239
✓ ✓ 66.3 0.128 1.024 1.045
✓ ✓ ✓ 66.5 0.148 1.011 1.039
✓ ✓ ✓ ✓ 68.5 0.151 0.951 0.982

LiDAR provides the ground truth data of multiple cars in this range.

Table 3: Ablation study on validation set in 𝑌 = 330 − 500𝑚
range.

Base GH PE UE 𝐴𝑃BEV (%) ↑
Loc. MAE(𝑚) ↓

Lat. Long. Euc.
✓ 69.1 0.240 1.268 1.290
✓ ✓ 70.7 0.198 0.686 0.754
✓ ✓ ✓ 72.2 0.139 0.677 0.728
✓ ✓ ✓ ✓ 72.6 0.140 0.649 0.702

GPS provides the ground truth data of the experimentation vehicle in this range.

module and uncertainty estimation network for 70 epochs. We use
the Adam optimizer in two training steps with batch size 8. The
learning rate is initialized as 0.0001 for the first step and 0.001 for
the second step, both are updated by the cosine annealing strategy.

4.2 Evaluation Results
We report the performance of our FARFusion V2 on the validation
set for comparison with other methods and carefully investigate
the effect of different modules. The results are evaluated using the
average precision (AP) and mean absolute error (MAE) of location
as illustrated in Sec. 4.1.
Comparison results on the validation set. We first compare
the performance of different methods in 𝑌 = 150 − 330𝑚 range
in Tab. 1: (1) Radar Only (i.e., obtaining a target’s position using
the Radar point location on the BEV plane), (2) Image Only (i.e.,
obtaining a target’s position by mapping its CBM point to BEV
using the plane-assumed IPM), (3) robustBEVfus [1] (i.e., the fusion
of the previous two locations in BEV), (4) FARFusion [20] (i.e., the
target-level fusion of the Radar and CBM points on both 2D and
BEV planes), and (5) our FARFusion V2. Among them, the first two
are single modal while the latter three are fusion-based. The results
show our FARFusion V2 has the highest APBEV among all methods.

In addition, we have the following observations. Our FARFusion
V2 has the highest APBEV on the validation set, improving the
average detection performance APBEV by 5.4% than FARFusion and
28% than robustBEVfus. This demonstrates that 2D association is
more effective in far-range scenes than BEV association used in
robustBEVfus [1]. Moreover, our FARFusion V2 considers the impact
of ground and sensor motions, achieving an improvement of 0.23𝑚
in location accuracy compared to FARFusion.

Next, we perform a set of ablation studies in both𝑌 = 150−330𝑚
and 𝑌 = 330− 500𝑚 ranges and summarize the results in Tab. 2 and
Tab. 3. We take the FARFusion as our baseline for comparison.
Impact of the ground height network. We first investigate the
impact of the ground height network. As shown in Tab. 2, we obtain
a 2.4% improvement in average APBEV and a 0.194𝑚 improvement
in location accuracy when adding the ground height network (GH)
in the target-level fusion. The ground height network can assign
height values to the Radar data, thereby assisting the IPM process

Table 4: Detection and location MAE results on validation
set in 𝑌 = 330 − 500𝑚 range.

Method 𝐴𝑃BEV (%) ↑
APBEV (%) ↑ Loc. MAE(𝑚) ↓

𝑑𝑖𝑠0.5 𝑑𝑖𝑠1.0 𝑑𝑖𝑠1.5 𝑑𝑖𝑠2.0 Lat. Long. Euc.
Radar Only 56.9 1.8 46.7 88.8 90.3 0.344 1.655 1.730
Image Only 1.8 0.2 1.3 2.7 3.3 0.067 1.617 1.618

robustBEVfus [1] 56.3 1.6 48.2 86.4 89.4 0.341 1.627 1.703
FARFusion [20] 69.1 18.8 73.0 91.1 93.8 0.240 1.268 1.290
FARFusion V2 74.5 44.8 79.4 86.3 87.6 0.172 0.712 0.771

GPS provides the ground truth data of the experimentation vehicles in this range. We filter
out the detection results whose location errors > 3.0𝑚 with GPS value for evaluation
because other vehicles will influence the evaluation without ground truth.

by providing more accurate depth measurements. It achieves a more
precise location accuracy of 1.045𝑚. The experiment in the 𝑌 =

330 − 500𝑚 range from Tab. 3 also demonstrates the effectiveness
of the ground height network with 1.6% and 0.536𝑚 improvements
in APBEV and location accuracy.
Impact of the parameterized homography matrix estima-
tion module. We also show the results with the parameterized
homography matrix estimation module (PE) in the third row in
Tab. 2. However, we observe that the effect of this module in the
𝑌 = 150−330𝑚 range is minimal with an improvement of only 0.2%
in APBEV. This is because the sensor’s motion has a greater influ-
ence at longer distances as illustrated in the introduction. Therefore,
we also evaluate the effect of this module in the 𝑌 = 330 − 500𝑚
range in Tab. 3. The results show adding this module yields a 1.5%
improvement in APBEV.
Impact of the uncertainty estimation network.We finally eval-
uate the effect of the uncertainty estimation network (UE). In the
last row in Tab. 2, we obtain a 2.0% improvement in APBEV. This
demonstrates the depth values of the CBM points are more accurate
when using the uncertainty-based weighting between the depths
obtained via the Radar projection and those calculated by IPM than
using only the depth obtained via the Radar projection directly.
However, we also observe that the improvement of this module is
minimal in 𝑌 = 330 − 500𝑚 range in Tab. 3. This is because the
IPM points have much higher location errors in this range. The
uncertainty of the depth calculated by IPM is greater than the un-
certainty of depth obtained by Radar projection. Therefore, the final
weighted depth is highly dependent on the depth obtained through
Radar projection, resulting in the performance being similar to
that achieved without this uncertainty estimation network. We will
analyse the uncertainty network in more detail in Sec. 4.3.
Longer ranges with GPS as ground truth. Finally, we extend the
detection range to 𝑌 = 330 − 500𝑚 to compare the performances
of different methods in Tab. 4. Our FARFusion V2 still has the
highest performance. We obtain a location accuracy of 0.771𝑚 for
the experimentation vehicles. This range has a high requirement
for accurate view transformations. The ground height network and
homography matrix estimation module play important roles in this
range, as demonstrated in the preceding ablation studies.

4.3 Fine-grained Analysis
In this subsection, we delve into FARFusion V2 to study the ground
height network and uncertainty estimation network qualitatively.
What did the ground height network learn? To investigate
the outputs of the ground height network, we divide this area of
(−15𝑚 ≤ 𝑋 ≤ 10𝑚, 200𝑚 ≤ 𝑌 ≤ 700𝑚) range in Radar CS into
grids of uniform size of 2𝑚 × 20𝑚. Then we take the grid points as
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(a) Real Roadside Scene (b) The Output of Ground Height Network

Figure 4: The comparison of the actual ground in figure (a)
with the ground height network’s output in figure (b).

Figure 5: The uncertainty of Radar projection depth and IPM-
calculated depthwith respect to the𝑌 coordinate in the BEV’s
Radar coordinate system.
the input of the ground height network and plot the height values
in Fig. 4(b). We observe that in the𝑌 = 300−600𝑚 range, there is an
upward trend, while in the 𝑌 > 600𝑚 range, it shows a downward
trend in ground height. This trend is consistent with the ground’s
fluctuations in Fig. 4(a). However, we also observe that there is an
unexpected sudden drop in the ground’s height in the position of
𝑌 = 200𝑚. We believe this is because we use fusion points, not
ground truths, to train the network for ground height estimation.
In practical scenarios, the fusion points are subject to inevitable
detection noise with outliers, which causes the trained network to
be imperfect. Even so, the overall surface contour of the output of
the ground height network closely matches the actual ground.
The analysis of the uncertainty estimation network. The mea-
surement accuracy of the sensor is highly relative to the detec-
tion range. The measurement noise usually becomes larger as the
distance increases. To analyse the uncertainty predicted by the
uncertainty estimation networks of Radar projection depth and
IPM-calculated depth concerning the distance, we select matched
Radar and 2D CBM points from 1000 frames randomly as the input
of the network. Then we plot the uncertainty values 𝜎𝑟 and 𝜎𝑐
concerning the 𝑌 coordinate of the BEV’s Radar CS and mark the
mean values in several locations in Fig. 5. We observe that the Radar
projection depth 2 is more reliable than the IPM-calculated depth
in the whole range. Meanwhile, the magnitude of 𝜎𝑐 is significantly
greater than that of 𝜎𝑟 in the 𝑌 > 300𝑚 range. This indicates that
the camera’s IPM performs poorly in 𝑌 > 300𝑚 range, where the

2There is a downward trend of 𝜎𝑟 in 𝑌 > 350𝑚 range due to the use of fusion points
as the ground truth for network training.

Table 5: The impact of the coordinate deviation on
the validation set in 𝑌 = 150 − 330𝑚 range.

Base 𝐶𝑜𝑜𝑟𝑑𝑑𝑒𝑣 𝐴𝑃BEV (%) ↑
Loc. MAE(𝑚) ↓

Lat. Long. Euc.
✓ 61.4 0.125 1.21 1.229

✓ 66.3 0.128 1.024 1.045

LiDAR provides the ground truth data of multiple cars in this range.

(a) FARFusion (b) FARFusion V2

Figure 6: The qualitative results in Radar coordinate system
of FARFusion in figure (a) and FARFusion V2 in figure (b).

Radar projection depth becomes dominant in the depth fusion. This
result is also consistent with the ablation studies in Sec. 4.2.
Impact of the coordinate deviation in ground height network.
In Sec. 3.2, we have considered the translation deviations (Δ𝑋,Δ𝑌 )
between the Radar CS and ground CS. Because the similar triangle
relation (𝑋𝑐+Δ𝑋

𝑋
′
𝑐+Δ𝑋

=
ℎ𝑐−𝑍𝑔

ℎ𝑐
) is only established with the ground CS

while our BEV plane is in the Radar CS. We conduct an ablation
study to analyse the effect of deviations in Tab. 5. The “base” repre-
sents we do not use translation deviations. The results show the
performance is better with the translation deviations.
The qualitative results in Radar CS of FARFusion and FARFu-
sion V2. Finally, we show the qualitative results on the BEV plane
of FARFusion and FARFusion V2 in Fig. 6. We see that the FAR-
Fusion V2 has higher location accuracy, especially the IPM points
highlighted in blue are adjusted to be closer to the accurate fusion
points at larger ranges.

5 Conclusion
In this paper, to achieve high-accuracy location in far-range scenes,
we exploit a geometry-based Radar and camera fusion method
FARFusion V2 in target level on the ground for roadside 3D ob-
ject detection. We find that ground height and sensor motion are
important factors influencing the performance of roadside Radar
and camera fusion. Therefore, we represent the ground height im-
plicitly and employ a geometry-based transformation function for
training. We also engage a parameterized homography matrix es-
timation module to refine the transformation parameters in real
time. Additionally, we further improve the accuracy of depth values
using an uncertainty-based depth fusion approach, supported by
a mathematical theory derivation. With these designs, we achieve
high-accuracy location performance for far-range object detection.
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