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Abstract

Transformer-based language models usually001
treat texts as linear sequences. However, most002
texts also have an inherent hierarchical struc-003
ture, i. e., parts of a text can be identified using004
their position in this hierarchy. In addition, sec-005
tion titles usually indicate the common topic006
of their respective sentences. We propose a007
novel approach to extract, encode and inject hi-008
erarchical structure (HiStruct) information into009
an extractive summarization model (HiStruct+010
model) based on a pre-trained, encoder-only011
language model. Our HiStruct+ model achieves012
SOTA extractive ROUGE scores on three pub-013
lic summarization datasets (CNN/DailyMail,014
PubMed, arXiv), the improvement is espe-015
cially substantial on PubMed and arXiv. Using016
various experimental settings, our HiStruct+017
model outperforms a strong baseline, which018
differs from our model only in that the HiStruct019
information is not injected. The ablation020
study demonstrates that the hierarchical posi-021
tion information is the main contributor to our022
model’s SOTA performance.023

1 Introduction024

Texts, especially long documents, contain internal025

hierarchical structure like sections, paragraphs, sen-026

tences, and tokens. When we manually summarize027

a text, the hierarchical text structure usually plays028

a key role. Taking a scientific paper as an exam-029

ple, we might focus more on the sections with the030

titles of “methodology”, “discussion”, and “conclu-031

sion” while paying less attention to the sections032

like “background”. Furthermore, the sentences033

within one section could have closer relationship034

with each other, than the ones outside this section.035

Understanding not only the sequential relations036

between the sentences but also the internal hierar-037

chical text structure helps us better determine the038

important sentences within a document. Similarly,039

a neural summarization model could benefit from040

these hierarchical structure information.041

In this paper, we focus on extractive text summa- 042

rization of single documents (ETS), which is the 043

task of binary sentence classification with labels 044

indicating whether a sentence should be included 045

in a summary. Recently, pre-trained language mod- 046

els based on Transformers (Vaswani et al., 2017) 047

(TLM), such as BERT (Devlin et al., 2019), have 048

been widely used to extract contextual representa- 049

tions from texts. The pre-trained TLM can be eas- 050

ily reused for fine-tuning on the downstream tasks, 051

so that the representations already learned from 052

the large pre-training corpora are preserved. Liu 053

and Lapata (2019) has achieved the state-of-the-art 054

(SOTA) performance by fine-tuning BERT for ex- 055

tractive summarization on short document datasets 056

including CNN/DailyMail. However, the TLMs 057

consider merely the sequential-context-dependency 058

by adding a linear positional encoding to each input 059

token embeddings. The hierarchical text structure 060

information is not taken into account explicitly. 061

We propose a novel approach to extract, encode 062

and inject the hierarchical structure (HiStruct) in- 063

formation explicitly into an extractive summariza- 064

tion model (HiStruct+ model), which consists of a 065

Transformer language model (TLM) for sentence 066

encoding and two stacked inter-sentence Trans- 067

former layers for hierarchical learning and extrac- 068

tive summarization. We experiment with BERT 069

(Devlin et al., 2019), RoBERTa (Liu et al., 2019), 070

and Longformer (Beltagy et al., 2020) as underly- 071

ing TLMs. The HiStruct information utilized in 072

our work includes the section titles and the hierar- 073

chical positions of sentences, which are encoded 074

using our proposed novel methods. The resulting 075

embeddings can be injected into the TLM sentence 076

representations to provide the HiStruct information 077

for the summarization task. 078

We evaluate our HiStruct+ models on short doc- 079

uments (i.e., CNN/DailyMail (See et al., 2017)) 080

and long documents (i.e., PubMed and arXiv (Co- 081

han et al., 2018)). Our HiStruct+ models improve 082
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the SOTA extractive ROUGEs on all three datasets.083

The improvements are especially substantial on084

PubMed and arXiv, which contain longer scientific085

papers with conspicuous hierarchical structures.086

We also compare the HiStruct+ models with the087

corresponding strong baselines, which differ from088

our models only in that the HiStruct information is089

not injected. Using various experimental settings,090

our models collectively outperform the baselines091

on the three datasets, indicating the effectiveness092

of the proposed HiStruct encoding methods. Ab-093

lation studies suggest that the performance gains094

are majorly contributed by the hierarchical position095

information of sentences.096

Our contributions in this work are four-folds:097

(1) We conceptualize novel measures to compare098

the internal hierarchical structure of the datasets.099

(2) We propose novel methods to formulate the100

HiStruct information and implement data prepro-101

cessing to extract them from the raw datasets. (3)102

We propose novel methods to encode and inject103

the HiStruct information into an extractive summa-104

rization model explicitly. The effects of different105

encoding settings and injection settings are system-106

atically investigated. (4) The data containing the107

extracted HiStruct information, the best HiStruct+108

models, as well as the scripts for preprocessing,109

training and evaluation are available on GitHub1.110

2 Related Work111

2.1 Text Summarization112

Extractive Text Summarization (ETS) is to iden-113

tify the most informative sentences within a doc-114

ument. Liu and Lapata (2019) fine-tune BERT115

with two stacked inter-sentence Transformer layers116

with a sigmoid classifier for ETS (BERTSUMEXT).117

Zhang et al. (2019) pre-train a hierarchical Trans-118

former encoder consisting of a sentence encoder119

and a document encoder (HIBERT). For long doc-120

uments, Xiao and Carenini (2019) propose a RNN-121

based ETS model incorporating both the global and122

the local context (ExtSum-LG). To addressing the123

problem of redundancy in extractive summaries,124

the authors further improve their work by intro-125

ducing redundancy reduction (Xiao and Carenini,126

2020). They systematically explore and com-127

pare different methods including Trigram Block-128

ing (Paulus et al., 2018), RdLoss, MMR-Select129

and MMR-Select+ (Xiao and Carenini, 2020). Tri-130

gram Blocking is a traditional redundancy reduc-131

1https://bit.ly/3CeCVj7

tion method that avoids adding a candidate sen- 132

tence to the summary if it has trigram overlap with 133

the previously selected sentences. Their previous 134

model combined with the redundancy reduction 135

methods produce SOTA performance in ETS on 136

PubMed and arXiv. 137

Previous works on ETS take the HiStruct of doc- 138

uments into consideration by introducing a hierar- 139

chical attention, where they first learn contextual 140

token representations based on the linear dependen- 141

cies between tokens and then add additional CNN 142

(Cheng and Lapata, 2016) or RNN (Nallapati et al., 143

2017) or Transformer (Zhang et al., 2019; Liu and 144

Lapata, 2019) layer(s) to learn document-level rep- 145

resentations for each sentence based on the linear 146

dependencies between sentences. However, they 147

learn hierarchical representations of sentences in 148

an implicit way. Their models are like black boxes, 149

lacking interpretability. In contrast, our approach 150

enriches sentence representations in an explicit way 151

by using section titles and hierarchical positions 152

of sentences as additional HiStruct information, 153

which is more intuitive and interpretable. 154

Abstractive text summarization (ATS) is to 155

generate summaries with new sentences which are 156

not present in the source text. BERTSUMABS (Liu 157

and Lapata, 2019) uses the pre-trained BERT as 158

the encoder in its encoder-decoder architecture. In- 159

stead of simply using the pre-trained BERT, recent 160

works, including T5 (Raffel et al., 2020), BART 161

(Lewis et al., 2020) and PEGAUSUS (Zhang et al., 162

2020) pre-train encoder-decoder Transformer mod- 163

els specifically for seq2seq tasks. The first attempt 164

at addressing neural ATS of long documents is 165

undertaken by Cohan et al. (2018). Gidiotis and 166

Tsoumakas (2020) propose a divide-and-conquer 167

approach to train a model to summarize each part 168

of the document separately. To address the essen- 169

tial issue of the quadratic full attention operation of 170

TLMs, Zaheer et al. (2020) propose BigBird with 171

a sparse attention mechanism. 172

Hybrid text summarization combines ETS, 173

ATS and other techniques as a hybrid system, such 174

as Zhong et al., 2020 (MatchSum) and Pilault et al., 175

2020. 176

2.2 Injecting Additional Information 177

The idea of injecting additional information to 178

TLM is inspired by two former works, LAMBERT 179

(Garncarek et al., 2021) and LayoutLM (Xu et al., 180

2020), where the visual layout information is in- 181
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jected into BERT by adjusting its input embeddings.182

These models were not proposed for ETS and they183

cannot be applied to plain texts since the layout po-184

sitions have to be obtained from scanned document185

images. In contrast, our approach makes use of the186

internal HiStruct information, which can be found187

in most types of textual data. Moreover, we enrich188

the output representations from the TLM instead of189

adjusting the input embeddings. It saves resources190

and time required for pre-training of TLMs.191

3 Methodology192

3.1 Hierarchical Structure Information193

Hierarchical position (HP) of a sentence is rep-194

resented in the proposed method as a vector of its195

positions at each hierarchy-level.196

SSVs = (as, bs) (1)197

Given the s-th sentence within a document, its HP198

is formulated as a 2-dimensional vector (as, bs), de-199

noted as the sentence structure vector SSVs, where200

as represents the linear position of the section con-201

taining the sentence and bs is the linear position202

of the sentence within the section. All sentences203

within the same section have the same value in the204

first dimension of the SSV, indicating the close rela-205

tionships between them. The second dimension in-206

dicates more precisely their linear relations within207

the section. By this very simple numerical formu-208

lation, hierarchical relations between sentences are209

clearly identified.210

Section titles (STs) exist in particular in long211

documents like scientific papers. They usually212

imply the section content and describe the com-213

mon topic for its sub-sentences. In our work, we214

propose to utilize the corresponding ST as an ad-215

ditional HiStruct information when encoding its216

sub-sentences. There exist typical STs in scientific217

papers. Similar STs like “Conclusion”, “Conclu-218

sions” and “Concluding remarks” have the same219

semantic meaning and can be grouped into one typ-220

ical ST class of “Conclusions”. This is also taken221

into consideration when encoding the STs.222

3.2 Hierarchical Structure Encoding223

Hierarchical position embedding is based on the224

existing linear position encoding methods (PE), in-225

cluding the sinusoidal method (sin) used by Trans-226

former and the learnable method (la) used by BERT.227

We use one of the PEs to encode the two dimen-228

sions of a SSV respectively, resulting in two em-229

beddings. Using the la PE, the embeddings are 230

initialized randomly and trained with the entire 231

summarization model. Using the sin PE, the two 232

embeddings are calculated simply by Equations 2 233

and 3. 234

PE(pos,2i) = sin(pos/100002i/dmodel) (2) 235
236

PE(pos,2i+1) = cos(pos/100002i/dmodel) (3) 237

where pos is the value in one dimension of the 238

SSV and i is the i-th dimension of the resulting 239

embedding. 240

Given the s-th sentence with the SSV of (as, bs), 241

and the desired size of the output embeddings d, its 242

hierarchical position embedding sHE can be gener- 243

ated by Equations 4, 5, 6, using different combina- 244

tion modes. 245

sHEsum(s, d) = PE(as, d) + PE(bs, d) (4) 246
247

sHEmean(s, d) =
PE(as, d) + PE(bs, d)

2
(5) 248

249

sHEconcat(s, d) = PE(as,
d

2
)|PE(bs,

d

2
) (6) 250

where the symbol | denotes vector concatenation. 251

Using one of the PEs (i.e., sin or la) associated 252

with one of the combination modes (i.e., sum, mean 253

or concat), it totals 6 different settings of the hier- 254

archical position encoding method: sin-sum, sin- 255

mean, sin-concat, la-sum, la-mean and la-concat. 256

(Classified) section title embedding is gener- 257

ated by the pre-trained TLM, which is involved in 258

the summarization model. A STE is generated by 259

feeding the tokenized ST to the TLM and summing 260

up the last hidden states at each token position as a 261

single embedding. Similar STs (i.e., STs that have 262

similar keywords and tokens) lead to embeddings 263

that are already similar to each other in some way. 264

Using the classified STE, all intra-class STEs are 265

replaced with the embedding of its corresponding 266

ST class. In the case that a ST does not belong 267

to any class or it falls into more than one class, 268

the original STE is used. Typical ST classes and 269

the corresponding intra-class STs are manually pre- 270

defined depending on the datasets and the domains. 271

3.3 Model Architecture 272

Figure 1 illustrates the overview architecture of the 273

proposed HiStruct+ model. It consists of a base 274

TLM for sentence encoding and two stacked inter- 275

sentence Transformer layers for hierarchical learn- 276

ing and extractive summarization. The sequence on 277

top is the input document, tokenized by the corre- 278

sponding tokenizer of the involved TLM. In order 279
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Figure 1: Architecture of the HiStruct+ model. The two
blocks shaded in light-green are the HiStruct injection
components.

to represent individual sentences, we insert a BOS280

token at the start of every sentence. Only the BOS281

token embeddings are preserved as the initial sen-282

tence representation (Ss). The Ss is first enriched283

with a Sentence Linear Position Embedding, which284

encodes its linear position within the whole docu-285

ment. An additional Sentence Hierarchical Position286

Embedding can be added (sHEs). It is generated287

by encoding the HP of the sentence using the pro-288

posed hierarchical position encoding method. If289

section titles are available, we can further enrich290

the sentence representation by adding a STE or291

classified STE (STEs). The sentence representa-292

tions with the injected HiStruct information are293

fed to the two stacked Transformer encoder layers294

to learn inter-sentence document-level hierarchical295

contextual features. The Self-Attention mechanism296

in the Transformer layers takes context sentences297

into consideration when encoding each sentence.298

The result is a set of Hierarchical Contextual Sen-299

tence Embeddings (HSs). The final output layer300

is a sigmoid classifier, which calculates the confi-301

dence score ŷs of including the s-th sentence in the302

extractive summary based on the HSs. The loss of303

the model is the binary classification entropy of the304

prediction ŷs against the gold label ys.305

The two HiStruct injection components shaded 306

in light-green are optional. Removing these from 307

the HiStruct+ model based on BERT, the architec- 308

ture is identical to BERTSUMEXT (Liu and Lap- 309

ata, 2019), which is a strong baseline against our 310

models. When using RoBERTa and Longformer as 311

the base TLM, we also construct a baseline model 312

without the two components. The effectiveness of 313

injecting HiStruct information using the proposed 314

methods can be systematically investigated by com- 315

paring our models to the corresponding baselines. 316

4 Experimental Setup 317

4.1 Datasets 318

Our models are evaluated on three benchmark 319

datasets for single document summarization, in- 320

cluding CNN/DailyMail (See et al., 2017), PubMed 321

and arXiv (Cohan et al., 2018). Table 4 presents 322

detailed statistics of the datasets. 323

The three datasets represent different document 324

types ranging from short news articles to long sci- 325

entific papers. To emphasize the difference in the 326

hierarchical structure among different datasets, we 327

define the concepts of hierarchical depth (hi-depth) 328

and hierarchical width (hi-width). The hi-depth 329

refers to the number of the hierarchy-levels within 330

the document. Scientific papers have a deeper hier- 331

archy consisting of sections, paragraphs, sentences 332

and tokens (i.e., hi-depth = 4). In news articles, 333

paragraphs are not further grouped into sections 334

(i.e., hi-depth = 3). In this case, we use paragraphs 335

instead of sections as the highest hierarchy level 336

when representing the HP of sentences (i.e., the first 337

dimension of the SSVs). The hierarchical width 338

hi-width =
Ns

Nhsh
is the ratio of total number of 339

sentences Ns and the number of the text-units re- 340

garding the highest hierarchy Nhsh. It indicates 341

how many sentences are there on average in ev- 342

ery paragraph/section. The more sentences are 343

there, the second dimension of the SSVs has a more 344

wide range of values, and the first dimension of the 345

SSVs differ a lot from the linear sentence positions. 346

Larger hi-depth and larger hi-width indicate that 347

the hierarchical structure is more conspicuous. 348

We hypothesize that the proposed method works 349

better on datasets with conspicuous hierarchical 350

structures, where hi-depth and hi-width are larger. 351

This will be proved by comparing the performance 352

improvements on the three datasets with different 353

hierarchical characteristics. CNN/DailyMail is in- 354
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cluded as an exemplary dataset with less conspic-355

uous hierarchical structure compared to PubMed356

and arXiv.357

CNN/DailyMail contains more than 310k short358

news articles. We use the standard splits given by359

See et al. (2017) for training, validation, and testing.360

The average hi-width over all documents is 1.33361

which is much smaller than those in PubMed and362

arXiv. The gold summaries have higher proportions363

of novel 1-grams and 2-grams in CNN/DailyMail,364

which is one of the key difficulties in ETS.365

During data preprocessing, we first split docu-366

ments into sentences and paragraphs respectively367

with the Stanford CoreNLP toolkit (Manning et al.,368

2014) . The sentences and paragraphs are tok-369

enized, resulting in the lists of sentence tokens and370

the lists of paragraph tokens. SSVs corresponding371

to each sentence can be obtained by comparing372

those lists side by side. For all three datasets, we373

use a greedy selection algorithm similar to (Nallap-374

ati et al., 2017) and (Liu and Lapata, 2019) to select375

sentences from documents as the gold extractive376

summaries (ORACLE). Sentences in the ORACLE377

summaries are assigned with the gold label 1.378

PubMed and arXiv contain longer scientific pa-379

pers. PubMed contains papers in the bio-medical380

domain, while arXiv contains papers in various381

domains. The average hi-width over all PubMed382

documents is 15.79, in arXiv it is 37.33. We use383

the original splits given by Cohan et al. (2018) for384

training, validation, and testing. SSVs are obtained385

by tokenizing the sentences and sections of every386

document respectively. The details on the genera-387

tion of STEs and classified STEs can be found in388

Appendix A.2.389

4.2 Implementation Details390

We implement our extractive model based on391

BERTSUMEXT (Liu and Lapata, 2019) using Hug-392

gingFace Transformers (Wolf et al., 2020) to make393

use of the pre-trained instances of BERT, RoBERTa394

and Longformer. On CNN/DailyMail, we select395

3 sentences with Trigram Blocking. On PubMed396

and arXiv, 7 sentences are extracted while Trigram397

Blocking is not applied. More implementation de-398

tails are summarized in Appendix A.3 and A.4.399

5 Results and Discussion400

We evaluate the performance of our summariza-401

tion models automatically using ROUGE metrics402

(Lin, 2004) including F1 ROUGE-1 (R1), ROUGE-403

2 (R2) and ROUGE-L (RL). Tables 1, 2 and 3 404

summarize the performance of our models in com- 405

parison to the baselines and the SOTA results on 406

CNN/DailyMail, PubMed and arXiv respectively. 407

The first three blocks in the tables highlight the 408

results reported by the corresponding papers of ab- 409

stractive, extractive, and hybrid summarization sys- 410

tems. Underlined are the best results regarding the 411

respective type of the summarization system. Bold 412

are the scores of the HiStruct+ models that are bet- 413

ter than their corresponding comparison baselines. 414

The symbol * indicates that the corresponding ex- 415

tractive SOTA ROUGE is improved by our model. 416

The symbol ’ indicates that the SOTA ROUGEs 417

(incl. all types of summarization approaches) are 418

outperformed. 419

5.1 Results on Short Documents 420

Model ↓ / Metric → R1 R2 RL

Abstractive

BERTSUMABS (2019) 41.72 19.39 38.76
BART (2020) 44.16 21.28 40.90
PEGASUS (2020) 44.17 21.47 41.11
BigBird PEGASUS (2020) 43.84 21.11 40.74

Extractive

HIBERT (2019)
(BERT-base) 42.31 19.87 38.78
(BERT-large) 42.37 19.95 38.83

BERTSUMEXT (2019)
(BERT-base) 43.25 20.24 39.63
(BERT-large) 43.85 20.34 39.90

Hybrid

MatchSum (2020)
(BERT-base) 44.22 20.62 40.38
(RoBERTa-base) 44.41 20.86 40.55

Reproduced baselines

ORACLE (512 tok.) 52.46 30.76 48.66
ORACLE (1,024 tok.) 55.45 32.78 51.59
LEAD-3 40.33 17.39 36.56
TransformerETS

BERT-base (1,024 tok.) 43.32 20.27 39.69
BERT-large (512 tok.) 43.45 20.36 39.83
RoBERTa-base (1,024 tok.) 43.62 20.53 39.99

Our models (Extractive)

HiStruct+
BERT-base (1,024 tok.) 43.38 20.33 39.78
BERT-large (512 tok.) 43.49 20.40* 39.90*
RoBERTa-base (1,024 tok.) 43.65 20.54* 40.03*

Our models (Hybrid)

HiStruct+
RoBERTa-base (1,024 tok.)
& MatchSum (RoBERTa-base) 44.31 20.73 40.47

Table 1: Results on CNN/DailyMail

ROUGE results on CNN/DailyMail are sum- 421

marized in Table 1. In the baselines block, the 422

first two lines highlight the ORACLE results that 423
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Figure 2: Proportions of the extracted sentences at each
linear position. The x-axis values are linear sentence in-
dices, the y-axis values are percentages of the extracted
sentences.

build the upper bounds for ETS systems taking424

the same number of input tokens. The LEAD-n425

baselines simply select the first n sentences in a426

document as its extractive summary. Despite its427

simplicity, the LEAD-3 baseline already achieves428

relatively competitive performance and even out-429

performs several neural models as listed in the table.430

The three TransformerETS models are the corre-431

sponding comparison baselines that use the same432

model architecture and experimental settings as our433

models but without injected HiStruct information.434

The following block presents the results of our435

HiStruct+ models based on different TLMs with436

various input lengths. To make the evaluation re-437

sults comparable to the SOTA extractive model438

BERTSUMEXT, we follow their approach and re-439

port the averaged results of three best checkpoints.440

Regardless the base TLM and input length, our441

HiStruct+ models collectively outperform the cor-442

responding baselines by merely injecting the HP in-443

formation of sentences. The performance improve-444

ments gained by our models on CNN/DailyMail are445

small. One of the reasons might be that we merely 446

inject the sHE, STs are not available. Furthermore, 447

as discussed in Section 4, the hierarchical structure 448

of the CNN/DailyMail documents is not so obvious 449

as in PubMed and arXiv. 450

Compared to the SOTA extractive model, our 451

best model produces competitive results. The ex- 452

tractive SOTA R2 and RL are improved. The model 453

can be reused in many hybrid approaches. When 454

we apply MatchSum based on our best model, the 455

ROUGE results are further increased. 456

Ablation studies on CNN/DailyMail (see the 457

evaluation results and detailed discussions in Ap- 458

pendix A.5) suggest that the setting la-sum works 459

best for HP encoding . Two stacked Transformer 460

layers in the summarization model perform better 461

than one or three Transformer layers. When taking 462

longer inputs than the length limit of the TLM, sig- 463

nificant improvements are achieved by using the 464

copied token position embeddings for initialization 465

instead of random initialization. 466

The extracted summaries are analyzed in more 467

detail by plotting the proportions of the extracted 468

sentences at each linear position within the whole 469

document as shown in Figure 2a. The model in 470

green is our best HiStruct+ model. The model 471

in orange is the corresponding comparison base- 472

line without injected HiStruct information. The 473

model in blue is the ORACLE system, which pro- 474

duces the gold extractive summaries. We can ob- 475

serve that the ORACLE summary sentences are 476

distributed across documents more smoothly, while 477

our HiStruct+ model and the baseline model tend to 478

select the first sentences and fail to select sentences 479

that appear at later positions within the documents. 480

Compared to the baseline, the HiStruct+ model 481

leads to more similar proportions as the ORACLE 482

summaries at the most sentence indices. 483

5.2 Results on Long Documents 484

5.2.1 Results on PubMed 485

ROUGE results on PubMed are summarized in 486

Table 2. As shown in the baselines block, the ORA- 487

CLE extractive upper bounds are increased signifi- 488

cantly by increasing the input length, which makes 489

it possible to exploit potential gains from model- 490

ing longer input. The LEAD-n baselines do not 491

produce competitive results on PubMed. It indi- 492

cates that the first sentences in PubMed are not so 493

informative as in CNN/DailyMail. The last two 494

TransformerETS models in the block are the com- 495
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Model ↓ / Metric → R1 R2 RL

Abstractive

PEGASUS (2020) 45.49 19.90 42.42
BigBird PEGASUS (2020) 46.32 20.65 42.33
DANCER PEGASUS (2020) 46.34 19.97 42.42

Extractive

Sent-CLF (2020) 45.01 19.91 41.16
Sent-PTR (2020) 43.30 17.92 39.47
ExtSum-LG+ (2020)

RLoss 45.30 20.42 40.95
MMR-Select+ 45.39 20.37 40.99

Hybrid

TLM-I+E(G,M) (2020) 42.13 16.27 39.21

Reproduced baselines

ORACLE (4,096 tok.) 49.73 27.29 45.26
ORACLE (9,600 tok.) 52.80 28.95 48.08
ORACLE (15k tok.) 53.04 29.08 48.31
LEAD-7 38.30 12.54 34.31
LEAD-10 38.59 13.05 34.81
TransformerETS

Longformer-base (15k tok.) 41.69 15.76 37.48
Longformer-large (15k tok.) 41.69 15.79 37.49

Our models (Extractive)

HiStruct+
Longformer-base (15k tok.)

sHE+STE(classified) 46.59*’ 20.39 42.11*
sHE+STE 46.49*’ 20.29 42.02*
sHE 45.76* 19.64 41.34*

Longformer-large (15k tok.)
sHE+STE(classified) 46.38*’ 20.17 41.92*
sHE 45.67* 19.60 41.26*

Table 2: Results on PubMed

parison baselines that are not aware of HiStruct.496

The last block presents the results of two groups497

of HiStruct+ models grouped by the base TLM498

used in the summarization model. In PubMed,499

we can choose to inject the sHE with or without500

the STE. STE can be replaced by classified STE.501

This can result in three different injection settings502

for a model group, namely sHE, sHE+STE, and503

sHE+STE(classified). For each model setting, we504

report the results of the best-performed checkpoint.505

Our best HiStruct+ model on PubMed is a506

model based on Longformer-base taking 15,000507

input tokens, which injects the sHE and the clas-508

sified STE into the extractive model. It achieves509

ROUGE results of 46.59/20.39/42.11. Compared510

to the baseline, our model increases ROUGEs by511

4.9/4.63/4.63, which indicates the effectiveness of512

the proposed hierarchical structure encoding and513

injection methods. Our results also beat the SOTA514

extractive model ExtSum-LG+MMR-Select+ col-515

lectively on all three ROUGE metrics with improve-516

ments of 1.2/0.02/1.12. Taking the SOTA abstrac-517

tive and hybrid approaches into account, our results518

are still very competitive. 519

All HiStruct+ models produce the competitive 520

results that are better than or very close to the for- 521

mer extractive SOTA results. They also collectively 522

outperform the baselines by a large margin on all 523

evaluation metrics. This overperformance is much 524

more substantial than that on CNN/DailyMail. One 525

of the reasons might be that we include the STE in 526

addition to the sHE while training on PubMed. Fur- 527

thermore, the HiStruct of the documents is more 528

obvious than in CNN/DailyMail. 529

Ablation studies on PubMed suggest that the 530

largest improvement of our models against the com- 531

parison baseline is contributed by the sHE. This 532

is observed when we compare the three models in 533

the first group of HiStruct+ models with the base- 534

line. Injecting merely sHE, the results are already 535

increased by 4.07/3.88/3.86. When the STE are in- 536

cluded additionally, the results are further increased 537

by 0.73/0.65/0.68. When using classified STE in- 538

stead, the ROUGEs are increased by a small margin 539

of 0.1/0.1/0.09. In the second group of HiStruct+ 540

models, it is also observed that injecting the sHE 541

leads to the largest performance gain. 542

The extracted summaries analysis on PubMed 543

test set is demonstrated in Figure 2b. The model 544

in green is our best HiStruct+ model, the model in 545

orange is the corresponding baseline, the model in 546

blue is the ORACLE system. It is observed that the 547

ORACLE summaries are distributed across docu- 548

ments evenly. The comparison baseline favors the 549

first 5 sentences and ignores the sentences appear- 550

ing at later positions. In contrast, our HiStruct+ 551

model overcomes the problem of focusing merely 552

on the first sentences. The outputs of the HiStruct+ 553

model are close to the ORACLE summaries. It 554

indicates that by injecting HiStruct information 555

explicitly using our proposed method, the model 556

successfully learns the deeper internal hierarchical 557

structure of the PubMed documents and relies less 558

on the linear sentence positions. 559

5.2.2 Results on arXiv 560

ROUGE results on arXiv are summarized in Ta- 561

ble 3. Similar as on PubMed, the LEAD-n base- 562

lines perform badly on arXiv. The results of the 563

HiStruct+ models are presented in two groups. The 564

first group takes 15k input tokens, while the sec- 565

ond group increases the input length to 28k. In the 566

groups, different injection settings are compared. 567

Our best HiStruct+ model trained on arXiv is 568

based on Longformer-base with 28k input tokens, 569
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Model ↓ / Metric → R1 R2 RL

Abstractive

PEGASUS (2020) 44.70 17.27 25.80
BigBird PEGASUS (2020) 46.63 19.02 41.77
DANCER PEGASUS (2020) 45.01 17.60 40.56
LED-large (2020) 46.63 19.62 41.48

Extractive

Sent-CLF (2020) 34.01 8.71 30.41
Sent-PTR (2020) 42.32 15.63 38.06
ExtSum-LG + (2020)

RLoss 44.01 17.79 39.09
MMR-Select+ 43.87 17.50 38.97

Hybrid

TLM-I+E(G,M) (2020) 41.62 14.69 38.03

Reproduced baselines

ORACLE (15k tok.) 53.58 26.19 47.76
ORACLE (28k tok.) 53.97 26.42 48.12
LEAD-10 37.37 10.85 33.17
TransformerETS

Longformer-base (15k tok.) 38.49 11.59 33.85
Longformer-base (28k tok.) 38.47 11.56 33.82

Our models (Extractive)

HiStruct+
Longformer-base (15k tok.)

sHE+STE(classified) 44.94* 17.42 39.90*
sHE+STE 45.02* 17.48 39.94*
sHE 43.04 15.87 38.13

Longformer-base (28k tok.)
sHE+STE(classified) 45.17* 17.61 40.10*
sHE+STE 45.22* 17.67 40.16*

Table 3: Results on arXiv

injecting the sHE with the original STE. This model570

beats the results achieved by ExtSum-LG+RLoss571

and sets the new SOTA extractive summarization572

ROUGEs on arXiv to 45.22/17.67/40.16.573

Our HiStruct+ models collectively outperform574

the corresponding baselines (the last two models575

in the baselines block) by a large margin on all576

ROUGEs. This overperformance is much more577

significant than that on both CNN/DailyMail and578

PubMed. The arXiv dataset has the largest hi-width579

among the three datasets and the hierarchical struc-580

ture is most conspicuous, which might be the rea-581

son for the largest performance improvements by582

injecting HiStruct information on arXiv.583

Ablation studies in the first HiStruct+ group584

also suggest that the largest improvement of our585

HiStruct+ model against the comparison baseline is586

contributed by the sHE. The effect of using the clas-587

sified STE on arXiv is opposite to that on PubMed.588

The results are decreased slightly when we replace589

the STE with the classified STE. This phenomenon590

occurs in the second group of HiStruct+ models as591

well. We notice the fact that there are 500k unique592

STs in arXiv, while PubMed contains 164k unique593

STs. It is no wonder that it becomes much more dif- 594

ficult to group a large number of STs correctly into 595

several section classes. Furthermore, the PubMed 596

dataset contains papers mostly in the bio-medical 597

domain. The structure of those papers tends to fol- 598

low specific writing conventions in the bio-medical 599

sciences. The arXiv dataset, in contrast, contains 600

scientific papers that are not limited to a specific 601

domain. The document structure and the writing 602

styles are more diverse. 603

The extracted summaries analysis on arXiv is 604

demonstrated in Figure 2c. The baseline (in orange) 605

tends to select the first sentence and the sentences 606

indexed between 10 and 20, while it excludes sen- 607

tences at later positions. It is clearly observed that 608

the summary sentences extracted by our model are 609

evenly distributed, the informative sentences ap- 610

pearing at later positions are not ignored. 611

6 Conclusions 612

In this paper, we propose a novel approach to ex- 613

tract, encode and inject the hierarchical structure 614

(HiStruct) information into an extractive summa- 615

rization model based on pre-trained TLM. We eval- 616

uate our models systematically on CNN/DailyMail, 617

PubMed and arXiv. Our models increase the SOTA 618

extractive ROUGEs on all three datasets. The im- 619

provement is especially substantial on PubMed and 620

arXiv, which contain longer scientific papers with 621

conspicuous hierarchical structures. On PubMed, 622

our model increases the former extractive SOTA 623

ROUGE-1 by 1.2 and ROUGE-L by 1.12. On 624

arXiv, our model increases the former extractive 625

SOTA ROUGE-1 by 1.21 and ROUGE-L by 1.07. 626

Using various experimental settings, our HiStruct+ 627

models collectively outperform the corresponding 628

strong baselines, which differ from our models only 629

in that the HiStruct information is not taken into 630

account. Ablation studies on PubMed and arXiv in- 631

dicate that the improvements are mostly gained by 632

providing the hierarchical position information of 633

sentences to the summarization model. The idea of 634

extracting, encoding and injecting the HiStruct in- 635

formation can be easily adopted in abstractive sum- 636

marization. We see great potential in an encoder- 637

decoder architecture with the proposed HiStruct 638

injection components. 639
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A Appendix801

A.1 Statistics of the datasets802

Dataset CNN/DailyMail PubMed arXiv
Raw documents

avg. #words 792.24 2,967.22 5,825.68
avg. #sentences 40.31 86.37 206.3
avg. #sections* 31.2 5.91 5.55
avg. hi-width 1.33 15.79 37.33

Raw gold summaries

avg. #words 53.25 202.42 272
avg. #sentences 3.75 6.85 9.61

Novel n-grams in gold summaries

avg. % novel
1grams 13.97 0.2 0.15
2grams 51.79 2.69 2.73

Nr. of documents

#train 287,227 119,924 203,037
#val 13,368 6,633 6,436
#test 11,490 6,658 6,440

Documents tokenized by the RoBERTa tokenizer

avg. doc length 964 4,252 8,991
75% doc length 1,219 5,382 11,289
85% doc length 1,448 6,709 14,294
99% doc length 2,345 15,277 35,559

Table 4: Statistics of the datasets. * avg. #paragraphs in
CNN/DailyMail.

We used the CNN/DailyMail2 and the PubMed803

and arXiv datasets3. We use the original splits used804

by See et al. (2017) and Cohan et al. (2018) for805

training, validation and testing.806

A.2 Pre-defined ST classes807

The pre-defined dictionaries of the typical ST808

classes and the corresponding in-class STs will809

be released in our GitHub project 4.810

There are 164,195 unique STs in PubMed, and811

500,015 in arXiv, which are encoded as STE re-812

spectively using the base TLM.813

For PubMed, we define 8 ST classes: introduc-814

tion, background (i.e., background, review and re-815

lated work), case (i.e., case reports), method, result,816

discussion, conclusion and additional information817

(i.e., additional information such as conflicts of in-818

terest, financial support and acknowledgements).819

For arXiv, we define 10 classes: introduction, back-820

ground, case, theory (i.e., problem formulation and821

proof of theorem), method, result, discussion, con-822

clusion, reference and additional information. Clas-823

sified STEs are prepared accordingly.824

2https://cs.nyu.edu/~kcho/DMQA/
3https://github.com/armancohan/long-summarization
4https://bit.ly/3CeCVj7

A.3 Implementation Details 825

The learning rate schedule follows (Liu and Lap- 826

ata, 2019) with warming-up. On CNN/DailyMail, 827

we train our models 50,000 steps with 10,000 828

warming-up steps. On PubMed and arXiv, we train 829

our models 70,000 steps with 10,000 warming-up 830

steps when taking 15,000 tokens as input. When 831

we train models on arXiv with 28,000 input tokens, 832

we train the models 100,000 steps with 10,000 833

warming-up steps. 834

The number of the extracted sentences is vari- 835

ous depending on the dataset. On CNN/DailyMail, 836

we follow (Liu and Lapata, 2019) to select 3 sen- 837

tences for each document as its extractive summary 838

and apply Trigram Blocking (Paulus et al., 2018) 839

to reduce the redundancy of the selected sentences. 840

On PubMed and arXiv, 7 sentences are extracted. 841

Trigram Blocking is not applied on PubMed and 842

arXiv. 843

The length limit of the original TLM is over- 844

come by adding extra token linear position em- 845

beddings (tPE) to cover the desired length. The 846

additional tPE are trained with the whole summa- 847

rization model. Instead of initializing them ran- 848

domly, we copy the original tPE of the base TLM 849

multiple times until the desired length is covered. 850

The HiStruct+ models are trained on 3 GPUs 851

(NVIDIA® Quadro RTX™ 6000 GPUs with 24GB 852

memory) with gradient accumulation every two 853

steps. Checkpoints are saved and evaluated on 854

the validation set every 1,000 steps. The top-3 855

checkpoints based on the validation loss are kept. 856

The batch size varies with the base TLM and the 857

input length. The base TLM is not fine-tuned when 858

training the summarization model on PubMed and 859

arXiv due to resource limitation. 860

A.4 Model Architectures and Experimental 861

Settings 862

The detailed model architectures and experimen- 863

tal settings for models trained on CNN/DailyMail, 864

PubMed and arXiv are summarized in Table 5, Ta- 865

ble 6 and Table 7. The detailed model architectures 866

and experimental settings include: 867

Base TLM: the base Transformer language 868

model used for sentence encoding in the sum- 869

marization system 870

Input length: How many tokens are taken as 871

input 872
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Extra tPE: How to initialize the extra input to-873

ken position embeddings when taking longer874

input. We can choose to randomly initialize875

them or copy the original ones.876

FT: Whether the base TLM is fine-tuned with877

the entire summarization model878

TL: The number of the Transformer layers879

stacked upon the base TLM for extractive sum-880

marization881

WS: Warmup steps, how many steps are used882

for warming-up of the learning rate883

TS: Training steps, the total training steps884

BS: Batch size, how many documents are used885

as one batch during training886

AC: Accumulation count, gradient accumula-887

tion every k steps888

GPU: The number of GPUs used for training,889

we use NVIDIA® Quadro RTX™ 6000 GPUs890

with 24GB memory891

HiStruct: The injection setting. Hierar-892

chical structure information that can be in-893

jected into the summarization model are: sHE894

(i.e., sentence hierarchical position embed-895

dings), STE (i.e., section title embeddings),896

or STE(classified) (i.e., classified section title897

embeddings)898

HPE: The hierarchical position encoding899

method used in the model. The method900

is based on the sinusoidal (sin) or the901

learnable (la) linear position embedding902

method associated with a combination mode903

(sum/mean/concat)904

#PE: The numbers of the learned position em-905

beddings for each hierarchy-level and the lin-906

ear sentence positions, when using the learn-907

able position embedding method. We set them908

to a same value during training.909

SS: Saving steps, save checkpoints every k910

steps911

n: Select n sentences as the extractive sum-912

mary for each document913

TB: Trigram Blocking, whether to apply Tri-914

gram Blocking during sentence selection915

A.5 Ablation studies on CNN/DailyMail 916

The effect of token HP embeddings is investi- 917

gated in experiments. The HP embeddings of to- 918

kens are generated as followings: 919

Given the t-th token within the document,its HP 920

can be represented by Equation 7: 921

TSVt = (at, bt, ct) (7) 922

where at represents the linear position of the sec- 923

tion which contains the token, bt is the sentence’s 924

position within the section and ct is the linear posi- 925

tion of the token within the sentence. 926

Given the t-th token whose TSV is a 3- 927

dimensional vector (at, bt, ct), and the desired size 928

of the output embeddings d, we can embed its 929

token-level hierarchical position embeddings tHE 930

by Equations 8, 9, 10, using different combination 931

settings. 932

tHEsum(t, d) = PE(at, d)+PE(bt, d)+PE(ct, d) (8) 933

tHEmean(t, d) =
PE(at, d) + PE(bt, d) + PE(ct, d)

3
(9) 934

tHEconcat(t, d) = PE(at,
d

3
)|PE(bt,

d

3
)|PE(ct,

d

3
)

(10) 935

Initial experiments are conducted to assess the 936

summarization performance of the HiStruct+ mod- 937

els with or without the tHE. For this purpose, 938

we compare a HiStruct+ model merely inject- 939

ing sentence HP embeddings (i.e., sHE) with a 940

HiStruct+ model with both sentence and token 941

HP embeddings (i.e., sHE& tHE). The former is 942

denoted as HiStruct(sHE)+ in Table 8, while the 943

latter is denoted as HiStruct(sHE&tHE)+. The 944

HiStruct(sHE&tHE)+ models add the correspond- 945

ing tHEs to the input embeddings at each input 946

position, and sHEs to the TLM sentence represen- 947

tations. The HiStruct(sHE)+ models merely add 948

sHEs. The averaged summarization ROUGEs of 949

three best checkpoints are reported in the Table 950

8. The table summarize three groups of HiStruct+ 951

models based on different TLM with various in- 952

put lengths. The detailed model architectures and 953

experimental settings of all models in 8 are sum- 954

marized in Table 9. 955

The experimental results suggest that the 956

HiStruct(sHE)+ models with merely sHE consis- 957

tently outperform the HiStruct(sHE&tHE)+ models 958
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Models/Settings Base TLM Input
length

Extra
tPE BS HiStruct HPE #PE

Reproduced baselines

TransformerETS
BERT-base (1,024 tok.) BERT-base 1,024 copied 200 none - -
BERT-large (512 tok.) BERT-large 512 - 100 none - -
RoBERTa-base (1,024 tok.) RoBERTa-base 1,024 copied 250 none - -

Our models (Extractive)

HiStruct+
BERT-base (1,024 tok.) BERT-base 1,024 copied 200 sHE only la-sum 407
BERT-large (512 tok.) BERT-large 512 - 100 sHE only la-sum 407
RoBERTa-base (1,024 tok.) RoBERTa-base 1,024 copied 250 sHE only la-sum 407

Table 5: Detailed model architectures and experimental settings for models trained on CNN/DailyMail (also see
Table 1). The settings not included in the table are the same for all models. FT: yes, TL:2, WS:10,000, TS:50,000,
AC:2, GPU:3, SS:1,000, n: 3, TB:yes.

Models/Settings Base TLM BS HiStruct HPE #PE

Reproduced baselines

TransformerETS
Longformer-base (15k tok.) Longformer-base 500 none - -
Longformer-large (15k tok.) Longformer-large 256 none - -

Our models (Extractive)

HiStruct+
Longformer-base (15k tok.)

sHE+STE(classified) Longformer-base 500 sHE+STE(classified) la-sum 450
sHE+STE Longformer-base 500 sHE+STE la-sum 450
sHE Longformer-base 500 sHE only la-sum 450

Longformer-large (15k tok.)
sHE+STE(classified) Longformer-large 256 sHE+STE(classified) la-sum 450
sHE Longformer-large 256 sHE only la-sum 450

Table 6: Detailed model architectures and experimental settings for models trained on PubMed (also see Table 2).
The settings not included in the table are the same for all models. Input length: 15,000; Extra tPE: copied; FT: no;
TL:2; WS:10,000; TS:70,000; AC:2; GPU:3; SS:1,000; n: 7; TB:no.

under various circumstances. The reason might be959

that we directly fine-tune the TLM on the extrac-960

tive summarization task. When adding extra tHE961

to the input embeddings to the TLM, we do not962

pre-train the TLM with the adjusted inputs. It is963

reasonable that the TLM has difficulties in under-964

standing of the new inputs based on the knowledge965

learned from the original format of encodings. Pre-966

vious works, such as LayoutLM (Xu et al., 2020),967

LamBERT (Garncarek et al., 2021) and HIBERT968

(Zhang et al., 2019), which adjust the input embed-969

dings or the encoder architecture of the pre-trained970

TLM, continue to pre-train the released instances971

of pre-trained TLM on their own data. Continu-972

ing pre-training of the language models is a core973

part of these works and leads to significant im-974

provements on downstream tasks. Due to lack of975

computing resources, we are not able to pre-train976

the language models. Furthermore, the key goal of977

our work is to experiment with various methods to978

make use of the internal hierarchical text structure979

information for extractive summarization. In this 980

work, we conduct further experiments without to- 981

ken HP information and leave for future work the 982

pre-training of language models with the adjusted 983

input embeddings. 984

The effect of different settings for HP encod- 985

ing is also investigated. As explained previously, 986

based on different PE methods (i.e., the sin. or la. 987

PE) associated with various combination modes 988

(i.e., sum, mean, concat), we have totally 6 dif- 989

ferent settings for hierarchical position encoding. 990

We investigate the effect of those 6 settings sys- 991

tematically in experiments while keeping the rest 992

settings and parameters the same. Therefore, their 993

summarization results are comparable. 994

Table 10 summarizes the ROUGE results of 6 995

HiStruct+ models using the 6 hierarchical posi- 996

tion encoding settings respectively, which are all 997

trained on CNN/DailyMail based on BERT-base 998

with 1,024 input tokens, injecting merely sHE. The 999

detailed model architectures and experimental set- 1000
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Models/Settings Input
length TS BS HiStruct HPE #PE

Reproduced baselines

TransformerETS
Longformer-base (15k tok.) 15,000 70,000 500 none - -
Longformer-base (28k tok.) 28,000 100,000 500 none - -

Our models (Extractive)

HiStruct+
Longformer-base (15k tok.)

sHE+STE(classified) 15,000 70,000 500 sHE+STE(classified) la-sum 720
sHE+STE 15,000 70,000 500 sHE+STE la-sum 720
sHE 15,000 70,000 500 sHE only la-sum 720

Longformer-base (28k tok.)
sHE+STE(classified) 28,000 100,000 500 sHE+STE(classified) la-sum 1300
sHE+STE 28,000 100,000 500 sHE+STE la-sum 1300

Table 7: Detailed model architectures and experimental settings for models trained on arXiv (also see Table 3). The
settings not included in the table are the same for all models. Base TLM: Longformer-base; Extra tPE: copied; FT:
no; TL:2; WS:10,000; AC:2; GPU:3; SS:1,000; n: 7; TB:no.

Experimental Results R1 R2 RL

BERT-base (512 tok.)

HiStruct(sHE)+ 43.23 20.15 39.65
HiStruct(sHE&tHE)+ 40.76 18.03 37.08

BERT-base (1,024 tok.)

HiStruct(sHE)+ 43.38 20.33 39.78
HiStruct(sHE&tHE)+ 41.04 18.25 37.41

BERT-large (512 tok.)

HiStruct(sHE)+ 43.46 20.4 39.85
HiStruct(sHE&tHE)+ 40.58 17.71 36.83

Table 8: Ablation study on CNN/DailyMail (a)

tings are summarized in Table 11.1001

We observe that when using the la PE, the com-1002

bination mode sum leads to better results compared1003

to the mean and concat modes (see the first three1004

columns in Table 10). When using the sin PE, the1005

various combination modes do not make a con-1006

spicuous difference in summarization performance.1007

The sum and concat modes perform slightly better .1008

When using sum mode, the la and the sin PE pro-1009

duce similar results (see the first row of ROUGEs1010

in Table 10).1011

The effect of using the sin vs the la PE method1012

is further investigated in experiments. As discussed1013

above, the HP encoding methods la-sum and sin-1014

sum lead to similar results. We conduct experi-1015

ments to further investigate the effect of using the1016

la-sum vs sin-sum method. We also compare our1017

HiStruct+ models with the corresponding strong1018

baseline model which differs from our models only1019

in that it does not take into account extra HiStruct1020

information.1021

Table 12 includes the ROUGEs of three set of1022

comparison models, which use an extended BERT- 1023

base model taking 1,024 input tokens, an original 1024

BERT-large instance and an extended RoBERTa- 1025

base model with 1,024 input tokens respectively 1026

as the base TLM in the extractive summarization 1027

system. In each block, the first row is the base- 1028

line. The second row is a HiStruct+ model which 1029

injects sHE encoded by the method la-sum, de- 1030

noted as HiStruct(la-sum)+. The third row is a 1031

similar HiStruct+ model using the sin-sum method 1032

for HP encoding, denoted as HiStruct(sin-sum)+. 1033

The detailed model architectures and experimen- 1034

tal settings of all models included in Table 12 are 1035

summarized in Table 13. 1036

Regardless of the hierarchical position encod- 1037

ing method used, all HiStruct+ models produces 1038

better ROUGE-1, ROUGE-2 and ROUGE-L on 1039

CNN/DailyMail compared to the strong baseline. 1040

This indicates the potential benefits of the hierarchi- 1041

cal structure information and the effectiveness of 1042

our proposed methods for hierarchical position en- 1043

coding. However, the improvements compared to 1044

the baseline are not significant. It is also observed 1045

in Table 12 that the HiStruct(la-sum)+ models out- 1046

perform slightly the HiStruct(sin-sum)+ models 1047

under all the three different settings. The differ- 1048

ences of using the sin and the la PE method are not 1049

significant on CNN/DailyMail. 1050

The effect of the number of the stacked Trans- 1051

former layers in the HiStruct+ models is investi- 1052

gated in our experiments. We fine-tune an extended 1053

BERT-base model with 1,024 input tokens for ex- 1054

tractive summarization. The method sin-sum is 1055

used to generate sHE. We build the HiStruct+ mod- 1056
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Models/Settings Base TLM Input
length

Extra
tPE BS HiStruct HPE #PE

BERT-base (512 tok.)

HiStruct (sHE) + BERT-base 512 - 400 sHE only sin-sum -
HiStruct (sHE&tHE) + BERT-base 512 - 400 sHE & tHE sin-sum -

BERT-base (1,024 tok.)

HiStruct (sHE) + BERT-base 1024 copied 200 sHE only la-sum 407
HiStruct (sHE&tHE) + BERT-base 1024 copied 200 sHE & tHE la-sum 407

BERT-large (512 tok.)

HiStruct (sHE) + BERT-large 512 - 100 sHE only sin-sum -
HiStruct (sHE&tHE) + BERT-large 512 - 100 sHE & tHE sin-sum -

Table 9: Detailed model architectures and experimental settings for ablation study (a) on CNN/DailyMail (also see
Table 8). The settings not included in the table are the same for all models. FT: yes; TL:2; WS:10,000; TS:50,000;
AC:2; GPU:3; SS:1,000; n: 3; TB:yes.

la PE sin PE

R1 R2 RL R1 R2 RL

HiStruct+BERT-base (1,024 tok.)

sum 43.38 20.33 39.78 43.37 20.27 39.75
mean 43.33 20.31 39.73 43.33 20.28 39.72
concat 43.22 20.18 39.61 43.37 20.29 39.74

Table 10: Ablation study on CNN/DailyMail (b)

Models/Settings HiStruct HPE #PE

HiStruct+BERT-base (1,024 tok.)

la-sum sHE only la-sum 407
la-mean sHE only la-mean 407
la-concat sHE only la-concat 407
sin-sum sHE only sin-sum -
sin-mean sHE only sin-mean -
sin-concat sHE only sin-concat -

Table 11: Detailed model architectures and experimen-
tal settings for ablation study (b) on CNN/DailyMail
(also see Table 10). The settings not included in this
table are the same for all models. Base TLM:BERT-
base; Input length:1,024; Extra tPE:copied; FT: yes;
TL:2; WS:10,000; TS:50,000; BS:200, AC:2; GPU:3;
SS:1,000; n: 3; TB:yes.

els with 1, 2, 3 stacked transformer layers respec-1057

tively, while keeping all other settings the same.1058

The ROUGEs of those three HiStruct+ models are1059

reported in the first block in Table 14. The detailed1060

model architectures and experimental settings of1061

all models in the table can be found in Table 15.1062

Our experimental results suggest that two stacked1063

Transformer layers perform best in our HiStruct+1064

models for extractive summarization.1065

The effect of random initialization vs copied1066

initialization for the additional input token po-1067

sition embeddings is also investigated in exper-1068

iments. When taking input texts longer than the1069

Experimental Results R1 R2 RL

BERT-base (1,024 tok.)

baseline 43.32 20.27 39.69
HiStruct(la-sum)+ 43.38 20.33 39.78
HiStruct(sin-sum)+ 43.37 20.27 39.75

BERT-large (512 tok.)

baseline 43.45 20.36 39.83
HiStruct(la-sum)+ 43.49 20.4 39.9
HiStruct(sin-sum)+ 43.46 20.4 39.85

RoBERTa-base (1,024 tok.)

baseline 43.62 20.53 39.99
HiStruct(la-sum)+ 43.65 20.54 40.03
HiStruct(sin-sum)+ 43.64 20.56 40.02

Table 12: Ablation study on CNN/DailyMail (c).

original input length of the base TLM, we need to 1070

add extra input token position embeddings (tPE) for 1071

each extended position. We can choose to randomly 1072

initialize the extra tPE or copy the original ones to 1073

cover the extended input length. To investigate the 1074

effect of different initialization strategies, we use 1075

the basic settings of the HiStruct+ model with two 1076

summarization layers, namely the second model in 1077

the first block in Table 14. To build the comparison 1078

model, only the initialization strategy is changed 1079

to random. As shown in the second block in Ta- 1080

ble 14, substantial improvements are achieved by 1081

using the copied tPEs for initialization instead of 1082

random initialization. ROUGE-1, ROUGE-2 and 1083

ROUGE-L are increased by 2.84, 2.51 and 2.95 1084

respectively. We assume that the released token 1085

position embeddings of the pre-trained TLM al- 1086

ready capture local structure within the 512 tokens 1087

window. The knowledge about the local structure 1088

is preserved when we copy the released tPEs to 1089

an additional text window containing 512 tokens 1090

for initialization. This might be the reason for the 1091
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Models/Settings Base TLM Input
length

Extra
tPE BS HiStruct HPE #PE

BERT-base (1,024 tok.)

baseline BERT-base 1024 copied 200 none - -
HiStruct (la-sum) + BERT-base 1024 copied 200 sHE only la-sum 407
HiStruct (sin-sum) + BERT-base 1024 copied 200 sHE only sin-sum -

BERT-large (512 tok.)

baseline BERT-large 512 - 100 none - -
HiStruct (la-sum) + BERT-large 512 - 100 sHE only la-sum 407
HiStruct (sin-sum) + BERT-large 512 - 100 sHE only sin-sum -

RoBERTa-base (1,024 tok.)

baseline RoBERTa-base 1024 copied 250 none - -
HiStruct (la-sum) + RoBERTa-base 1024 copied 250 sHE only la-sum 407
HiStruct (sin-sum) + RoBERTa-base 1024 copied 250 sHE only sin-sum -

Table 13: Detailed model architectures and experimental settings for ablation study (c) on CNN/DailyMail (also see
Table 12). The settings not included in this table are the same for all models. FT: yes; TL:2; WS:10,000; TS:50,000;
AC:2; GPU:3; SS:1,000; n: 3; TB:yes.

Experimental Results R1 R2 RL

HiStruct(sin-sum,sHE)+
BERT-base (1,024 tok.)

-#Transformer layers
for summarization

1 43.29 20.25 39.69
2 43.37 20.27 39.75
3 43.16 20.15 39.56

-Extra input token
position embeddings(tPE)

Randomly initialized 40.53 17.76 36.8
Copied 43.37 20.27 39.75

-With/without sentence
position embeddings(sPE)

With sPE 43.37 20.27 39.75
Without sPE 43.31 20.25 39.69

Table 14: Ablation study on CNN/DailyMail (d).

significant superiority over random initialization.1092

The effect of the linear sentence position em-1093

beddings is also investigated in experiments. As1094

shown in Figure 1, besides the hierarchical posi-1095

tions of each sentence, we also take the linear posi-1096

tion of each sentence within the whole document1097

into account by adding a linear sentence position1098

embedding (sPE) to each sentence representation.1099

We assess the effect of the linear sentence position1100

embeddings by comparing two HiStruct+BERT-1101

base models with or without the sPE. The experi-1102

mental results are summarized in the third block in1103

Table 14. The HiStruct+ model with sPE outper-1104

forms the HiStruct+ model without sPE by a small1105

margin regarding all ROUGE metrics.1106

Models/Settings Extra
tPE TL

HiStruct(sin-sum,sHE)+BERT-base (1,024 tok.)

# transformer layers for summarization

1 copied 1
2 copied 2
3 copied 3

Extra input token position embeddings (tPE)

Randomly initialized randomly initialized 2
Copied copied 2

With/without sentence position embeddings (sPE)

With sPE copied 2
Without sPE copied 2

Table 15: Detailed model architectures and experimental
settings for ablation study (d) on CNN/DailyMail (also
see Table 14). The settings not included in this table are
the same for all models. Base TLM: BERT-base; Input
length:1,024; FT: yes; WS:10,000; TS:50,000; BS:200;
AC:2; GPU:3; HiStruct: sHE only; HPE:sin-sum; #PE:-;
SS:1,000; n: 3; TB:yes.
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