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ABSTRACT

In-context learning (ICL) is an important yet not fully understood ability of pre-
trained large language models (LLMs). It can greatly enhance task performance
using a few examples, termed demonstrations, without fine-tuning. Although effec-
tive in question answering, ICL often underperforms in long-form generation tasks
such as summarization. Under appropriately realistic assumptions, we empirically
and theoretically show that ICL demonstrations alone are insufficient to teach
LLMs the task’s language and format distributions for generation.
We argue for explicit exposure to the task distributions and hypothesize that defin-
ing them by prompting enhances model performance. To this end, we present
LongGuide, which efficiently generates two parallel streams of guidelines captur-
ing task language and format properties: (i) Metric Guidelines (MGs) that instruct
models to optimize self-evaluated metrics; and (ii) Output Constraint Guidelines
(OCGs) that constrain generation at both token and sentence levels. LongGuide
automatically selects the best combination of guidelines, improving both strong
open- and closed-source LLMs by over 5% in both zero- and few-shot settings.
We show that LongGuide is generalizable, learnable by weak models to enhance
strong ones, and integrates synergistically with automatic prompt optimizers.

1 INTRODUCTION

In recent years, pre-trained large language models (LLMs) have demonstrated impressive instruction-
based performance through zero- and few-shot learning capabilities (Brown et al., 2020; Chowdhery
et al., 2022; OpenAI, 2022; Touvron et al., 2023; Jiang et al., 2023; Team et al., 2023). Notably,
few-shot learning, termed as in-context learning (ICL), has proven highly effective and widely
used to calibrate LLMs for applications (Dong et al., 2022). Formally, let V be the vocabulary
of the LM. For a task T at test time, the goal is to generate a token sequence y ∈ Y ⊆ V∗,
given another input token sequence x ∈ X ⊆ V∗. Then, ICL generation using an LLM M is the
generation conditioned on x with k task demonstrations {(x1, y1), ..., (xk, yk)} concatenated into
df = [x1, y1, ..., xk, yk] ∈ D ⊆ V∗. The probability distribution induced from M : V∗ → R is:

PM(y|df , x) :=
|y|∏
t=1

Myt([x1, y1, ..., xk, yk, x, y
<t]) (1)

where y = [y1, . . . , y|y|] with yt ∈ V . Several prior studies attempt to explain the ICL capabilities of
LLMs, advocating for the sufficiency of well-chosen df as implicitly teaching the M to perform the
tasks, especially classification ones (Saunshi et al., 2020; Xie et al., 2021; Wang et al., 2024). Central
to their theoretical analyses is a strong assumption that the language model M fully captures the
underlying distribution of the task’s language; i.e., PM(X) = PT (X) where PT is the task-specific
data distribution.

However, this assumption is often not met, especially with domain-specific terminologies (Cheng
et al., 2024) (also see §B.1 for a case study), raising concerns about the actual sufficiency of ICL.
Moreover, recent studies empirically show that ICL underperforms in long-form generation tasks
involving multi-sentence or -paragraph answers (Sun et al., 2023a; Huang et al., 2024), highlighting
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significant gaps in our understandings of the causes of these limitations and how to effectively instruct
LLMs for these tasks. These challenges remain unsolved to date.

Ground-truth: Suzanne is at work and is having a break now. Morgan invites
Suzanne to a concert of Maroon 5 which takes place next week at the Hulu Theatre
at Madison Square Garden. Suzzanne agrees.

Zero-shot 
(ROUGE-L = 25.00)

Output: The dialogue shows
Morgan and Suzanne having a
flirty conversation while discussing
mundane work and expressing
their affection for each other.
Morgan surprises Suzanne with
tickets to a Maroon 5 concert, and
Suzanne expresses her
excitement and gratitude.

Few-shot (3 random shots)
(ROUGE-L = 26.67)

Output: Morgan and 
Suzanne discuss their day, 
with Morgan inviting 
Suzanne to a Maroon 5 
concert. Suzanne 
excitedly accepts, 
and Morgan expresses 
his desire for her happiness.

Few-shot (3 shots) + LongGuide 
(MG-OCG, ROUGE-L = 40.74)

Guidelines: The summary is highly
concise and to the point without being
comprehensive......The summary must
have from 1 to 4 sentences and from 5 to
51 words with an average of 22 words
and 1 sentences.
Output: Morgan invites Suzanne to a
Maroon 5 concert at Madison Square
Garden and she gladly accepts,
expressing happiness and gratitude.

Zero-shot + LongGuide 
(OCG, ROUGE-L = 29.85)

Guidelines: The summary must have
from 1 to 4 sentences and from 5 to 51
words with an average of 22 words and 1
sentences.
Output: Morgan and Suzanne are talking
about their day at work. Morgan offers
Suzanne tickets to a Maroon 5 concert,
and Suzanne expresses excitement and
thanks Morgan. They plan to attend the
concert together.

With guidelineWithout guideline

Dialogue: Morgan: Hey gorgeous, how’s your day?
Suzanne: Nothing special, it’s just one of many boring days at work. But… better...

Figure 1: ChatGPT results on a SAMSum ex-
ample (Gliwa et al., 2019). With LongGuide, the
generated output aligns better with ground truth,
and the quality is also improved by removing ver-
bose details: “The dialogue...” (ZS), “...discuss
their day” (FS). See Appx.-Figure 14 for full texts.

In this work, we first study the proficiency of ICL
for long-form generation tasks. We empirically and
theoretically highlight that if a language model fails
to capture the task’s text properties (language and
format), providing demonstrations alone with such
properties cannot entirely resolve this (§2). This is
because the model does not consistently apply them
to all generated responses. Maintaining such prop-
erties in responses is crucial for accurately solving
the task. Therefore, we argue that providing explicit
task guidelines that comprehensively capture these
text properties is essential for improving LLM perfor-
mance. Figure 1 illustrates such an example where
instructing LLMs explicitly by guidelines carrying
certain properties (e.g., conciseness, #sentences) of
the task output distribution improves both alignment
with ground truth and generation quality.

We then propose LongGuide (§3), a guideline-
learning algorithm that efficiently generates two types
of guidelines concurrently from limited task training
data as supplementary instructions to enhance LLMs:
(i) Metric Guidelines (MGs) that steer models to opti-
mize self-evaluation guided metrics, inspired by prior
studies in machine translation (Ranzato et al., 2015)
and LLM self-evaluation (Ren et al., 2023); and (ii)
Output Constraint Guidelines (OCGs) that impose
constraints on generated outputs at the sentence and token levels, drawing on controllable generation
research (Fan et al., 2018a). LongGuide is related to previous studies in task instruction construction
(Wang et al., 2022b) and task understanding through task definitions (Yin et al., 2023). However, it
differs by offering “post-hoc” instructions that guide LLMs to enhance responses based on learned
quality and quantitative criteria.

LongGuide automatically identifies optimal guidelines, significantly enhancing distribution alignment
and generation quality across seven generation tasks and one real-life chat LLM benchmark, including
summarization, text simplification, translation, dialogue generation, and table-to-text generation. Its
guidelines can enhance ICL performance through demonstrations (§5.2), improve non-instruct LLMs
(§C.1), boost stronger models when learned by weaker ones (§C.2), and can be further optimized for
usage using prompt optimization algorithms (§C.3). Notably, LongGuide is approximately at least
3.75 times more cost-efficient than prompt optimization algorithms (§F.3-Table 20) as it requires only
four prompt variants to verify on the validation set while delivering superior performance.

2 ICL ALONE IS INSUFFICIENT FOR LONG-FORM GENERATION

A long-form generation dataset with n samples for a task T is defined as D = {(xt
i, y

t
i)}ni=1 where xt

i
and yti are input contexts and ground-truth sentence- or paragraph-long responses (Fan et al., 2019).
For such tasks, preserving language and format properties of task-specific data during generation
is essential for aligning outputs with ground truth. This is unlike classification, where outputs are
predefined. We now demonstrate that ICL fails to enable LLMs to implicitly capture and maintain
these properties during generation.

Setup. We first select metrics as properties commonly used for dialogue summarization. We follow
Fu et al. (2023) to choose six: (1) Semantic Coverage (COV); (2) Factuality (FAC); (3) Consistency
(CON); (4) Informativeness (INF); (5) Coherence (COH); (6) Relevance (REL). We also measure
(7) # tokens (NT) and (8) # sentences (NS) of ICL responses, as these format metrics can significantly
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ICL w/ 5 demos (1) COV (2) FAC (3) CON (4) INF (5) COH (6) REL (7) NT (mean) (7) NT (std)
Expected outcome 100% 100% 100% 100% 100% 100% 17.00 0.00

Mistral-7B-v0.3 12% 27% 28% 8% 20% 35% 87.74 144.91
Llama-3.1-8B 12% 42% 50% 4% 32% 47% 271.81 379.48
Qwen2.5-7B 43% 90% 85% 40% 78% 96% 281.38 264.59

Mistral-7B-it-v0.2 38% 80% 78% 17% 75% 88% 50.25 55.54
Llama-3.1-8B-it 44% 86% 82% 26% 81% 87% 34.72 45.29

Table 1: % of responses scored 5 on the (1)-(6) metrics, and the (mean, std) of the (7) #tokens of the responses.
Qwen scored high on metrics (1)–(6) because it copies the input dialogue as the summarization outcome.
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Figure 2: ICL property transfer experiments with Mistral-7B-it-v0.2. See Appx.-Figure 19 for a full example.

impact model performance (Fan et al., 2018a). For each metric, we select the demonstrations having
the same score and evaluate whether the ICL-generated responses maintain that score.

Our experiments are performed on 100 random SAMSum samples (Gliwa et al., 2019) for each
metric. We use ChatGPT (gpt-3.5-turbo-1106) (OpenAI, 2022) with Self-consistency (Wang et al.,
2022a) to evaluate metrics (1)–(6) on a scale of 1–5, as it is an effective evaluator (Wang et al., 2023a).
NLTK (Bird & Loper, 2004) assesses metrics (7)–(8). For ICL experiments, we examine five instruct
and non-instruct models: Mistral-7B-v0.3 (Jiang et al., 2023), Llama-3.1-8B (Dubey et al., 2024),
Qwen-2.5-7B (Qwen Team, 2024), ans Mistral-7B-it-v.02 (Jiang et al., 2023) and Llama-3.1-8B-it
(Dubey et al., 2024). For metrics (1)–(6), we select demonstrations having a perfect score of 5, and
for metrics (7)–(8) having 17 response tokens, spanning 2 sentences. For each metric, we further
examine whether a simple guideline: “The output must maintain...{property}.” (w/ guideline) can
help instruct models (Mistral) maintain that property better during generation.

Findings. We present the k = 5 demonstration results in Table 1 and the case of Mistral-7B-it-v.02
in Figure 2 with metrics (1)–(7)1. We derive three surprising findings. Firstly, the ICL models do
not achieve a 100% score of 5 on any metric and instruct models generally outperform non-instruct
models. The highest percentage of score 5 on average is on COH and REL, where ICL models already
excel while for critical summarization metrics such as INF and COV, they achieve only up to 20% to
40%. Notably, although all demonstrations contain 17 output tokens, fewer than 5% answers achieve
this property. Secondly, increasing # demonstrations does not rectify this issue; the same trends
persist across 3, 5, and 10. Finally, by adding a simple guideline shown in Figure 2, the percentages
of answers maintaining the metrics are mostly improved, especially (7) and (8), verifying that adding
guidelines is indeed helpful for instruct models to maintain these properties. Additionally, without
ICL (and without instruction in our consideration), the model is entirely unable to solve the task.

Theoretical intuitions. Recall that PM and PT are the probability functions of M and the task
data, we prove the Remark A.1 which establishes that when M does not capture the true task data
distribution (i.e., PM ̸= PT ), demonstrations alone fail recover the desired alignment in the limit. As
a result, certain task language and format properties, even when well-presented in demonstrations,
may not be implicitly captured and preserved during LLM generation, as observed in Figure 2. We
term this unsolved issue the text property transfer (PT) challenge: ensuring that M captures and
preserves specific desired text properties observed in a limited set of labeled data to responses.

We hypothesize that explicitly guiding the model to optimize essential textual language and format
properties at their levels matching the task data mitigates the mismatch between PM and PT , leading
to improved performance. This hypothesis is formalized as Hypothesis A.1, and we present our
complete theoretical intuition in §A.

1We also tested demonstration counts of k = 3, 10, all follow similar trends, see Appendix C.3’s Figure 9.
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Brevity

...

Accuracy

......
The summary must have from {1} to {4}
sentences and from {5} to {51} words with an
average of {22} words and {1} sentences.

Metric
Collection &

Selection

      Metric
Score

Collection

          Output Constraint Guideline (OCG)        
Brevity

...

Relevancy

Informati
veness

Linguistics Processor

Instruction: Summarize the...
Input: [Dialogue]
Guidelines (MG-OCG):
Brevity: The summary is very concise, without any... 

The summary must have from {1} to {4} sentences...

           Generating Metric Guideline (MG)

MG-OCG Selection

Brevity: The summary is very concise, without any unnecessary details 
Relevancy: The summary is highly relevant and closely aligned with the original dialogue
Informativeness: The summary provides a good amount of informative, and relevant information.

MG-OCGMG OCG No Guideline

Inference

Brevity
5

...

Releva
ncy 5  

Inf.
4

Tiny train 
data Brevity ...

Coherence ...

Brevity ...

...

Metrics

...

Figure 3: Overview of LongGuide. Orange and blue boxes denote the learned metric guideline (MG)
and output constraint guideline (OCG).

3 LONGGUIDE: AN EFFICIENT GUIDELINE GENERATION ALGORITHM

Motivations. As we have seen, providing textual guidelines instructing LLMs to optimize certain
text property metrics can enhance them on responses, possibly because LLMs are optimizers (Yang
et al., 2024). Inspired by §2, we propose LongGuide (Figure 3 and Algorithm 1), an algorithm that
efficiently generates guidelines for LLMs to optimize self-evaluated text properties during generation.
Specifically, Steps 1–3 focus on generating the Metric Guideline (MG) capturing the intrinsic language
properties of the task via reference-free metrics. In parallel, Step 4 analyzes the answer format of the
task and translates it to Output Constraint Guideline (OCG). The best combination of MG and OCG
is selected for inference (Step 5). To ensure LongGuide’s generalizability to new tasks, we assume
access to at most 50 training samples: Dtrain = {(xt

i, y
t
i)}ni=1.

Step 1: Metric Collection & Selection. To learn a task’s language properties, this step reasons to
select appropriate language evaluation metrics for self-evaluation. For this purpose, we first construct
a pool of evaluation metrics, S, applicable to any text generation task. S consists of 27 distinct
metrics from 4 main sources (Appx.-Table 13 for details). Specifically, we collect 3 metrics from
ABC’s of Communication (Wagner, 1963), 12 metrics from (Fu et al., 2023) for dialogue generation,
summarization, data2text generation, and machine translation, and propose 12 more metrics for a
broader evaluation coverage. We do not collect LM-based metrics, such as FactScore (Min et al.,
2023), because it is challenging for LLMs to define and self-evaluate them. Additionally, we do not
gather definitions of collected metrics, as their interpretations may vary across different tasks.

With Dtrain and S, we then perform K iterations to select the metrics. At each iteration, we randomly
sample a batch of data from Dtrain and instruct M to generate the top-5 most important metrics
in S for evaluating batch data properties via Chain-of-Thought prompting (Wei et al., 2022). We
implement the top-5 constraint to avoid excessive metrics being selected. The final set of selected
metrics, denoted by M , consists of the metrics chosen across all iterations sorted in alphabetic order.

Step 2: Metric Score Collection via Self-evaluation. This step focuses on evaluating the selected
metrics from M on Dtrain to capture the task properties. Motivated by prior studies (Wang et al.,
2023a; Ren et al., 2023), we utilize M to score the metrics on a scale of 1–5. Specifically, for each
train sample, M scores its ground-truth answer on all M’s metrics via Self-Consistency (Wang
et al., 2022a). The final metrics’ scores, denoted as scoresM , are the average of scores over all train
samples. Note that we separate this step from Step 1’s metric selection because we want to evaluate
each chosen metric on Dtrain instead of the samples that led M to select it.

Step 3: Generating Metric Guideline (MG). This step aims to generate a textual metric guideline
(MG) that guides M to align generation outputs with task-specific properties from scoresM . MG is
formed by concatenating metrics’ definitions generated by M and tailored by scoresM via the LLM
instruction “Based on these scores on a scale of 5...define the expected quality of the output for each

4
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Algorithm 1 LongGuide

Input: M and its generation func. GM, train data Dtrain = {(xt
i, y

t
i)}ni=1, linguistic processor L.

Input: Task instruction I , instruction to select metrics IM , score metrics Iscore, generate MG IMG.
• Step 1: Metric Collection & Selection

1: Collect the set of widely-used evaluation metrics S
2: M = [] ▷ the set of selected metrics
3: for K training iterations do
4: Sample a batch B from Dtrain

5: Ssub := GM([IM , B, S]) ▷ top-5 metrics selected from S for best evaluating B
6: M = M ∪ Ssub

7: M = M.sort()
• Step 2: Metric Score Collection via Self-evaluation

8: sM1
= · · · = sMm

= 0 ▷ the self-evaluated average scores of selected metrics
9: for i, (x, y) in enumerate(Dtrain) do

10: {siM1
, ..., siMm

} := GM([Iscore, x, y,M ]) ▷ self-evaluation
11: Update sMj = sMj + (siMj

− sMj )/(i+ 1) for all j in range(m)
12: scoreM = [sM1 , · · · , sMm ]

• Step 3: Generating Metric Guideline
13: {dM1 , ..., dMm} := GM([IMG, scoresM ,M ]) ▷ generate metrics’ definitions w.r.t scores
14: MG = joined with newline ({dM1 , ..., dMm})

• Step 4: Output Constraint Guideline
15: Using L to compute (mins,maxs, avgs) of #sentences in yti , and (mint,maxt, avgt) of #tokens
16: OCG = “The response must have from {mins} to {maxs} sentences and from {mint} to

{maxt} words with an average of {avgt} words and {avgs} sentences.”
• Step 5: MG–OCG selection

17: G = {w/o guideline, MG,OCG,MG & OCG}
18: LongGuide = argmaxg∈G(performance(M|I, g,Dtrain)) ▷ automatic guideline selection
Output: LongGuide

metric in natural language”. We use these moderated definitions instead of raw scoresM because
LLMs better capture contextual nuances through descriptions rather than numerical scores (Singh &
Strouse, 2024). Figure 3 illustrates an instance where “Informativeness” in the task “dialogue sum.”
achieving 4/5 score from Step 2 is defined as “...good amount of informative...”.

Step 4: Output Constraint Guideline (OCG). Research on controllable generation has extensively
proposed constraints including ones on the length, which are broadly applicable, as well as linguistic
or keyword, which are more task-specific (Fan et al., 2018a; He et al., 2022). In this step, we aim
to establish a robust set of output constraints that apply universally to long-form generation tasks.
We focus on six key constraints related to two distributions: the number of sentences and tokens in
ground-truth answers. These constraints include minimum, maximum, and average counts, serving as
basic statistics for length and expected values. The Output Constraint Guideline (OCG) instructs M
to adhere to these statistics during generation.

Step 5: MG–OCG selection. For each task, models possess varying levels of inherent knowledge,
resulting in different improvements gained by using MG and OCG (Table 4). This step determines the
optimal MG and OCG combination by evaluating model performance on Dtrain across configurations.
The best-performing guideline configuration is then selected as the final output of LongGuide.

4 EXPERIMENTS

Benchmarks. We benchmark LongGuide on seven widely evaluated long-form generation tasks
from four main categories, summarization, text simplification, machine translation and generation,
and one real-life chat LLM benchmark. These tasks are SAMSum (Gliwa et al., 2019), CNN/Daily
Mail (3.0.0) (See et al., 2017) and XL-SUM (Hasan et al., 2021) for summarization, SWiPE (Laban
et al., 2023) for text simplification, IWSLT-2017 en-ja (Cettolo et al., 2017) for machine translation,
Synthetic-Persona-Chat (Jandaghi et al., 2023) for dialogue generation, CommonGen-Challenge
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SAMSum CNN SWiPE

Method R-L↑ B-1↑ BS↑ Avg.JS↓ R-L↑ B-1↑ BS↑ Avg.JS↓ R-L↑ B-1↑ BS↑ Avg.JS↓
Zero-shot (ZS) 22.20 20.05 58.98 0.1014 19.23 20.43 60.59 0.1262 36.60 39.01 71.18 0.0565
+ OCG 27.55 28.64 60.38 0.0402 22.46 27.82 61.37 0.0718 32.48 32.88 67.32 0.0650
+ MG 27.81 28.81 60.06 0.0388 18.35 19.66 59.79 0.1413 38.21 40.83 70.87 0.0550
+ MG-OCG 28.35 28.79 60.66 0.0375 22.05 26.97 61.18 0.0789 35.47 36.95 68.77 0.0554
+ LongGuide 28.35 28.79 60.66 0.0375 22.46 27.82 61.37 0.0718 38.21 40.83 70.87 0.0550

Few-shot (FS) 27.13 27.21 61.70 0.0502 17.56 20.55 57.74 0.0844 39.47 39.76 70.56 0.0469
+ OCG 27.84 29.91 61.08 0.0336 15.20 17.58 58.12 0.0922 29.54 30.32 68.82 0.0596
+ MG 27.50 30.15 62.24 0.0352 18.13 20.94 57.89 0.0830 41.36 41.22 71.14 0.0450
+ MG-OCG 30.65 31.72 62.73 0.0318 19.19 22.30 57.95 0.0814 38.56 37.87 68.54 0.0529
+ LongGuide 30.65 31.72 62.73 0.0318 19.19 22.30 57.95 0.0814 41.36 41.22 71.14 0.0450

Table 2: Mistral performance verifying LongGuide considerably mitigates the text property transfer (PT)
problem (§2): (1) the trends of ROUGE-L (R-L), BLEU-1 (B-1), BERTScore (BS), and Jensen–Shannon
divergence (Avg. JS) show strong correlations, supporting our hypothesis Hypothesis A.1; (2) LongGuide
substantially enhances Avg. JS scores, thereby mitigating the PT problem.

(Lin et al., 2020) for data-to-text generation, and (a subset of) AlpacaEval2 (Dubois et al., 2024).
We also benchmark the reasoning tasks in §D.2. See §E for data preprocessing details.

Baselines and evaluations. Since LongGuide is the first method to self-learn guidelines as addi-
tional instructions for generation, we compare it with the zero-/few-shot prompting baselines in
this section, and many-shot prompting in §D.1. We also evaluate it against three of the strongest
prompt optimization algorithms to date: APO (Pryzant et al., 2023) in this section, and EvolPrompt
(Guo et al., 2024) and adv-ICL (Long et al., 2024) in §C.3, both of which optimize the input prompt
on the Dtrain. We also compare LongGuide with “General Guidelines” in §5.2 where we ask
the models to reason over demonstrations to generate task guidelines. For models, we empirically
examine both strong open- and closed-source LLMs: Mistral-7B-it v0.2 (Jiang et al., 2023) as an
open-source model and ChatGPT (gpt-3.5-turbo-1106) (OpenAI, 2022) as a closed-source model.
For evaluations, we use ROUGE-L (Lin, 2004) (recall-based) following Bai et al. (2024) (also
for LongGuide’s Step 5), and GPT-4o-Judge (OpenAI, 2024) as our main evaluation metrics. For
GPT-4o-Judge, we evaluate how aligned the generated answer is with the reference answer and its
quality on five criteria: (i) Format consistency; (ii) Content completeness; (iii) Factuality; (iv) Style
adherence; (v) Generation quality on a scale of 1–10, following Zheng et al. (2023) (see §F.1 for full
prompt). We also report BLEU-1 (Papineni et al., 2002) (precision-based), BERTScore (Zhang et al.,
2020) (meaning-based), and Human evaluation verifying the metric optimization and generation
quality in §5.1. The results are averaged over three runs, with 95% CI of the t-test.

4.1 FINDINGS

We address three key research questions: (1) Does LongGuide address property transfer (PT), and if
so, is it correlated with improved model performance? (2) How does it enhance model performance?
(3) Are the enhancements attributed to MG, OCG, or both?

Rouge-L Bleu-1 BS Avg.JS

Ro
ug

e-
L

Bl
eu

-1
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Av
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JS

1 0.97 0.9 0.63
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Figure 4: Pairwise Pearson cor-
relation coefficient of metrics.

LongGuide enhances PT which correlates with improved perfor-
mance. LongGuide effectively addresses the PT problem identified
in §2. Our experiments are conducted on 3 benchmarks SAMSum,
CNN, and SWiPE with Mistral under the zero-shot and few-shot set-
tings. For each task, we first obtain the set of selected text properties
from LongGuide that the model needs to optimize. We then measure
the average of Jensen-Shannon divergence (Lin, 1991) between their
score distributions (judged by ChatGPT) between the generated an-
swers and the ground truth answers, across all selected properties,
denoted as Avg.JS.

Table 2 presents the results. LongGuide significantly lowers the Avg.JS scores compared to the
baselines, demonstrating the effectiveness of guidelines for enhancing property transfer. Furthermore,
our findings corroborate our hypothesis: across benchmarks, Avg.JS exhibits moderate to strong
positive correlations with the performance metrics (ROUGE-L, BLEU-1, BERTScore) measured by
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Sum. Simplification Translation Dialogue Gen. Table2Text

Method SAMSum CNN (3.0.0) XL-Sum SWiPE IWSLT17 en-ja Syn. Persona Comm.-Chall.

#shots (ran.) 3 3 5 3 3 5 5

M
is

tr
al

-it
(0

.2
)

Zero-shot 22.20 / 7.43 19.23 / 7.38 9.19 / 5.96 36.60 / 7.21 13.12 / 2.82 12.76 / 2.68 10.12 / 5.14
+ APO 23.77 / 7.31 19.53 / 7.40 12.06 / 5.85 36.92 / 7.21 14.45 / 2.91 10.66 / 2.41 11.21 / 4.68
+ LongGuide 28.35 / 7.73 22.46 / 7.45 14.38 / 6.29 38.21 / 7.32 16.53 / 3.45 14.69 / 4.45 25.20 / 6.81
% gain (+) 6.15 / 0.30 3.23 / 0.07 5.19 / 0.33 1.61 / 0.11 3.41 / 0.63 1.93 / 1.77 15.08 / 1.67

Few-shot 27.13 / 7.66 17.56 / 5.84 9.79 / 4.46 39.47 / 7.12 12.69 / 2.66 3.56 / 1.00 3.98 / 1.34
+ APO 26.23 / 7.44 18.18 / 5.89 11.99 / 4.55 39.55 / 7.11 14.08 / 2.92 4.26 / 1.05 5.45 / 2.05
+ LongGuide 30.65 / 7.72 19.19 / 5.99 15.23 / 5.06 41.36 / 7.24 16.62 / 3.40 5.25 / 3.93 25.05 / 6.65
% gain (+) 3.52 / 0.06 1.63 / 0.15 5.44 / 0.40 1.89 / 0.12 3.66 / 0.74 1.69 / 2.93 21.07 / 5.31

C
ha

tG
PT

Zero-shot 23.83 / 7.43 20.12 / 7.44 10.80 / 5.96 45.09 / 7.28 36.13 / 7.62 19.46 / 6.04 24.21 / 6.53
+ APO 25.05 / 7.45 20.34 / 7.39 12.19 / 6.07 46.32 / 7.51 37.74 / 7.44 19.91 / 6.12 23.63 / 6.53
+ LongGuide 30.47 / 7.59 22.19 / 7.67 20.93 / 6.36 45.09 / 7.28 41.22 / 8.11 22.98 / 6.41 34.41 / 7.23
% gain (+) 6.64 / 0.16 2.07 / 0.23 10.13 / 0.40 0.00 / 0.00 5.09 / 0.49 3.52 / 0.37 10.20 / 0.70

Few-shot 22.21 / 7.32 14.51 / 4.38 11.42 / 5.95 33.72 / 5.07 31.93 / 7.25 16.10 / 4.67 22.08 / 4.19
+ APO 24.22 / 7.28 15.20 / 4.01 14.07 / 6.19 34.46 / 5.13 33.72 / 7.31 17.68 / 4.55 25.09 / 6.12
+ LongGuide 31.46 / 7.72 18.17 / 4.42 19.95 / 6.36 37.60 / 5.25 38.43 / 7.91 22.36 / 5.26 38.21 / 7.21
% gain (+) 9.25 / 0.40 3.66 / 0.04 8.53 / 0.41 3.88 / 0.18 6.50 / 0.66 6.53 / 0.59 16.13 / 3.02

Table 3: ROUGE-L / GPT-4o-Judge results on seven long-form generation tasks. LongGuide remarkably
outperforms baselines on most tasks and substantially enhances LLMs. BLUE-1 scores are reported in Appx.-11.

the Pearson correlation coefficient (Pearson, 1895) (Figure 4). In §D.6, we present the density plots
for all metrics measured on the results with and without LongGuide.
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Figure 5: GPT-4-Judge scores over criteria.

LongGuide significantly boosts instruction-based
performance of LLMs. Table 3 details our main ex-
periment results on downstream tasks. Firstly, for base-
lines, zero-shot performance is interestingly higher than
the few-shot for both models, and the gaps are huge for
Synthetic Persona and CommonGen-Challenge. We
hypothesize that models were partly exposed to task
data during training, causing few-shot demonstrations
to push the prompts out of distribution, leading to fre-
quent refusals to answer. Meanwhile, LongGuide helps
models overcome this issue. Secondly, LongGuide substantially improves zero- and few-shot base-
lines by 6% on ROUGE-L and 0.8 on GPT-4o-Judge on average: improvement for few-shot prompting
is surprisingly higher than in zero-shot, possibly because improving a stronger baseline is harder
than a weaker one. Notably, LongGuide outperforms APO in most benchmarks, especially under the
zero-shot setting, demonstrating that our strategy of optimizing text property tasks is markedly more
effective than APO optimizing only ROUGE-L on limited data. Thirdly, we observe that LongGuide
achieves the highest improvements on CommonGen-Challenge with 15.62% and lowest on SWiPE
with 1.85% on ROUGE-L. These improvements are mainly because the answers generated by the
baselines are often far longer than the ground truth. LongGuide rectifies this issue by controlling the
output length and quality, leading to substantial performance gains. Fourthly, among the two models,
LongGuide interestingly improves Mistral by 5.39%, while ChatGPT, regarded as stronger, improves
by a larger margin, 6.58%. This suggests that LongGuide has the potential to benefit stronger models
in the future. Among five GPT-4o-Judge criteria in Figure 5, LongGuide notably improves Format,
Style, and Factuality, confirming its effectiveness in aligning model generation with ground-truth
distributions. Finally, the significant gains in Quality, together with the ROUGE-L scores from
Table 3 further verify that LongGuide also strongly enhances the generation quality.

Where do the enhancements come from? To identify the primary source of performance gains, we
present the results of LLMs with LongGuide’s components in Table 4. Firstly, MG-OCG combination
(w/ MG-OCG) is the most useful for LLMs, observed to be the best 15 times, followed by OCG
(w/ OCG) with 10, and MG (w/ MG) twice. While these statistics underscore the effectiveness of
MG-OCG, OCG particularly proves itself highly effective in tasks such as summarization, translation,
and table-to-text generation. Secondly, individual MG or OCG strengthens the prompting baselines,
with OCG showing a slight edge. This is because while MG focuses on the language properties of
answers, it does not directly control the output format, sometimes causing longer/shorter answers
than the ground truths. Exceptionally, on SWiPE, OCG harms all models, whereas MG shows notably
strong effectiveness with Mistral. Manual investigations reveal that ground-truth answers in SWiPE
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Method SAMSum CNN (3.0.0) XL-Sum SWiPE IWSLT17 en-ja Synthetic Persona CommGen-Chall.

M
is

tr
al

-7
B

-it
(0

.2
)

Zero-shot (ZS) 22.20±0.43 19.23±0.34 9.19±0.03 36.60±0.59 13.12±1.39 12.76±1.54 10.12±0.02

+ OCG 27.55±0.98↑ 22.46±0.64↑ 14.38±0.15↑ 32.48±1.91↓ 16.53±0.59↑ 14.35±0.47↑ 24.16±0.11↑
+ MG 27.81±1.17↑ 18.35±0.60↓ 9.37±0.25↑ 38.21±1.72↑ 8.71±0.53↓ 12.53±0.58↓ 21.54±7.50↑
+ MG-OCG 28.35±1.66↑ 22.05±0.84↑ 13.64±0.38↑ 35.47±2.89↓ 15.76±1.85↑ 14.69±1.08↑ 25.20±1.89↑
MG-OCG sel. MG-OCG OCG OCG MG OCG MG-OCG MG-OCG

Few-shot (FS) 27.13±0.26 17.56±0.63 9.79±0.18 39.47±0.45 12.69±1.82 3.56±0.36 3.98±0.17

+ OCG 27.84±0.88↑ 15.20±5.28↓ 12.22±1.19↑ 29.54±1.90↓ 16.62±0.81↑ 5.06±1.05↑ 25.05±0.76↑
+ MG 27.50±2.08↑ 18.13±5.28↑ 11.80±2.06↑ 41.36±1.37↑ 8.67±0.62↓ 4.32±0.39↑ 14.58±2.24↑
+ MG-OCG 30.65±0.88↑ 19.19±0.49↑ 15.23±0.33↑ 38.56±1.39↓ 15.83±0.95↑ 5.25±0.94↑ 5.94±1.00↑
MG-OCG Sel. MG-OCG MG-OCG MG-OCG MG OCG MG-OCG OCG

C
ha

tG
PT

(1
10

6)

Zero-shot (ZS) 23.83±0.54 20.12±0.27 10.80±0.18 45.09±1.45 36.13±0.87 19.46±0.40 24.21±0.37

+ OCG 29.19±0.77↑ 22.39±0.82↑ 20.93±0.52↑ 37.76±1.44↓ 38.86±1.11↑ 22.98±2.65↑ 34.41±1.01↑
+ MG 25.38±0.79↑ 20.37±0.41↑ 10.42±1.15↓ 45.06±2.96↓ 37.88±2.42↑ 19.91±0.59↑ 17.23±2.57

+ MG-OCG 30.47±1.57↑ 22.19±0.65↑ 20.02±0.89↑ 41.38±4.91↓ 41.22±0.46↑ 20.95±1.91↑ 31.57±0.99↑
MG-OCG Sel. MG-OCG MG-OCG OCG ZS MG-OCG MG-OCG OCG

Few-shot (FS) 22.21±2.35 14.51±0.80 11.42±0.13 33.72±2.61 31.93±1.88 16.10±2.61 22.08±0.63

+ OCG 30.00±1.07↑ 18.17±1.32↑ 19.95±1.38↑ 16.68±1.29↓ 38.57±1.81↑ 22.36±0.89↑ 38.12±1.99↑
+ MG 29.43±0.83↑ 15.45±2.16↑ 12.49±0.59↑ 19.36±1.40↓ 39.45±3.55↑ 18.64±0.49↑ 22.18±7.50↑
+ MG-OCG 31.46±1.34↑ 14.84±2.58↑ 18.58±0.44↑ 37.60±2.85↑ 38.43±2.37↑ 19.47±1.20↑ 38.21±3.70↑
MG-OCG Sel. MG-OCG OCG OCG MG-OCG MG-OCG OCG MG-OCG

Table 4: ROUGE-L results with 95% CI from t-test. The gains of LongGuide’s components vary across different
models and tasks. The “MG-OCG selection” results are reported in Appx.-Table 14.

exhibit high variances in #sentences and #tokens which explains why OCG is not effective for this
benchmark. Thirdly, an interesting case is ChatGPT with few-shot prompting on SWiPE, where
individual MG and OCG impair performance but their combination enhances it. This shows evidence
that MG and OCG complement each other. As discussed above, due to the uneven nature of answers
in SWiPE, using MG or OCG alone may not work well for multiple samples, as MG and OCG only
provide expected statistics. However, combining them could enhance performance by allowing them
to complement each other. A such complement SWiPE example is outlined in Appx.-Figure 16.

5 DISCUSSION

We address five key questions about the usefulness, applicability, and generalizability of LongGuide.
Its additional properties are provided in §C along with more method analyses in §D.

5.1 HUMAN EVALUATION: DOES LONGGUIDE ENHANCE GENERATION QUALITY?

ChatGPTMistral

24.8%

66%

9.2%

90%

10%

30.8%

62.4%

6.8%

100%

MG OCG MG OCG Quality

68%

22%

10%

62%

32%

6%

Quality

Figure 6: Win/Draw/Loss rates of w/ versus
w/o LongGuide.

We perform a human evaluation to quantify LongGuide’s
effect in helping LLMs optimize the selected metrics and
enhance generation quality, as no automatic methods can
address this need to date. For this purpose, we randomly
select 50 zero-shot generated samples from the SAMSum
and Synthetic Persona (since MG-OCG is the best for
these datasets, Table 4) by ChatGPT and Mistral. Three
English-native undergraduates are hired to rate whether ZS
+ LongGuide improves ZS on each of the selected MG and
OCG metrics. Due to resource constraints, we evaluate 5
random MG metrics.

As shown in Figure 6, we notice that ZS + LongGuide outperforms ZS on 27.8% MG metrics on
average, draws on 64.2%, and loses on only 8%. Specifically, among the MG metrics, “Brevity”
shows the highest winning rate of 73% while “Relevance” obtains the lowest winning rate of 12%,
possibly because ZS models can already generate highly relevant outcomes. Meanwhile, on the OCG
metrics, LongGuide achieves a superior win of 95% on average. Finally, regarding the generation
quality, our annotators prefer LongGuide output by up to 92%. These indicate that LongGuide
not only aligns the outputs with the ground truths but also enhances the generation quality. The
fine-grained scores of MG metrics are provided in §D.9, and we measure the annotators’ agreement
by Krippendorff’s alpha (Krippendorff, 2022), obtaining α=68.9%.

5.2 LONGGUIDE LEARNS FROM DEMONSTRATIONS TO BOOST ICL PERFORMANCE
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CNN (3.0.0) IWSLT17 CommGen-Chall.0
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Figure 7: LongGuide learned from demonstrations sub-
stantially enhances Mistral performance (ROUGE-L).

Here, we revisit the question posed in §2 and
verify that LongGuide learned from demonstra-
tions substantially increases ICL performance.
Our experiments using Mistral cover CNN,
IWSLT17 en-ja, and CommGen-Chall datasets.
Our experiments involve averaging the perfor-
mance under zero- and few-shot settings. For
Baseline, no guideline is utilized. For Long-
Guide on Demos, we train LongGuide on
demonstrations used in Table 3, in contrast to
the Dtrain for the case of LongGuide. We add one more baseline, General Guidelines (Gen. Gui.)
on Demos, where we ask the models to generate general task guidelines from demonstrations.

Figure 7 summarizes the results with details provided in Appx.-Table 15. Specifically, LongGuide
trained on Dtrain outperforms it on demonstrations, suggesting its possible scalability with more
training data. Moreover, Gen. Gui. slightly worsens the Baseline on CNN. Manual examination
reveals that Gen. Gui. produces surface-level task guidelines such as “Ensure the summary concisely
conveys the key points of the source material.”, missing task-specific constraints which LongGuide
can effectively capture. Both LongGuide and LongGuide on Demos notably surpass the Baseline,
and Gen. Gui., highlighting the benefits of capturing task-specific properties.

5.3 LONGGUIDE ON REAL-LIFE CHAT LLM BENCHMARK

Methods LC Win Rate Win Rate
Zero-shot (ZS) 11.08% 3.17%
+ OCG 4.73% 2.44%
+ MG 19.13% 7.07%
+ MG-OCG 8.42% 3.90%
+ LongGuide 19.13% 7.07%
Few-shot (FS) 8.08% 2.68%
+ OCG 7.73% 3.45%
+ MG 12.65% 4.88%
+ MG-OCG 12.63% 4.88%
+ LongGuide 12.65% 4.88%

Table 5: AlpacaEval2 experiments.

We evaluate the effectiveness of LongGuide in aligning LLMs
with desired real-world chats. Our experiments are conducted
on a subset of 203 random samples from the AlpacaEval2
benchmark (Dubois et al., 2024) with ChatGPT (1106). Since
AlpacaEval2 lacks training data, we select 5 random sam-
ples from the public Alpaca-GPT4 instruction-tuning dataset
(alpaca-gpt4), despite it being relatively out-of-distribution
(OOD) compared to AlpacaEval2.

Table 5 presents our findings. Few-shot demonstrations and
OCG negatively impact performance, likely due to the OOD
nature of Alpaca-GPT4 compared to AlpacaEval2. In contrast,
with just 5 Alpaca-GPT4 samples, MG metrics, and LongGuide enhance performance by capturing
certain response properties from GPT-4 (OpenAI, 2023), nearly doubling the zero-shot points.

5.4 HOW DOES LLM HANDLE LONGGUIDE, AND CONTEXT GIVEN LONGGUIDE?

Figure 8: Entropy of attention over the
input context across 32 Mistral layers.

To analyze LongGuide’s impact on LLMs, we perform a sim-
ple attention analysis to investigate (1) how LLMs attend to
LongGuide and (2) utilize the input context when conditioning
on LongGuide. Specifically, for (1), we calculate the average
attention scores across all heads and layers for each guideline
token. For (2), we evaluate the entropy of the attention scores
overall context tokens. We experiment with Mistral on 100
SAMSum random samples. We learn two key findings.

Firstly, Mistral shows substantial attention to the guidelines. By
using MG, 37.81% of attention is on guideline tokens. For OCG,
it is 22.56%, and MG-OCG, 37.87%. Notably, the average
attention on OCG tokens is higher than on context, while MG
and MG-OCG receive a fair amount, confirming mode attention on guidelines (Appx.-Table 16).
Secondly, from Figure 8, Mistral exhibits more selective context attention when conditioned on
guidelines. The largest entropy gap occurs in the first layer, where with guidelines, the model sparsely
processes the context but, without them, is biased towards focusing narrowly on specific context parts.
In the final layer, the model distributes attention more evenly with guidelines than without. Generally,
MG stabilizes context use across layers, while OCG shows greater variance, likely because it does
not directly control generation quality, therefore, the model bias almost exists as origin, as we can

9
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see the trends of using OCG and no guidelines are relatively similar. These findings indicate that
guidelines potentially improve context utilization and mitigate token bias.

5.5 ABLATION STUDIES OF LONGGUIDE’S STEPS

Methods SAMSum SWiPE CommGen-Chall.
Zero-shot (ZS) 22.20 / 7.43 36.60 / 7.21 10.12 / 5.14
+ LongGuide 28.35 / 7.73 38.21 / 7.32 25.20 / 6.81
+ LongGuide w/o step 2 26.99 / 7.49 36.90 / 7.22 25.03 / 6.66

Few-shot (FS) 27.13 / 7.66 39.47 / 7.12 3.98 / 1.34
+ LongGuide 30.65 / 7.72 41.36 / 7.24 25.05 / 6.65
+ LongGuide w/o step 2 30.37 / 7.70 35.54 / 6.28 24.15 / 5.82

Table 6: Mistral ROUGE-L / GPT-4o-Judge main abla-
tion study with LongGuide when Step 2 is skipped.

From Table 4, we identify the unique contribu-
tions of each step within LongGuide. Specifi-
cally, omitting Step 1 transforms it into OCG,
whereas excluding Step 3 yields MG, and skip-
ping Step 4 becomes MG-OCG. Here, we inves-
tigate LongGuide effectiveness when skipping
Step 2, Metrics’ scores collection: for selected
metrics from Step 1, we directly task the models
to optimize them for the generated answers. We
experiment with Mistral on SAMSum, SWiPE, and CommGen-Chall. datasets because for these
datasets, the best guideline combination includes MG.

The results in Table 6 show that without Step 2, the model performs worse, particularly for SAMSum
and SWiPE in the zero-shot setting. Analysis of generation outputs reveals two failures when omitting
Step 2: (1) metric conflicts where models struggle to optimize competing objectives like brevity
and coverage jointly, and (2) task misalignment: without score-based validation, models optimize
surface-level metric components forgetting deeper task requirements. A detailed case study in Appx.-
Figure 18 demonstrates how Step 2’s absence leads to verbose outputs that technically increases
coverage but reduces overall quality.

6 RELATED WORK

Automatic prompt design for long-form generation. Long-form generation tasks are essential
and have been studied extensively (Li et al., 2024). With LLM advancements, adapting these models
for such tasks using prompt-based methods is critical yet challenging. Previous studies (Bang et al.,
2023; Yang et al., 2023a; Hadi et al., 2023; Zhou et al., 2023b; Pan et al., 2024) highlight the limited
efficacy of LLMs in producing outputs that resemble ground truths, as evaluated by ROUGE-L (Lin,
2004). Our approach autonomously composes supplementary contexts, integrating text evaluation
metrics and format constraints. In addition, studies regarding enhancing instructions for LLMs (Wang
et al., 2022b; Yin et al., 2023; Wang et al., 2023b), automatic prompt optimization (Zhou et al., 2023a;
Pryzant et al., 2023), and demonstration selection (Yang et al., 2023b; Qin et al., 2023) are also
related areas that can be developed in parallel and combined with our work (§C.3).

Controllable generation with LLMs. Controllable generation during fine-tuning has been studied
extensively (Fan et al., 2018a; Lakew et al., 2019; Martin et al., 2020; He et al., 2022). More recently,
researchers have explored prompting methods to control LLM generation. For instance, Sun et al.
(2023b) found that LLMs struggle to meet fine-grained hard constraints, while Fonseca & Cohen
(2024) proposed controlling stylistic features like keywords and narrative during generation, leading
to improved LLM summarization outcomes. Although (Lu et al., 2023; Fonseca & Cohen, 2024) are
closely related to our OCG, our approach goes beyond summarization and open-ended only features,
as discussed in §3. We focus on universally applicable features across multiple tasks.

7 CONCLUSION

In this paper, we demonstrate that in-context learning (ICL) falls short in implicitly ensuring that large
language models (LLMs) consistently preserve essential language and format properties in long-form
generation tasks. To address this challenge, we introduce LongGuide, an efficient algorithm that
automatically learns the critical language and format properties from task-specific data, converting
them into textual guidelines for LLMs. Our results show that LongGuide significantly improves
LLM performance across seven generation tasks and is highly generalizable, offering strong potential
for various downstream applications with minimal data. This work paves the way for adaptive,
task-specific prompt generation, advancing LLM adaptation.
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GENERALIZABILITY AND CUSTOMIZATION OF LONGGUIDE

LongGuide facilitates flexible generalization that allows customization and extension of guidelines
MG and OCG for specific tasks, which we strongly recommend. For instance, in summarization,
MG can focus on only 4-5 standard metrics from S while integrating summary-specific metrics
like “Summary Structure” and “Retention of Core Supporting Evidence.” Simultaneously, OCG
can impose stricter constraints on topics, keywords, grammar, or tones (Fan et al., 2018a; Lakew
et al., 2019; Martin et al., 2020). Although LongGuide is primarily presented for general long-form
generation, we strongly advise for these customizations to enhance its effectiveness.

LIMITATIONS

Our study has several limitations. Firstly, our theoretical analysis focuses solely on the task language
distribution which is PM(X) or PM(X|Df ) instead of the actual output distribution, which is
argmaxy∈Y PM(Y = y | X) or argmaxy∈Y PM(Y = y | Df , X). In our study, while leveraging
the task language distribution allows us to hypothesize and highlight the limitations of demonstrations,
shifting focus to the actual output distribution could yield more insights.

Secondly, LongGuide’s learned guidelines are based on task-level and average statistics rather
than sample-based details. We designed our framework at the task level to address limited data
constraints, as we found that sample-based learning under these conditions leads to high errors.
While task-level guidelines already demonstrate significant improvements for LLMs, sample-based
guidelines could offer more tailored guidance, potentially leading to optimal results. Moreover,
this average guidance approach may be ineffective for tasks with high variance in the statistics that
LongGuide learns. In such cases, the final step of LongGuide can prevent performance decline by
likely choosing no guideline. For example, we found this applies to Code2Text (Richardson et al.,
2017) & StoryGeneration (Fan et al., 2018b).

Thirdly, LongGuide relies on models having a certain level of task knowledge to perform self-
evaluation effectively, and LongGuide necessitates LLMs with strong instruction-following capabili-
ties. However, we anticipate that cutting-edge AI language models will overcome this limitation both
now and in the near future.

Lastly, the guidelines learned by LongGuide may not be useful for the tasks the models are trained
on. This is because these guidelines might introduce out-of-distribution context relative to the
training data, thereby reducing the effectiveness of the testing inference. For instance, while we see
notable enhancements on the CommonGen-Challenge dataset (Lin et al., 2020), it’s intriguing that
we don’t observe any improvements on the WebNLG (Gardent et al., 2017) and E2E NLG (Puzikov
& Gurevych, 2018) datasets, despite their expected similarity. Given the popularity of these datasets,
we suspect the models we tested may have been previously trained on them.

ETHICAL CONSIDERATIONS

This method could be misused to optimize prompts for harmful purposes such as generating misin-
formation, hate speech, or privacy violations. While our method is not intended for such uses, it is
impossible to completely prevent misuse. Although our method could enhance the efficiency and
efficacy of bad actors, we do not anticipate that LongGuide is inherently more effective in these
negative contexts than in positive applications. Finally, we employ annotators at an hourly rate of
$20, which exceeds the local minimum wage requirements.
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A THEORETICAL INTUITIONS

We now present a theoretical intuition to explain the observed phenomena. Recall that PM and PT

are the probability functions of M and the task data, then:

Remark A.1. Under mild assumptions and PM ̸= PT , there exists x ∈ X such that PM(X =
x|Df ) ̸= PT (X = x).

The proof is provided in §A.1. In essence, Remark A.1 asserts that when M fails to capture the true
task data distribution, df cannot recover the desired alignment in the limit. As a result, certain task
language and format properties, even when well-presented in demonstrations, may not be implicitly
captured and preserved during LLM generation. We term this unsolved issue the text property
transfer (PT) challenge: ensuring that M captures and preserves specific desired text properties
observed in a limited set of labeled data to responses.

Definition A.1 (Text Property). For task T , a text property is defined by a feature map f : Y → R
that measures a language or format property of its responses yti (e.g., coherence or length).

We hypothesize that explicitly guiding the model to optimize essential text properties at levels
matching the task data mitigates the mismatch identified in Remark A.1 between PM and PT , leading
to improved performance.

Hypothesis A.1. Task T can be decomposed into well-chosen text properties {f1, . . . , fr} with
weights {α1, . . . , αr} such that by jointly optimizing them during the generation process, we can
approximately optimize T ’s objective: argminθ∈Θ L ≈ argminθ∈Θ

∑r
i=1 αiLi, where L is the task

objective and Li are property-specific objectives.

We validate Hypothesis A.1 empirically in §4.1. It implies that if a prompting method Po + LongGuide
(§3) matches or exceeds Po in metrics fi and text quality, it also does so in task performance.

Remark A.2. Let Po be a prompting method and LongGuide be an instruction method defined in §3.
If for each text property task Ti, Po + LongGuide matches or exceeds Po in both the metric fi and
text generation quality, then Po + LongGuide matches or exceeds Po in task performance.

A.1 PROOF OF REMARK A.1

Assumption A.1. There exists x ∈ X for which PM(X = x) ̸= PT (X = x).

This assumption is intuitive and realistic, recognizing that LLMs cannot fully capture the vast and
nuanced complexity of real-world language beyond their training data. It contradicts the common
assumption PM(X) = PT (X) made by prior studies (Xie et al., 2021; Wang et al., 2024). A simple
empirical evidence is provided in §B.1. We also assume:

Assumption A.2. Two probability functions are functionally zero equivalent if they act on the same
input space and any arbitrary event causes both functions to be zero or non-zero. We assume that PT

and PM are functionally zero equivalent, i.e., PM(X = x) = 0 ⇔ PT (X = x) = 0 ∀x ∈ X .

Note that Assumption A.2 is a relaxed version of the common assumption PM(X) = PT (X), and
does not conflict with Assumption A.1.

Proof of Remark A.1. We prove this theorem by contradiction. Suppose the negation of Remark A.1
is true, i.e., there exists a D1 ∈ D such that ∀X ∈ X , PM(X|D1) = PT (X) (S1).

Now, let us consider the event X ∩Dc
1 where Dc

1 is the conjugate of event D1, or Dc
1 = D\D1. We

have PM(X ∩ Dc
1|D1) = 0. From the assumption (S1), we derive PT (X ∩ Dc

1) = 0. From the
Assumption A.2, since PM and PT are functionally zero equivalent, we have PM(X ∩Dc

1) = 0.

Similarly, we can consider the event Xc ∩ Dc where Xc is the conjugate of X , we arrive at
PM(Xc ∩Dc

1) = 0.

Since the two X ∩Dc
1 and Xc ∩Dc

1 form a disjoint union of Dc
1, we derive PM(Dc

1) = PM(X ∩
Dc

1) + PM(Xc ∩ Dc
1) = 0 + 0 = 0. Since D1 and Dc

1 form a disjoint union of D, we have
PM(D1) = 1.
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From the negation statement (S1), we have PM(X|D1) = PT (X) ∀X ∈ X . Since X ∩ D1

and X ∩ Dc
1 form a disjoint union of X , we have PM(X) = PM(X ∩ D1) + PM(X ∩ Dc

1) =

PM(X ∩D1)+ 0 = PM(X ∩D1). We also have PM(X|D1) =
PM(X∩D1)
PM(D1)

from Bayes’s theorem,
meaning that PM(X|D1) = PM(X ∩D1) = PM(X) (since PM(D1) = 1). Meanwhile, from the
negation statement (S1), we have PM(X|D1) = PT (X), thus PM(X) = PT (X) for all X ∈ X ,
which contradicts to our Assumption A.1. Therefore, our negation statement (S1) is false, leading to
Remark A.1 is true.

A.2 PROOF OF REMARK A.2

Proof of Remark A.2. For simplicity, let us denote L(P ) and Li(P ) as the losses of the language
model M on task T and text property task Ti, respectively when using the prompting method P .

From the assumption of Remark A.2 stating that for each text property task Ti, Po + LongGuide
matches or exceeds Po in fi, we have:

fi(Po + LongGuide) ≥ fi(Po)∀i ∈ {1, . . . , r} (2)

which is also equivalent to:

αiLi(Po + LongGuide) ≤ αiLi(Po)∀i ∈ {1, . . . , r} (3)

In other words, we obtain:

r∑
i=1

αiLi(Po + LongGuide) ≤
r∑

i=1

αiLi(Po) (4)

From Hypothesis A.1, we have
∑r

i=1 αiLi(Po + LongGuide) = L(Po + LongGuide) and∑r
i=1 αiLi(Po) = L(Po). Then, Equation (4) is equivalent to L(Po + LongGuide) ≤ L(Po),

which also means that Po + LongGuide is a more optimal prompting method than Po.

B EMPIRICAL CASE STUDIES SUPPORTING §2

B.1 EMPIRICAL CASE STUDY FOR ASSUMPTION A.1

Here, we provide empirical evidence for Assumption A.1. It posits that for a given long-form
generation test task T , the language model M does not entirely encapsulate T ’s true language
distribution. This assumption aligns with real-world scenarios since LLMs are not infinitely powerful:
there exist task instances where they are out-of-distribution (OOD) for M.

For example, let us consider Remark A.1 as the task T and M be ChatGPT OpenAI (2022). The
true language distribution is the specific vocabulary, technical jargon, and nuanced writing style
typically found in mathematics. The full dialogue can be found at https://chatgpt.com/share/
0189761f-202b-46e6-bab0-39a80bd5340e.

Input: Given two probability functions P1 and P2. Suppose that there exists at least X such that
P1(X) ̸= P2(X). Prove that for any D, there exists at least X’ such that P1(X

′|D) ̸= P2(X
′).
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ChatGPT output (30 Jul 24): To prove the statement, we need to understand the conditions under which
the equality of the probability functions P1 and P2 given a condition D breaks down.
Let’s start by stating the given conditions more clearly:
1. We have two probability functions P1 and P2. 2. There exists at least one event X such that
P1(X) ̸= P2(X).
We need to show that for any event D, there exists at least one event X ′ such that P1(X

′|D) ̸=
P2(X

′|D).
Let’s break it down into steps. . .

Based on the above example, we can see that ChatGPT does not focus on proving P1(X
′|D) ̸=

P2(X
′). Instead, it misunderstood as proving P1(X

′|D) ̸= P2(X
′|D), showing that the ChatGPT’s

language distribution when solving the task is different from the true task language distribution.

B.2 EMPIRICAL CASE STUDY FOR REMARK A.1

Empirical evidence supporting Remark A.1 is not possible to establish since it is an extremal result
concerning existence and non-existence. Essentially, Remark A.1 says that if at the beginning, the two
distributions of the task and language model are not the same (“first not the same”) but functionally
zero equivalent, then for any demonstrations, the two distributions of the task and language model
conditioned on those demonstrations are not the same (“second not the same”).

It’s important to note that the data point causing the “first not the same” can differ from the data point
causing the “second not the sam”, and this “second not the same” data point needs to be examined
by all possible demonstrations. This makes it difficult to empirically verify the theorem since the
demonstration space is vast.

C LONGGUIDE’S EXTRA PRELIMINARY PROPERTIES

C.1 LONGGUIDE CAN IMPROVE NON-INSTRUCT MODELS

Using guidelines learned by LongGuide, we add more instructions to models. Therefore, we aim to
examine whether non-instruct models can benefit from these guidelines. Our final conclusion is yes,
LongGuide has strong potential to enhance non-instruct models.

Methods CNN (3.0.0) IWSLT17 CommGen-Chall.

Zero-shot (ZS) 7.60±0.58 2.99±0.83 10.96±0.36

+ OCG 6.60±0.74↓ 3.70±0.29↑ 10.12±0.56↓
+ MG 9.04±1.02↑ 5.39±0.93↑ 8.55±0.74↓
+ MG-OCG 8.38±0.91↑ 4.59±0.97↑ 7.99±0.70↓
+ LongGuide 9.04±1.02↑ 5.39±0.93↑ 10.96±0.36

Few-shot (FS) 3.14±0.32 3.44±0.83 4.67±0.33

+ OCG 2.24±0.21↓ 3.86±0.61↑ 8.11±0.63↑
+ MG 3.24±0.26↑ 6.65±0.97↑ 10.71±0.80↑
+ MG-OCG 2.99±0.29↓ 7.88±0.91↑ 9.39±0.89↑
+ LongGuide 2.24±0.21↓ 7.88±0.91↑ 10.71±0.80↑

Table 7: ROUGE-L performance of Mistral-7B-v0.1 using Long-
Guide learned by Mistral-7B-Instruct-v0.2. We observe that Long-
Guide improves more than half of the experiments, showing its
potential effectiveness in enhancing even non-instruct models, espe-
cially for the translation task.

Setups. Since non-instruct models
might struggle to follow our instruc-
tions to generate the guidelines §7,
we utilize the guidelines learned
by an instruct model instead. We
run our experiments with Mistral-
7B-v0.12(Jiang et al., 2023) using
the guidelines learned by Mistral-7B-
Instruct-v0.2.

Findings. The results are provided
in Table 7. We observe that Long-
Guide improves more than half of
the experiments, showing its poten-
tial effectiveness in enhancing even
non-instruct models, especially for the
translation task.

C.2 LONGGUIDE CAN BE
TRANSFERABLE FROM WEAKER TO STRONGER MODELS

2https://huggingface.co/mistralai/Mistral-7B-v0.1
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Methods CNN (3.0.0) IWSLT17 en-ja CommGen-Chall.
ChatGPT Zero-shot (ZS) 20.12±0.27 36.13±0.87 24.21±0.37

ChatGPT ZS w/ Mistral’s MG 21.41±0.62↑ 39.66±2.47↑ 29.95±23.66↑
ChatGPT Few-shot (FS) 14.51±0.80 31.93±1.88 22.08±0.63

ChatGPT FS w/ Mistral’s MG 13.96±11.50↓ 32.34±13.79↑ 33.34±13.56↑

Mistral Zero-shot (ZS) 19.23±0.34 13.12±1.39 10.12±0.02

Mistral w/ ChatGPT’s MG 19.67±0.71↑ 7.98±1.49↓ 6.29±1.06↓
Mistral Few-shot (FS) 17.56±0.63 12.69±1.82 3.89±0.17

Mistral FS w/ ChatGPT’s MG 19.00±7.82↑ 11.86±2.79↓ 3.61±0.38↓

Table 8: LongGuide can be transferable from weaker to stronger
models, evaluated by ROUGE-L.

We find that the guidelines learned
by LongGuide are transferable from
weaker to stronger models. A weaker
model can learn the guidelines at a
low cost, which can then be used to
enhance the performance of stronger
models. This is particularly advanta-
geous because powerful models are
often closed-source and expensive to
query, whereas open-source models
are weaker but free to use.

Setups. We demonstrate this through experiments on CNN (3.0.0), IWSLT17 en-ja, and CommGen-
Chall, representing all the tasks. We used the MG generated by Mistral for experiments on ChatGPT
and vice versa under both zero-shot and few-shot settings.

Findings. Table 8 outlines the results. We observe that Mistral’s MG generally improves ChatGPT
performance, but not vice versa. Explaining these phenomena, firstly, the OCG is transferable across
models because it is independent of any specific model. Secondly, the MG, while it helps models
capture task distributions, an MG learned from a stronger model may not benefit a weaker model, as
the weaker model may misinterpret it. In contrast, the stronger model, with better text comprehension,
can generalize task distributions from MG even when MG is poor and/or not well expressive generated
by the weaker model.

C.3 LONGGUIDE CAN BE COMPARED AND COMBINED WITH AUTOMATIC PROMPT
OPTIMIZATION ALGORITHMS

The MG and OCG learned by LongGuide may not be fully optimized for LLMs. Hence, it’s intuitive
to suggest that LLMs could achieve even greater performance by adopting optimal guidelines. In
this section, we illustrate that the guidelines learned by LongGuide can be further refined through
discrete prompt optimization algorithms. This capability is advantageous for LongGuide, enabling its
concurrent development and integration with automatic prompt optimization algorithms.

Setup. We employ two strong prompt optimizers, APO (Pryzant et al., 2023) and adv-ICL (Long
et al., 2024), in our experiments. We also compare LongGuide with EvolPrompt (Guo et al., 2024) in
this section. Here is our methodology: we integrated the guidelines generated by LongGuide into the
prompt, including the input instruction and demonstrations. Subsequently, we applied the prompt
optimizers to refine the input instruction, demonstrations, and guidelines. Our experiments were
conducted using Mistral on datasets including CNN, IWSLT 2017 en-ja, and CommonGen-Challenge.
Following our findings in Table 4, the guideline being optimized for CNN and IWSLT 2017 en-ja is
OCG, while for CommonGen-Challenge is MG-OCG.

Methods CNN (3.0.0) IWSLT17 CommGen-Chall.

Zero-shot (ZS) 19.23±0.34 13.12±1.39 10.12±0.02

+ APO 19.53±2.08 14.45±1.84 11.21±2.02

+ EvolPrompt 20.16±3.44 15.04±2.12 14.06±3.02

+ adv-ICL 18.87±2.69 15.01±1.72 13.12±2.21

+ LongGuide 22.46±0.64 16.53±0.59 25.20±1.89

+ LongGuide + APO 22.76±1.04↑ 17.13±1.05↑ 27.01±1.01↑
+ LongGuide + adv-ICL 21.97±3.21↓ 16.90±2.15↑ 26.18±3.47↑

Table 9: Guidelines learned by LongGuide are further optimized
by discrete prompt optimization frameworks bringing even better
performance, with Mistral, evaluated by ROUGE-L.

Findings. Our results are detailed in
Table 9. In summary, when further op-
timizing the OCG using APO and adv-
ICL for CNN and IWSLT 2017, we
observed a slight improvement. This
could be attributed to the OCG al-
ready being concise and straightfor-
ward, making it easier for models to
grasp. However, for the CommonGen-
Challenge dataset, which utilizes the
MG-OCG guideline with more de-
tail, APO and adv-ICL have a greater
amount of material to optimize within the prompts. This led to a substantial improvement in perfor-
mance compared to the other datasets.
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Sum. Simplification Translation Dialogue Gen. Table2Text

Method SAMSum CNN (3.0.0) XL-Sum SWiPE IWSLT17 en-ja Syn. Persona Comm.-Chall. Avg.

#shots (ran.) 3 3 5 3 3 5 5
M

is
tr

al
-it

(0
.2

)
Zero-shot (ZS) 22.20 / 20.05 19.23 / 20.43 9.19 / 8.82 36.60 / 39.01 13.12 / 13.72 12.76 / 11.79 10.12 / 6.19 17.38
+ APO 23.77 / 22.02 19.53 / 21.46 12.06 / 11.50 36.92 / 39.41 14.45 / 15.49 10.66 / 10.05 11.21 / 7.12 18.26
+ LongGuide 28.35 / 28.79 22.46 / 27.82 14.38 / 14.13 38.21 / 40.83 16.53 / 18.81 14.69 / 12.86 25.20 / 24.03 23.37
% gain (+) 6.15 / 8.74 3.23 / 7.39 5.19 / 5.31 1.61 / 1.82 3.41 / 5.09 1.93 / 1.07 15.08 / 17.84 5.99

Few-shot (FS) 27.13 / 27.21 17.56 / 20.55 9.79 / 8.32 39.47 / 39.76 12.69 / 13.78 3.56 / 2.67 3.98 / 1.94 16.32
+ APO 26.23 / 25.88 18.18 / 21.32 11.99 / 11.71 39.55 / 39.56 14.08 / 14.70 4.26 / 2.91 5.45 / 3.76 17.12
+ LongGuide 30.65 / 31.72 19.19 / 22.30 15.23 / 14.02 41.36 / 41.22 16.62 / 17.92 5.25 / 4.46 25.05 / 21.90 21.92
% gain (+) 3.52 / 4.51 1.63 / 1.75 5.44 / 5.70 1.89 / 1.46 3.66 / 4.14 1.69 / 1.79 21.07 / 19.96 5.61

C
ha

tG
PT

Zero-shot (ZS) 23.83 / 20.23 20.12 / 24.11 10.80 / 11.46 45.09 / 43.28 36.13 / 38.32 19.46 / 19.75 24.21 / 24.04 25.77
+ APO 25.05 / 22.90 20.34 / 21.88 12.19 / 12.52 46.32 / 44.89 37.74 / 39.01 19.91 / 19.80 23.63 / 24.18 26.45
+ LongGuide 30.47 / 28.37 22.19 / 30.79 20.93 / 22.61 45.09 / 43.28 41.22 / 43.79 22.98 / 23.79 34.41 / 36.84 31.91
% gain (+) 6.64 / 8.14 2.07 / 6.68 10.13 / 11.15 0.00 / 0.00 5.09 / 5.47 3.52 / 4.04 10.20 / 12.80 6.13

Few-shot (FS) 22.21 / 25.37 14.51 / 17.52 11.42 / 10.83 33.72 / 32.69 31.93 / 32.68 16.10 / 18.10 22.08 / 23.52 22.34
+ APO 24.22 / 22.77 15.20 / 17.04 14.07 / 15.69 34.46 / 33.18 33.72 / 35.50 17.68 / 17.77 25.09 / 24.70 23.65
+ LongGuide 31.46 / 30.04 18.17 / 18.52 19.95 / 22.49 37.60 / 35.66 38.43 / 42.84 22.36 / 20.31 38.21 / 37.64 29.55
% gain (+) 9.25 / 4.67 3.66 / 1.00 8.53 / 11.66 3.88 / 2.97 6.50 / 10.16 6.53 / 2.21 16.13 / 14.12 7.21

Table 11: Supplemetary ROUGE-L / BLEU-1 results on seven long-form generation tasks showing that the
trends of ROUGE-L and BLEU-1 scores are nearly identical.

D SUPPLEMENTARY RESULTS AND DISCUSSIONS

D.1 ADDITIONAL BASELINES: USING MORE SHOTS FOR ICL

#shot CNN (3.0.0) SWiPE Comm.-Chall.

3-5 shots 14.51 / 4.38 33.72 / 5.07 22.08 / 4.19
+ LongGuide 18.17 / 4.42 37.60 / 5.25 38.21 / 7.21

10-50 shots 20.55 / 6.67 44.04 / 6.07 28.18 / 4.85
+ LongGuide 21.69 / 6.82 46.17 / 6.67 42.55 / 7.72

Table 10: Performance comparison of models with and with-
out LongGuide across different datasets and shot settings.

We supplement the results for CNN
(3.0.0), SWiPE, and Comm.-Chall.
in Table 10 where we use 10 shots
for CNN, 50 shots for SWiPE, and
Comm.-Chall up to the window size
limit of gpt-3.5-turbo-1106 evaluated
by ROUGE-L / GPT-4o-Judge scores.

We observe that while supplement-
ing more shots to ChatGPT improves
model’s performance, LongGuide fur-
ther boosts the ICL performance significantly for all three benchmarks.

D.2 LONGGUIDE ON REASONING TASKS

We conduct experiments comparing LongGuide to various baselines on reasoning tasks. We select
Mistral as our LLM, and GSM8K (Cobbe et al., 2021) and SVAMP (Patel et al., 2021) as benchmarks
for evaluation. For each benchmark, we randomly sampled 200 instances from the test set for
assessment and 50 instances from the train set to train the prompt optimizers and LongGuide.

Methods GSM8k SVAMP

Zero-shot (ZS) 39.66 60.33
+ APO 41.83 62.33
+ adv-ICL 42.66 62.83
+ LongGuide 40.83 63.33

Few-shot (FS) 32.33 61.66
+ APO 34.33 63.00
+ adv-ICL 35.00 62.66
+ LongGuide 34.83 62.83

Table 12: Performance of LongGuide with Mis-
tral on reasoning tasks.

The results are averaged over three runs, and outlined
in Table 12. LongGuide slightly outperforms the Zero-
shot and Few-shot baselines but falls short compared to
prompt optimizers. Nonetheless, the findings confirm
that additional instructions for LLMs can potentially
improve the init model, leading to further enhanced
reasoning performance with prompt optimization.

D.3 SUPPLEMENTARY RESULTS FOR §2

D.4 UNDERSTANDING MG
AND OCG: HOW DO THEY WORK (TOGETHER)?

Metric Guideline (MG) (Step 1-3). To understand
how models select and evaluate metrics, we analyze the
specific metrics chosen for each task, their selection
frequencies, and their average scores (Appx.-Table 17 and figs. 12 and 13 respectively). Overall,
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Figure 9: Property maintenance experiments with ICL full results. IT is the adding a simple guideline baseline.

each of the 27 metrics is selected and evaluated in at least one task. Among them, common linguistic
metrics such as “Clarity” are frequently selected, while task-specific metrics like “Creativity” are
less frequently chosen. By examining the scores of selected metrics, we find that common linguistic
metrics generally achieve high scores, as anticipated. However, task-specific metrics like “Creativity”
exhibit varying scores across tasks, indicating their differing importance and relevance. Additionally,
we also find that within MG can conflict with each other, such as “Conciseness” and “Informativeness”
(see Appx.-Figure 17 for an example). This underscores the importance of LongGuide’s Step 2 in
weighting the metrics.

Output Constraint Guideline (OCG) (Step 4). We find that both the token and sentence constraints
are crucial for LLMs (Appx.-D.12), with the sentence being more beneficial. We hypothesize that
LLMs have better control over the number of sentences than tokens, as counting sentences is
intuitively simpler than tokens. This can be observed in our experiment in §2.

MG and OCG are complementary and non-interchangeable. MG and OCG complement each
other rather than conflict, as partially discussed in §4.1. This is because MG language metrics
primarily concern the characteristics of responses rather than their structural aspects such as sentence
and token count, which is the main focus of the OCG. In addition, the MG and OCG are not
interchangeable. One might question whether adopting conciseness and brevity metrics could
sufficiently alter the OCG, or if the OCG could effectively encompass the MG guideline. Our answer
is no. While MG can steer LLMs towards brevity in responses, it lacks precise quantification for
conciseness. Modern LLMs, often trained to generate verbose responses, may struggle to meet human
conciseness without explicit statistics. Meanwhile, the OCG supplies them in the form of bins and
means, yet these statistics alone do not directly address linguistic qualities. We provide examples as
evidence supporting our arguments in Appx.-Figures 15 and 16.

D.5 COLLECTED METRICS IN LONGGUIDE’S STEP 1 (§3)

Table 13 presents our 27 metrics collected for LongGuide’s Step 1.

D.6 JS DIVERGENCE OVER ALL LONGGUIDE METRICS WITH SAMSUM (§4.1)

Figure 10 presents density plots of MG and OCG metrics selected by Mistral under the few-shot
(FS) setting, measured on ground-truth, FS, and FS w/ LongGuide answers. For Jensen–Shannon
divergence, the lower is better.
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Source Metrics #
The ABC’s of Communication (Wagner, 1963) Accuracy, Brevity, Clarity 3

BARTScore (Yuan et al., 2021) Relevance, Coherence 2

GPTScore (Fu et al., 2023) Semantic Coverage, Factuality, Fluency, Informativeness, 10
Consistency, Engagement, Specificity, Correctness,
Understandability, Diversity

We propose Completeness, Conciseness, Neutrality, Naturalness, Readability, Creativity, 12
Rationalness, Truthfulness, Respect of Chronology,
Non-repetitiveness, Indicativeness, Resolution

Total 27 27

Table 13: Metrics collected for LongGuide’s metric guideline (MG).

Figure 10: Density plots of MG and OCG metrics selected by Mistral under the few-shot (FS) setting, measured
on ground-truth, FS, and FS w/ LongGuide answers. For Jensen–Shannon divergence, lower is better.

Summarization Simplification Translation Dialogue Generation Table2Text

Method SAMSum CNN (3.0.0) XL-Sum SWiPE IWSLT17 en-ja Synthetic Persona CommGen-Chall.

#shots (random) 3 3 5 3 5 5 5

M
is

tr
al

-7
B

-i
t

Zero-shot (ZS) 21.25 18.96 8.88 36.21 14.05 12.93 9.12
+ OCG 27.43 21.92 14.22 31.19 16.93 12.99 20.67
+ MG 27.68 18.02 10.26 36.74 11.06 13.74 19.98
+ MG-OCG 28.34 21.63 13.90 35.12 15.49 14.14 20.87
MG-OCG Sel. MG-OCG OCG OCG MG OCG MG-OCG MG-OCG

Few-shot (FS) 25.55 17.30 9.85 39.29 13.52 6.19 4.01
+ OCG 27.31 16.45 12.47 29.85 17.58 6.45 20.50
+ MG 27.88 18.47 12.01 41.07 14.09 6.47 11.16
+ MG-OCG 30.01 19.87 14.89 39.40 17.02 8.06 5.18
MG-OCG Sel. MG-OCG MG-OCG MG-OCG MG OCG MG-OCG OCG

C
ha

tG
PT

Zero-shot (ZS) 24.21 19.54 10.78 45.11 36.22 19.68 24.23
+ OCG 28.81 21.88 20.66 37.58 38.45 23.09 35.04
+ MG 25.12 20.02 10.42 45.09 37.72 19.81 18.50
+ MG-OCG 29.79 21.99 19.91 42.72 41.50 20.82 30.09
MG-OCG Sel. MG-OCG MG-OCG OCG ZS MG-OCG MG-OCG OCG

Few-shot (FS) 27.44 13.77 12.11 33.30 28.76 17.12 24.12
+ OCG 29.98 17.55 19.26 16.22 35.73 21.50 36.51
+ MG 28.89 14.03 12.75 19.14 36.09 19.12 21.99
+ MG-OCG 30.65 13.12 18.64 37.24 36.22 18.99 38.33
MG-OCG Sel. MG-OCG OCG OCG MG-OCG MG-OCG OCG MG-OCG

Table 14: MG-OCG selection results on Dtrain set for the main experiments in Table 3, evaluated by ROUGE-
L.
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D.7 STEP 5 CD-MG SELECTION RESULTS OF LONGGUIDE (§4.1)

The numerical MG-OCG selection results on Dtrain are presented in Table 14, as also noted in
Table 4. Overall, the performance of LongGuide on Dtrain closely mirrors its performance on
the testing tasks in Table 4. The only discrepancy is for the IWSLT17 en-ja task with ChatGPT
using few-shot prompting: the optimal guideline combination on Dtrain is MG-OCG (see Table 14),
whereas the best on the testing set is MG (see Table 4).

D.8 LONGGUIDE CAN GENERALIZE FROM DEMONSTRATIONS (§5.2)

Methods CNN (3.0.0) IWSLT17 en-ja CommGen-Chall.

Zero-shot (ZS) 19.23±0.34 13.12±1.39 10.12±0.02

+ OCG trained on Dtrain 22.46±0.64 16.53±0.59 24.16±0.11

+ MG trained on Dtrain 18.35±0.60 8.71±0.53 21.54±7.50

+ MG-OCG trained on Dtrain 22.05±0.84 15.76±1.85 25.20±1.89

+ LongGuide trained on Dtrain 22.46±0.64 16.53±0.59 25.20±1.89

+ OCG trained on Demos 20.46±0.10 17.27±1.83 23.97±0.47

+ MG trained on Demos 18.33±0.25 8.63±1.08 18.98±0.52

+ MG-OCG trained on Demos 19.16±0.37 14.00±3.42 24.46±2.43

+ LongGuide trained on Demos 20.46±0.10 14.00±2.42 24.46±2.43

Few-shot (FS) 17.56±0.63 12.69±1.82 3.98±0.17

+ OCG trained on Dtrain 19.17±1.27 19.86±2.93 25.05±0.76

+ MG trained on Dtrain 17.18±2.01 12.82±0.15 21.79±5.20

+ MG-OCG trained on Dtrain 21.18±1.07 18.70±0.73 25.43±5.28

+ LongGuide trained on Dtrain 21.18±1.07 19.86±2.93 25.05±0.76

+ OCG trained on Demos 16.88±1.44 19.40±1.39 28.28±0.69

+ MG trained on Demos 15.59±0.59 12.07±2.68 23.99±4.66

+ MG-OCG trained on Demos 19.89±0.39 17.78±3.23 27.41±0.87

+ LongGuide trained on Demos 19.89±0.39 17.78±18.43 23.99±4.66

Table 15: LongGuide learns the guidelines from only demonstrations with Mistral, evaluated by ROUGE-L.

Table 15 presents the numerical results of Figure 7 in §5.2. Even with only 3-5 exemplars as
demonstrations, LongGuide effectively derives MG and OCG guidelines, benefiting the model. In
this case, Dtrain is the set of demonstrations, and the rest of LongGuide’s steps remain unchanged.

D.9 HUMAN EVALUATION FINE-GRAINED RESULTS (§5.1)

Win Draw Loss

Accuracy Clarity Coherence Consistency Correctness Brevity Completeness Relevance Understandability
0

100

200
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0 27

150

0

Figure 11: Fine-grained human evaluation results on evaluated MG metrics.

Figure 11 presents our fine-grained human evaluation results. Overall, LongGuide shows the best in
terms of “Accuracy” and “Clarity”, with a significant number of winning ratings. This suggests that
the generated text is factually correct and easy to understand. Meanwhile, LongGuide shows more
mixed results in terms of “Clarity” and “Coherence”. While there is still a high winning rating, the
proportion of draw and loss ratings is also relatively high, possibly because improving “Brevity” can
somehow reduce the “Clarity”.
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MG Context (MG) OCG Context (OCG) MG-OCG Context (MG-OCG)
Per token 0.0019 0.0064 0.0133 0.0077 0.0017 0.0064
All 37.81% 62.19% 22.56% 77.44% 37.87% 62.13%

Table 16: Attention score over guideline and context tokens of Mistral.

Mistral

ChatGPT

Figure 12: Frequency of metrics selected as the metric guideline.

D.10 ATTENTION ANALYSIS FOR GUIDELINE TOKENS (§5.4)

Table 16 shows our simple attention analysis.

Task Model Selected Metrics
SAMSum Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Relevance’, ’Understandability’]

ChatGPT [’Accuracy’, ’Brevity’, ’Clarity’, ’Relevance’, ’Understandability’]

CNN Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Engagement’, ’Readability’, ’Relevance’, ’Truthfulness’, ’Understandability’]
ChatGPT [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Conciseness’, ’Engagement’, ’Neutrality’, ’Readability’, ’Relevance’, ’Specificity’]

XLSum Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Consistency’, ’Correctness’, ’Diversity’, ’Engagement’, ’Factuality’, ’Fluency’, ’Indicative’,
’Informativeness’, ’Neutrality’, ’Non-repetitiveness’, ’Relevance’, ’Resolution’, ’Respect of Chronology’, ’Semantic Coverage’, ’Specificity’, ’Understandability’]

ChatGPT [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Consistency’, ’Correctness’, ’Diversity’, ’Engagement’, ’Factuality’, ’Fluency’, ’Indicative’,
’Informativeness’, ’Neutrality’, ’Non-repetitiveness’, ’Rationalness’, ’Relevance’, ’Resolution’, ’Respect of Chronology’, ’Semantic Coverage’, ’Specificity’, ’Understandability’]

SWiPE Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Relevance’, ’Understandability’]
ChatGPT [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Conciseness’, ’Consistency’, ’Correctness’, ’Readability’, ’Understandability’]

IWSLT17 en-ja Mistral [’Accuracy’, ’Clarity’, ’Coherence’, ’Consistency’, ’Correctness’, ’Factuality’, ’Fluency’, ’Relevance’, ’Understandability’]
ChatGPT [’Accuracy’, ’Clarity’, ’Coherence’, ’Consistency’, ’Correctness’, ’Factuality’, ’Fluency’, ’Relevance’, ’Understandability’]

Synthetic Persona Mistral [’Accuracy’, ’Brevity’, ’Clarity’, ’Coherence’, ’Completeness’, ’Consistency’, ’Correctness’, ’Diversity’, ’Engagement’, ’Factuality’, ’Fluency’, ’Indicative’,
’Informativeness’, ’Neutrality’, ’Non-repetitiveness’, ’Relevance’, ’Resolution’, ’Respect of Chronology’, ’Semantic Coverage’, ’Specificity’, ’Understandability’]

ChatGPT [’Accuracy’, ’Clarity’, ’Coherence’, ’Consistency’, ’Correctness’, ’Diversity’, ’Engagement’, ’Fluency’, ’Indicative’, ’Informativeness’,
’Neutrality’, ’Non-repetitiveness’, ’Relevance’, ’Resolution’, ’Respect of Chronology’, ’Specificity’, ’Understandability’]

CommGen-Chall. Mistral [’Coherence’, ’Conciseness’, ’Fluency’, ’Relevance’, ’Understandability’]
ChatGPT [’Clarity’, ’Coherence’, ’Completeness’, ’Conciseness’, ’Consistency’, ’Creativity’, ’Engagement’, ’Fluency’, ’Naturalness’, ’Relevance’]

Table 17: Selected metrics by tasks by Mistral and ChatGPT.

D.11 WHICH METRICS WERE SELECTED THE MOST FOR MG? (§D.4)

To better understand how models select and evaluate metrics, we analyze the specific metrics chosen
for each task (Table 17), their selection frequencies (Figure 12), and their average scores (Figure 13).
We observe that both models consistently choose key metrics like “Accuracy,” “Clarity,” “Relevance,”
and “Understandability,” which are important for many language tasks. They also adjust their metric
choices based on the tasks. For example, specific tasks like CNN and XL-Sum include additional
metrics such as “Engagement” and “Semantic Coverage.” This suggests that the models select metrics
reasonably, based on the needs of the task, rather than showing a preference for certain metrics.
Overall, the variety and suitability of the selected metrics show that the process is fair and appropriate
for the tasks.
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Mistral

ChatGPT

Figure 13: Average scores of metrics as the metric guideline.

D.12 EXTRA ABLATION STUDIES: WITHOUT OCG’S TOKEN OR SENTENCE CONSTRAINT
(§D.4)

Methods CNN (3.0.0) IWSLT17 en-ja CommGen-Chall.

Zero-shot (ZS) 19.23±0.34 13.12±1.39 10.12±0.02

+ LongGuide 22.46±0.64 16.53±0.59 25.20±1.89

+ LongGuide w/o Token Constraint 21.54±0.52↓ 14.09±1.07↓ 21.49±2.15↓
+ LongGuide w/o Sentence Constraint 20.92±0.23↓ 10.02±4.17↓ 13.32±0.73↓

Few-shot (FS) 17.56±0.63 12.69±1.82 3.98±0.17

+ LongGuide 21.18±1.07 19.86±2.93 25.05±0.76

+ LongGuide w/o Token Constraint 20.30±1.46↓ 19.75±1.47↓ 20.30±1.46↓
+ LongGuide w/o Sentence Constraint 15.89±2.26↓ 12.57±2.99↓ 12.20±3.91↓

Table 18: Mistral results when omitting OCG’s Token or Sentence Information, showing the importance of
OCG’s Token and Sentence information, evaluated by ROUGE-L.

Since OCG’s token information and sentence information are the two types of information emphasized
in OCG, we further investigate the importance of each type of information. The empirical experiments
are conducted with Mistral on CNN, IWSLT-2017 en-ja, and CommonGen-Challenge. We present the
results in Table 18. We observe that skipping OCG’s token information or sentence information would
hurt the performance. Specifically, the results drop more significantly when sentence information is
omitted, and even fall below the Zero-shot score in CNN Few-shot with LongGuide and IWSLT17
en-ja Few-shot with LongGuide. The performance drops significantly in the CommonGen-Challenge
Few-shot case, with a fall of 55.20%. Due to the volatility of the token count in a sentence, it is hard
to estimate the other information with only one type of information given. Therefore, both types of
information should be provided to better capture the text distribution.

E IMPLEMENTATION DETAILS

Task benchmark preprocessing. We chose the newest versions of the above datasets. For each
dataset except Synthetic-Persona-Chat, we sample 200 samples from the test set for our evaluation,
following Bai et al. (2024), and 50 random samples from the train set for Dtrain. For Synthetic-
Persona-Chat, we randomly sample 25 dialogues from its test set for our evaluation (678 utterances
in total) and 3 dialogues from its train set where 50 random utterances are selected for Dtrain.
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Prompting baselines’ hyperparameters. We present the implementation and hyperparameters’
details for our proposed LongGuide as well as prompting baselines below.

• LongGuide. We set the batch size is 5 and number of iterations is also 5 for LongGuide’s
step 1. For steps 2, 3, and 4, no hyperparameter involves. For the evaluations by Self-
consistency (Wang et al., 2022a), we sample 3 results.

• APO (Pryzant et al., 2023). We set the number of optimization iterations is 5. We use
1 sample with the lowest ROUGE-L score as the error sample for generating gradients,
following Long et al. (2024). At each iteration, 5 textual gradients are generated, and 5 new
prompts are sampled from textual gradients. Finally, 1 paraphrase of the input prompt is
sampled at each optimization iteration.

• adv-ICL (Long et al., 2024). We use 3 iterations with a batch size of 5 as suggested by
Long et al. (2024). At each iteration, the number of new prompts sampled is 5.

Models’ hyperparameters. The models’ hyperparameters are presented below.

• GPT-4o. We use gpt-4o for our experiments. We use a window size of 2048 and Nu-
cleus Sampling (Holtzman et al., 2019) as our decoding strategy with a p value of 1 and
temperature of 0.1. We use the system role as “You are a helpful assistant!”.

• ChatGPT. We use gpt-3.5-turbo-1106 for our experiments. We use a window size of 1500
and Nucleus Sampling (Holtzman et al., 2019) as our decoding strategy with a p value of 1.
We use the system role as “You are a helpful assistant!”.

• Mistral-7B-it-v0.2. We use a window size of 1500, and Sampling decoding strategy
(Holtzman et al., 2019) (do sampling = True). We load the model from Huggingface
Transformers library (Wolf et al., 2020) with the model id is “mistralai/Mistral-7B-Instruct-
v0.2”. We do not set any explicit system role.

F PROMPTS AND PROMPTING ANALYSIS

F.1 GPT-4O-JUDGE’S PROMPT

Our GPT-4o-Judge prompt evaluating the generated response and the reference is heavily motivated
by Zheng et al. (2023).
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Please act as an impartial judge and evaluate how well an assistant’s answer aligns with the reference
answer and the quality of the assistant’s answer. You will be given a user prompt, a reference answer
and an assistant’s answer. Your evaluation must consider the following criteria:
- Format consistency: ensuring the generated response matches the length and structure of the reference.
- Content completeness: evaluating whether all key points present in the reference are included in the
assistant’s answer.
- Factuality: checking for factual correctness of the assistant’s answer.
- Style adherence: ensuring that the tone, style, and level of detail of the of the assistant’s answer match
the reference.
- Assistant’s answer quality: assessing how well the response satisfies the user’s requirements.
Begin your evaluation by providing a short explanation for each. Be as objective as possible. After
providing your explanation, please rate the response on all the criterion on a scale of 1 to 10 by strictly
following this format:
[The Start of Explanation]
...
[The End of Explanation]
[The Start of Ratings]
{
”Format”: 1-10,
”Content”: 1-10,
”Factuality”: 1-10,
”Style”: 1-10,
”Quality”: 1-10,
}
[The End of Ratings]
[User Prompt]
user prompt
[The Start of Reference Answer]
answer ref
[The End of Reference Answer]
[The Start of Assistant’s Answer]
answer a
[The End of Assistant’s Answer]
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F.2 CHATGPT PROPERTY SCORER PROMPT

You are an expert in evaluating the quality of a text generation task. You possess a nuanced understanding
of various critical aspects. Brevity is paramount for you, ensuring concise expression without sacrificing
essential information. Clarity is essential for comprehension, ensuring that your text is easily understood
by the intended audience. Relevance ensures that the generated content aligns closely with the given
context or prompt. Neutrality is crucial, maintaining an impartial tone devoid of bias. Coherence ties
together ideas seamlessly, fostering a logical flow within your text. Completeness guarantees that all
relevant points are addressed adequately. Specificity enhances precision, providing detailed and accurate
information. Respect of chronology ensures temporal coherence, maintaining the chronological order of
events. Accuracy demands factual correctness, avoiding errors or misinformation. Non-repetitiveness
prevents redundancy, ensuring freshness in your expression. Indicative language aids in signaling key
points or conclusions. Lastly, resolution ensures that your text concludes satisfactorily, resolving any
questions or issues raised throughout.
Input: {dialogue}
Output: {generated summary}
Your task is to evaluate the following criteria in a scale of 1-5, with 1 is worst and 5 is best.
{
”Semantic Coverage”: 1-5,
”Factuality”: 1-5,
”Consistency”: 1-5,
”Informativeness”: 1-5,
”Coherence”: 1-5,
”Relevance”: 1-5
}
The definitions of the criteria are:
Semantic Coverage (COV): The extent to which a dialogue summary captures the main ideas and topics
discussed in the conversation.
Factuality (FAC): The accuracy and truthfulness of the information presented in the dialogue summary,
reflecting fidelity to the original conversation.
Consistency (CON): The degree to which the summary maintains logical and contextual coherence
throughout, avoiding contradictory or conflicting information.
Informativeness (INF): The richness and depth of information conveyed in the dialogue summary,
including key details and relevant context.
Coherence (COH): The overall clarity and organization of the summary, ensuring smooth transitions
between ideas and coherence in the narrative flow.
Relevance (REL): The pertinence of the information included in the dialogue summary to the intended
purpose or topic, ensuring alignment with the user’s interests or needs.
Your output must be in Python dictionary format.

F.3 LONGGUIDE’S PROMPTS

Prompting templates for LongGuide. Let Q,C, I,Df be the input query, context, instruction,
and demonstration token sequence respectively (§1, §2), and Gbest is the learned guideline(s), the
prompt for M is formatted: ‘‘{I}\n{Df}\n{C}\n{Q}\n{Gbest}’’.

Summarization Simplification Translation Dialogue Generation Table2Text

Models Method SAMSum CNN (3.0.0) XL-Sum SWiPE IWSLT17 en-ja Synthetic Persona CommGen-Chall.

#shots (random) 3 3 5 3 5 5 5

M
is

tr
al #tokens consumed 642 1110 811 1020 915 855 939

US$ consumed 0 0 0 0 0 0 0

C
ha

tG
PT

#tokens consumed 1866 7683 4863 2380 1370 1344 1272
US$ consumed insignificant insignificant insignificant insignificant insignificant insignificant insignificant

Table 19: Total number of tokens consumed and US$ consumed for models to learn the metric guideline (MG)
and output constraint guideline (OCG).

Prompting costs. Table 19 presents the total number of tokens consumed for models to learn the
metric guidelines and output constraint guideline (OCG) for both models with the hyperparameters
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of LongGuide specified in §E. We observe that the number of tokens needed to learn the guidelines is
insignificant, demonstrating that LongGuide is a cost-effective solution and potentially beneficial for
a wide range of applications.

Table 20 presents the prompting cost comparision between LongGuide and other PO algorithms.
We compare the number of new prompts sampled by each algorithm for validation set verification,
as these prompts are the primary cost bottleneck in PO algorithms. We observe that LongGuide is
approximately at least 3.75 times cheaper than adv-ICL in both settings and 18.75 times cheaper than
APO. For SAMSum, the validation of one prompt using 50 samples involves approximately 22K
tokens, which incurs a cost of 0.02 USD as of November 19, 2024.

Prompt for step 1, metric selection. Below is the prompt we use for step 1 selecting metrics for a
given task.

Select top-5 metrics that are the most important from the list below to evaluate a special way of
{TASK NAME}. {str(PRE DEFINED ASSESSMEN METRICS)}.
Here are some demonstrations of the task {TASK NAME}: {DEMONSTRATION STRING}.
Output your list of metrics in Python list format without any explanation: [...].

Prompt for step 2, metric score collection. Below is the prompt we use for step 2 for evaluating
selected metrics on the task.

You are given an input and an output of a {TASK NAME} task.
Input: {input}
Output: {output}
Your task is to evaluate the following criteria on a scale of 1-5, with 1 being worst and 5 being best.
{EVALUATION FORMAT}
The definitions of the criteria are: {METRICS DEFINITIONS}
Your output must be in Python dictionary format without explanation.

Prompt for step 2, collecting metrics’ definitions. Below is the prompt we use for step 2 collecting
METRICS DEFINITIONS for step 2.

Define the list of following metrics in details as the quality of the output expected for the {TASK NAME}
task.
{metrics}
Give me the list in bullet points.

Prompt for step 3, generating metric guideline (MG). Below is the prompt we use for step 3,
generating the metric guideline (MG).

Now you are given the following metrics: {metrics string} for the {TASK NAME} task.
Based on these scores on a scale of 5 for the quality of the output: {str(metrics collected scores)},
define the expected quality of the output for each metric in natural language. Give me the list in bullet
points.

G EXAMPLES
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Method #Prompts Sampled Cost

Z
S

adv-ICL (3 iterations) × (1 instruction) × (5 variants) 15 × prompt validation cost
APO (5 iterations) × (15 prompts sampled) × (1 instruction) 75 × prompt validation cost
LongGuide 4 prompts (MG, OCG, MG-OCG, No guideline) 4 × prompt validation cost

FS

adv-ICL (3 iterations) × (3 demonstrations + 1 instruction) × (5 variants) 60 × prompt validation cost
APO (5 iterations) × (15 prompts sampled) × (3 demonstrations + 1 instruction) 300 × prompt validation cost
LongGuide 4 prompts (MG, OCG, MG-OCG, No guideline) 4 × prompt validation cost

Table 20: Prompting cost comparison between PO methods and LongGuide based on # new prompts
sampled to test over the validation set.

Zero-shot + OCG  (ROUGE-L = 29.85)
Summarize the summary from the following dialogue.

Morgan: Hey gorgeous, how’s your day?
Suzanne: Nothing special, it’s just one of many boring days at work. But… better now though!
Morgan: Are you working at all? 😉
Suzanne: I’m trying 😉 But you aren’t helping me, at all
Suzanne: I’m just taking a well-deserved break 😉
Morgan:  I miss you Suzie
Suzanne: I miss you too Morgan
Morgan: Do you feel like going to a concert next week? Maroon 5 is playing at the Hulu Theater at Madison Square Garden.
Morgan: As it happens, I’ve got two tickets 😉
Morgan: Do you want to go?
Suzanne: Really? OMG! That’s wonderful!
Suzanne: Thank you sweetheart!
Morgan: Oh, nothing. I just want you to be happy 😉

The summary must have from 1 to 4 sentences and from 5 to 51 words with an average of 22 words and 1 sentences.

ChatGPT: Morgan and Suzanne are talking about their day at work. Morgan offers Suzanne tickets to a Maroon 5 concert, and Suzanne
expresses excitement and thanks Morgan. They plan to attend the concert together.

Few-shot (3 shots) + MG-OCG  (ROUGE-L = 40.74)
Summarize the summary from the following dialogue.

Your generated summary must strictly fulfill the following task metrics
- Accuracy: The summary is completely and precisely capturing the essence and key points of the original dialogue with no omissions or errors.
- Clarity: The summary is clear, easy to understand, and free from ambiguity or confusion.
- Coherence: The summary maintains a logical and consistent flow of ideas and concepts, making it easy to follow.
- Completeness: The summary includes all essential information from the original dialogue without missing any critical details.
- Understandability: The summary is straightforward and accessible, making it comprehendible to a broad audience.
- Brevity: The summary is succinct and to the point, conveying the most important ideas using the least possible number of words.
- Relevance: The summary focuses on the main points and ideas of the original dialogue that are important and significant to the task or context.

The summary must have from 1 to 4 sentences and from 5 to 51 words with an average of 22 words and 1 sentences.

Input: [Demonstration 1 dialogue]
Output: [Demonstration 1 summary]

Input: [Demonstration 2 dialogue]
Output: [Demonstration 2 summary]

Input: [Demonstration 3 dialogue]
Output: [Demonstration 3 summary]

Input:
Morgan: Hey gorgeous, how’s your day?
Suzanne: Nothing special, it’s just one of many boring days at work. But… better now though!
Morgan: Are you working at all? 😉
Suzanne: I’m trying 😉 But you aren’t helping me, at all
Suzanne: I’m just taking a well-deserved break 😉
Morgan:  I miss you Suzie
Suzanne: I miss you too Morgan
Morgan: Do you feel like going to a concert next week? Maroon 5 is playing at the Hulu Theater at Madison Square Garden.
Morgan: As it happens, I’ve got two tickets 😉
Morgan: Do you want to go?
Suzanne: Really? OMG! That’s wonderful!
Suzanne: Thank you sweetheart!
Morgan: Oh, nothing. I just want you to be happy 😉

Output:

ChatGPT: Morgan invites Suzanne to a Maroon 5 concert at Madison Square Garden and she gladly accepts, expressing happiness and gratitude

Figure 14: Full example of ChatGPT results on a SAMSum example (Gliwa et al., 2019) w/ LongGuide
guidelines (Zero-shot + LongGuide and Few-shot + LongGuide) from Figure 1
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Zero-shot (ROUGE-L = 30.77)
Summarize the summary from the following dialogue.

Rob: Are we meeting up 2morrow?
Eve: How about Sunday
Eve: stores are open so we can go then
Rob: Ok I just don't know what time they close
Eve: we have ot go in the moring 
Eve: I have some stuff to do around 3
Rob: ok

ChatGPT: Rob and Eve discuss meeting up, with Eve suggesting they go on Sunday since stores are open. Rob agrees but is concerned about
store closing times. Eve suggests going in the morning as she has plans in the afternoon. Rob agrees to the plan.

Zero-shot + MG  (ROUGE-L = 36.07)
Summarize the summary from the following dialogue.

Rob: Are we meeting up 2morrow?
Eve: How about Sunday
Eve: stores are open so we can go then
Rob: Ok I just don't know what time they close
Eve: we have ot go in the moring 
Eve: I have some stuff to do around 3
Rob: ok

Your generated summary must strictly fulfill the following task metrics
- Accuracy: The summary is completely and precisely capturing the essence and key points of the original dialogue with no omissions or errors.
- Clarity: The summary is clear, easy to understand, and free from ambiguity or confusion.
- Coherence: The summary maintains a logical and consistent flow of ideas and concepts, making it easy to follow.
- Completeness: The summary includes all essential information from the original dialogue without missing any critical details.
- Understandability: The summary is straightforward and accessible, making it comprehendible to a broad audience.
- Brevity: The summary is succinct and to the point, conveying the most important ideas using the least possible number of words.
- Relevance: The summary focuses on the main points and ideas of the original dialogue that are important and significant to the task or context.

ChatGPT: Rob and Eve discuss meeting up, considering Sunday due to stores being open. They plan to go in the morning as Eve has plans later.
Rob expresses uncertainty about store closing times, to which Eve suggests going in the morning.

Ground-truth Answer (Summary)
Rob and Eve will meet on Sunday morning to go to the shops. Eve has something to do at about 3

Zero-shot + OCG  (ROUGE-L = 36.73)
Summarize the summary from the following dialogue.

Rob: Are we meeting up 2morrow?
Eve: How about Sunday
Eve: stores are open so we can go then
Rob: Ok I just don't know what time they close
Eve: we have ot go in the moring 
Eve: I have some stuff to do around 3
Rob: ok

The summary must have from 1 to 4 sentences and from 5 to 51 words with an average of 22 words and 1 sentences.

ChatGPT: Rob and Eve plan to meet on Sunday when stores are open, but Rob is unsure about the closing time, so they decide to go in the
morning.

Zero-shot + MG-OCG  (ROUGE-L = 44.00)
Summarize the summary from the following dialogue.

Rob: Are we meeting up 2morrow?
Eve: How about Sunday
Eve: stores are open so we can go then
Rob: Ok I just don't know what time they close
Eve: we have ot go in the moring 
Eve: I have some stuff to do around 3
Rob: ok

Your generated summary must strictly fulfill the following task metrics
- Accuracy: The summary is completely and precisely capturing the essence and key points of the original dialogue with no omissions or errors.
- Clarity: The summary is clear, easy to understand, and free from ambiguity or confusion.
- Coherence: The summary maintains a logical and consistent flow of ideas and concepts, making it easy to follow.
- Completeness: The summary includes all essential information from the original dialogue without missing any critical details.
- Understandability: The summary is straightforward and accessible, making it comprehendible to a broad audience.
- Brevity: The summary is succinct and to the point, conveying the most important ideas using the least possible number of words.
- Relevance: The summary focuses on the main points and ideas of the original dialogue that are important and significant to the task or context.

The summary must have from 1 to 4 sentences and from 5 to 51 words with an average of 22 words and 1 sentences.

ChatGPT: Rob and Eve plan to meet on Sunday to take advantage of store hours; they aim to go in the morning, allowing Eve time for personal
activities around 3.

Figure 15: A sample from SAMSum dataset where MG and OCG supplement each other and are not inter-
changeable to increase the performance in final answer.
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Zero-shot + MG  (ROUGE-L = 16.09)
Simplify the following text

Yehuda Nir (March 31, 1930 – July 19, 2014) was a Polish-born American Holocaust survivor, psychiatrist and author of The Lost Childhood. Nir posed as a Roman Catholic and learned Latin to escape
Nazi persecution in Poland during World War II. Nir's ordeal led him to a career as a psychiatrist, specializing in the treatment of post-traumatic stress disorder and severely ill children. He immigrated to
the United in 1959 to complete medical residencies in New York City and Philadelphia. He served as the chief of child psychiatry of Memorial Sloan-Kettering Cancer Center from 1979 until 1986.
Nir was born Juliusz Gruenfeld in Lvov, Poland, (present-day Ukraine) on March 31, 1930. He later changed his name to "Nir" after World War II since "Gruenfeld" has German origins. Nir means plowed
fields in Hebrew.
Nir released a memoir of his experience during the Holocaust, "The Lost Childhood" in 1989. A second edition was reprinted by Scholastic Press in 2002. The Lost Childhood is now used as part of the
high school curriculum throughout the United States. He also published four self-help books focusing on relationships, including "Not Quite Paradise: Making Marriage Work" and "Loving Men for All the
Right Reasons."
Yehuda Nir died at his home in Manhattan, New York City, on July 19, 2014, at the age of 84. His funeral was held at Riverside Memorial Chapel on the Upper West Side with burial on the Mount of Olives
in Jerusalem.

The generated simplification must fulfill the following task metrics
- Accuracy: The text is expected to be highly accurate, with minimal errors or inaccuracies.
- Brevity: The text is expected to be concise and to the point, avoiding unnecessary repetition or verbosity.
- Clarity: The text is expected to be clear and easy to understand, conveying the intended message effectively.
- Coherence: The text is expected to be logically connected, with smooth transitions between ideas and concepts.
- Conciseness: The text is expected to be succinct and focused, without unnecessary elaboration or redundant information.
- Naturalness: The text is expected to read naturally, resembling fluent human language in terms of flow and expression.
- Readability: The text is expected to be easy to read and comprehend, with good overall readability.
- Simplicity: The text is expected to be simple and straightforward, catering to a broad audience and avoiding complexity.
- Understandability: The text is expected to be easily understood by the intended audience, with clear and unambiguous language.

ChatGPT: Yehuda Nir, born Juliusz Gruenfeld in Poland in 1930, changed his name after World War II to the Hebrew term "Nir" meaning "plowed fields." Escaping Nazi persecution as a Roman Catholic
with learned Latin, Nir became a psychiatrist specializing in PTSD and severely ill children. He immigrated to the US in 1959 for medical residencies in New York and Philadelphia. Nir published a memoir
of his Holocaust experiences, "The Lost Childhood," in 1989 and a second edition in 2002. Now used in US high schools, this memoir highlights his harrowing journey. Additionally, he wrote self-help
books on relationships, including "Not Quite Paradise" and "Loving Men." Nir died at 84 in Manhattan in 2014 and was interred in Jerusalem. (118 tokens)

Zero-shot + OCG  (ROUGE-L = 15.79)
Simplify the following text

Yehuda Nir (March 31, 1930 – July 19, 2014) was a Polish-born American Holocaust survivor, psychiatrist and author of The Lost Childhood. Nir posed as a Roman Catholic and learned Latin to escape
Nazi persecution in Poland during World War II. Nir's ordeal led him to a career as a psychiatrist, specializing in the treatment of post-traumatic stress disorder and severely ill children. He immigrated to
the United in 1959 to complete medical residencies in New York City and Philadelphia. He served as the chief of child psychiatry of Memorial Sloan-Kettering Cancer Center from 1979 until 1986.
Nir was born Juliusz Gruenfeld in Lvov, Poland, (present-day Ukraine) on March 31, 1930. He later changed his name to "Nir" after World War II since "Gruenfeld" has German origins. Nir means plowed
fields in Hebrew.
Nir released a memoir of his experience during the Holocaust, "The Lost Childhood" in 1989. A second edition was reprinted by Scholastic Press in 2002. The Lost Childhood is now used as part of the
high school curriculum throughout the United States. He also published four self-help books focusing on relationships, including "Not Quite Paradise: Making Marriage Work" and "Loving Men for All the
Right Reasons."
Yehuda Nir died at his home in Manhattan, New York City, on July 19, 2014, at the age of 84. His funeral was held at Riverside Memorial Chapel on the Upper West Side with burial on the Mount of
Olives in Jerusalem.

The simplified text must have from 1 to 17 sentences and from 16 to 426 words with an average of 80 words and 4 sentences.

ChatGPT: Yehuda Nir, born Juliusz Gruenfeld in Poland in 1930, survived the Holocaust by posing as a Roman Catholic and learned Latin. He later became a psychiatrist, focusing on PTSD and
severely ill children in the US. Nir published "The Lost Childhood" about his experiences and self-help books on relationships. He died in 2014, with a funeral in New York and burial in Jerusalem.
Born in Lvov, Poland, in 1930 as Juliusz Gruenfeld, Yehuda Nir posed as a Catholic during the Holocaust and used his knowledge of Latin to hide. After immigration to the US in 1959, he specialized in
child psychiatry and PTSD treatment.
Nir published his memoir, "The Lost Childhood," in 1989 and it is now used in US high schools. Additionally, he wrote four self-help books, including "Not Quite Paradise" and "Loving Men for All the Right
Reasons". Yehuda Nir, aged 84, passed away in Manhattan, New York, in 2014. His funeral was held at Riverside Memorial Chapel and he was buried on the Mount of Olives in Jerusalem. (171 tokens)

Zero-shot + MG-OCG  (ROUGE-L = 27.82)
Simplify the following text

Yehuda Nir (March 31, 1930 – July 19, 2014) was a Polish-born American Holocaust survivor, psychiatrist and author of The Lost Childhood. Nir posed as a Roman Catholic and learned Latin to escape
Nazi persecution in Poland during World War II. Nir's ordeal led him to a career as a psychiatrist, specializing in the treatment of post-traumatic stress disorder and severely ill children. He immigrated to
the United in 1959 to complete medical residencies in New York City and Philadelphia. He served as the chief of child psychiatry of Memorial Sloan-Kettering Cancer Center from 1979 until 1986.
Nir was born Juliusz Gruenfeld in Lvov, Poland, (present-day Ukraine) on March 31, 1930. He later changed his name to "Nir" after World War II since "Gruenfeld" has German origins. Nir means plowed
fields in Hebrew.
Nir released a memoir of his experience during the Holocaust, "The Lost Childhood" in 1989. A second edition was reprinted by Scholastic Press in 2002. The Lost Childhood is now used as part of the
high school curriculum throughout the United States. He also published four self-help books focusing on relationships, including "Not Quite Paradise: Making Marriage Work" and "Loving Men for All the
Right Reasons."
Yehuda Nir died at his home in Manhattan, New York City, on July 19, 2014, at the age of 84. His funeral was held at Riverside Memorial Chapel on the Upper West Side with burial on the Mount of
Olives in Jerusalem.

The generated simplification must fulfill the following task metrics
- Accuracy: The text is expected to be highly accurate, with minimal errors or inaccuracies.
- Brevity: The text is expected to be concise and to the point, avoiding unnecessary repetition or verbosity.
- Clarity: The text is expected to be clear and easy to understand, conveying the intended message effectively.
- Coherence: The text is expected to be logically connected, with smooth transitions between ideas and concepts.
- Conciseness: The text is expected to be succinct and focused, without unnecessary elaboration or redundant information.
- Naturalness: The text is expected to read naturally, resembling fluent human language in terms of flow and expression.
- Readability: The text is expected to be easy to read and comprehend, with good overall readability.
- Simplicity: The text is expected to be simple and straightforward, catering to a broad audience and avoiding complexity.
- Understandability: The text is expected to be easily understood by the intended audience, with clear and unambiguous language.

The simplified text must have from 1 to 17 sentences and from 16 to 426 words with an average of 80 words and 4 sentences

ChatGPT: Dr. Yehuda Nir, born Juliusz Gruenfeld in 1930 in Lvov, Poland, survived the Holocaust by posing as a Catholic. He moved to the U.S. in 1959, becoming a psychiatrist specializing in PTSD
and child psychiatry. His memoir, The Lost Childhood, published in 1989, is used in high schools. Nir died in Manhattan in 2014, with his burial in Jerusalem. (59 tokens)

Zero-shot (ROUGE-L = 21.43)
Simplify the following text

Yehuda Nir (March 31, 1930 – July 19, 2014) was a Polish-born American Holocaust survivor, psychiatrist and author of The Lost Childhood. Nir posed as a Roman Catholic and learned Latin to escape
Nazi persecution in Poland during World War II. Nir's ordeal led him to a career as a psychiatrist, specializing in the treatment of post-traumatic stress disorder and severely ill children. He immigrated to
the United in 1959 to complete medical residencies in New York City and Philadelphia. He served as the chief of child psychiatry of Memorial Sloan-Kettering Cancer Center from 1979 until 1986.
Nir was born Juliusz Gruenfeld in Lvov, Poland, (present-day Ukraine) on March 31, 1930. He later changed his name to "Nir" after World War II since "Gruenfeld" has German origins. Nir means plowed
fields in Hebrew.
Nir released a memoir of his experience during the Holocaust, "The Lost Childhood" in 1989. A second edition was reprinted by Scholastic Press in 2002. The Lost Childhood is now used as part of the
high school curriculum throughout the United States. He also published four self-help books focusing on relationships, including "Not Quite Paradise: Making Marriage Work" and "Loving Men for All the
Right Reasons."
Yehuda Nir died at his home in Manhattan, New York City, on July 19, 2014, at the age of 84. His funeral was held at Riverside Memorial Chapel on the Upper West Side with burial on the Mount of
Olives in Jerusalem.

ChatGPT: Yehuda Nir, born as Juliusz Gruenfeld in Lvov, Poland (now Ukraine) in 1930, survived the Holocaust by posing as a Roman Catholic and learning Latin. He later changed his name to "Nir" as
a reference to plowed fields in Hebrew. Nir became a psychiatrist, focusing on treating post-traumatic stress disorder and severely ill children. He moved to the U.S. in 1959 to finish medical residencies
in New York City and Philadelphia. Nir served as the head of child psychiatry at Memorial Sloan-Kettering Cancer Center from 1979 to 1986.
Nir published a memoir of his Holocaust experiences, titled "The Lost Childhood," in 1989. The book has been included in high school curriculums in the U.S. since then, and a second edition was
published by Scholastic Press in 2002. In addition, he authored four self-help books about relationships, such as "Not Quite Paradise: Making Marriage Work" and "Loving Men for All the Right Reasons."
Nir passed away on July 19, 2014, at the age of 84, in his Manhattan home. His funeral took place at Riverside Memorial Chapel on the Upper West Side, while he was buried on the Mount of Olives in
Jerusalem. (192 tokens)

Ground-truth Answer (Simplified text)
Dr. Yehuda Nir (31 March 1930 – 19 July 2014) was an Polish-born Israeli-American psychiatrist. He was known for surviving the holocaust. Nir served as a chief of child psychiatry at Memorial Sloan-
Kettering Cancer Center from 1979 to 1986. He was born in Lvov, Poland. Nir died in Manhattan, New York, aged 84. (53 tokens)

Figure 16: An example of SWiPE (Laban et al., 2023) where the record contains fewer tokens than the expected
average. This reduces the effectiveness of OCG and MG individually, but their combination could enhance
performance.
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Ground truth
 (Commonsense description)
The lady takes the wash out of

the washer and hangs them
out the buildings window to dry.

Metric guideline
scores

Consiseness: 4
Informativeness: 5

...

Answer

InformativenessConciseness

Ground truth
(Commonsense description)

So there I am at the party,
standing on the second floor

looking at John, so I hit the ball
against his face, then I turn

around and pretend it isn't me
and take a leap of faith that
John won't suspect of me.

Metric guideline
scores

Consiseness: 5
Informativeness: 3

...

Answer
The ball was hit, and then it was taken by the player's turn.

Conciseness Informativeness

Input (Concepts)
['ball', 'hit', 'take', 'turn']

Input (Concepts)
['building', 'hang', 'wash', 

'washer', 'window']

When it comes to maintaining a clean building, having a hang
washer can be incredibly useful. This tool makes it easier to
wash and clean windows, particularly in high-rise structures
where traditional methods may not be feasible. The hang
washer allows for efficient cleaning and maintenance,
ensuring that the windows are kept spotless and the building
maintains a pristine appearance. By using a hang washer,
building maintenance can be both effective and safe,
providing a reliable solution for keeping windows clean and
ensuring the overall upkeep of the structure.

Figure 17: A CommonGen-Challenge example (Lin et al., 2020), where output with high Conciseness score
could have low Informativeness score and vice versa

Zero-shot answer (ROUGE-L = 16.22)
George attempts to make arrangements to meet Donna to discuss a personal matter, but she is skeptical
and makes a joke about the topic being AIDS. George finds her humor inappropriate and denies it. Donna
presses for information on the discussion topic, and George suggests they meet at his place that night since
a coffee shop may not be an appropriate setting.

LongGuide without Step 2 (ROUGE-L = 17.24)
(MG metrics' scores w/o step 2: Accuracy: 5, Brevity: 5, Clarity: 5, Correctness: 5, Relevance: 5,

Understandability: 5, Informativeness: 5)

George asked Donna to discuss a delicate matter with him, initially suggesting a coffee shop. However,
Donna pointed out that a coffee shop might not be the best place for such a conversation, leading George to
reconsider and propose coming to his place that night instead.

LongGuide (ROUGE-L = 21.62) 
(MG metrics' scores: Accuracy: 5, Brevity: 5, Clarity: 4, Correctness: 5, Relevance: 5, Understandability: 5,

Informativeness: 4)

George proposed discussing a private matter with Donna, suggesting a coffee shop but later acknowledging
its unsuitability; he then invited her to his place instead.

Input (Dialogue)
George: Hi Donna. I've been trying to catch you.
Donna: What about?
George: A rather delicate matter.
Donna: Did you catch AIDS?
George: Very funny!
Donna: It is, isn't it?
George: I don't think so.
Donna: Too bad. So what do you want?
George: Could we meet and discuss it somewhere?
Donna: Like where?
George: Like in a coffee shop or somewhere.
Donna: You sure a coffee shop is better to discuss delicate matters.
George: Come to think of it, you are right. It's not.
Donna: See? So what's up?
George: Couldn't you come to my place tonight?

Ground truth answer (Summary)
Donna will pay George a visit tonight to discuss a personal matter.

Figure 18: A SAMSum example, where skipping step 2 worsens the performance due to lack of clarity in
metrics
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Figure 19: Full text for an example in §2.
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