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ABSTRACT

In this research, we focus on the problem of learning monotonic neural networks,
as preserving the monotonicity of a model with respect to a subset of inputs is
crucial for practical applications across various domains. Although several methods
have recently been proposed to address this problem, they have limitations such
as not guaranteeing monotonicity in certain cases, requiring additional inference
time, lacking scalability with increasing network size and number of monotonic
inputs, and manipulating network weights during training. To overcome these
limitations, we introduce a simple but novel architecture of the partially connected
network which incorporates a ‘scalable monotonic hidden layer’ comprising three
units: the exponentiated unit, ReLU unit, and confluence unit. This allows for
the repetitive integration of the scalable monotonic hidden layers without other
structural constraints. Consequently, our method offers ease of implementation
and rapid training through the conventional error-backpropagation algorithm. We
accordingly term this method as Scalable Monotonic Neural Networks (SMNN).
Numerical experiments demonstrated that our method achieved comparable pre-
diction accuracy to the state-of-the-art approaches while effectively addressing the
aforementioned weaknesses.

1 INTRODUCTION

The field of neural networks has made significant progress in recent years, leading to notable ad-
vancements in domains like computer vision (Redmon & Farhadi, 2018), natural language processing
(Vaswani et al., 2017), and speech recognition (Baevski et al., 2020). Neural networks have been
successfully applied to a wide range of practical applications, including prediction (Chen et al., 2018;
Arik & Pfister, 2021), generation (Goodfellow et al., 2020; Ho et al., 2020; Kobyzev et al., 2020),
out-of-distribution detection (Liang et al., 2017), and more. However, the incorporation of prior
domain knowledge into neural network models remains an open question. One important inductive
bias sought in neural network models is monotonicity, ensuring that the output consistently increases
or decreases with changes in certain inputs. In domains where model credibility is critical, such as
finance, healthcare, legal, and engineering, it is essential to consider monotonicity when designing
neural network models. For instance, in the financial domain, accurately reflecting the positive
influence of factors on price is crucial. Similarly, in engineering, predictive models must account for
monotonic relationships between control factors and responses to ensure their safe use.

In traditional machine learning, various approaches have been employed to enforce monotonicity
in trained models, including decision trees (Potharst & Feelders, 2002), random forests (Bartley
et al., 2019), boosting (Chen et al., 2015), support vector machines (Doumpos & Zopounidis, 2009),
and traditional statistical regression (Dykstra et al., 2012; Kalai & Sastry, 2009; Kyng et al., 2015).
Similarly, there have been research efforts in the past and more recently to incorporate monotonicity
as an inductive bias into neural networks (Archer & Wang, 1993; Sill, 1997; Lang, 2005; Daniels &
Velikova, 2010; Milani Fard et al., 2016; You et al., 2017), which can be categorized into two groups.

Approaches with customized architecture: The first group of studies focuses on modifying neural
networks to achieve monotonicity or partial monotonicity in specific input features. Hand-designed
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architectures or heuristic algorithms are employed for this purpose. For instance, the non-negative
approach (Archer & Wang, 1993) restricts weights on monotonic features to be positive. The
Min-Max Network (Daniels & Velikova, 2010) utilizes three specially designed layers (linear layer,
Max-pooling layer, Min-pooling layer) to enforce monotonicity. The Deep Lattice Network (You
et al., 2017) constructs a network using lattice layers and combines them in an ensemble. Additionally,
the Hierarchical Lattice Layer (HLL) method (Yanagisawa et al., 2022) extends the existing deep
lattice network to address its limitations, particularly in handling high-dimensional inputs. However,
HLL still faces the challenge of significantly increased computational complexity as the dimension of
the monotonic features grows. It has been recognized that a common drawback of the aforementioned
studies lies in the often excessive constraints imposed, which result in a restricted hypothesis space
for weight parameters. Consequently, models in this category tend to exhibit relatively lower
performance when compared to the other group. However, recent works have demonstrated their
ability to overcome this limitation. The Lipschitz Monotonic Networks (LMN) method (Nolte et al.,
2022) has exhibited enhanced performance by constraining the norm of weights, ensuring the trained
network maintains Lipschitz continuity. Nevertheless, it is important to note that if the Lipschitz
constant λ remains smaller than the inherent monotonicity scale within data, LMN may struggle to
effectively learn from the data. This limitation arises because LMN cannot approximate any function
that holds a gradient exceeding the given Lipschitz constant. Another notable study demonstrating
promising performance is the Constrained Monotonic Neural Networks (Constrained MNN) method
(Runje & Shankaranarayana, 2023). In this work, a monotonic dense layer was introduced to enforce
monotonicity by converting updated weights into absolute values during the training process. The
main strength of the approaches within this category lies in their capacity to ensure monotonicity.
However, limitations exist. Earlier studies exhibited low performance, while recent advancements
come with their own constraints, notably the non-optimality of trained networks resulting from weight
manipulation during the training process.

Approaches with regularization: The second group aims to achieve monotonicity through regular-
ization techniques. One approach is to impose penalties on negative gradients or directly penalize
negative weights of the network as a form of regularization loss (Gupta et al., 2019; Liu et al., 2020;
Monteiro et al., 2021). The Certified Monotonic Neural Networks (Certified MNN) method (Liu
et al., 2020) penalizes negative gradients for each feature in the data. It leverages the piece-wise
linear property of ReLU to verify the monotonicity of the trained network using a mixed-integer
linear programming (MILP) solver. However, it requires additional processes to enforce and verify
monotonicity. As a regularization method, this method does not always ensure monotonicity. There-
fore, in scenarios where the guarantee of monotonicity is essential, opting for the approaches with
customized architecture may be preferable. Moreover, as the network depth increases, satisfying the
monotonicity constraint becomes more challenging, resulting in significantly higher computational
costs. Another regularization approach involves data augmentation. The Counterexample-Guided
Learning of Monotonic Neural Network (COMET) method (Sivaraman et al., 2020) iteratively injects
monotonicity into the model through guided learning with the augmentation of counterexamples
for samples violating monotonicity. Monotonicity guarantees are achieved by finding the upper and
lower envelopes of the model using iterative algorithms proposed in this research. The COMET
method utilizes the satisfiability modulo theories (SMT) solver (Barrett & Tinelli, 2018) to find coun-
terexamples. Similar to Certified MNN, COMET does not employ end-to-end learning, and as the
network size grows, the solver becomes computationally intensive. Both Certified MNN and COMET
have the advantage of exploring weights within an unrestricted hypothesis space. However, they also
share the disadvantage of requiring additional steps in the inference or prediction process, making
them not fully scalable to high-dimensional monotonic features. As the network size increases, the
computational cost of the solvers for both methods becomes prohibitively high.

Table 1 presents a comparison of different monotonic neural network methods and their respective
capabilities. While some existing methods demonstrate competence in certain aspects, others fall
short. While addressing the limitations in learning monotonic neural networks, it is important to
prioritize scalability concerning the increasing number of monotonic inputs and network size, along-
side achieving good model performance. To address these challenges, this research proposes a new
learning approach. Specifically, our study introduces a simple but novel architecture of the partially
connected network which incorporates a ‘scalable monotonic hidden layer’ comprising three units:
the exponentiated unit, ReLU unit, and confluence unit. This allows for the repetitive integration of
the scalable monotonic hidden layers without other structural constraints. Consequently, our method
offers ease of implementation and rapid training through the conventional error-backpropagation
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Table 1: Comparison of monotonic neural networks with their capabilities

Method end-to-end learning guaranteeing monotonicity scalable trainable using traditional gradient descent

Approaches with Regularization

Certified MNN (Liu et al., 2020) ✗ ✗ ✗ ✓
COMET (Sivaraman et al., 2020) ✗ ✓ ✗ ✓

Approaches with Customized Architectures

HLL (Yanagisawa et al., 2022) ✓ ✓ ✗ ✓
LMN (Nolte et al., 2022) ✓ ✓ ✓ ✗

Constrained MNN (Runje & Shankaranarayana, 2023) ✓ ✓ ✓ ✗
Ours ✓ ✓ ✓ ✓

algorithm. We accordingly term this method as Scalable Monotonic Neural Networks (SMNN).
Furthermore, our method enhances function approximation capabilities. Through numerical experi-
ments, we demonstrate the superiority of our approach when compared to the state-of-the-art methods.
Additionally, our method effectively incorporates monotonicity as an inductive bias into the model,
leading to improved generalization performance. In matters of scalability, even as monotonic inputs
and network size expand, our method demonstrates efficient training with minimally required time
increments.

2 MONOTONICITY AND PARTIAL MONOTONICITY

This section provides the definition of monotonicity for functions, starting with the definition for
a univariate function. Subsequently, we extend the definition to cover monotonicity and partial
monotonicity for a multivariate function.

Monotonicity: Let f(x) be a continuous and differentiable univariate function, which maps a
normalized input x ∈ X = [0, 1] to Y of R. The function f(x) is said to be monotonically
non-decreasing iff x ≤ x′ ⇒ f(x) ≤ f(x′) holds for any two points x, x′ ∈ X . Similarly, it
is monotonically non-increasing iff x ≤ x′ ⇒ f(x) ≥ f(x′) is satisfied. Alternatively, f(x) is
monotonically non-decreasing iff ∀x, ∂f(x)

∂x ≥ 0 is met, and it is monotonically non-increasing iff
∀x, ∂f(x)

∂x ≤ 0 is satisfied.

Monotonicity and partial monotonicity: Let f(x) be a continuous and differentiable multivariate
function, which maps a normalized input x ∈ X = [0, 1]d to Y of R. Suppose that the input
vector x is partitioned into x = (xm,x¬m) ∈ Rm × Rd−m, where 0 < m < d. The function
f(x) is said to be partially monotonically non-decreasing on xm, which ith element is xi, iff
∀i, xi ≤ x′

i, ∀j ̸= i, xj = x′
j ⇒ f(x) ≤ f(x′) holds for any two points x,x′ ∈ X . Similarly, it

is monotonically non-increasing iff ∀i, xi ≤ x′
i, ∀j ̸= i, xj = x′

j ⇒ f(x) ≥ f(x′) is satisfied.

Alternatively, f(x) is partially monotonically non-decreasing for x iff ∀xi ∈ xm, ∂f(x)
∂xi

≥ 0 is met,

and it is partially monotonically non-increasing iff ∀xi ∈ xm, ∂f(x)
∂xi

≤ 0 is satisfied.

As observed, xm represents monotonic features while x¬m signifies non-monotonic features. Si-
multaneously, m denotes the number of monotonic features. In the multivariate case, when m = d,
partial monotonicity can be treated as monotonicity. Within the neural network training context, the
function f can be interpreted as a neural network.

3 SCALABLE MONOTONIC NEURAL NETWORK

In this section, we introduce our proposed SMNN method. Our method incorporates three key
elements: the utilization of exponentiated weights to ensure monotonicity, the adoption of ReLU-n
activation for universal function approximation, and a partially connected network structure that
preserves monotonicity for monotonic inputs while capturing interactions among all input features.
Because of these characteristics, our method achieves scalability by eliminating the need for any pre-
or post-processing steps. Instead, it simply employs conventional error-backpropagation to train a
neural network efficiently.
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Exponentiated weights: Exponentiated formulations have been widely used in various machine
learning studies for different purposes. For example, Neural Additive Models (NAM) (Agarwal et al.,
2021) introduced the Exu-centered layer to increase the flexibility of univariate sub-networks. The use
of exponentiated weights in this layer allows even small changes in the input to result in significant
changes in the output within a specified range. In the FLOW-based generation model REAL-NVP
(Dinh et al., 2016), exponentiated formulations were employed to ensure that the determinant of the
Jacobian matrix of the affine coupling layer remains positive. In line with these previous works, but
with a different purpose, we propose a hidden node that utilizes exponentiated weights for monotonic
input features, as defined by

hexp(xm) = σ(exp(w)⊤xm + b) (1)

where σ is an activation function and b is a bias. It becomes evident that when the activation function
is monotonically non-decreasing, the hidden node preserves its monotonic behavior. Therefore, we
exploit the ability of exponentiated weights to preserve the monotonicity of the hidden node, making
them a good choice for learning monotonic neural networks. While the concept is similar to an
early study (Zhang & Zhang, 1999), our research is distinguished by the use of a different activation
function and a specially designed network structure. These will be described in detail below.

Activation functions: In modern deep learning, ReLU is commonly used as an activation function
due to its advantages such as alleviating gradient vanishing (Nair & Hinton, 2010; He et al., 2016).
Another benefit of this activation function is that it allows neural network training to be formulated as
an integer programming problem (Liu et al., 2020) or other optimization problems (Sivaraman et al.,
2020), simplifying the training process. However, it is known that a ReLU network with all weights
constrained to be positive is either convex or concave, depending on the direction of ReLU (Liu et al.,
2020). This means that the neural network lacks the universal approximation property. To overcome
this limitation, we employ the ReLU-n activation function (Liew et al., 2016), which is given by

ReLU-n(x) =


n if x > n, x → n+,

x if 0 < x < n, x → n−, x → 0+,

0 if x < 0, x → 0−.

(2)

A previous research has demonstrated that neural networks with positive-constrained weights and a
threshold activation function are universal approximators of partially monotonic functions with at
least a depth of 4 hidden layers (Mikulincer & Reichman, 2022). The nature of the ReLU-n function
in equation 2 is a piecewise-linear function with a threshold at 0 and n. Unlike ReLU, this function
exhibits both convexity at zero and concavity at n. Importantly, it is a monotonically non-decreasing
function, thus ensuring the preservation of monotonicity of the hidden node in equation 1. Alternative
activation functions offering the similar benefit, including both convexity and concavity, can be
substituted for the ReLU-n function (See our ablation study in Appendix C.1).

Network structure: Prior to introducing the proposed network structure, we define three types of
hidden nodes. The exponentiated hidden node, denoted in equation 3, is designed for monotonic
features (xm) based on equation 1 and equation 2. For non-monotonic features (x¬m), the well-known
ReLU hidden node, which is given in equation 4, is employed. Lastly, the confluence hidden node is
defined in equation 5. Each hidden node forms an individual hidden unit comprising multiple nodes,
resulting in three types of hidden units, namely the exponentiated unit, ReLU unit, and confluence
unit, as also defined in equation 3, equation 4, and equation 5 respectively. To maintain a consistent
activation function throughout the network, it is acceptable to use the ReLU-n function for the ReLU
unit (See Appendix C.1). It is worth noting that the hidden nodes in equations 3, 4, and 5 represent
the nodes in the first hidden layer, which receive the inputs (xm, x¬m). As we progress to the next
hidden layer, they receive the outputs from the preceding hidden nodes.

Exponentiated unit := {hexp}, where hexp(xm) = ReLU-n(exp(w)⊤xm + b) (3)

ReLU unit := {hrelu}, where hrelu(x¬m) = ReLU(w⊤x¬m + b) (4)

Confluence unit := {hconf}, where hconf (x¬m) = ReLU-n(w⊤x¬m + b) (5)

Based on these units, we present our proposed SMNN structure, where each hidden layer comprises
the three units. We prepared Fig. 1 illustrating a network with three hidden layers as an example to
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Figure 1: SMNN Structure. The features are divided into two groups based on whether each variable
requires monotonicity (xm) or not (x¬m). The monotonic features are directed exclusively through
the exponentiated unit and fully connected layer to ensure monotonicity, as indicated by the bold line.

help readers better understand. Let

li = ({h(i)
exp}, {h

(i)
conf}, {h

(i)
relu}) (6)

be the i-th hidden layer, which we named as scalable monotonic hidden layer. The units in this layer
serve specific roles: the exponentiated unit captures interactions among monotonic features (xm)
while preserving monotonicity, the ReLU unit captures interactions among non-monotonic features
(x¬m), and the confluence unit combines the outputs of the exponentiated and ReLU units to capture
interactions between both types of features (See Appendix C.3 for the justification of the confluence
unit.). The purpose of using ReLU-n activation functions in the confluence unit nodes is to align the
output magnitudes of these nodes with the output magnitudes of the exponentiated unit nodes in the
preceding layer. When i = 1,

{h(1)
exp} = {hexp(xm)}, {h(1)

conf} = {hconf (x¬m)}, {h(1)
relu} = {hrelu(x¬m)}. (7)

When i ≥ 2,
{h(i)

exp} = {hexp([{h(i−1)
exp }, {h(i−1)

conf }]},

{h(i)
conf} = {hconf ({h(i−1)

relu })},

{h(i)
relu} = {hrelu({h(i−1)

relu })},

(8)

where [·, ·] implies the concatenation of two vectors. Let h = ln, which is the output vector at the
n-th hidden layer, and f(x) be the output node in a fully connected output layer. Then,

f(x) = exp(wn+1)
⊤h+ b, (9)

where wn+1 is the vector of weights between the n-th hidden layer and the output layer. The output
node also employs exponentiated weights to ensure monotonicity, without an activation function. It is
important to note that while we present the proposed SMNN for a single output node, this expression
can be easily extended to accommodate multiple output nodes. Notably, the monotonic features
follow a distinct path through the exponentiated unit and the fully connected layer, depicted by the
bold line in Fig. 1, ensuring the monotonicity of the proposed SMNN.

Monotonicity of SMNN: We now prove the monotonicity of SMNN by following the monotonicity
definition outlined in Section 2. This involves taking the partial derivative of SMNN with respect
to a monotonic feature and showing that the derivative is positive. It is worth noting that SMNN is
inherently a monotonically non-decreasing function, and for a monotonically non-increasing feature,
we can simply multiply the feature by −1 and incorporate it into SMNN to maintain its property of
monotonic non-increase.
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Theorem 1. Let f(x) be the proposed SMNN with n scalable monotonic hidden layers and
xm = (x1, . . . , xp) be a vector of p monotonic input features. For xi, i ∈ {1, . . . , p},

∂f(x)

∂xi
≥ 0.

Proof. As xi follows a distinct path through the exponentiated unit and the fully connected layer and
we aim to find the partial derivative of f(x) with respect to xi, without loss of generality, we consider
a continuous function g(x) given by

g(x) = exp(wn+1)tn + bn+1,

where
ti = ReLU-n(exp(wi)ti−1 + bi), i = 2, . . . , n,

and
t1 = ReLU-n(exp(w1)x+ b1).

By showing dg(x)
dx ≥ 0, we can show ∂f(x)

∂xi
≥ 0. It is quite straightforward to illustrate dg(x)

dx ≥ 0.
We first describe the derivative of ReLU-n(s) function as follows:

R′ = ReLU-n′(s) =


0 if s > n, s → n+,

1 if 0 < s < n, s → n−, s → 0+,

0 if s < 0, s → 0−.

Then,
dt1
dx

= R′ · exp(w1) ≥ 0.

Likewise,
dt2
dx

= R′ · exp(w2) ·
dt1
dx

= R′ · exp(w2) ·R′ · exp(w1) ≥ 0,

and
dtn
dx

= R′ · exp(wn) ·
dtn−1

dx
= R′ · exp(wn) ·R′ · exp(wn−1) · · ·R′ · exp(w1) ≥ 0.

We finally show that
dg(x)

dx
= exp(wn+1) ·

dtn
dx

≥ 0.

4 NUMERICAL EXPERIMENTS

4.1 EXPERIMENTS ON SYNTHETIC DATASETS

We first assessed the effectiveness of our proposed method by conducting experiments on synthetic
datasets. In addition to verifying the monotonicity aspect, we thoroughly examined the scalability
and generalization performance of our method.

Scalability test: In this experiment, we used two synthetic datasets to evaluate the scalability
with respect to the network size and the number of monotonic features. For the first aspect of the
scalability, we used a two-dimensional example obtained from (Liu et al., 2020). The function is
defined in equation 10, where monotonicity is imposed on y only between x and y. We created a
dataset consisting of 1000 instances with x and y values generated from a uniform distribution within
the range of 0 and 1. The dataset was divided into a 70% training set and a 30% test set.

f(x, y) = a sin(
25x

π
) + b (x− 0.5)3 + c exp(y) + y2, (10)

a, b, c ∈ {0.3, 0.6, 1.0}, x, y ∈ [0, 1]

Fig. 2(a) demonstrates that our proposed method (with two scalable monotonic hidden layers)
accurately fit the original function, ensuring monotonic increase of the function with respect to y.
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(a) (b) (c)

Figure 2: (a) Upper: Contour plot of original function with a, b, c = 1 and x, y ∈ [0, 1]. Lower:
Contour plot of the fitted model by our method (MSE=0.0007). (b) Scalability test with respect to
increasing network size: We tested the proposed method for all combinations of a, b, c. Blue line
represents the average MSE from all 27 runs. Orange bar indicates the average training time required
for all 27 runs. (c) Scalability test with respect to increasing number of monotonic features: Blue line
represents the average MSE from five repetitions; Orange bar indicates the average time required for
five repetitions.

Furthermore, Fig. 2(b) illustrates that as the number of parameters increases, the average mean-
squared error (MSE) of the model decreases while the computation time remains nearly constant.
This indicates the high scalability and extensibility of our proposed method to accommodate larger
networks.

In addition, to investigate the scalability with respect to the number of monotonic features, we
designed a 40-dimensional dataset, excluding the output feature, comprising 20 uniform distribution-
based dummy inputs and 20 monotonic inputs determined by equation 11.

f(x) =

5∑
i=1

αixi +

10∑
i=6

αi expxi +

15∑
i=11

αi(xi + sinxi) +

20∑
i=16

αi(xi + cosxi) + 20ϵ, (11)

xi ∈ [0, 1] (i = 1, . . . , 20), ϵ ∼ N(0, 1)

{αi} = {5, 4, 3, 6, 8, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1, 5, 4, 3, 2, 1}(i = 1, . . . , 20)

We generated 1000 instances, allocating 700 instances for training and 300 for the test set. The study
involved systematically increasing m from 1 to 20. It is worth noting that a monotonic input either
belonged to xm or x¬m. Fig. 2(c) illustrates that as the number of monotonic inputs increased from 1
to 20, SMNN exhibited consistent training times (at around 20 seconds), while decreasing its MSE
performance. See Appendix C.4 for the case of 200 monotonic features.

Generalization performance test: We conducted a series of experimental evaluations to assess
the generalization performance of the proposed SMNN method with guaranteed monotonicity, using
the well-known Friedman function 1 (Friedman, 1991). To introduce variability into the original
function, Gaussian noise ϵ ∼ N(0, 1) was incorporated, and the scaling factor λ applied to the noise
was gradually increased. The Friedman model, defined in equation 12, imposes monotonicity on x4

and x5.
f(x) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + λϵ, (12)

xi ∈ [0, 1] (i = 1, ..., 5), ϵ ∼ N(0, 1)

In our analysis, we compared MSE across three different networks: the proposed SMNN with
monotonicity enforced on x4 and x5, a structurally identical network with SMNN but using only
ReLU activation functions (without exponentiated weights and ReLU-n), and a typical Multi-Layer
Perceptron (MLP) with matching layer depth and node count. To ensure robust evaluation, we
employed a five-fold cross-validation strategy, using 80% of the data for training and 20% for testing.

1https://www.sfu.ca/~ssurjano/fried.html
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For each folding, we conducted five independent runs, which resulted in a total of 25 experimental
trials.

(a) Training MSE (b) Test MSE (c) Denoised Test MSE

Figure 3: Results from the Friedman function experiments

The experimental results are presented in Fig. 3 (For more detailed results, please refer to Appendix
B). The training MSEs are shown in Fig. 3(a), where SMNN exhibited the highest error, while MLP
achieved the lowest. This suggests that the imposition of monotonicity constraints significantly
affected the learning dynamics of SMNN. Conversely, in terms of the testing MSE shown in Fig. 3(b),
MLP had the highest error, followed by the structurally identical network, while SMNN yielded the
lowest MSE. For MLP, the testing MSE was nearly seven times greater than the training MSE when
λ reached 20, indicating overfitting to the noise. In contrast, the testing MSE of SMNN remained
consistent with the training MSE across different λ values, indicating robustness to noise. Notably,
Fig. 3(c) presents an interesting observation where the noise of the test dataset was eliminated. In
this scenario, the MSE of SMNN becomed significantly smaller than that of the other networks.
These results suggest that incorporating monotonicity as an appropriate inductive bias enhanced the
generalization performance of the network, as demonstrated in our experimental findings. There-
fore, we conclude from this experiment that imposing monotonicity could improve generalization
performance.

4.2 EXPERIMENTS ON REAL-WORLD DATASETS

Having established the validity of our method in the previous subsection4.1, we proceed to compare
it with the state-of-the-art methods discussed earlier. We conducted both regression and classification
tasks using several publicly accessible datasets that were used in previous studies. The Auto-MPG2

and Blog Feedback (Spiliopoulou et al., 2014) datasets were used for regression tasks, while the
COMPAS (Angwin et al., 2016), Heart Disease3, and Loan Defaulter4 datasets were employed for
classification. Similar to the synthetic data experiments, we applied a 5-fold cross-validation strategy,
performing 25 runs for each dataset. Appendix A provides details regarding the data description
and training configurations. The experimental results are presented in Tables 2 and 3 respectively.
The reported metrics include model complexity (number of parameters) if available, and prediction
performances such as MSE and RMSE for regression and accuracy for classification, with mean
and standard deviation obtained from repetitions. The benchmarking methods included in the tables
for comparison are Isotonic in (Kalai & Sastry, 2009), XGBoost in (Chen et al., 2015), Crystal in
(Milani Fard et al., 2016), DLN in (You et al., 2017), Min-Max Net in (Daniels & Velikova, 2010),
Non-Neg-DNN in (Liu et al., 2020), Certified MNN in (Liu et al., 2020), COMET in (Sivaraman
et al., 2020), LMN in (Nolte et al., 2022), and Constrained MNN in (Runje & Shankaranarayana,
2023).

Tables 2 and 3 present comprehensive performance evaluations of the proposed methodology with
the comparative techniques. Table 2 shows the experimental results and model complexities with the
dataset featured in the previous studies (Liu et al., 2020; Nolte et al., 2022; Runje & Shankaranarayana,
2023). Our proposed approach demonstrated superior performance on both the COMPAS and Blog
Feedback datasets in comparison to existing methodologies. In the case of the Loan Defaulter dataset,
while our method did not achieve the top position, it showed comparable performance to recently

2https://archive.ics.uci.edu/ml/datasets/auto+mpg
3https://archive.ics.uci.edu/ml/datasets/Heart+Disease
4https://www.kaggle.com/wendykan/lenging-club-loan-data
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Table 2: Comparison of our method with other methods described in (Liu et al., 2020; Nolte et al.,
2022; Runje & Shankaranarayana, 2023) (“ † ” indicates the statistical tie with the best.)

Method COMPAS Blog Feedback Loan Defaulter

Parameters Test Acc ↑ Parameters RMSE ↓ Parameters Test Acc ↑
Isotonic N.A. 67.6% N.A. 0.203 N.A. 62.1%
XGBoost N.A. (68.5 0.1)% N.A. 0.176 0.005 N.A. (63.7 0.1)%
Crystal 25840 (66.3 0.1)% 15840 0.164 0.002 16940 (65.0 0.1)%
DLN 31403 (67.9 0.3)% 27903 0.161 0.001 29949 (65.1 0.2)%
Min-Max Net 42000 (67.8 0.1)% 27700 0.163 0.001 29000 (64.9 0.1)%
Non-Neg-DNN 23112 (67.3 0.9)% 8492 0.168 0.001 8502 (65.1 0.1)%
Certified MNN 23112 (68.8 0.9)%† 8492 0.158 0.001 8502 (65.2 0.1)%
LMN 37 (69.3 0.1)% 2225 0.160 0.001 753 (65.4 0.0)%
Constrained MNN 2317 (69.2 0.2)%† 1101 0.156 0.001 177 (65.3 0.1)%†
SMNN (Ours) 2657 (69.3 0.9)% 1421 0.150 0.001 501 (65.0 0.1)%

Table 3: Comparison of our method with other methods described in (Sivaraman et al., 2020; Nolte
et al., 2022; Runje & Shankaranarayana, 2023) (“ † ” indicates the statistical tie with the best.)

Method Auto MPG Heart Disease

MSE ↓ Test Acc ↑
Min-Max Net 10.14 1.54 0.75 0.04
DLN 13.34 2.42 0.86 0.02
COMET 8.81 1.81 0.86 0.03
LMN 7.58 1.20† 0.90 0.02
Constrained MNN 8.37 0.08 0.89 0.00†
SMNN (Ours) 7.44 1.20 0.88 0.04†

proposed methods, with a relatively small network size. Table 3 also includes the experimental
results obtained from the previous works (Sivaraman et al., 2020; Nolte et al., 2022; Runje &
Shankaranarayana, 2023). In the context of the Auto-MPG dataset, our proposed method and LMN
outperformed all others in the comparison, while, for the Heart Disease dataset, our approach did not
achieve the level of performance attained by LMN, which secured the top position. When it came to
the classification tasks, our method achieved the top result in a specific case, while in other cases, it
performed comparably to the benchmarks.

5 CONCLUSIONS

In this study, we introduced SMNN, a simple but novel learning method designed to ensure the
monotonicity of trained models. Our approach combines the exponentiated unit, ReLU unit, and
confluence unit in a hidden layer to achieve both monotonicity and effective function approximation.
Being an end-to-end learning approach, our method exhibits scalability with respect to both network
size and number of monotonic features. Through extensive experiments on synthetic and real-world
datasets, we demonstrated the scalability and comparable performance of our method against other
benchmarking methods. For future work, we will focus on mathematically proving the benefits of
incorporating monotonicity as an inductive bias in neural networks to enhance their generalization
performance. Additionally, we plan to apply SMNN to a broader range of real-world applications
that require both monotonicity and scalability.

6 REPRODUCIBILITY

To facilitate reproducibility, we have provided sufficiently detailed descriptions of the implementation
of the proposed method both in the main text and appendices. In particular, in Section 3, we clearly
present the complete structure of our proposed method along with its components. Appendix A
provides detailed experimental descriptions and training configurations. All implemented code can be
found in the supplements, which is also available at https://github.com/retna319/SMNN.
Experiments were conducted using the provided code.
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A DETAILED EXPERIMENT DESCRIPTIONS

A.1 TRAINING CONFIGURATIONS

All experiments were conducted on a system equipped with an Intel(R) Core(TM) i7-8700 CPU @
3.20GHz processor and 32.0GB of DDR3 RAM, running the Windows 10 operating system. The
experiments were implemented in Python, utilizing the PyTorch library5 (version 1.10.2). Stochastic
optimization for training networks was performed using the Adam optimizer. The best hyperpa-
rameters were determined through grid search, considering different batch sizes (128, 256, 512),
learning rates (0.05, 0.005, 0.002, 0.0005). The neural network architecture consisted of two scalable
monotonic hidden layers. We consistently set the hyperparameter n in the ReLU-n activation func-
tion to 1 throughout all our experiments, because the primary purpose with this activation function
was to utilize the convex and concave properties, making detailed tuning of this value unnecessary.
For regression tasks, the mean squared error loss was employed, while for classification tasks, the
cross-entropy loss was used. The number of epochs was set to either 1000 or 500 considering datasets.

A.2 DESCRIPTIONS FOR REAL-WORLD DATASETS

Table 4 provides the detailed descriptions for the real-world datasets used in our experiments. It
includes the tasks, number of instances, number of features, number of monotonic features, and
names of the monotonic features. Monotonically non-increasing features are denoted in bold, while
monotonically non-decreasing features are non-bold. For monotonically non-increasing features,
we multiplied the features by −1 to ensure monotonic non-decrease. Additionally, we normalized
all inputs to a 0-1 scale. The best hyperparameter configurations for each dataset are presented in
Table 5. This table shows the network structure with two scalable monotonic layers, as previously
mentioned. The numbers within parentheses represent the node counts for each exponentiated unit,
confluence unit, and ReLU unit.

Table 4: Descriptions for real-world datasets

Dataset Task # Instances # Features # Monotonic features Monotonic features

COMPAS Classification 6172 13 4

number of prior adult convictions,
number of juvenile felony,

number of juvenile misdemeanor,
number of other convictions

Heart Disease Classification 303 13 2 trestbps, chol

Loan defaulter Classification 488909 28 5

number of public record bankruptcies,
dept-to-income ratio,

credit score,
length of employment,

annual income
Blog feedback Regression 54270 276 8 A51,A52,A53,A54,A56,A57,A58,A59

Auto-MPG Regression 398 7 3 weights, displacement, horse power

Table 5: Hyperparameters of SMNN for real-world datasets

Dataset # Parameters Network structure Learning rate Batch size

COMPAS 2657 (32, 16, 16), (32, 16, 16) 0.005 128
Heart Disease 7905 (64, 16, 32), (64, 16, 32) 0.002 128
Loan Defaulter 501 (16, 4, 4), (8, 2, 4) 0.0005 512
Blog Feedback 1421 (16, 2, 2), (8, 2, 4) 0.0005 256
Auto-MPG 14193 (128, 16, 64), (64, 16, 32) 0.005 128

COMPAS: The COMPAS dataset is a classification dataset containing the criminal records in
Florida. The task is to classify whether an arrested individual will reoffend or not within two years.

5https://pytorch.org/
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This dataset consists of 13 features, with four of them considered as monotonic features. Specifically,
the following features exhibit monotonic non-decreasing behavior: number of prior adult convictions,
number of juvenile felony, number of juvenile misdemeanor and number of other convictions. It is
worth mentioning that this dataset has been used in several published papers (Angwin et al., 2016;
Rudin et al., 2020), although with a minor ethical concern. While a few individuals perceive it as
possibly problematic, the majority do not share the same concern.

Heart Disease: The Heart Disease dataset is used to classify whether a person has heart disease or
not. The presence of heart disease monotonically increases with respect to trestbps (resting blood
pressure) and chol (cholesterol level).

Loan Defaulter: The Loan Defaulter dataset includes complete loan data issued between 2007
and 2015 and addresses a classification task aimed at predicting loan defaulters using 28 features.
Among these 28 features, five exhibit monotonic behavior. Specifically, the number of public record
bankruptcies and dept-to-income ratio are monotonically non-decreasing, while the credit score,
length of employment, and annual income are monotonically non-increasing.

Blog Feedback: The Blog Feedback dataset is a regression dataset used to predict the number of
comments within 24 hours. It comprises 54,270 blog post records and includes 276 features. Eight of
these features (A51, A52, A53, A54, A56, A57, A58, A59) exhibit monotonically non-decreasing
behavior.

Auto-MPG: The Auto-MPG dataset is a regression dataset used to predict miles per gallon (mpg).
It consists of 7 features, and among them, weights, displacement, and horse power need to be
enforced as monotonically non-increasing.

A.3 WEIGHT INITIALIZATION AND UPDATE STRATEGY FOR SMNN

In the proposed SMNN method, the exponentiated unit incorporates the exponential value of weights
and utilizes the ReLU-n activation function, which has a threshold at 0 and n. This design can lead to
node inactivation when the activation function’s gradient becomes zero at high input values due to the
influence of the exponentiated weights. To mitigate this potential risk, we have implemented specific
weight initialization and weight update strategies. Regarding the initialization strategy, instead of
generating initial weights from the typical Gaussian distribution, we opted for a uniform distribution
spanning from a negative lower limit to a small positive upper limit, such as uniform(−20, 2).
Consequently, the exponentiated values of these weights are distributed in proximity to zero, creating
a skewed long-tail distribution. This distribution shape effectively prevents the occurrence of zero
gradients in the activation function. Concerning the update strategy, we intentionally set the gradient
of inactivated nodes to a very small non-zero value, such as 0.01. By ensuring a non-zero gradient, we
enable the exploration of alternative optimal weight configurations and minimize the risk of getting
trapped in local optima. These strategies are designed to enhance the search for better optimal weights
by mitigating the possibility of node inactivation caused by large input values and zero gradients.
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B SUPPLEMENTAL REPORT OF EXPERIMENTAL RESULTS

B.1 TABULATED NUMERICAL RESULTS FOR FIGURE 2(B)

Figure 2(b) was created using the data in the following table.

Table 6: Mean MSE at varying number of parameters

Network # Parameters Test MSE Time (s)

SMNN (size 1) 165 0.111 0.147 28.220 1.219
SMNN (size 2) 337 0.047 0.112 28.370 1.114
SMNN (size 3) 1025 0.019 0.038 29.180 2.019
SMNN (size 4) 3585 0.018 0.050 29.296 1.170
SMNN (size 5) 13697 0.009 0.016 31.889 1.948

B.2 TABULATED NUMERICAL RESULTS FOR FIGURE 2(C)

Figure 2(c) was created using the data in the following table.

Table 7: Mean MSE at varying number of monotonic features

Network # Monotonic Features Test MSE Time (s)

SMNN (m = 1) {x13} 12.80 1.78 21.4 1.14
SMNN (m = 2) {x5, x13} 10.61 4.57 21.0 0.00
SMNN (m = 5) {x1, x5, x9, x13, x17} 9.83 4.32 21.8 1.09
SMNN (m = 10) {x1, x3, x5, x7, x9, x11, x13, x15, x17, x19} 6.31 4.96 20.8 0.44
SMNN (m = 20) {x1, ..., x20} 1.51 1.03 21.2 1.64

B.3 TABULATED NUMERICAL RESULTS FOR FIGURE 3

Figure 3 was created using the data in the following table.

Table 8: Results from the Friedman function experiments

Network Training MSE Test MSE Denoised Test MSE

SMNN (λ = 0) 0.68 0.42 0.78 0.50 0.78 0.50
SMNN (λ = 2) 4.85 0.23 5.42 0.40 1.25 0.28
SMNN (λ = 5) 26.53 0.65 28.89 3.05 2.22 0.47
SMNN (λ = 10) 100.64 1.73 107.46 6.45 4.02 0.79
SMNN (λ = 20) 412.44 12.98 427.92 41.84 7.73 1.55

Same Structure (λ = 0) 0.02 0.01 0.03 0.02 0.03 0.02
Same Structure (λ = 2) 3.27 0.17 4.63 0.41 0.78 0.24
Same Structure (λ = 5) 18.81 1.15 31.46 2.04 6.03 1.16
Same Structure (λ = 10) 71.69 6.68 134.16 10.80 25.69 5.83
Same Structure (λ = 20) 273.58 27.75 530.27 60.01 118.02 28.31

MLP (λ = 0) 0.02 0.01 0.04 0.02 0.04 0.02
MLP (λ = 2) 2.53 0.29 5.18 0.46 1.28 0.27
MLP (λ = 5) 11.77 2.13 37.01 4.10 12.73 2.45
MLP (λ = 10) 32.92 8.60 184.95 21.64 63.61 9.63
MLP (λ = 20) 118.95 30.99 687.04 74.25 270.01 42.59
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C ABLATION STUDIES

C.1 DIFFERENT ACTIVATION SETTINGS

In our experiments, we applied the ReLU-1 function to both the exponentiated and confluence units,
and the standard ReLU function to the ReLU unit (denoted by ‘Proposed (Ours)’ in Table 9). We
believe that it is acceptable to use the ReLU-1 function for the ReLU unit to maintain a consistent
activation function throughout the network (denoted by ‘ReLU-1’ in Table 9). Since the ReLU-n
function offers convexity and concavity, other activation functions providing the similar benefit can
replace ReLU-n. In this ablation study, we explored the use of the sigmoid and hyperbolic tangent
functions for all three units (identified as ‘Sigmoid’ and ‘Tanh’, respectively, in Table 9). Based on
the results, we cannot assert performance differences among the activation functions.

Table 9: Performance comparison among different activation settings (“ † ” indicates the statistical tie
with the best.)

Method Auto MPG Heart Disease

MSE ↓ Test Acc ↑
Proposed (Ours) 7.44 1.20† 0.88 0.04
ReLU-1 7.36 1.67 0.85 0.04†
Sigmoid 13.96 3.18 0.85 0.07†
Tanh 7.83 1.45† 0.87 0.05†

C.2 DIFFERENT n VALUES IN RELU-n

While an optimal value for the hyperparameter n in ReLU-n may exist for a specific training dataset,
to demonstrate its insensitivity, we conducted experiments with varying n based on the Auto MPG and
Heart Disease datasets. The results are presented in Table 10, showing no performance differences
across different n values.

Table 10: Performance comparison among different n values in ReLU-n (“ † ” indicates the statistical
tie with the best.)

Method Auto MPG Heart Disease

MSE ↓ Test Acc ↑
ReLU-1 7.44 1.20† 0.88 0.04
ReLU-2 7.40 1.31† 0.87 0.04†
ReLU-6 7.38 1.16† 0.87 0.04†
ReLU-10 7.36 1.39 0.87 0.04†

C.3 EFFECT OF CONFLUENCE UNITS

We conducted an ablation study to validate the impact of the confluence units in learning interactions.
The function designed for the experiment is defined in equation 13. The output is determined by
x1 and x2. To control the strength of the interaction effect, we varied the coefficient α of the
interaction term from 0 to 20. We imposed monotonicity on x1 only, even though x2 is monotonic
at [0, 2]. We generated 1000 instances, allocating 700 instances for training and 300 for the test
set. The number of hidden layers for both networks, with and without confluence units, was set to
two. However, the number of hidden nodes was assigned differently: {(64, 64, 64), (32, 32, 32)}
for SMNN with confluence units, {(128, 0, 64), (64, 0, 32)} for SMNN without confluence units.
The MSE comparison in Table 11 illustrates that with increased interaction effects, more prominent
performance differences emerged, consistently favoring SMNN with confluence units. This validates
the effectiveness of employing the confluence unit to capture interactions between monotonic and
non-monotonic features.
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f(x1, x2) = x1 + α · x3
1 · x2

2 + x2, (13)
x1, x2 ∈ [0, 2], α ∈ [0, 1, 2, 5, 10, 20]

Table 11: Performance (MSE) comparison between with
and without confluence units

α with confluence units without confluence units

α = 0 0.46 0.05 0.96 0.10
α = 1 0.58 0.05 8.35 0.20
α = 2 0.95 0.15 27.11 1.05
α = 5 3.87 1.08 232.58 1.78
α = 10 5.72 1.19 703.62 19.29
α = 20 22.99 15.52 2341.43 52.46

Figure 4: Visualization of the results in
Table 11

C.4 ADDITIONAL SCALABILITY TEST WITH RESPECT TO NUMBER OF MONOTONIC FEATURES

We conducted an additional scalability test with respect to the number of monotonic features, for
the case where the number of monotonic features m is dominantly larger than the number of non-
monotonic features. Specifically, we created a 220-dimensional dataset, excluding the output feature,
consisting of 20 uniform distribution-based dummy inputs and 200 monotonic inputs achieved by
expanding each group of features of equation 11 from 5 to 50 features. Notably, in this experiment,
the dummy features exert much less influence during training compared to our original experiment.
The training time and MSE results are shown in Table 12 and Fig.5. We observed the consistent
trend of training times remaining constant while MSE decreased as the number of monotonic inputs
increased.

Table 12: Scalability test with respect to increasing number of monotonic feature when m = 200

Network # Parameters Test MSE Time (s)

SMNN (m = 10) 29414 0.204 0.12 78.76 2.22
SMNN (m = 20) 29977 0.216 0.12 78.40 2.57
SMNN (m = 50) 31657 0.175 0.09 78.76 1.51
SMNN (m = 100) 34457 0.117 0.09 79.08 2.06
SMNN (m = 200) 40057 0.013 0.01 78.84 2.01

Figure 5: Visualization of the results in Table 12
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