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Figure 1: Unlike existing multimodal deepfake datasets where cross-modal semantic alignment is lacking, SAMM proposes
semantically aligned fake news, which better reflects real-world scenarios.

Abstract
The detection and grounding of manipulated content in multimodal
data has emerged as a critical challenge inmedia forensics.While ex-
isting benchmarks demonstrate technical progress, they suffer from
misalignment artifacts that poorly reflect real-world manipulation
patterns: practical attacks typically maintain semantic consistency
across modalities, whereas current datasets artificially disrupt cross-
modal alignment, creating easily detectable anomalies. To bridge
this gap, we pioneer the detection of semantically-coordinated
manipulations where visual edits are systematically paired with
semantically consistent textual descriptions. Our approach begins
with constructing the first Semantic-Aligned Multimodal Manip-
ulation (SAMM) dataset, generated through a two-stage pipeline:
1) applying state-of-the-art image manipulations, followed by 2)
generation of contextually-plausible textual narratives that rein-
force the visual deception. Building on this foundation, we propose

∗Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MM ’25, Dublin, Ireland.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2035-2/2025/10
https://doi.org/10.1145/3746027.3754951

a Retrieval-Augmented Manipulation Detection and Grounding
(RamDG) framework. RamDG commences by harnessing exter-
nal knowledge repositories to retrieve contextual evidence, which
serves as the auxiliary texts and encoded together with the inputs
through our image forgery grounding and deep manipulation de-
tection modules to trace all manipulations. Extensive experiments
demonstrate our framework significantly outperforms existing
methods, achieving 2.06% higher detection accuracy on SAMM com-
pared to state-of-the-art approaches. The dataset and code are pub-
licly available at https://github.com/shen8424/SAMM-RamDG-CAP
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1 Introduction
The rapid development of generative models has driven signifi-
cant progress across domains [13, 20, 27, 56, 62]. Concurrently,
this technological advancement precipitates critical societal risks,
particularly through the synthesis of highly plausible yet falsified
media content [18, 26, 46, 49]. Such fabricated information not
only erodes public trust through fabricated misleading contents
but also engenders systemic vulnerabilities in digital information
ecosystems [8, 12, 44].

Many efforts have beenmade to recognize the fake news in social
media [39, 45, 63, 65]. In recent years, different types of scenarios
of manipulated multimodal news have been studied [5, 16, 33, 47].
NewsCLIPings [33] uses randomly selected news texts to form
out-of-context image-text Pairs. DGM4 [47] employs a random
modification strategy as well, which in the visual modality involve
using randomly selected non-celebrity faces as substitutes, and in
the textual modality involve randomly replacing certain words or
segments. Despite these pioneering attempts, the focused scenarios
of these works all have a severe artifact of semantic misalignment.
For example, as shown in the top row of Figure 1: “an image of Mr
Trump giving a speech is paired with a caption that reads president
Biden performing at a concert.” This misalignment, on the one hand,
renders the fake news detection too easy to cheat the people. On
the other hand, the semantic-misaligned news fails to stimulate
the practical situations, since the attackers usually maintain the
consistency across modalities to deceive the public. For example,
if Biden’s face is swapped with Trump’s in the visual modality,
the corresponding text modality would also reflect Biden being
replaced by Trump, as shown in the bottom of Figure 1.

In response to the aforementioned challenges, we focus on a
more practical problem in this work: multimodal manipulation de-
tection and grounding with semantic-alignmend manipulations. To
facilitate this research, we present the SAMM (Semantic-Aligned
Multimodal Manipulation) - a comprehensive dataset containing
260,970 carefully crafted semantic-coordinated samples. First, we
perform visual alterations through either face swapping [4, 9] or
facial attribute editing [37, 54] on celebrity images, considering
their heightened social impact and misinformation risks in pub-
lic domains [47]. Subsequently, we generate semantically-aligned
fake text descriptions that maintain logical consistency with the
manipulated visual content. This two-stage manipulation pipeline
ensures sophisticated alignment between visual tampering and tex-
tual fabrication, creating convincing multimodal forgeries that pose
significant detection challenges.

Semantic-coordinated manipulations reflect real-world cases but
pose greater detection challenges, as prior methods fail in such
scenarios. Notably, human usually check the confused information
by conducting the cross-verification with external knowledge, such
as using the fact that "Messi is a great football player" to identify the
fake news claiming "Messi won the Nobel Prize in Literature." In-
spired by this, we propose the Retrieval-augmented manipulation
Detection and Grounding (RamDG) framework. First, by inte-
grating a large-scale external knowledge base Celeb Attributes
Portfolio(CAP) containing information on celebrities from vari-
ous domains, we design the Celebrity-News Contrastive Learning
(CNCL) mechanism to facilitate RamDG in leveraging external

knowledge for semantic-level fake news detection akin to human
capabilities. Furthermore, we introduce the Fine-grained Visual
RefinementMechanism (FVRM) module to enhance the model’s
ability to accurately localize visually manipulated regions.

Our main contributions include:
• Introducing SAMM, a more realistic deepfake dataset featur-
ing multi-modal semantic alignment and purposeful tamper-
ing, with a large scale and rich fine-grained annotations to
meet training or evaluation needs;

• Proposing CAP, an external knowledge base containingmulti-
domain celebrity information, enabling logical fake news
detection through simple "string matching" integration into
existing datasets;

• Presenting RamDG, which outperforms in binary classifica-
tion and excels in fine-grained tampering localization com-
pared to all current models.

2 Related work
DeepFake Detection. Historically, deepfake detection has pri-
marily focused on single modalities, such as text [34, 61, 64] or
visual [3, 50, 59]. Within visual modalities, methods are catego-
rized into those based on the spatial domain [25, 31, 35] and those
based on the frequency domain [7, 17, 40]. With the advancement
of multimodal techniques[20, 22, 41, 51, 53, 57, 58], news content
is increasingly presented in multimodal formats, leading to the
emergence of recent multimodal detection approaches, including
methods based on modality fusion [22, 47, 48] and those leveraging
Vision Language Large Model [16, 29, 38]. Modality fusion methods
struggle with small datasets due to limited external knowledge,
whereas large language models, despite their rich internal knowl-
edge, face challenges in fine-grained tampering localization. To
address these limitations, we propose a hybrid approach that inte-
grates CAP-derived external knowledge for detection and enhances
fine-grained localization accuracy.
DeepFake Datasets. Existing DeepFake datasets primarily consist
of single-modality data focusing on either visual [32, 36] or textual
content [30, 55]. While some multimodal datasets exist [16, 33],
they typically adopt either contextually irrelevant pairings (out-of-
context pairs) [33] or rely entirely on synthetic data produced by
generative models [16]. DGM4 [47] addresses these issues to some
extent by providing over 230k samples with fine-grained annota-
tions, constructed through modifications of authentic news articles.
However, All the datasets mentioned above exhibit two critical
limitations: 1) Cross-modal semantic inconsistency; 2) Purposeless
tampering. To address these limitations, we propose the SAMM
Dataset, a large-scale multimodal dataset with comprehensive fine-
grained annotations that better aligns with real-world fake news
distribution patterns.

3 SAMM Dataset
Unlike existing benchmarks that randomly manipulate the multime-
dia, which result in misaligned semantics in fabricated multimodal
media. [33, 47]. In response, we construct SAMM dataset to remedy
this weakness. The construction of the dataset comprises three
steps: 1) Source data collection to filter out data for subsequent
tampering operations and build an external knowledge base; 2)
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Figure 2: The process of swap manipulation is shown on the left, while the process of attribute manipulation is shown on the
right. We use image tampering models and the Qwen series of models to carry out manipulation.

Multi-modal manipulation, which details the processes of swap
manipulation and attribute manipulation. The construction steps
of the dataset are as follows:

3.1 Source Data Collection
Given the social impact and risks of multimodal news manipulation,
we align with DGM4 [47] to adopt human-centered news data
as raw material. Our dataset is built upon VisualNews [28] and
GoodNews [2]. To ensure human-centeredness and diversity, the
following strategies are adopted to filter the raw data: (1) We select
news that at least contains one individual. (2) We encode the news
images using CLIP [41], compute their similarity scores with all
other images in the dataset, and remove those with high cumulative
similarity scores. The filtered dataset 𝑆 = {𝑃𝑠 | 𝑃𝑠 = (𝐼𝑠 ,𝑇𝑠 )} forms
the basis for subsequent dataset construction.
Celeb Attributes Portfolio. Before diving into the construction
of dataset, we first prepare a Celeb Attributes Protfolio (CAP) to
aid the building of SAMM dataset and provide external knowl-
edge. We have collected and curated multimodal data for celebri-
ties from the internet using the Google Search API [10], encom-
passing visual modality information (images) and textual modality
information (gender, birth year, occupation, main achievements).
CAP covers celebrities featured in datasets such as VisualNews[28],
GoodNews [2], DGM4 [47], and SAMM. Furthermore, a celebrity’s
information card can be acquired by simple name matching.

3.2 Multi-Modal Manipulation
To ensure the alignment between the manipulated text and image,
the image tampering is performed first, and the text fabrication
follows. We adopt two types of image manipulation: Swap Ma-
nipulation and Attribute Manipulation. Specifically, Swap Ma-
nipulation includes face replacement in the visual modality and
corresponding name replacement in the textual modality, while At-
tribute Manipulation involves emotion manipulation in the visual
modality and corresponding emotion-related vocabulary manipu-
lation in the textual modality. Combined with unaltered original
image-text pairs, the dataset comprises three data categories.

SwapManipulation.As shown in Figure 2, given (𝐼 ,𝑇 ), we employ
the existing face-swappingmodel SimSwap [4] and InfoSwap [9] for
visual manipulation and large language models [53, 60] for textual
name replacement.

⊲ Face swap.We randomly select a face 𝐼𝑓 and corresponding
name 𝑁𝑓 from CAP, randomly apply SimSwap [4] or InfoSwap [9]
to 𝐼 to generate the tampered image 𝐼𝑚 , and record the bounding
box coordinates (𝑥1, 𝑦1, 𝑥2, 𝑦2) of the swapped face region 𝐹𝑚 in 𝐼𝑚 .
The region correspond to the bbox coordinates in 𝐼 is denoted as 𝐹 .

⊲ Text forgery. To generate text that is semantically aligned
with the swapped image, we need to know the name of the face
that has been swapped out. To acquire this information, we uti-
lize the large language model Qwen2.5 [60] to extract all names
𝑁 = {𝑁 𝑖 | 𝑖 = 1, 2, . . .} from 𝑇 (e.g., “Joe Biden”, “Vladimir Putin”).
These names and 𝐹 are fed into the multimodal model Qwen2-
VL [53] to align 𝐹 with the corresponding name 𝑁 𝑡 ∈ 𝑁 . We per-
form manual sampling verification on the name extraction and face
matching results generated by the large model to ensure accuracy.
(implementation details and accuracy validation are provided in
the appendix). Finally, all 𝑁 𝑡 in 𝑇 are replaced with 𝑁𝑓 to produce
the manipulated text 𝑇𝑚 , accompanied by a one-hot vector label𝑡
to indicate whether the 𝑖-th word is tampered.
Attribute Manipulation. As shown in figure 2, given (𝐼 ,𝑇 ), we
employ the HFGI [54] and StyleCLIP [37] for visual emotion editing
and large language models [53, 60] for textual emotion manipula-
tion.

⊲ Face attribute edit. We first utilize the DSFD [24] model
for face detection to randomly select a target face 𝐹 in 𝐼 , record-
ing its bounding box coordinates (𝑥1, 𝑦1, 𝑥2, 𝑦2). The Qwen2-VL
model [53] predicts the emotional state of 𝐹 , which is then ran-
domly fed into HFGI [54] or StyleCLIP [37] to generate an opposite
emotional manipulation (e.g., modifying "happy" to "sad"), resulting
in 𝐹𝑚 .We then replace 𝐹 in 𝐼 with 𝐹𝑚 , yielding 𝐼𝑚 .

⊲ Text distortion. Following the same operation as in the swap
manipulation, we utilize Qwen2.5 [60] and Qwen2-vl [53] to com-
plete the matching of the name 𝑁 𝑡 and the face 𝐹 . To achieve
diverse emotional expressions, we collect multiple emotions and
provide various expressions for each emotion option E = {𝑒𝑖 |𝑒𝑖 =
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Table 1: SAMM differentiates from existing deepfake datasets by performing cross-modal and fine-grained manipulation of
real news content, providing annotations for manipulated visual regions and tampered textual words.

Dataset Size Source Modality Annotations Cross-modal Mani.
Real/Fake Mani. Type BBox Word Bin.

LIAR [55] 12k+ Real News Single ✓ ✗ ✗ ✗ Unaligned
NewsCLIPpings [33] 980k+ Real News Multi ✓ ✗ ✗ ✗ Unaligned
DeeperForensics-1.0 [19] 60k+ Social Media Single ✓ ✗ ✗ ✗ Unaligned
MiRAGeNews [16] 12k+ Synthesis Multi ✓ ✗ ✗ ✗ Unaligned
DGM4 [47] 230k+ Real News Multi ✓ ✓ ✓ ✓ Unaligned
SAMM(Ours) 260k+ Real News Multi ✓ ✓ ✓ ✓ Aligned

Figure 3: Statistics of the SAMM. (a) The distribution of manipulation types and the distribution of source data; (b) The
distribution of gender and occupations among celebrities involved in swap manipulation; (c) The word cloud of emotional
descriptions for attribute manipulation.

[𝑤𝑖
1,𝑤

𝑖
2, ...]}

| E |
𝑖=1 , where 𝑤

𝑖
1 is the 1-th expression word for emo-

tion 𝑒𝑖 . Subsequently, we utilize Qwen2.5 [60] to incorporate the
randomly selected expression of opposite emotion predicted by
the Qwen2-VL [53] into 𝑇 without altering the event described in
the news, thereby obtaining 𝑇𝑚 , accompanied by a one-hot vector
label𝑡 to indicate whether the 𝑖-th word is tampered. To ensure
accuracy, we conducted manual sampling inspections on the tasks
completed by Qwen2.5 and Qwen2-VL. (Implementation details
of Qwen2.5 and Qwen2-VL for these tasks, along with accuracy
validation, are provided in the appendix.)

3.3 Dataset Statistics
The SAMM dataset (260,970 samples) captures real-world tamper-
ing patterns with comprehensive annotations. As shown in Fig-
ure 3(a) and Table 1, it includes: 111K original news, 80K swap-
manipulated, and 69K attribute-manipulated cases. Figure 3(b) high-
lights celebrity diversity in swap manipulation, while Figure 3(c)’s
emotion word clouds demonstrate expressional diversity in at-
tribute manipulation.

4 Methodology
Figure 4 depicts the framework of RamDG. Specifically, given mul-
timodal news, the headshot and metadata of the person mentioned
in the text are first retrieved from CAP. Next, the multimodal input
and retrieved auxiliary input(s) first pass through the CAP-aided
Context-aware Encoding, which generates uni-modal embeddings.

Subsequently, these embeddings are fed into the Cross-modal Fea-
ture Fusion to achieve information fusion across multiple modal-
ities. Image Forgery Grounding, Text Manipulation Localization,
Fake News Recognition, and Manipulation Type Recognition are
then performed respectively to achieve manipulation detection and
grounding. Finally, the overall network is optimized by a combina-
tion of grounding and detection losses.
Celebrity Attribute Retrieval. Given the image-text pair 𝑃 =

(𝐼 ,𝑇 ), we employ a string matching algorithm to rapidly retrieve
associated external knowledge from CAP using the person names
in 𝑇 , obtaining a set of related pairs {𝑃 𝑗 = (𝐼 𝑗 ,𝑇𝑗 ) | 𝑗 = 1, 2, . . . , 𝑃 𝑗 ∈
CAP} as the auxiliary knowledge.

4.1 CAP-aided Context-aware Encoding
Image Fusion with External Celebrities. To effectively incorpo-
rate the retrieved person images, we first patchify 𝐼 and {𝐼 𝑗 }, then
input them into a Transformer-based Vision Encoder 𝐸𝑣 [6], ob-
taining 𝐸𝑣 (𝐼 ) = V = {V𝑐𝑙𝑠 ,V𝑝𝑎𝑡 } and 𝐸𝑣 (𝐼 𝑗 ) = V𝑗 = {V𝑐𝑙𝑠

𝑗
,V𝑝𝑎𝑡

𝑗
},

where V𝑝𝑎𝑡 = {V 1,V 2, · · · },V𝑝𝑎𝑡

𝑗
= {V 1

𝑗
,V 2

𝑗
, · · · } are the corre-

sponding patch embeddings. To endow the raw multimodal inputs
with the knowledge of the focused celebrities, we fuse the features
within modalities to enhance the representative. In particular, for
image input 𝐼 , we first concatenates the patches {V𝑗 } of all retrieved
celebrities to obtain V𝑐𝑏 . Subsequently, we query features from 𝑉𝑐𝑏
using image feature 𝑉 and then perform a cross-attention [52] to
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equip the celebrities knowledge to the raw image feature:

V𝑓 = Attn(𝑄 = V , 𝐾 = V𝑐𝑏 ,𝑉 = V𝑐𝑏 |Θ1) (1)

where V𝑓 = {V𝑐𝑙𝑠
𝑓
,V𝑝𝑎𝑡

𝑓
} is the resultant comprehensive features.

Attn(·) is the multi-head attention function and Θ1 represents the
parameters in the Attn(·).
Text Encoding with Celebrity Notes. For text input, as {𝑇𝑗 } have
high information density and no redundancy, we directly append
the celebrity meta text(s) to the text, thereby directly enriching the
textual context. Subsequently, the enhanced text is fed into text
encoder 𝐸𝑡 , thus the compresive representative for text is obtained,
marked as L𝑓 = 𝐸𝑡 (𝑇𝑎𝑙𝑙 ) = {L𝑐𝑙𝑠

𝑓
, L𝑡𝑜𝑘

𝑓
}. The pure text feature

𝐿 = {𝐿𝑐𝑙𝑠 , 𝐿𝑡𝑜𝑘 } and celebrity textual feature 𝐿𝑓 = {𝐿𝑐𝑙𝑠
𝑓
, 𝐿𝑡𝑜𝑘

𝑓
} are

also obtained by feeding the text and the concatenated celebrity
notes to text encoder.

4.2 Celebrity-News Contrastive Learning.
Human usually doubts a piece of news when they found conflicts
between the news and the information they know. Motivated by
this consideration, Celebrity-News Contrastive Learning (CNCL)
conducts a contrastive learning [14] procedure between the multi-
modal news and auxiliary celebrity information, aiming to endow
the network a human-like reasoning ability for fake news detec-
tion. In specific, we adopt a contrastive learning mechanism to
simulate human logical reasoning : by aligning the semantics of
untampered celebrity information with the news, we enhance the
model’s detection ability:

L𝑣2𝑣 (𝐼 𝑗 , 𝐼 ,I) = − log
( exp(𝑠 (𝐼 𝑗 , 𝐼+)/𝜏)∑

𝐼𝑘 ∈I exp(𝑠 (𝐼 𝑗 , 𝐼𝑘 )/𝜏)

)
(2)

where 𝑠 (·) is the cosine similarity function, 𝜏 is the learnable param-
eter controlling the temperature, 𝐼 𝑗 is the image of the j-th celebrity
appearing in the news (𝐼 ,𝑇 ), 𝐼 is the corresponding positive sample
news image, and I is the set of a positive sample news image 𝐼
and multiple negative samples that do not include the celebrity
represented by 𝐼 𝑗 . We map the [CLS] token through a projection
layer and incorporate it into the cosine similarity calculation as
follows:

𝑠 (𝐼 𝑗 , 𝐼 ) = [𝑃𝑣 (V cls
𝑗 )]𝑇 𝑃𝑣 (𝑉 cls) (3)

Where V̂𝑐𝑙𝑠 is the [CLS] token obtained by encoding 𝐼 with momen-
tum encoder 𝐸𝑣 [14], 𝑃𝑣 and 𝑃𝑣 are the mapping layers. Similarly,
the contrastive learningL𝑣2𝑡 (𝐼 𝑗 ,𝑇 ,T) between external knowledge
images and news text can be performed. In a analogous fashion, we
further augment the contrastive learning on the text side, introduc-
ing L𝑡2𝑣 (𝑇𝑗 , 𝐼 ,I) and L𝑡2𝑡 (𝑇𝑗 ,𝑇 ,T). (The specific expressions for
L𝑣2𝑡 ,L𝑡2𝑣,L𝑡2𝑡 can be found in the appendix).

In summary, the overall loss function of Celebrity-News Con-
trastive Learning mechanism is:

L𝑐𝑛𝑐𝑙 = L𝑣2𝑣 + L𝑣2𝑡 + L𝑡2𝑣 + L𝑡2𝑡 (4)

4.3 Image Forgery Grounding via FVRM
To integrate the knowledge of both modalities, we first fuse the
information from two modalities to obtain a hybrid multimodal

representation with comprehensive contexts, where the text 𝐿𝑓
serves as the query to collect clues from image via attention:

𝑀f = Attn(𝑄 = V𝑓 , 𝐾 = L𝑓 ,𝑉 = L𝑓 |Θ2) (5)

where𝑀f = {Mcls
f ,Mtok

f }. Since visual manipulation is small-scale
and localized, we need to extract local semantic information related
to visual tampering. To achieve this, we adopt the Fine-grained
Visual Refinement Mechanism (FVRM).
Fine-grained Visual Refinement Mechanism. Patches in 𝑉 𝑝𝑎𝑡

from tampered regions differ semantically from those in unaltered
regions, revealing local tampering traces. Based on this observation,
we add a classification head (three linear layers) after𝑉 pat to predict
patch manipulation. The loss Lpat is computed using cross-entropy.
Specifically, the loss function is defined as:

L𝑝𝑎𝑡 = −
𝐶∑︁
𝑖=1

[
𝑦𝑝𝑎𝑡 log(𝑃𝑝𝑎𝑡 )

]
(6)

where 𝑦𝑝𝑎𝑡 is the label converted from bbox coordinates to indicate
whether a patch is manipulated. 𝑃𝑝𝑎𝑡 represents the probability,
predicted by the model, that the patch has been tampered with. 𝐶
is the number of patches in an image. Under the supervision of
𝑦𝑝𝑎𝑡 , V𝑝𝑎𝑡 is mapped through the first two linear layers of classi-
fication head to obtain 𝑉 𝑝𝑎𝑡 , which contains visual manipulation
traces. M𝑐𝑙𝑠

f contains semantic information related to the global

examination of the detected news pair. By fusing 𝑉 𝑝𝑎𝑡 and M𝑐𝑙𝑠
f ,

the resulting𝑀f captures both global and local information. The
process is as follows:

𝑀f = Attn(𝑄 = Mcls
f , 𝐾 = 𝑉 pat, 𝑉 = 𝑉 pat |Θ3) (7)

Let 𝑀f perform attention computation with a learnable vector
Q [23] to capture semantic information at different scales. The
fusion of external knowledge in 𝑀f dilutes the local details of the
original image. To address this, we perform residual connection [15],
as follows:

Mfv = 𝑀f + V (8)

Finally, cross-attention is performed between 𝑀f and Mfv to
achieve fine-grained visual refinement, denoted as𝑀fv . The specific
process is as follows:

𝑀f = Attn(𝑄 = Q, 𝐾 = 𝑀f ,𝑉 = 𝑀f |Θ4) (9)

𝑀fv = Attn(𝑄 = 𝑀f , 𝐾 = 𝑀fv,𝑉 = 𝑀fv |Θ5) (10)

We use the obtained𝑀fv for bounding box prediction. The 𝐿1 loss
and IoU loss [43] between the predicted boxes and the bounding
box coordinates are then computed:

Lbbox = −||𝑃𝑔𝑟𝑜 − Sigmoid(𝑦𝑏𝑜𝑥 ) | |1
+LIoU (𝑃𝑔𝑟𝑜 , Sigmoid(y𝑏𝑜𝑥 ))

(11)

whereLIoU (·) is the IoU loss function, 𝑃𝑔𝑟𝑜 represents the predicted
bounding box coordinates from the model.
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Name:Tshering Tobgay
Gender: Male.
Occupation: Politician.
Birth year: 1965.
Main achievements: …

Tshering Tobgay said the 
Iowa results should be 
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Figure 4: The architecture of our proposed RamDG. It processes image-text pairs and CAP-retrieved knowledge using uni-
Encoders and the CNCL module, then fuses knowledge-enriched embeddings for visual/textual manipulation localization, fake
news recognition, and manipulation type prediction.

4.4 Deep Manipulation Detection
TextManipulation Localization.This section achieves fine-grained
text manipulation localization: predicting whether each word in
𝑇 is replaced or added. We first fuse the textual representation
Ltok with the visual semantic feature Vf through cross-attention to
generate a fine-grained cross-modal feature Ltokv :

Ltokv = Attn(𝑄 = Ltok, 𝐾 = Vf ,𝑉 = Vf |Θ5) (12)

𝑀cls
f can locate tokens in Ltokv with abnormal logical relationships

due to its global semantic information, which are often added or
modified. Therefore, we further allow𝑀cls

f to extract information

from Ltokv . The above process is as follows:

𝐿̃tokv = Attn(𝑄 = Ltokv , 𝐾 = Mcls
f ,𝑉 = Mcls

f |Θ6) (13)

Finally, we use 𝐿̃tokv to predict the probability of manipulation
for each token, and construct the text manipulation localization
loss function Ltok based on the cross-entropy loss function:

Ltok = −
∑︁
𝑖

[
𝑦𝑖
𝑡𝑜𝑘

log(𝑃𝑖
𝑡𝑜𝑘

)
]

(14)

where 𝑦𝑖tok is the label indicating whether i-th token is manipulated.
𝑃𝑖
𝑡𝑜𝑘

represents the probability, as output by the model, that the
i-th token has been tampered.
FakeNewsRecognition.This section is used to determinewhether
(𝐼 ,𝑇 ) has been tampered. We utilize𝑀cls

𝑓
for recognition, as it inte-

grates multi-modal news data and external knowledge from CAP
to provide a comprehensive summary. We compute the loss using

a cross-entropy function, as detailed below:

L2𝑐𝑙𝑠 = −𝑦2𝑐𝑙𝑠 log(𝑃2𝑐𝑙𝑠 ) (15)

where𝑦2𝑐𝑙𝑠 is the binary classification label and 𝑃2𝑐𝑙𝑠 represents the
probability, predicted by the model, that (𝐼 ,𝑇 ) has been tampered
with.
Maniputation Type Recognition. SAMM incorporates three
types of tampering traces, including Visual Swap(VS) manipulation,
Visual Attribute(VA) manipulation, Textual Attribute(TA) manipu-
lation (including name swapping, and the addition or alteration of
emotions). We predict the specific tampering method used in the
given news. Consistent with Fake News Recognition, we uses𝑀cls

𝑓

to predict and compute the loss using a cross-entropy function, as
detailed below:

Lmcls = −
4∑︁

𝑖=1

[
𝑦𝑖
𝑚𝑐𝑙𝑠

log(𝑃𝑖
𝑚𝑐𝑙𝑠

)
]

(16)

where y𝑖
𝑚𝑐𝑙𝑠

denotes the label of the i-th tampering method used in
the given news. 𝑃𝑖

𝑚𝑐𝑙𝑠
represents the probability, predicted by the

model, that the i-th tampering method has been used.

4.5 Overall Loss Function
The overall loss function for the training process is as follows:

L = Lcncl + L2cls + Lmcls + Lpat + Lbbox + Ltok (17)

5 Experiments
Please refer to the supplementary material for implementation
details and evaluation metrics.
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Table 2: Comparison of multi-modal learning methods for SAMM. We conduct a comprehensive evaluation of models’ perfor-
mance across four key tasks: binary classification, multi-label classification, image grounding, and text grounding.

Binary Cls(BC) Multi-Label Cls(MLC) Image Grounding(IG) Text Grounding(TG)
Methods

AUC EER ACC mAP CF1 OF1 IoUmean IoU50 IoU75 Precision Recall F1

VILT [22] 96.10 11.02 88.83 96.03 90.21 89.84 65.38 71.91 54.49 77.42 69.78 73.40
HAMMER [47] 97.85 7.80 92.43 97.98 93.77 93.44 77.68 84.41 78.44 85.94 82.74 84.31
HAMMER++ [48] 97.60 7.99 92.26 97.72 93.70 93.34 77.66 84.12 78.62 85.86 82.89 84.35
FKA-Owl [29] 98.09 7.19 92.60 2.53 13.97 13.84 66.40 73.54 54.82 19.16 49.71 27.66
Qwen2.5VL-72b [1] 76.67 44.93 55.06 — — — — — — — — —
RamDG(Ours) 98.79 5.42 94.66 98.86 95.52 95.33 80.90 87.56 82.00 86.16 83.54 84.83

Table 3: Comparison on the SAMM 20000 training set.

Methods
BC MLC IG TG

ACC mAP IoUmean F1

VILT [22] 81.97 87.31 39.95 51.15
HAMMER [47] 85.74 92.98 52.65 71.65
HAMMER++ [48] 84.03 92.72 58.61 72.10
FKA-Owl [29] 87.91 1.94 49.48 9.79
Qwen2.5VL-72b [1] 55.06 — — —
RamDG(Ours) 88.40 95.32 64.30 73.69

Table 4: Additional VLMs’ performence on the SAMM.

Methods (BC/ACC) Zero-Shot Finetuned

LLaMA-3.2-Vision-90B [42] 60.4 –
Gemini-3-27B [21] 59.7 –
SeedVL-1.5 [11] 64.1 –

Qwen2.5VL-3B [1] – 82.0
RamDG(Ours) – 94.66

Comparison Methods. We selected three modailty fusion-based
methods — VILT [22], HAMMER [47] and HAMMER++ [48], along
with the state-of-the-art Visual-Language Large Models(VLLMs) —
FKA-Owl [29] and Qwen2.5VL-72b [1] as baselines for performance
comparison with RamDG on the SAMM. Implementation details
for the methods can be found in the Appendix.

5.1 Quantitative Results
Performance Comparison. Table 2 shows the performance of all
the aforementioned baselines on the SAMM dataset. To simulate
real-world scenarios with scarce training samples, we train these
models on randomly selected subsets of 20,000 and 50,000 samples.
We then evaluate their performance on the complete test set, as
shown in Table 3 and Table 5. Experimental results showed in tables
prove that our method achieved state-of-the-art performance across
various tasks on the SAMM dataset. Notably, under conditions of
limited training data, RamDG demonstrated significant advantages

Table 5: Comparison on the SAMM 50000 training set.

Methods
BC MLC IG TG

ACC mAP IoUmean F1

VILT [22] 85.18 92.73 55.50 64.91
HAMMER [47] 88.16 95.58 65.97 76.02
HAMMER++ [48] 87.99 95.29 68.15 78.48
FKA-Owl [29] 90.36 1.19 63.28 27.66
Qwen2.5VL-72b [1] 55.06 — — —
RamDG(Ours) 91.07 97.18 73.65 79.10

Table 6: Generalization to unseen entities.

Methods ACC mAP IoUmean F1

HAMMER [47] 92.0 97.0 77.6 83.8
FKA-Owl [29] 92.3 4.0 68.1 28.1
RamDG(Ours) 94.1 97.3 78.7 83.9

over baseline models, particularly in the precision of visual tamper-
ing region localization, fully demonstrating the effectiveness and
superiority of our proposed method.

While FKA-Owl slightly outperforms HAMMER in binary clas-
sification (+0.24%), it fails at fine-grained tampering localization.
Though VLLMs leverage rich knowledge for fake news judgment,
they lack fine-grained extraction capability. In contrast, our RamDG:
1) retrieves CAP knowledge, 2) integrates it via CNCL, and 3) en-
hances visual localization with FVRM – achieving superior perfor-
mance across all tasks.

More VLMs’ performance. We conduct evaluations on addi-
tional VLMs under both zero-shot and fine-tuned settings, as shown
in the table 4.

Generalization to Unseen Entities. To evaluate new entities
absent from CAP, we select a sub-test set whose entities absent
from the training set and directly input them into RamDG without
retrieving information from CAP. As shown in the table 6, our
RamDG still outperforms comparison methods.

5.2 Ablation study
External knowledge from CAP. To investigate the impact of
different celebrity information in CAP on model performance, we
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Table 7: Ablation study for external knowledge from CAP. For each task, we present the most representative metrics: ACC,
mAP, IoUmean, and F1.

External Knowledge From CAP BC MLC IG TG

Gender Birth Year Occupation Main Achievements Images ACC mAP IoUmean F1

91.00 96.88 75.77 83.49
✓ 91.17 97.01 76.79 83.26

✓ ✓ ✓ ✓ 93.73 98.08 79.49 84.84
✓ ✓ ✓ ✓ 94.32 98.21 79.84 84.10

✓ ✓ ✓ ✓ 94.57 98.35 80.59 84.50
✓ ✓ ✓ ✓ 93.25 98.15 77.96 84.12
✓ ✓ ✓ ✓ 93.48 98.34 79.46 84.69
✓ ✓ ✓ ✓ ✓ 94.66 98.86 80.90 84.83

Table 8: Ablation study for CNCL and FVRM.

Module BC MLC IG TG

CNCL FVRM ACC mAP IoUmean F1

✓ 93.24 98.18 79.32 84.23
✓ 94.79 98.88 78.01 85.28
✓ ✓ 94.66 98.86 80.90 84.83

conducted a series of ablation experiments. The results, as shown
in Table 7, reveal several key observations:

1) Without leveraging CAP-derived external knowledge, model
performance across tasks drops by an average of 3%. Single-modal
external knowledge alone is insufficient: textual knowledge is indis-
pensable, with its absence causing significant declines in fake news
detection (4.11% drop) and even visual localization. In contrast,
visual knowledge provides minimal improvement (0.78% average
gain) due to image redundancy.

2) Analysis shows textual knowledge components affect per-
formance variably. Occupation information contributes the most
(1.44% average gain), reflecting its role in providing contextual and
social cues for human verification. For example, knowing Messi’s
occupation helps debunk false claims like his Nobel Prize win.
Framework Component Ablation. As shown in Table 8, we
investigated the impact of CNCL and FVRM on model performance.
After removing the FVRM module, we directly used𝑀𝑐𝑙𝑠

𝑓 𝑣
for visual

tampering localization. The results reveal several key insights:
1) Removing CNCL reduces performance across all tasks (avg.

-1.07%), confirming its role in enhancing external knowledge under-
standing for multimodal tampering detection.

2) FVRM specifically boosts visual tampering localization (+2.89%)
with minimal impact on other tasks, demonstrating its fine-grained
visual tampering capture capability.

5.3 Visualized results
Figure 5 presents results for six cases: Examples A–B (Attribute
Manipulation, AM) involve Visual Attribute (VA) and Textual At-
tribute (TA) manipulations; C–D (Swap Manipulation, SM) feature
Visual Swap (VS) and TA manipulations; E–F represent original,
unmanipulated news.

Figure 5: Visualized results. Red and blue regions denote the
ground truth and predicted outputs, respectively.

6 Conclusion
In this paper, we propose a realistic research scenario: detecting and
grounding semantic-coordinated multimodal manipulations, and
introduce a new dataset SAMM. To address this challenge, we design
the RamDG framework, proposing a novel approach for detecting
fake news by leveraging external knowledge, which consists of two
core components: CNCL and FVRM. Extensive experimental results
demonstrate the effectiveness of our approach.
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