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Abstract

Transfer learning is widely applied in various
deep learning-based speech tasks, especially
for tasks with a limited amount of data. Re-
cent studies in transfer learning mainly focused
on either supervised or self-supervised perspec-
tives. This work, however, seeks to incorporate
the two schemes together towards low-resource
automatic speech recognition (ASR) for minor
and endangered language (EL) communities.
We propose a general framework to use learned
transformations to resolve time resolution dif-
ferences between any speech features, allowing
for fusion of any self-supervised representa-
tions or spectral features used in multilingual
pre-training. Our experiments over two low-
resource languages and three ELs demonstrate
that the proposed framework can significantly
improve the absolute average word error rate
from 45.4% to 35.5%.

1 Introduction

End-to-end (E2E) approaches to ASR have shown
promising results compared to hybrid approaches
for not only high-resourced scenarios (Chiu et al.,
2018; Karita et al., 2019; Pham et al., 2019; Guo
etal., 2021), but also certain low-resource scenarios
in which linguistic documentations are insufficient
for building lexicon-dependent models (Grenoble
et al., 2011; Zahrer et al., 2020; Shi et al., 2021a).
On the other hand, end-to-end approaches to low-
resource ASR are distinctly disadvantaged by a
lower data efficiency (Liischer et al., 2019) and
language-mismatch with powerful self-supervised
representations (Hsu et al., 2021).

One direction towards mitigating these low-
resource issues is to incorporate knowledge from
several languages into multilingual end-to-end
models (Watanabe et al., 2017; Toshniwal et al.,
2018; Kannan et al., 2019). When there is no train-
ing data available for the target languages, these
systems can be applied in a zero-shot manner (Li

et al., 2020; Yan et al., 2021; Xu et al., 2021). For-
tunately, many languages have small amounts of
data which can be used to fine-tune large-scale mul-
tilingual models towards target languages, resulting
in further improvements (Hou et al., 2020; Pratap
et al., 2020; Adams et al., 2019; Li et al., 2021).

Another direction is to use self-supervised learn-
ing representations (SSLR) trained on large untran-
scribed corpora as a front-end feature for ASR,
replacing conventional spectral features like log
Mel filterbank coefficients (FBank) (Yi et al., 2020;
Wau et al., 2020; Baevski et al., 2020; N et al., 2021;
Chang et al., 2021; Liu et al., 2021). Although
these approaches have shown improvements across
many languages, performance depends on the relat-
edness between the SSLR training languages and
the target language (Conneau et al., 2019).

In this work, we are interested in leveraging
both multilingual pre-trained (MPT) models with
conventional speech feature front-ends and vari-
ous SSLRs as resources for our low-resource ASR
systems. In particular, we seek to efficiently in-
corporate multiple speech features, which may or
may not have the same time resolution, as fused
inputs to our end-to-end models. We propose a gen-
eral framework to fuse such heterogeneous speech
features and investigate several different learnable
transformations for the fusion(Sec 3). Then we
describe one instance following this front-end fu-
sion framework which combines HuBERT features
(Hsu et al., 2021) with an MPT model trained on
FBank features (Sec 4.2). We demonstrate experi-
mentally that our method improves absolute aver-
age WER by 9.9% on three endangered languages,
and two of other low-resource languages in Sec 4.3.

Further, our data, pre-trained models, and repro-
ducible methods are released open-source' to pro-
mote future developments on several endangered
(Totonac, Yoloxéchitl Mixtec, and Highland Puebla
Nahuatl) and low-resourced (Arabic and Tamil) lan-
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Figure 1: The architecture of our proposed model. The
general formulation can be found in Sec 3.1.

guages. Notably, our released Totonac ASR data is
the first publicly available annotated speech corpus.

2 Motivation

Multilingual models have not only reached large-
scales, but they have also demonstrated high ef-
ficiency in modeling multiple languages. For in-
stance, (Li et al., 2021) found multilingual training
boosted low-resourced languages while also avoid-
ing degradation of high-resource languages. Sep-
arately, SSLRs encode general-purpose informa-
tion about speech that can apply to various down-
stream tasks, including ASR (Yang et al., 2021).
For low-resource scenarios, Yi et al. (2020) found
that wav2vec2 was useful for 6 low-resource lan-
guages, suggesting that SSLR can replace spectral
features like FBanks in these cases.

Rather than viewing MPT and SSLR as two dis-
tinct techniques, we argue that for low-resourced
ASR these ideas are critically intertwined for sev-
eral reasons. (1) It is difficult to maintain broad
compatibility of supervised MPT models if differ-
ent front-ends are preferred for different scenarios.
(2) For low-resource ASR, there are often domain
mismatches between SSLR pre-training data and
ASR fine-tuning for a target language, leading to
unstable performances over when relying only on
only an SSLR front-end. (3) SSLRs are often pre-
trained exclusively over major languages like En-
glish (e.g., Hubert), again leading to unstable per-
formances depending on cross-lingual similarities.

3 Methodology

3.1 Heterogeneous Speech Feature Fusion

Historically, multi-layer perceptron tandem fea-
tures are concatenated with spectral features to

reach better performances (Hermansky et al., 2000;
Zhu et al., 2004; Lal and King, 2013). Following
their insights, Chen et al. (2021) performed the con-
catenation between STFT and SSLR features for
speech separation by repeating the SSLR feature
across the time-domain. While this repeat-based
method ameliorates the dimension mismatch of
features, it does not necessarily produce optimally
fused features for a particular task at hand.

We propose a general framework to fuse any
SSLRs and spectral features through learnable
transformations, allowing for the joint use of
different supervised pre-training models with
self-supervised representations. Such learnable
fusions have been employed in various multi-
source/multimodal applications previously (Li-
bovicky and Helcl, 2017; Hori et al., 2017). The
framework is illustrated in Figure 1 and formulated
as follows:

For an utterance, denote X”/1 = (xgl) €
RPi|t = 1,---,T}) as a feature type JFi, where
D5 is the dimension of the feature at each frame
and 77 stands for the number of frames. Similarity,
we could define X72 along with Dy and T5. As Dy
and Do, T and T5 may not necessarily be the same,
combining two front-ends cannot be achieved by
simply concatenation. In Figure 1, we introduce
a fusion block to fuse features from two hetero-
geneous features (noted /7 and F2). Specifically,
we perform learnable transformations over speech
features X7 and X72 with linear, recurrent, con-
volution, or attention-based neural architectures.
We then use RESHAPE so that the transforms of
X71 and X72 have the same dimensions, as shown
in Equation (1).

X7 = RESHAPE(TRANSFORM(X”1))

D

X72 = RESHAPE(TRANSFORM(X”2))

After that, X71 and X”2 are concatenated at the
feature-dimension. In the next sub-section, we in-
troduce one particular instance of this framework.

3.2 Fusion between SSLR and FBank for
Multilingual Pre-trained (MPT) ASR

As discussed in Sec 2, several issues may raise
when performing a simple combination between
MPT and SSLR, though they can improve low-
resource ASR, respectively. Therefore, we seek
to fuse the requisite front-ends for our end-to-
end model, following the formulation in Sec 3.1.
Firstly, we pre-train a multilingual encoder-decoder



model with language identification and hybrid
CTC/Attention objectives (Watanabe et al., 2017;
Hou et al., 2020). This architecture is built upon
the FBanks, so we define our first front-end feature
X = (xf® € RPe|t = 1,--- ,Tyg). Secondly,
we use HuBERT as our SSLR front-end feature
(Hsu et al., 2021), X"VB = (x}IVB ¢ RPuus|t =
1,+-+ , Tyys). Following our framework in Eq. (2),
we compute X" and X"VB before ultimately ob-
taining fused features X"US¥ as follows:

s - -
XFU E — XFB @ }(HUB7 (2)
where @ denotes feature-dimension concatenation.

4 Experiments

4.1 Datasets

We use a combination of Commonvoice 5.1 (Ardila
et al., 2020) and Voxforge (www.voxforge.org) for
MPT. The corpus results in 5,029 hours of train-
ing data, including 52 languages from different
language families.

We enroll three endangered languages which are
not included in the multilingual corpus for test-
ing, including Yoloxdchitl Mixtec (YM), Highland
Puebla Nahuatl (HPN), and Totonac. Though en-
dangered, YM and HPN have around 100 hours
of transcribed speech in their released version
(Shi et al., 2021b,a). However, to simulate a low-
resource scenario, we randomly select 5,000 utter-
ances (around 10 hours) from the official training
sets, but used the same validation and test sets, as
introduced in (Shi et al., 2021b,a). Totonac is an-
other EL, spoken in the northern sierras of Puebla
and adjacent areas of Veracruz. In this work, we re-
lease a public available version of Totonac speech
resources. The corpus includes 10 hours of speech
(86 long recordings) with fine-grained transcription.
We randomly select 70 recordings as the training
set, 8 for validation, and 8 for testing.

In addition to the three endangered languages
mentioned above, we perform experiments on Ara-
bic (AR) and Tamil (TA) corpora from Common-
voice to assert the robustness of our proposed meth-
ods in an in-domain low resource scenario. Both
Arabic and Tamil have 20 hours of speech.

4.2 Experimental Setups

Baseline (A): For all the languages, our base-
line (namely Exp A in later sections) adopts the
same transformer-based encoder-decoder architec-
ture with CTC/Attention hybrid training (Kim et al.,

2017). The front-end in Exp A extracts FBank fea-
tures at a frame length of 20ms and a frameshift
of 8ms. The extracted FBank features are firstly
subsampled with a convolutional block and then
fed into the encoder-decoder. The encoder contains
12-layer self-attention blocks with 4-head atten-
tion and 512-dimensional hidden sizes. While the
decoder has 6 cross-attention transformer blocks.
Specaugmentation (Park et al., 2019) and speed per-
turbation are employed for data augmentation. For
training, we use Adam optimizer and Noam sched-
uler with a 1.0 learning rate at peak. The warm-up
step is set to 4,000, considering the low-resource
scenario. All the parameters are initialized with
Xavier uniform distribution (Glorot and Bengio,
2010). The ASR model is trained on byte-pair-
encoding (BPE) units of 250. The same architec-
ture and training configuration are aligned for the
following experiments.

Multilingual Pre-training (B): MPT is per-
formed on a large-scale corpus introduced in
Sec 4.1. We follow the same pre-training strat-
egy as (Hou et al., 2020). For each utterance, the
model needs to generate a language ID token prior
to ASR transcription. To keep a necessary cover-
age for transcribing all 52 languages, we set a BPE
size of 7,000. Large batch size is applied here in or-
der to stabilize the multilingual training. After the
pre-training, Exp B is conducted with parameter
initialization from the pre-trained model.

Self-supervised Representation (C): In our ex-
periments, we employ HuBERT as the front-end.”
To fully explore the potential of HuBERT, we se-
lect the HuBERT-1arge model pre-trained over 60k
hours of LibriLight (Kahn et al., 2020; Ott et al.,
2019). The SSLR wrapper provided in (Yang et al.,
2021) is applied to extract high-dimensional fea-
tures with 20ms frameshift. In Exp C, the model
directly applies HuBERT representation for train-
ing, which is the same approach as in (Chang et al.,
2021). As for ablation purposes, we also conduct
experiments on only SSLRs front-end with the ini-
tialization from the MPT model. We name these
experiments as Exp C’ in the next section.

Joint-system (D&E): The joint-system incorpo-
rates both FBank and SSLR in model front-end.
According to our settings, the resolution ratio be-

We also conduct experiments on Wav2vec2 and
Wav2vec2-XLSR (Conneau et al., 2019; Baevski et al., 2020).
However, the performances are not stable for ASR training.



| Front-end ASR | CER/WER
Exp | FBank SSLR Align MPT | Totonac | YM | HPN | AR | TA | Avg
A v X - X 17.3/50.6 | 26.2/50.8 | 51.5/77.6 | 15.4/29.2 | 6.1/19.0 | 23.3/45.4
B v X - v 17.9/50.3 | 24.8/47.5 | 34.4/64.6 | 12.9/26.7 | 8.2/24.0 | 19.6/42.6
C X v - X 17.1/48.3 | 38.8/61.2 | 29.4/58.3 | 15.1/29.2 | 6.2/19.7 | 21.3/43.3
D v v v X 14.6/46.7 | 19.1/42.6 | 23.1/52.4 | 8.4/22.4 | 6.1/24.5 | 14.3/37.7
E v v v v 14.4/45.6 | 20.0/40.0 | 25.1/52.1 | 9.2/20.2 | 5.9/19.4 | 14.9/35.5

Table 1: Results comparing our proposed fused front-end models (D, E) with various single front-end baselines (A,
B, C) for 5 low-resourced or endangered languages, as measured by Character (CER) and Word (WER) Error Rates.

Exp | Front-End MPT | CER  WER
A FBANK X 173 50.6
B FBANK 4 179 503
A (A—B) - - -06 403
C HUBERT X 17.1 483
C HUBERT 4 209 584
A (C=C) - - +3.8  +10.1
Table 2:  Ablation study comparing improve-

ment/degradation on Totonac when incorporating
FBank-based MPT with FBank-based fine-tuning
(A(A — B)) vs. incorporating FBank-based MPT with
HuBERT-based fine-tuning (A(C — C”)).

Exp | Fusiontype | CER WER
D Linear 14.6 46.7
D1 Repeat 15.8 482
D2 RNN 65.1 86.9
D3 | Convolution | 16.1 50.8
D4 Attention 17.8 52.4

Table 3: Ablation study comparing performance on To-
tonac of several fusion types (D1-4) with our proposed
linear fusion model without ASR pre-training (D).

tween FBank and HuBERT feature is 5:2. As dis-
cussed in Sec 3.1, we apply transformations to both
features and then reshape them into the same time
resolution. The linear layer contains 400 units in
our experiments. The model then consumes the
concatenation of both HuBERT and FBank fea-
tures as inputs. We name the experiments with the
fusion block as Exp D. We refer to the experiments
as Exp E if it is initialized with the MPT model. We
default to using the linear fusion block. But, to in-
vestigate other potential methods for feature fusion,
we conduct ablation studies (i.e., Exp D1-D4) over
four other approaches, including simple repeating,
convolution, recurrent, and attention-based fusion.

4.3 Results and Discussion

Table 1 provides results of our main experiments
over the five low resource languages introduced in
Sec 4.1. Our proposed model (Exp E) reaches the
best performances, which improves 8.4% absolute

average CER and 9.9% absolute average WER than
the baseline in Exp A. Besides, Exp B with MPT
model leads to notable improvements over the base-
line for some languages such as HPN, even though
HPN was not in the set of languages used by the
multilingual pre-training model. SSLR could also
benefit some languages (e.g., Totonac) as indicated
from Exp C. According to Exp D, the proposed fu-
sion module demonstrates better performances for
most languages, and also reaches the best average
CER across the five languages.

Table 2 shows ablation study of Exp C’ where
we only use SSLR features with initialization from
the MPT model originally built upon FBanks. Exp
C’ is degraded compared to Exp A, B, and C, sug-
gesting incompatibility between SSLR and MPT
model as the latter is trained on FBank features.

Table 3 provides results for Exp D, which con-
sider the various fusion strategies discussed in
Sec 3.1. It shows that linear fusion outperforms
simple repeat method (i.e., Exp D1). Recurrent,
convolution and attention-based networks strate-
gies are also less effective than the linear approach
in our context.

5 Conclusion

In this work, we suggest that self-supervised learn-
ing and supervised pre-training can jointly improve
the ASR performances in low-resource scenarios.
We propose a framework to align features with dif-
ferent time-domain resolutions and demonstrate the
effectiveness of fusing various front-ends features.
We also release a Totonac ASR corpus, serving for
the purpose of endangered language documenta-
tion, and we show that our reproducible methods
enable to get very good results in very low resource
scenarios. In future works, we will investigate (1)
multilingual pre-training with fused SSLR features;
(2) zero-shot learning, especially for EL. documen-
tation purposes.
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