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Abstract

Transfer learning is widely applied in various001
deep learning-based speech tasks, especially002
for tasks with a limited amount of data. Re-003
cent studies in transfer learning mainly focused004
on either supervised or self-supervised perspec-005
tives. This work, however, seeks to incorporate006
the two schemes together towards low-resource007
automatic speech recognition (ASR) for minor008
and endangered language (EL) communities.009
We propose a general framework to use learned010
transformations to resolve time resolution dif-011
ferences between any speech features, allowing012
for fusion of any self-supervised representa-013
tions or spectral features used in multilingual014
pre-training. Our experiments over two low-015
resource languages and three ELs demonstrate016
that the proposed framework can significantly017
improve the absolute average word error rate018
from 45.4% to 35.5%.019

1 Introduction020

End-to-end (E2E) approaches to ASR have shown021

promising results compared to hybrid approaches022

for not only high-resourced scenarios (Chiu et al.,023

2018; Karita et al., 2019; Pham et al., 2019; Guo024

et al., 2021), but also certain low-resource scenarios025

in which linguistic documentations are insufficient026

for building lexicon-dependent models (Grenoble027

et al., 2011; Zahrer et al., 2020; Shi et al., 2021a).028

On the other hand, end-to-end approaches to low-029

resource ASR are distinctly disadvantaged by a030

lower data efficiency (Lüscher et al., 2019) and031

language-mismatch with powerful self-supervised032

representations (Hsu et al., 2021).033

One direction towards mitigating these low-034

resource issues is to incorporate knowledge from035

several languages into multilingual end-to-end036

models (Watanabe et al., 2017; Toshniwal et al.,037

2018; Kannan et al., 2019). When there is no train-038

ing data available for the target languages, these039

systems can be applied in a zero-shot manner (Li040

et al., 2020; Yan et al., 2021; Xu et al., 2021). For- 041

tunately, many languages have small amounts of 042

data which can be used to fine-tune large-scale mul- 043

tilingual models towards target languages, resulting 044

in further improvements (Hou et al., 2020; Pratap 045

et al., 2020; Adams et al., 2019; Li et al., 2021). 046

Another direction is to use self-supervised learn- 047

ing representations (SSLR) trained on large untran- 048

scribed corpora as a front-end feature for ASR, 049

replacing conventional spectral features like log 050

Mel filterbank coefficients (FBank) (Yi et al., 2020; 051

Wu et al., 2020; Baevski et al., 2020; N et al., 2021; 052

Chang et al., 2021; Liu et al., 2021). Although 053

these approaches have shown improvements across 054

many languages, performance depends on the relat- 055

edness between the SSLR training languages and 056

the target language (Conneau et al., 2019). 057

In this work, we are interested in leveraging 058

both multilingual pre-trained (MPT) models with 059

conventional speech feature front-ends and vari- 060

ous SSLRs as resources for our low-resource ASR 061

systems. In particular, we seek to efficiently in- 062

corporate multiple speech features, which may or 063

may not have the same time resolution, as fused 064

inputs to our end-to-end models. We propose a gen- 065

eral framework to fuse such heterogeneous speech 066

features and investigate several different learnable 067

transformations for the fusion(Sec 3). Then we 068

describe one instance following this front-end fu- 069

sion framework which combines HuBERT features 070

(Hsu et al., 2021) with an MPT model trained on 071

FBank features (Sec 4.2). We demonstrate experi- 072

mentally that our method improves absolute aver- 073

age WER by 9.9% on three endangered languages, 074

and two of other low-resource languages in Sec 4.3. 075

Further, our data, pre-trained models, and repro- 076

ducible methods are released open-source1 to pro- 077

mote future developments on several endangered 078

(Totonac, Yoloxóchitl Mixtec, and Highland Puebla 079

Nahuatl) and low-resourced (Arabic and Tamil) lan- 080

1Available after the double-blind review period.
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Figure 1: The architecture of our proposed model. The
general formulation can be found in Sec 3.1.

guages. Notably, our released Totonac ASR data is081

the first publicly available annotated speech corpus.082

2 Motivation083

Multilingual models have not only reached large-084

scales, but they have also demonstrated high ef-085

ficiency in modeling multiple languages. For in-086

stance, (Li et al., 2021) found multilingual training087

boosted low-resourced languages while also avoid-088

ing degradation of high-resource languages. Sep-089

arately, SSLRs encode general-purpose informa-090

tion about speech that can apply to various down-091

stream tasks, including ASR (Yang et al., 2021).092

For low-resource scenarios, Yi et al. (2020) found093

that wav2vec2 was useful for 6 low-resource lan-094

guages, suggesting that SSLR can replace spectral095

features like FBanks in these cases.096

Rather than viewing MPT and SSLR as two dis-097

tinct techniques, we argue that for low-resourced098

ASR these ideas are critically intertwined for sev-099

eral reasons. (1) It is difficult to maintain broad100

compatibility of supervised MPT models if differ-101

ent front-ends are preferred for different scenarios.102

(2) For low-resource ASR, there are often domain103

mismatches between SSLR pre-training data and104

ASR fine-tuning for a target language, leading to105

unstable performances over when relying only on106

only an SSLR front-end. (3) SSLRs are often pre-107

trained exclusively over major languages like En-108

glish (e.g., Hubert), again leading to unstable per-109

formances depending on cross-lingual similarities.110

3 Methodology111

3.1 Heterogeneous Speech Feature Fusion112

Historically, multi-layer perceptron tandem fea-113

tures are concatenated with spectral features to114

reach better performances (Hermansky et al., 2000; 115

Zhu et al., 2004; Lal and King, 2013). Following 116

their insights, Chen et al. (2021) performed the con- 117

catenation between STFT and SSLR features for 118

speech separation by repeating the SSLR feature 119

across the time-domain. While this repeat-based 120

method ameliorates the dimension mismatch of 121

features, it does not necessarily produce optimally 122

fused features for a particular task at hand. 123

We propose a general framework to fuse any 124

SSLRs and spectral features through learnable 125

transformations, allowing for the joint use of 126

different supervised pre-training models with 127

self-supervised representations. Such learnable 128

fusions have been employed in various multi- 129

source/multimodal applications previously (Li- 130

bovický and Helcl, 2017; Hori et al., 2017). The 131

framework is illustrated in Figure 1 and formulated 132

as follows: 133

For an utterance, denote XF1 = (x(1)
t ∈ 134

RD1 |t = 1, · · · , T1) as a feature type F1, where 135

D1 is the dimension of the feature at each frame 136

and T1 stands for the number of frames. Similarity, 137

we could define XF2 along with D2 and T2. As D1 138

and D2, T1 and T2 may not necessarily be the same, 139

combining two front-ends cannot be achieved by 140

simply concatenation. In Figure 1, we introduce 141

a fusion block to fuse features from two hetero- 142

geneous features (noted F1 and F2). Specifically, 143

we perform learnable transformations over speech 144

features XF1 and XF2 with linear, recurrent, con- 145

volution, or attention-based neural architectures. 146

We then use RESHAPE so that the transforms of 147

XF1 and XF2 have the same dimensions, as shown 148

in Equation (1). 149

X̃F1 = RESHAPE(TRANSFORM(XF1))

X̃F2 = RESHAPE(TRANSFORM(XF2))
(1) 150

After that, X̃F1 and X̃F2 are concatenated at the 151

feature-dimension. In the next sub-section, we in- 152

troduce one particular instance of this framework. 153

3.2 Fusion between SSLR and FBank for 154

Multilingual Pre-trained (MPT) ASR 155

As discussed in Sec 2, several issues may raise 156

when performing a simple combination between 157

MPT and SSLR, though they can improve low- 158

resource ASR, respectively. Therefore, we seek 159

to fuse the requisite front-ends for our end-to- 160

end model, following the formulation in Sec 3.1. 161

Firstly, we pre-train a multilingual encoder-decoder 162
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model with language identification and hybrid163

CTC/Attention objectives (Watanabe et al., 2017;164

Hou et al., 2020). This architecture is built upon165

the FBanks, so we define our first front-end feature166

XFB = (xFB
t ∈ RDFB |t = 1, · · · , TFB). Secondly,167

we use HuBERT as our SSLR front-end feature168

(Hsu et al., 2021), XHUB = (xHUB
t ∈ RDHUB |t =169

1, · · · , THUB). Following our framework in Eq. (2),170

we compute X̃FB and X̃HUB before ultimately ob-171

taining fused features XFUSE as follows:172

XFUSE = X̃FB ⊕ X̃HUB, (2)173

where ⊕ denotes feature-dimension concatenation.174

4 Experiments175

4.1 Datasets176

We use a combination of Commonvoice 5.1 (Ardila177

et al., 2020) and Voxforge (www.voxforge.org) for178

MPT. The corpus results in 5,029 hours of train-179

ing data, including 52 languages from different180

language families.181

We enroll three endangered languages which are182

not included in the multilingual corpus for test-183

ing, including Yoloxóchitl Mixtec (YM), Highland184

Puebla Nahuatl (HPN), and Totonac. Though en-185

dangered, YM and HPN have around 100 hours186

of transcribed speech in their released version187

(Shi et al., 2021b,a). However, to simulate a low-188

resource scenario, we randomly select 5,000 utter-189

ances (around 10 hours) from the official training190

sets, but used the same validation and test sets, as191

introduced in (Shi et al., 2021b,a). Totonac is an-192

other EL, spoken in the northern sierras of Puebla193

and adjacent areas of Veracruz. In this work, we re-194

lease a public available version of Totonac speech195

resources. The corpus includes 10 hours of speech196

(86 long recordings) with fine-grained transcription.197

We randomly select 70 recordings as the training198

set, 8 for validation, and 8 for testing.199

In addition to the three endangered languages200

mentioned above, we perform experiments on Ara-201

bic (AR) and Tamil (TA) corpora from Common-202

voice to assert the robustness of our proposed meth-203

ods in an in-domain low resource scenario. Both204

Arabic and Tamil have 20 hours of speech.205

4.2 Experimental Setups206

Baseline (A): For all the languages, our base-207

line (namely Exp A in later sections) adopts the208

same transformer-based encoder-decoder architec-209

ture with CTC/Attention hybrid training (Kim et al.,210

2017). The front-end in Exp A extracts FBank fea- 211

tures at a frame length of 20ms and a frameshift 212

of 8ms. The extracted FBank features are firstly 213

subsampled with a convolutional block and then 214

fed into the encoder-decoder. The encoder contains 215

12-layer self-attention blocks with 4-head atten- 216

tion and 512-dimensional hidden sizes. While the 217

decoder has 6 cross-attention transformer blocks. 218

Specaugmentation (Park et al., 2019) and speed per- 219

turbation are employed for data augmentation. For 220

training, we use Adam optimizer and Noam sched- 221

uler with a 1.0 learning rate at peak. The warm-up 222

step is set to 4,000, considering the low-resource 223

scenario. All the parameters are initialized with 224

Xavier uniform distribution (Glorot and Bengio, 225

2010). The ASR model is trained on byte-pair- 226

encoding (BPE) units of 250. The same architec- 227

ture and training configuration are aligned for the 228

following experiments. 229

Multilingual Pre-training (B): MPT is per- 230

formed on a large-scale corpus introduced in 231

Sec 4.1. We follow the same pre-training strat- 232

egy as (Hou et al., 2020). For each utterance, the 233

model needs to generate a language ID token prior 234

to ASR transcription. To keep a necessary cover- 235

age for transcribing all 52 languages, we set a BPE 236

size of 7,000. Large batch size is applied here in or- 237

der to stabilize the multilingual training. After the 238

pre-training, Exp B is conducted with parameter 239

initialization from the pre-trained model. 240

Self-supervised Representation (C): In our ex- 241

periments, we employ HuBERT as the front-end.2 242

To fully explore the potential of HuBERT, we se- 243

lect the HuBERT-large model pre-trained over 60k 244

hours of LibriLight (Kahn et al., 2020; Ott et al., 245

2019). The SSLR wrapper provided in (Yang et al., 246

2021) is applied to extract high-dimensional fea- 247

tures with 20ms frameshift. In Exp C, the model 248

directly applies HuBERT representation for train- 249

ing, which is the same approach as in (Chang et al., 250

2021). As for ablation purposes, we also conduct 251

experiments on only SSLRs front-end with the ini- 252

tialization from the MPT model. We name these 253

experiments as Exp C’ in the next section. 254

Joint-system (D&E): The joint-system incorpo- 255

rates both FBank and SSLR in model front-end. 256

According to our settings, the resolution ratio be- 257

2We also conduct experiments on Wav2vec2 and
Wav2vec2-XLSR (Conneau et al., 2019; Baevski et al., 2020).
However, the performances are not stable for ASR training.
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Front-end ASR CER/WER

Exp FBank SSLR Align MPT Totonac YM HPN AR TA Avg.

A ✓ ✗ - ✗ 17.3/50.6 26.2/50.8 51.5/77.6 15.4/29.2 6.1/19.0 23.3/45.4
B ✓ ✗ - ✓ 17.9/50.3 24.8/47.5 34.4/64.6 12.9/26.7 8.2/24.0 19.6/42.6
C ✗ ✓ - ✗ 17.1/48.3 38.8/61.2 29.4/58.3 15.1/29.2 6.2/19.7 21.3/43.3

D ✓ ✓ ✓ ✗ 14.6/46.7 19.1/42.6 23.1/52.4 8.4/22.4 6.1/24.5 14.3/37.7
E ✓ ✓ ✓ ✓ 14.4/45.6 20.0/40.0 25.1/52.1 9.2/20.2 5.9/19.4 14.9/35.5

Table 1: Results comparing our proposed fused front-end models (D, E) with various single front-end baselines (A,
B, C) for 5 low-resourced or endangered languages, as measured by Character (CER) and Word (WER) Error Rates.

Exp Front-End MPT CER WER

A FBANK ✗ 17.3 50.6
B FBANK ✓ 17.9 50.3

∆ (A→B) - - -0.6 +0.3

C HUBERT ✗ 17.1 48.3
C’ HUBERT ✓ 20.9 58.4

∆ (C→C’) - - +3.8 +10.1

Table 2: Ablation study comparing improve-
ment/degradation on Totonac when incorporating
FBank-based MPT with FBank-based fine-tuning
(∆(A → B)) vs. incorporating FBank-based MPT with
HuBERT-based fine-tuning (∆(C → C’)).

Exp Fusion type CER WER

D Linear 14.6 46.7
D1 Repeat 15.8 48.2
D2 RNN 65.1 86.9
D3 Convolution 16.1 50.8
D4 Attention 17.8 52.4

Table 3: Ablation study comparing performance on To-
tonac of several fusion types (D1-4) with our proposed
linear fusion model without ASR pre-training (D).

tween FBank and HuBERT feature is 5:2. As dis-258

cussed in Sec 3.1, we apply transformations to both259

features and then reshape them into the same time260

resolution. The linear layer contains 400 units in261

our experiments. The model then consumes the262

concatenation of both HuBERT and FBank fea-263

tures as inputs. We name the experiments with the264

fusion block as Exp D. We refer to the experiments265

as Exp E if it is initialized with the MPT model. We266

default to using the linear fusion block. But, to in-267

vestigate other potential methods for feature fusion,268

we conduct ablation studies (i.e., Exp D1-D4) over269

four other approaches, including simple repeating,270

convolution, recurrent, and attention-based fusion.271

4.3 Results and Discussion272

Table 1 provides results of our main experiments273

over the five low resource languages introduced in274

Sec 4.1. Our proposed model (Exp E) reaches the275

best performances, which improves 8.4% absolute276

average CER and 9.9% absolute average WER than 277

the baseline in Exp A. Besides, Exp B with MPT 278

model leads to notable improvements over the base- 279

line for some languages such as HPN, even though 280

HPN was not in the set of languages used by the 281

multilingual pre-training model. SSLR could also 282

benefit some languages (e.g., Totonac) as indicated 283

from Exp C. According to Exp D, the proposed fu- 284

sion module demonstrates better performances for 285

most languages, and also reaches the best average 286

CER across the five languages. 287

Table 2 shows ablation study of Exp C’ where 288

we only use SSLR features with initialization from 289

the MPT model originally built upon FBanks. Exp 290

C’ is degraded compared to Exp A, B, and C, sug- 291

gesting incompatibility between SSLR and MPT 292

model as the latter is trained on FBank features. 293

Table 3 provides results for Exp D, which con- 294

sider the various fusion strategies discussed in 295

Sec 3.1. It shows that linear fusion outperforms 296

simple repeat method (i.e., Exp D1). Recurrent, 297

convolution and attention-based networks strate- 298

gies are also less effective than the linear approach 299

in our context. 300

5 Conclusion 301

In this work, we suggest that self-supervised learn- 302

ing and supervised pre-training can jointly improve 303

the ASR performances in low-resource scenarios. 304

We propose a framework to align features with dif- 305

ferent time-domain resolutions and demonstrate the 306

effectiveness of fusing various front-ends features. 307

We also release a Totonac ASR corpus, serving for 308

the purpose of endangered language documenta- 309

tion, and we show that our reproducible methods 310

enable to get very good results in very low resource 311

scenarios. In future works, we will investigate (1) 312

multilingual pre-training with fused SSLR features; 313

(2) zero-shot learning, especially for EL documen- 314

tation purposes. 315
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Jindřich Libovický and Jindřich Helcl. 2017. Atten-442
tion strategies for multi-source sequence-to-sequence443
learning. In Proceedings of the 55th Annual Meeting444
of the Association for Computational Linguistics (Vol-445
ume 2: Short Papers), pages 196–202, Vancouver,446
Canada. Association for Computational Linguistics.447

Andy T Liu, Shang-Wen Li, and Hung-yi Lee. 2021.448
Tera: Self-supervised learning of transformer en-449
coder representation for speech. IEEE/ACM Trans-450
actions on Audio, Speech, and Language Processing,451
29:2351–2366.452

Christoph Lüscher, Eugen Beck, Kazuki Irie, Markus453
Kitza, Wilfried Michel, Albert Zeyer, Ralf Schlüter,454
and Hermann Ney. 2019. Rwth asr systems for lib-455
rispeech: Hybrid vs attention. Interspeech 2019.456

Krishna D. N, Pinyi Wang, and Bruno Bozza. 2021. Us-457
ing Large Self-Supervised Models for Low-Resource458
Speech Recognition. In Proc. Interspeech 2021,459
pages 2436–2440.460

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan,461
Sam Gross, Nathan Ng, David Grangier, and Michael462
Auli. 2019. fairseq: A fast, extensible toolkit for463
sequence modeling. In Proceedings of the 2019 Con-464
ference of the North American Chapter of the Associa-465
tion for Computational Linguistics (Demonstrations),466
pages 48–53.467

Daniel S. Park, William Chan, Yu Zhang, Chung-Cheng468
Chiu, Barret Zoph, Ekin D. Cubuk, and Quoc V. Le.469
2019. SpecAugment: A Simple Data Augmentation470
Method for Automatic Speech Recognition. In Proc.471
Interspeech 2019, pages 2613–2617.472

Ngoc-Quan Pham, Thai-Son Nguyen, Jan Niehues,473
Markus Müller, and Alex Waibel. 2019. Very deep474
self-attention networks for end-to-end speech recog-475
nition. Proceedings of Interspeech 2019, pages 66–476
70.477

Vineel Pratap, Anuroop Sriram, Paden Tomasello, Awni478
Hannun, Vitaliy Liptchinsky, Gabriel Synnaeve, and479
Ronan Collobert. 2020. Massively Multilingual ASR:480
50 Languages, 1 Model, 1 Billion Parameters. In481
Proc. Interspeech 2020, pages 4751–4755.482

Jiatong Shi, Jonathan D. Amith, Rey Castillo García, 483
Esteban Guadalupe Sierra, Kevin Duh, and Shinji 484
Watanabe. 2021a. Leveraging end-to-end ASR for 485
endangered language documentation: An empirical 486
study on yolóxochitl Mixtec. In Proceedings of the 487
16th Conference of the European Chapter of the Asso- 488
ciation for Computational Linguistics: Main Volume, 489
Online. Association for Computational Linguistics. 490

Jiatong Shi, Jonathan D Amith, Xuankai Chang, Sid- 491
dharth Dalmia, Brian Yan, and Shinji Watanabe. 492
2021b. Highland puebla nahuatl speech translation 493
corpus for endangered language documentation. In 494
Proceedings of the First Workshop on Natural Lan- 495
guage Processing for Indigenous Languages of the 496
Americas, pages 53–63. 497

Shubham Toshniwal, Tara N Sainath, Ron J Weiss, 498
Bo Li, Pedro Moreno, Eugene Weinstein, and Kan- 499
ishka Rao. 2018. Multilingual speech recognition 500
with a single end-to-end model. In 2018 IEEE inter- 501
national conference on acoustics, speech and signal 502
processing (ICASSP), pages 4904–4908. IEEE. 503

Shinji Watanabe, Takaaki Hori, and John R Hershey. 504
2017. Language independent end-to-end architecture 505
for joint language identification and speech recogni- 506
tion. In 2017 IEEE Automatic Speech Recognition 507
and Understanding Workshop (ASRU), pages 265– 508
271. IEEE. 509

Anne Wu, Changhan Wang, Juan Pino, and Jiatao Gu. 510
2020. Self-Supervised Representations Improve End- 511
to-End Speech Translation. In Proc. Interspeech 512
2020, pages 1491–1495. 513

Qiantong Xu, Alexei Baevski, and Michael Auli. 2021. 514
Simple and effective zero-shot cross-lingual phoneme 515
recognition. 516

Brian Yan, Siddharth Dalmia, David R. Mortensen, 517
Florian Metze, and Shinji Watanabe. 2021. Dif- 518
ferentiable allophone graphs for language-universal 519
speech recognition. Proc. Interspeech 2021. 520

Shu-wen Yang, Po-Han Chi, Yung-Sung Chuang, 521
Cheng-I Jeff Lai, Kushal Lakhotia, Yist Y. Lin, 522
Andy T. Liu, Jiatong Shi, Xuankai Chang, Guan-Ting 523
Lin, Tzu-Hsien Huang, Wei-Cheng Tseng, Ko tik 524
Lee, Da-Rong Liu, Zili Huang, Shuyan Dong, Shang- 525
Wen Li, Shinji Watanabe, Abdelrahman Mohamed, 526
and Hung yi Lee. 2021. SUPERB: Speech Process- 527
ing Universal PERformance Benchmark. In Proc. 528
Interspeech 2021, pages 1194–1198. 529

Cheng Yi, Jianzhong Wang, Ning Cheng, Shiyu Zhou, 530
and Bo Xu. 2020. Applying wav2vec2. 0 to speech 531
recognition in various low-resource languages. arXiv 532
preprint arXiv:2012.12121. 533

Alexander Zahrer, Andrej Zgank, and Barbara Schup- 534
pler. 2020. Towards building an automatic transcrip- 535
tion system for language documentation: Experi- 536
ences from muyu. In Proceedings of The 12th Lan- 537
guage Resources and Evaluation Conference, pages 538
2893–2900. 539

6

http://arxiv.org/abs/2002.11800
http://arxiv.org/abs/2002.11800
http://arxiv.org/abs/2002.11800
https://doi.org/10.18653/v1/P17-2031
https://doi.org/10.18653/v1/P17-2031
https://doi.org/10.18653/v1/P17-2031
https://doi.org/10.18653/v1/P17-2031
https://doi.org/10.18653/v1/P17-2031
https://doi.org/10.21437/interspeech.2019-1780
https://doi.org/10.21437/interspeech.2019-1780
https://doi.org/10.21437/interspeech.2019-1780
https://doi.org/10.21437/Interspeech.2021-631
https://doi.org/10.21437/Interspeech.2021-631
https://doi.org/10.21437/Interspeech.2021-631
https://doi.org/10.21437/Interspeech.2021-631
https://doi.org/10.21437/Interspeech.2021-631
https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.21437/Interspeech.2019-2680
https://doi.org/10.21437/Interspeech.2020-2831
https://doi.org/10.21437/Interspeech.2020-2831
https://doi.org/10.21437/Interspeech.2020-2831
https://aclanthology.org/2021.eacl-main.96
https://aclanthology.org/2021.eacl-main.96
https://aclanthology.org/2021.eacl-main.96
https://aclanthology.org/2021.eacl-main.96
https://aclanthology.org/2021.eacl-main.96
https://doi.org/10.21437/Interspeech.2020-3094
https://doi.org/10.21437/Interspeech.2020-3094
https://doi.org/10.21437/Interspeech.2020-3094
http://arxiv.org/abs/2109.11680
http://arxiv.org/abs/2109.11680
http://arxiv.org/abs/2109.11680
https://doi.org/10.21437/Interspeech.2021-1775
https://doi.org/10.21437/Interspeech.2021-1775
https://doi.org/10.21437/Interspeech.2021-1775


Qifeng Zhu, Barry Chen, Nelson Morgan, and An-540
dreas Stolcke. 2004. On using mlp features in lvcsr.541
In Eighth International Conference on Spoken Lan-542
guage Processing.543

7


