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ABSTRACT

Recent studies reveal that even highly biased dense networks can

contain an invariant substructure with superior out-of-distribution

(OOD) generalization. While existing works commonly seek these

substructures using global sparsity constraints, the uniform im-

position of sparse penalties across samples with diverse levels of

spurious contents renders such methods suboptimal. The precise

adaptation of model sparsity, specifically tailored for spurious fea-

tures, remains a significant challenge. Motivated by the insight

that in-distribution (ID) data containing spurious features may ex-

hibit lower experiential risk, we propose a novel Spurious Feature-

targeted Pruning framework, dubbed SFP, to induce the authentic

invariant substructures without referring to the above concerns.

Specifically, SFP distinguishes spurious features within ID instances

during training by a theoretically validated threshold. It then pe-

nalizes the corresponding feature projections onto the model space,

steering the optimization towards subspaces spanned by those

invariant factors. Moreover, we also conduct detailed theoretical

analysis to provide a rationality guarantee and a proof framework

for OOD structures based on model sparsity. Experiments on var-

ious OOD datasets show that SFP can significantly outperform

both structure-based and non-structure-based OOD generalization

state-of-the-art (SOTA) methods by large margins.

KEYWORDS

Out-of-distribution Generalization, Model Pruning, Deep Neural

Network, Module Detection
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1 INTRODUCTION

Deep neural networks trained with empirical risk minimization

(ERM) [33] learn correlated features thoroughly to achieve supe-

rior accuracies. However, when confronted with fickle real-world

data distributions, even a slight shift renders most applications

vulnerable due to the idealistic assumption that the data are identi-

cally and independently distributed (IID). There are several reasons

for this failure: firstly, if data are generated from a fully observed
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causal Bayesian network (CBN), ERM would learn all features in

the Markov blanket, even those not causally related [4, 5, 41]. Sec-

ondly, substantial works have demonstrated that ERM’s prediction

tends to exploit spurious correlations or shortcuts that are prone

to change in real-world distributions [8, 9, 26]. Hence, essentially

understanding and restraining the learning of spurious correlations

is crucial.

Out-of-distribution generalization, which focuses on learning

causally correlated features that remain invariant across different

domains, has received significant attention. Most recently, a line of

work set out to improve OOD generalization from the perspective

of model structure. Can models with particular structures avoid

neural networks being biased towards spurious correlation in out-

of-distribution (OOD) generalization [41]? Most works provide a

positive answer. For example, Sagawa et al. [32] provides suffi-

cient and intuitive motivation for this branch, claiming that over-

parameterized models could degrade OOD performance through

data memorization and overfitting. Zhang et al. [41] have a sim-

ilar conclusion. They articulate and demonstrate the functional

lottery ticket hypothesis: full network contains a subnetwork that

can achieve better OOD performance. Compared to typical causal

representation learning, structural approaches have extra benefits

of universality and efficiency. Most works can be embedded in non-

structural SOTAs to generate slimmed networks with better OOD

performance.

Despite substantial advancements, existing structural methods

are predominantly designed empirically and lack theoretical inter-

pretability. It has been observed that these approaches typically use

established techniques in a rudimentary manner without specific

refinements to unearth OOD lottery tickets, including network ar-

chitecture search, module detection, and model pruning. This may

fail to pinpoint the optimal OOD structure due to the imposition of

global sparsity constraints. More precisely, many studies enforce

equal parameter penalties for learning across diverse features. As

an illustration, Sagawa et al. [41] explicitly state that the sparsity of
structures does not exactly correspond to the sparsity of spurious

features in their method. Except for improper optimization objec-

tives, the majority of these approaches rely on the guidance of fully

exposed OOD datasets, which is essentially infeasible in real-world

applications.

To address these issues, we propose a novel Spurious Feature-

targeted network Pruning method, dubbed SFP, to explore the

optimal OOD substructures. The key idea is to selectively impose

optimization constraints to prevent the leakage of spurious fea-

tures into the learned patterns. Specifically, SFP employs meticu-

lously derived thresholds from training dynamics, enabling it to

discern biased samples entangled with spurious correlations dur-

ing the training phase. Following this discernment, SFP seamlessly

incorporates the feature projection onto the model space as a regu-

larization term, effectively reining in the model’s alignment with
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specific feature directions. Extensive experiments conducted on

various datasets have demonstrated that the proposed SFP achieves

superior performance than most of the state-of-the-art methods.

In summary, our contributions can be outlined as follows:

• We propose a theoretical framework that substantiates the

rationale and effectiveness of improving OOD generaliza-

tion through feature-specific model sparsity. This contribu-

tion serves to address the deficiency of theoretical guidance

present in prior research within this domain.

• We propose a novel spurious feature-targeted model prun-

ing to explore OOD substructures, totally without prior

causal assumptions or full exposure of out-domain data.

• To our knowledge, we are the first to theoretically unveil the

adjustable correspondence between data features andmodel

substructures within OOD settings, as well as leverage it to

enhance the generalization performance.

2 RELATEDWORK

Out-of-Distribution Generalization. Existing research on OOD

generalization can be roughly divided into two categories, includ-

ing non-structure-based methods and structure-based methods.

Specifically, the non-structure-based methods focus on the feature

level and usually limit models over learning on spurious features

by designing heuristic learning paradigms or separating different

features in high dimensions. For example, Arjovsky et al. [2] aims

to extract nonlinear invariant predictive features across multiple

environments. IIB [18] performs invariant feature prediction by

limiting the mutual information between the learned representation

and the ground truth. While effective, unstructured methods yield

only partial benefits from representation learning, resulting in an

over-parametric final model that may compromise generalization

performance. Differently, the structure-based methods investigate

the impact of different modules on OOD generalization. Early work

can be traced back to [29], which affirms that models with specific

structures under linear conditions can avoid false correlations in

OOD generalization. Most recently, Zhang et al. [41] proposes the
functional lottery hypothesis, which further confirms the improve-

ment of model structure on OOD generalization performance under

OOD setting and nonlinear condition. Moreover, this positive im-

pact can be superimposed on most previous non-structure-based

methods. However, these methods directly utilize model compression
algorithms while ignoring the relationship between data features and
model structures, potentially leading to suboptimal results.
Model Pruning. A series of network pruning methods have been

proposed to eliminate unnecessaryweights from over-parameterized

networks. Early research [17] usually tries to remove weight pa-

rameters based on the Hessian matrix of the objective function.

Similarly, Han et al. [11] proposes to remove the weights or nodes

with small-norm from DNNs. However, these kinds of unstructured

pruning (i.e., discrete weights or nodes) can hardly reduce reason-

ing time without specialized hardware [38]. Therefore, structured

pruning [20, 38], i.e., channels/filters, is more applicable and be-

comes mainstream. For example, He et al. [12] resets less important

filters at every epoch while updating all other filters. Zhao et al. [43]
uses stochastic variational inference to remove the channels with

smaller mean/variance. Despite all that, previous methods essentially

follow the traditional empirical risk-guided model pruning paradigm;
thus, the obtained feature-untargeted sparse model is suboptimal for
OOD generalization.

3 PROPOSED METHOD

We start by formalizing the model structure-based OOD problem

in a complete inner product space and then provide a theoretical

analysis to investigate the impact of ID data and out-domain data

on model performance. Based on this framework, we elaborate on

the optimization objective of SFP and theoretically demonstrate its

effectiveness.

3.1 Notations and Preliminaries

3.1.1 Linear Parameterized Notations. Let 𝑋𝑖𝑑 ∈ R𝑝×𝑑 and 𝑋𝑜𝑜𝑑 ∈
R𝑞×𝑑 be the in-domain and out-domain datasets, respectively, where

𝑝 and 𝑞 denote the numbers of data instances, and 𝑑 is the feature

dimension. Consequently, the entire training dataset can be rep-

resented as 𝑋 = 𝑋𝑖𝑑 ∪ 𝑋𝑜𝑜𝑑 , where 𝑋 ∈ R𝑛×𝑑 with 𝑛 = 𝑝 + 𝑞.

The corresponding ground truth of the feature projection is rep-

resented by 𝑌 . Additionally, let 𝑝𝑖 and 𝑝𝑜 signify the proportions

of instances with and without spurious features in the training

set, respectively, such that 𝑝𝑖 + 𝑝𝑜 = 1. To rigorously elucidate

our analysis and proofs, we align with the theoretical framework

established by previous works [6, 16, 37]. Specifically, they consider

a linear format for the feature extractor and define logits as the

projection length of input onto a specific subspace. Based on the

“implicit regularization effect of initialization [28]” and the “deep

multi-layer homogeneity [7]”, this non-convex optimization prob-

lem is approximated by reasoning about the trajectory of gradient

methods starting from the initialization. Under such circumstances,

we employ W ∈ R𝑚×𝑑
as the parameters for the feature extractor,

where𝑚 denotes the dimension of logits. To formulate the learnable

networks, we define 𝑅 = 𝑪 (W⊤), 𝑆 = 𝑪 (𝑋⊤
𝑖𝑑
), and 𝑈 = 𝑪 (𝑋⊤

𝑜𝑜𝑑
)

as the subspaces spanned by the row vectors of the parameterized

network, in-domain data, and out-domain data, respectively. Ad-

ditionally, let 𝐸 ∈ R𝑑×dim(𝑅)
, 𝐹 ∈ R𝑑×dim(𝑆 )

, and 𝐺 ∈ R𝑑×dim(𝑈 )

serve as the orthogonal bases for 𝑅, 𝑆 , and 𝑈 , respectively. Conse-

quently, the algebraic representation of the model and domains can

be reformulated linearly as spanning spaces over a set of learnable

basis vectors. In this complete inner product space, the following

proposition can be claimed as follows:

Proposition 3.1. Model substructures and the feature representa-
tions can be effectively corresponded in linear form by the singular
value decomposition (SVD) of the feature projections of data into the
model space.

Discussion (Model): Define 𝐸⊤𝐹 ∈ Rdim(𝑅)×dim(𝑆 )
as the basis of

𝑪 (𝑋𝑖𝑑W⊤) spanning the ID (spurious) feature projections. Simi-

larly, 𝐸⊤𝐺 ∈ Rdim(𝑅)×dim(𝑈 )
is the basis of 𝑪 (𝑋𝑜𝑜𝑑W⊤) spanning

the out-domain feature projections. Since the column of 𝐸 span

𝑅, we have W = 𝐸𝑟 for some 𝑟 ∈ Rdim(𝑅)
. For every ID instance,

the feature projection 𝑟1 = 𝐸⊤𝐹𝑎 is used for some 𝑎 ∈ 𝑪 (𝐸⊤𝐹 ),
where 𝑎 is a column vector of Rdim(𝑆 )

. Similarly, for every out-

domain instance, the feature projection 𝑟2 = 𝐸⊤𝐺𝑏 is used for some

𝑏 ∈ 𝑪 (𝐸⊤𝐺), where 𝑏 is a column vector of Rdim(𝑈 )
. Therefore, the

feature projections of the whole training dataset in the model space

2
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Figure 1: The training pipeline of SFP.

can be defined as 𝑟 = 𝑝𝑖𝑟1 + 𝑝𝑜𝑟2. Assume W∗
is the optimal set

of model parameters, W∗ = 𝐸𝑟∗, where 𝑟∗ = 𝑝𝑖𝐸
⊤𝐹𝑎∗ + 𝑝𝑜𝐸

⊤𝐺𝑏∗,
and 𝑎∗, 𝑏∗ be the true feature projections.
Discussion (Data): In 𝑆 = 𝑪 (𝑋⊤

𝑖𝑑
) with basis 𝐹 spanning 𝑋𝑖𝑑 ,

∀ 𝑥𝑖 ∈ 𝑋𝑖𝑑 , ∃ 𝑧 ∈ Rdim(𝑆 )
, 𝑥 = (𝐹𝑧)⊤.𝑋𝑖𝑑 = (𝐹𝑍 )⊤, where 𝑍 = {𝑧}.

Similarly, in 𝑈 = 𝑪 (𝑋⊤
𝑜𝑜𝑑

) with basis 𝐺 , ∀ 𝑥𝑜𝑜𝑑 ∈ 𝑋𝑜𝑜𝑑 , ∃ 𝑣 ∈
Rdim(𝑈 )

, 𝑥𝑜𝑜𝑑 = (𝐺𝑣)⊤. 𝑋𝑜𝑜𝑑 = (𝐺𝑉 )⊤, where 𝑉 = {𝑣}.

3.1.2 Preliminary Optimization Target.

Definition 3.2. Under the OOD setting, applying the same opti-

mization objective to ID data with spurious features and out-domain

data without the same spurious features is called undirected learn-

ing

Definition 3.3. Trained independently from scratch for the same

number of iterations, the substructure within the original model

having the best OOD generalization performance is defined as the

OOD lottery [41].

For the structure-based approach searching the OOD lottery based

on undirected learning, the optimization target can be formulated

as:

min L(W, 𝑋,𝑌 ) = E𝑋 ∥𝑋W − 𝑌 ∥2

2
+ S (W) , (1)

where L is the task-dependent loss function, and S is the func-

tion that induces the sparsity of the model structure to find the tar-

get subnetwork. The domain-generalized substructure is described

by layer-wise channel saliencies in SFP. To this end, S is imple-

mented by the squeeze-and-excitation module as suggested in [13].

The value of relevant parameters in 𝑡-th iteration is represented by

subscript 𝑡 , and the optimal value is represented by superscript ∗.
Thus, the task loss in 𝑡-th iteration can be calculated as:

L𝑡 = ∥𝑋W𝑡 − 𝑌 ∥2

2
=
𝑋W𝑡 − 𝑋W∗2

2
, (2)

and the gradient is:

𝜕L𝑡

𝜕W𝑡
= 2

(
W𝑡 −W∗) 𝑋⊤𝑋 . (3)

The orthogonal basis of the model space is regarded as the left singu-

lar vectors when performing SVD on the feature projections of data.

The right singular vectors correspond to input data features, and the

corresponding singular values can be defined as indicators of the

importance of the current data features w.r.t. the model structure.

To internally observe the impact of ID and out-domain features on

the model, the gradient accumulation is further transformed into a

linear form:

𝜕L𝑡

𝜕W𝑡
= 2(𝑝2

𝑖 (𝑎𝑡 − 𝑎∗ )Σ2

𝐸⊤𝐹,𝑡𝑋𝑖𝑑 + 𝑝2

𝑜 (𝑏𝑡 − 𝑏∗ )Σ2

𝐸⊤𝐺,𝑡
𝑋𝑜𝑜𝑑 ), (4)

where Σ denotes the corresponding singular value matrix, and for

simplicity, we omit 𝑡 under Σ in the following discussion. The proof

of Eq. Equation (4) is provided in Appendix A.1.

Since dim(𝑈 ) = 𝑞 ≪ dim(𝑆) = 𝑝 , we have min Σ𝐹⊤𝐺 =

min Σ𝐺⊤𝐹 = 𝜎
𝑞

𝐺⊤𝐹
. Similarly, min Σ𝐹⊤𝐸 = min Σ𝐸⊤𝐹 = 𝜎𝑚

𝐸⊤𝐹 ,

and min Σ𝐺⊤𝐸 = min Σ𝐸⊤𝐺 = 𝜎𝑚
𝐸⊤𝐺 . Finally, the model parame-

ters can be calculated as:

W∞ = W0 − 2𝑙𝑟

∞∑︁
𝑡=1

𝑚∑︁
𝑖=1

𝑝2

𝑖 (𝑎𝑡 − 𝑎∗)𝜎2

𝐸⊤𝐹,𝑡,𝑖𝑋𝑖𝑑

− 𝑝2

𝑜 (𝑏𝑡 − 𝑏∗)𝜎2

𝐸⊤𝐺,𝑡,𝑖
𝑋𝑜𝑜𝑑 .

(5)

3.1.3 Biased Performance on Out-domain and ID Data. Based on

the gradient flow trajectories, we compare the learning process

and final performance of the model for spurious and invariant

features, respectively. We observe that the model structure obtained

by undirected learning clearly differs in performance between ID

data and out-of-domain data. With this observation, we propose

the following propositions.

Proposition 3.4. Undirected learning (full or sparse training) on
biased data distributions can lead to significantly different forward
speeds of the model learning along different data feature directions,
and the difference has a second-order relationship with the proportion
of different data distributions in the training set, i.e.:���� 𝜕W𝑡

𝜕(𝑎𝑡 − 𝑎∗) −
𝜕W𝑡

𝜕(𝑏𝑡 − 𝑏∗)

���� ≈ 2(𝑝2

𝑖 Σ
2

𝐸⊤𝐹 − 𝑝2

𝑜Σ
2

𝐸⊤𝐺 ). (6)

Discussion (Update Gradient): We compute the direction gra-

dients along the directions of the feature projections of ID and

out-domain data, respectively. As shown in Eq. 6, with 𝑝𝑖 ≥ 𝑝𝑜 in

the context of OOD, the learning of the basis of the model space

is gradually biased towards the directions of spurious features. By

3
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performing SVD on the projection of the basis vector of the fea-

ture space through the model space, the obtained singular value

matrix can be regarded as the fitting degree of the model on the

corresponding data distribution at 𝑡𝑡ℎ iteration.

Proposition 3.5. Undirected learning (full or sparse training) on
biased data distributions causes the model to be more biased towards
training features with a larger proportion, bringing about significant
performance differences in different data distributions, i.e.:

L𝑜𝑜𝑑 − L𝑖𝑑 ≈ (𝑝2

𝑖 − 𝑝2

𝑜 ) (1 − Σ𝐹⊤𝐺 ) + 𝜖 > 0, (7)

where 𝜖 is the difference of initial feature projections between ID and
out-domain data due to model initialization error. The full proof of
Eq. 7 is provided in Appendix A.2 (please download and check).

Taking the risk difference between ID data and out-domain data

of the trained model as the measurement of the OOD generalization,

the following conclusion is derived, i.e.,

Corollary 3.6. Undirected learning of networks on highly biased
training domains (the dataset consists of a majority data group with
spurious features) can only lead to substructures with sub-optimal
OOD generalization performance.

Discussion (Performance Difference): The result intuitively

shows that the undirectly learned model performs better on feature

distributions with larger instance numbers. As shown in Eq. 7, the

difference in model performance between out-domain data and

ID data is linearly related to the proportion of the corresponding

instances and the correlation degree between the different feature

distributions. Moreover, when the out-domain data has the same

proportion as ID data in the training dataset (i.e., 𝑝𝑖 = 𝑝𝑜 ) or the

data distributions of them are consistent, the task loss difference

between out-domain and ID data can be reduced to zero.

3.2 SFP: An Spurious Feature-Targeted Model

Pruning Method

To address the problem of sub-optimal OOD substructure caused

by undirected training, we propose a novel method to effectively

remove model branches that are only strongly correlated with spuri-

ous features. As demonstrated in Fig. 1, the pipeline consists of two

stages, including spurious feature identification and model sparse

training. Specifically, SFP identifies large spurious feature compo-

nents within ID instances with high probability by observing the

loss during training. It then can perform spurious feature-targeted

model sparsity by analyzing the SVD of the feature projection ma-

trix between the data and model space. We also provide a detailed

theoretical analysis of both stages of the proposed SFP in the fol-

lowing part.

3.2.1 Spurious Feature Identification. As shown in Proposition.3.5,

if no intervention is applied, a model trained on a highly biased data

distribution can be gradually biased towards ID data with lower

prediction loss. Since the loss difference between ID and out-domain

data can be approximately computed by (𝑝2

𝑖
− 𝑝2

𝑜 ) (1 − 𝜎𝐹⊤𝐺 ), it is,
therefore, can be adopted as the identification criterion for spurious

features in each iteration. In brief, if the loss corresponding to the

current data is lower than a threshold Δ, then the current data is

likely to be an ID instance dominated by spurious features. Then

Figure 2: Identification of the ID instances dominated by spu-

rious features. At epoch t, if no intervention is applied, the

average loss drop on all data (blue b) should be smaller than

that on ID data (blue a) and larger than that on out-domain

data (blue b). The red line denotes an ideal regularization

effect: the loss drops uniformly on all data.

we can further prune the spanning sets of model space along the

directions of these spurious feature projections. To compute Δ, we
first investigate the average loss in the 𝑡 − 1-th iteration as:

¯L𝑡−1 ≈ L𝑡−1

𝑖𝑑
+ 𝑝𝑜 (𝑝𝑖 − 𝑝𝑜 ) (1 − 𝜎𝑡−1

𝐹⊤𝐺 ) . (8)

As shown in Fig. 2, since L𝑡
𝑖𝑑

< L𝑡−1

𝑖𝑑
, we have:

supL𝑡
𝑖𝑑

= | ¯L𝑡−1 − 𝑝𝑜 (𝑝𝑖 − 𝑝𝑜 ) (1 − 𝜎𝑡−1

𝐹⊤𝐺 ) |. (9)

Similar with Eq. 8, the lower bound of the loss on ID data at 𝑡-th

iteration can be computed as:

inf L𝑡
𝑖𝑑

= | ¯L𝑡 − 𝑝𝑜 (𝑝𝑖 − 𝑝𝑜 ) (1 − 𝜎𝑡𝐹⊤𝐺 ) |. (10)

The spurious feature-targeted regularization forces the model to

learn invariant features and achieve fair loss reduction on all in-

stances: |L𝑡
𝑖𝑑

− L𝑡−1

𝑖𝑑
| = | ¯L𝑡 − ¯L𝑡−1 |. Therefore, the ideal lower

bound of the ID loss at 𝑡-th iteration is:

inf L𝑡
𝑖𝑑

= | ¯L𝑡−1 − 𝑝𝑜 (𝑝𝑖 − 𝑝𝑜 ) (1 − 𝜎𝑡−1

𝐹⊤𝐺 ) |

− | ¯L𝑡 − ¯L𝑡−1 |.
(11)

Thus, L𝑡
𝑖𝑑

is highly likely to be located in the range of [min inf L𝑡
𝑖𝑑
,

supL𝑡
𝑖𝑑
]. The upper bound is used to compute Δ for identifying

instances dominated by spurious features.

3.2.2 Spurious Feature-Targeted Pruning. SFP reacts to spurious

feature-related instances by weakening their corresponding spu-

rious feature projections into the model space, which can prevent

the model from over-fitting on identified spurious features. To an-

alyze the projections from data into the model space, we define

Ξ ∈ R𝑚×𝑚
, Λ ∈ R𝑝×𝑝 , and Γ ∈ R𝑞×𝑞 as the normalized orthogo-

nal basis of 𝑪 (𝐸⊤𝐸), 𝑪 (𝐸⊤𝐹 ), and 𝑪 (𝐸⊤𝐺), spanning the optimal

model projections, the feature projections of ID data into the model

space, and the feature projections of out-domain data into the model

space, respectively. 𝜉𝑖 , 𝜆𝑖 , and 𝛾𝑖 denote the 𝑖-th column vectors

in Ξ, Λ, and Γ, respectively. The following lemma illustrates the

effectiveness of SFP, and its proof can be found in Appendix A.3.
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Lemma 3.7. Spurious feature-targeted model sparsity can effectively
reduce the performance deviation of the learned model between in-
domain data and out-domain data:���� R(𝑋𝑜𝑜𝑑 ) − R(𝑋𝑖𝑑 )

R(𝑋𝑜𝑜𝑑 )𝑠𝑝𝑎𝑟𝑠𝑒 − R(𝑋𝑖𝑑 )𝑠𝑝𝑎𝑟𝑠𝑒

����
≈
�����
∑𝑚

𝑗=1
𝑝𝑜𝜎 𝑗 𝜉 𝑗𝛾 𝑗𝑋𝑜𝑜𝑑 −∑𝑚

𝑖=1
𝑝𝑖𝜎𝑖𝜉𝑖𝜆𝑖𝑋𝑖𝑑∑𝑚

𝑗=1
𝑝𝑜𝜎 𝑗 𝜉 𝑗𝛾 𝑗𝑋𝑜𝑜𝑑 −∑𝜗

𝑖=1
𝑝𝑖𝜎𝑖𝜉𝑖𝜆𝑖𝑋𝑖𝑑

����� ≥ 1,

(12)

where R(·) is the empirical risk function. 𝜎𝑖 and �̃�𝑖 is the 𝑖-th maxi-
mum in Σ𝐸⊤𝐹 and Σ𝐸⊤𝐺 , and we have 𝜎 > 0 since the singular values
are non-negative.𝑚 and 𝜗 are the rank of the singular value matrix
after performing compact SVD and truncated SVD on the projections,
respectively.

Proof of Lemma.3.7. Asmentioned earlier, the projection space

before the model sparsity can be represented as:

𝐸𝑟 =

𝑚∑︁
𝑖=1

(
𝑝𝑖𝜎𝑖𝜉𝑖𝜆

⊤
𝑖 + 𝑝𝑜𝜎𝑖𝜉𝑖𝛾

⊤
𝑖

)
. (13)

Specifically, SFP first performs SVD on the feature projections,

which maps input data to a set of coordinates based on the orthog-

onal basis of model space. The matrices of left and right singular

vectors correspond to the standard orthogonal basis of the model

space and data space, respectively. The matrix of singular values

corresponds to the direction weight of the action vectors in the

projection matrix. SFP prunes the model by trimming the smallest

singular values in Σ as well as their corresponding left and right

singular vectors. In this way, SFP can remove the spurious features

in ID data space and substructures in the model space simultane-

ously in a spurious feature-targeted manner along the directions

with weaker actions for projection. Then, the projection space with

only the most important 𝜗 singular values can be formalized as:

𝐸𝑟𝑠𝑝𝑎𝑟𝑠𝑒 = 𝑝𝑖ΞΣ𝐸⊤𝐹Λ
−1 + 𝑝𝑜𝜉Σ𝐸⊤𝐺Γ−1

=

𝜗∑︁
𝑖=1

𝑝𝑖𝜎𝑖𝜉𝑖𝜆
⊤
𝑖 +

𝑚∑︁
𝑗=1

𝑝𝑜𝜎 𝑗 𝜉 𝑗𝛾
⊤
𝑗 .

(14)

Based on the representation of the projection spaces, the model

response to data features R(𝑋 ) = 𝐸𝑟𝑋 can be calculated as:

R(𝑋 ) =
{
𝑝𝑖ΞΣ𝐸⊤𝐹Λ

−1 + 𝑝𝑜𝜉Σ𝐸⊤𝐺Γ−1
}⊤

𝑋⊤

=

𝑚∑︁
𝑖=1

{
𝑝𝑖𝜎𝑖𝜉𝑖𝜆

⊤
𝑖 𝑋

⊤ + 𝑝𝑜𝜎𝑖𝜉𝑖𝛾
⊤
𝑖 𝑋

⊤} . (15)

□

3.3 Correspondence between Model

Substructure and Spurious Features

In this section, we theoretically demonstrate that, with a reasonable

setting of the sparse penalty for ID data, SFP can effectively reduce

the overfitting of the model on spurious features while retaining

the learning on invariant features. Specifically, we define 𝑓 𝑙 (𝑥) as
the feature maps output of 𝑥 at layer 𝑙 . It represents the projection

of 𝑥 onto the model space defined over the spanning set 𝐸 to be

learned. We abbreviate the final probabilities as 𝑓 (𝑥) for simplifica-

tion. Referring to Sec. 3.2.1, we have 𝑥 ∈ 𝑋𝑖𝑑 if L𝑐𝑒 (𝑥) ≤ Δ. Thus,

the optimization target of SFP can be formulated as:

min

𝐸
E𝑥∼𝑋L𝑐𝑒 (𝑥,W) + 𝜂

𝐿∑︁
𝑙=1

E𝑥∼𝑋𝑖𝑑
| |𝑓 𝑙 (𝑥) | |1, (16)

where 𝜂 is the sparsity factor imposed on the feature projections

for the identified ID data. Lemma 3.8 elucidates the setting of 𝜂. For

a detailed proof, please refer to Appendix A.4.

Lemma 3.8. Define 𝑒 = |𝑓 ∗ (𝑥) − 𝑓 (𝑥) | as the 𝑙1-norm between the
groudtruth 𝑓 ∗ (𝑥) and 𝑓 (𝑥). When 𝜂 < 2𝑒 , SFP can effectively reduce
the learning of the model towards spurious features while keeping the
performance on the other features.

Proof of Lemma.3.8: The prediction errors of feature projec-

tions 𝐿𝑓 can be defined as:

𝐿𝑓 = |𝑓 ∗ (𝑥) − 𝑓(𝑥) |2

=
∑︁

𝑖, 𝑗=𝑗1∪𝑗2
(𝑓 ∗ (𝑥) − 𝜎𝑖, 𝑗1𝜉𝑖⊤𝜆 𝑗1 − 𝜎𝑖, 𝑗2𝜉𝑖⊤𝛾 𝑗2 )2, (17)

and the corresponding gradient is:

𝜕𝐿𝑓

𝜕𝜎𝑖, 𝑗1𝜉𝑖
=

𝜕𝑒2

𝜕𝜎𝑖, 𝑗 𝜉𝑖
= 2𝑒

𝜕𝑒

𝜕𝜎𝑖, 𝑗 𝜉𝑖

= 2𝑒

��𝑓 ∗ (𝑥) − 𝜎𝑖, 𝑗1𝜉𝑖⊤𝜆 𝑗1 − 𝜎𝑖, 𝑗2𝜉𝑖⊤𝛾 𝑗2 )
��

𝜕𝜎𝑖, 𝑗 𝜉𝑖
= −2𝑒𝜆 𝑗1 ,

(18)

where 𝑖 and 𝑗 are the index of column vectors in the orthogonal basis

formodel space and feature space, respectively. For out-domain data,

the gradient of the column vectors in the OOD projection matrix

interacting with the 𝑗𝑡ℎ feature vector is −2𝑒𝛾 𝑗2 . Then, split the in-

domain features into spurious features 𝐹 ′ and invariant features 𝐼𝑁
and out-domain features into unknown features 𝐺 ′

and invariant

features 𝐼𝑁 . With a high probability under the OOD setting, we

assume 𝐹 ′ and 𝐺 ′
are orthogonal. To achieve the spurious feature-

targeted unlearning and invariant feature-targeted learning of the

model, we need to satisfy the following constraint:

2𝑒𝑝𝑖𝜆𝐼𝑁 + 2𝑒𝑝𝑜𝛾𝐼𝑁 − 𝑝𝑖𝜂𝜆𝐼𝑁 > 2𝑒𝑝𝑜𝛾𝐺 ′

⇒ 𝜂 ≤ 2𝑒𝑝𝑖𝜆𝐼𝑁 + 2𝑒𝑝𝑜𝛾𝐼𝑁 − 2𝑒𝑝𝑜𝛾𝐺 ′

𝑝𝑖𝜆𝐼𝑁
≈ 2𝑒.

(19)

□

Since the de-learning rate of the spurious feature is positively

correlated with 𝜂, the upper bound 𝜂 = 2𝑒 is taken.

4 EXPERIMENTS

In this section, we conducted extensive experiments on the Do-

mainBed benchmarks [10] and other datasets that are widely used

in the latest OOD studies. Due to space constraints, some experi-

mental details are provided in the Appendix B and C.

4.1 Experimental Setting

Datasets and Procedure. The proposed method is initially eval-

uated within the DomainBed framework using four datasets: Col-

oredMNIST (CMNIST), RotatedMNIST (RMNIST), as well as the

multi-domain image classification datasets PACS, OfficeHome,

TerraInc, and DomainNet [10]. To ensure comprehensive bench-

marking, three synthetic datasets — FullColoredMNIST (FCMNIST),
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ColoredObject, and SceneObject — are included, along with two

real-world image datasets, CelebA [24] and WaterBirds [35]. Fig-

ure 1 illustrates the three synthetic datasets not encompassedwithin

the DomainBed, and more details are provided in Appendix C.1.

(a) FCMNIST (b) ColoredObject (c) SceneObject

Figure 3: Visualization of three synthetic OOD datasets.

Model and Implementation. To ensure a robust and equitable

evaluation, the experimental settings in this work are consistent

with the common practice established in antecedent studies. Specif-

ically, for Rotated, Colored, and FCMNIST datasets, we use the

4-layer 3x3 ConvNet architecture as introduced in DomainBed. For

the VLCS and PACS datasets, we utilize the ResNet-18 architecture

as in IIB [18], with the default hyperparameters set in DomainBed.

Additionally, for other larger datasets, we adopt the ResNet-50 ar-

chitecture following the experimental settings outlined by previous

works [30, 31]. All experiments are conducted on a workstation

equipped with 8 Nvidia GTX 3090TI GPUs and a 3.6-GHZ Intel

Core i9-9900KF CPU. The learning rate is initialized at 0.001 for

digit datasets and 0.01 for object datasets. We employ the Adam op-

timizer for optimization in relatively simple image datasets, while

SGD for more complex ones.

4.2 Comparison on DomainBed Benchmark

The experiment results on DomainBed demonstrate the superior

performance of SFP over the state-of-the-art approaches. As shown

in Table 1, SFP achieves the highest average accuracy of 72.8%, out-

performing the benchmarked ERM (which is meticulously tuned

within DomainBed and serves as a robust baseline) by 2.2%. On

Figure 4: Training loss visualization

(a) Bias density (b) Distribution divergence

Figure 5: The probability density of bias between the max

value and the others in predicted distribution.

smaller datasets such as Colored and Rotated MNIST, most meth-

ods exhibit limited effectiveness. In contrast, SFP stands out by

achieving an accuracy improvement of up to 14.0%, highlighting

its robust feature-based recognition and suppression capabilities

against correlation shifts. On larger datasets, SFP maintains satisfac-

tory performance, demonstrating a remarkable accuracy increase

up to 2.9% and 9.4% on VLCS and PACS, respectively. Notably, on

the OfficeHome dataset, SFP boosts the OOD accuracy from 68.6%

to 71.8%. The results also underscore the disadvantages of SOTAS

in effectively addressing the correlation and diversity shifts simul-

taneously. For instance, while the ARMmethod excels in mitigating

correlation shifts on Colored MNIST, it falters when confronted

with diversity shifts in the OfficeHome dataset. Conversely, IIB

performs well in scenarios involving diversity shifts but exhibits

mediocre performance in correlation shift scenarios. Differently,

SFP exhibits superior performance inmost cases, emerging as a lead-

ing approach in the field of OOD generalization. More experimental

details are provided in Appendix C.2.

4.3 Comparison on Other Benchmarks

We also conduct experiments on several widely-used datasets not

included in DomainBed. For synthetic FCMNIST and ColoredObject

datasets, bias coefficients (indicating the extent of data shift) are set

as (0.8, 0.6, 0.0). This implies that the digits in the two training do-

mains are spuriously colored with probabilities of 0.8 and 0.6, while

images in the test domain are randomly colored. For SceneObject

dataset, we set the biased ratios as (0.9, 0.7, 0.0), futher hampering

the model’s capture of invariant features.

We compare SFP with the most comparable MRM, as well as

their combined variants with IRM [2], V-REx [15], and DRO [31],

on three synthetic datasets including FCMNIST, ColoredObject, and

SceneObject. The results are shown in Table 2, demonstrating the

superior performance of SFP under both independent and combined

modes. To be specific, the results show that MRM compromises

the generalization performance of the original algorithm in some

cases. For example, the DRO algorithm independently achieves a

test accuracy of 31.31% on SceneObject. However, when combined

with MRM, the performance drops to 29.38%, while SFP contributes

to an increased accuracy of 31.78%.

We also compare SFP with state-of-the-art SparseIRM [45] on

FCMNIST with two different architectures, i.e., ResNet18 and MLP.
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Table 1: DomainBed benchmark: Performance comparison (Accuracy %) between the proposed SFP method and the state-of-the-

art domain generalization methods. “-” represents the missing data due to partially different settings. “Average” reports the

average accuracy over all the datasets. The best accuracy in each case is in boldface.

Algorithm

CMNIST RMNIST VLCS PACS OfficeHome TerraInc DomainNet

Average

MLP MLP ResNet-18 ResNet-18 ResNet-50 ResNet-50 ResNet-50

ERM [33] 57.8±0.2 97.8±0.1 77.2±0.4 83.0±0.7 66.4±0.5 53.0±0.3 41.3±0.1 70.6

IRM [2] 67.7±1.2 97.5±0.2 76.3±0.6 81.5±0.8 63.0±2.7 50.5±0.7 28.0±5.1 69.0

GroupDRO [31] 61.1±0.9 97.9±0.1 77.9±0.5 83.5±0.2 66.2±0.6 52.4±0.1 33.4±0.3 67.5

Mixup [39] 58.4±0.2 98.0±0.1 77.7±0.6 83.2±0.4 68.0±0.2 54.4±0.3 39.6±0.1 63.3

MLDG [19] 58.2±0.4 97.8±0.1 77.2±0.9 82.9±1.7 66.6±0.3 52.0±0.1 41.6±0.1 68.0

MMD [1] 63.3±1.3 98.0±0.1 77.3±0.5 83.2±0.2 66.2±0.3 52.0±0.4 23.5±9.4 66.2

CDANN [21] 59.5±2.0 97.9±0.0 77.5±0.2 78.8±2.2 65.3±0.5 50.8±0.6 38.5±0.2 66.9

MTL [3] 57.6±0.3 97.9±0.1 76.6±0.5 83.7±0.4 66.5±0.4 52.2±0.4 40.8±0.1 67.9

SagNet [27] 58.2±0.3 97.9±0.0 77.5±0.3 82.3±0.1 67.5±0.2 52.5±0.4 40.8±0.2 68.1

ARM [42] 63.2±0.7 98.1±0.1 76.6±0.5 81.7±0.2 64.8±0.4 51.2±0.5 36.0±0.2 67.4

V-REx [15] 67.0±1.3 97.9±0.1 76.7±1.0 81.3±0.9 65.7±0.3 51.4±0.5 30.1±3.7 67.2

RSC [14] 58.5±0.5 97.6±0.1 77.5±0.5 82.6±0.7 66.5±0.6 52.1±0.2 38.9±0.6 67.7

IIB [18] - - 77.2±1.6 83.9±0.2 68.6±0.1 57.4±0.7 41.5±2.3 -

Fishr [30] 68.8±1.4 97.8 ± 0.1 - - 68.2±0.2 53.6±0.4 41.8±0.2 -

SDL [40] 58.8±2.2 - - 84.8±0.6 63.9±0.1 - - -

SFP 71.6±0.3 98.3±1.4 79.2±0.7 90.7±0.1 71.8±0.1 57.8±0.3 40.0±0.7 72.8

Table 2: OOD generalization performance on FullCol-

oredMNIST, ColoredObject, and SceneObject. “MRM+X” and

“SFP+X” indicate the integration of MRM/SFP in the “X” al-

gorithm. The “Unbiased” row reports the original accuracy

for each dataset without data distribution shifts.

Method FCMNIST ColoredObject SceneObject

ERM 62.2 59.2 27.4

MRM 81.0 60.7 26.7

SFP 84.3 61.01 28.4

IRM 78.0 62.9 36.9

MRM +IRM 89.3 64.5 36.9

SFP+IRM 89.9 65.8 38.1

V-REx 87.8 64.7 36.7

MRM +V-REx 92.2 64.5 36.7

SFP+V-REx 93.4 66.1 37.9

DRO 62.9 66.8 31.3

MRM +DRO 80.5 66.2 29.4

SFP+DRO 85.2 68.4 31.8

UNBIASED 94.0 75.8 45.5

Specifically, SFP outperforms SparseIRM with 3.41% higher test

accuracy on MLP and even 29.12% on ResNet18. An interesting phe-

nomenon is that, on small MLP, SparseIRM exhibits an obvious two-

stage trend, which is consistent with regular non-feature-targeted

model pruning. Differently, SFP consistently shows a stable learn-

ing process and achieves higher performance in both ID (train) and

OOD (test) environments. Due to space constraints, the experimen-

tal details are provided in Appendix C.3.

4.4 Ablation Study

Loss tracking.We visualize and compare loss values between ERM

and our proposed SFP to assess the efficacy of our introduced regu-

larization term. As shown in Fig.4, throughout the training process,

the loss of in-domain (ID) instances consistently remains lower than

that of out-domain instances, validating Proposition 3.5. In ERM,

the rapid convergence of ID instance loss (depicted by red lines)

indicates an excessive focus on biased data, leading to overfitting

spurious features and neglecting invariant features. Conversely, in

SFP, the gap between loss values for ID and out-domain instances

narrows significantly, underscoring the effectiveness of spurious

feature-targeted pruning. What’s more, the optimization of SFP

won’t hinder convergence speed as well as adversely affects the

performance of ID instances.

Prediction confidence. The inherent motivation of SFP origi-

nates from scrutinizing the behavioral disparities between ID sam-

ples and OOD samples under ERM, which is illustrated via two

empirical experiments as follows. We first measure the bias be-

tween the maximum value and other values in the logits vectors

corresponding to different samples, where the maximum typically
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represents the prediction. A large logits discrepancy suggests a

significant divergence between the probability densities of the pre-

dicted class and others, which can be used as a metric for gauging

the prediction confidence. The results, depicted in Fig. 5a, reveal

that ID samples generally exhibit larger logits discrepancies com-

pared to OOD samples, indicating a tendency of the current model

to allocate greater confidence to the predictions of ID samples.

Additionally, we evaluate the 𝑙1-norm between the predicted

and true distributions over different classes to gauge the degree of

the model capturing different features. The results are shown in

Fig. 5b. It’s evident that the distribution loss of ID samples sharply

decreases in the early training stages but gradually slows down

afterward. Conversely, OOD samples initially show a slight increase

in distribution loss, followed by a steep decrease. This early training

behavior suggests that the model initially prioritizes spurious corre-

lations, but as training progresses, SFP mitigates the fit of spurious

correlations while promoting the learning of invariant features. As

a result, the downward trend of distribution loss for ID samples

decelerates, while the trend for OOD samples starts to rise.

Sparsity analysis. Prior structure-based OOD studies usually

utilize human-crafted hyperparameters to find a suitable functional

OOD substructure. In contrast, our method treats the sparsity coef-

ficients (Δ, 𝜂) as dynamic variables that are calculated dynamically

during training, i.e., the proposed SFP intelligently determines the
optimal OOD sparsity and structure based on inherent data attributes.
Specifically, (Δ) gives a sparsity threshold based on inherent statisti-

cal and geometric biases within the data (e.g., Eq. 9-11), and𝜂 adjusts

the penalty strength based on dynamic training feedback (e.g., Eq.

6). To empirically evaluate the sparsity of our model and, at the

same time, provide a quantitative impact of 𝜂 on OOD accuracy, we

conduct experiments on varied offsets to the theoretically computed

𝜂 (2e). Specifically, the offsets are ranged in [-1.0, -0.5, 0.0, 0.5, 1.0].

The results regarding model sparsity and test accuracy are shown in

Fig. 6. The corresponding OOD accuracy are [73.01262%, 79.84853%,

86.30715%, 84.19074%, 76.23703%], and the pruning rates are ranged

in [27.94951%, 45.09116%, 56.70407%, 62.09122%, 74.40112%]. The

results demonstrate that the autonomous acquisition of sparsity

and sparse structures (offset of 0) yields superior OOD performance

than empirical sparse settings.

(a) Model sparsity (b) Test accuracy

Figure 6: The effect of different𝜂 values on themodel sparsity

and accuracy.

Feature visualization. To explore the SFP model’s learned rep-

resentations, we visualize the extracted features using t-distributed

(a) ColoredMnist

(b) FullColoredMnist

Figure 7: The visualization of the features learned by SFP.

stochastic neighbor embedding (t-SNE) for dimensionality reduc-

tion. Experiments are conducted on FullColoredMnist and Col-

oredMnist datasets, tailored for ten-class and binary classification

tasks, respectively. The former integers 0 to 9 are ten classes with

one-to-one associated colors. The latter integers 0 to 4 are labeled

as 0 (red) and integers 5 to 9 as 1 (green). The models are trained on

domain-related samples and tested on domain-unrelated samples

with random colors.

The visualization is shown in Fig. 7, where each data point rep-

resents an image. Notably, the spatial arrangement corresponds to

the reduced shape features. The features cluster into two groups

for ColoredMnist and ten groups for FullColored MNIST. All left

subplots color each point based on invariant features, i.e., samples

with the same digit are colored identically. For example, as shown

in Fig. 4a, each cluster contains points belonging to class 0 (dig-

its 0-4) or class 1 (digits 5-9). Conversely, all right subplots color

each point based on spurious features, where samples with the

same color foreground or background (e.g., red 2 and red 3) are

colored identically. The results are shown in Figures 4b and 5b,

each cluster (class) involves diverse spurious feature. This indicates

that clustered features are specific to invariant digit shapes and

remain unaffected by color variations, demonstrating SFP could

successfully acquire disentangled representations.

5 CONCLUSION

In this paper, we introduce a novel spurious feature-targeted model

pruning framework, dubbed SFP, designed to automatically explore

the optimal model substructure for improved out-of-distribution

(OOD) generalization. By effectively identifying spurious features

within in-distribution (ID) instances during training, SFP can se-

lectively remove model branches that heavily depend on these

spurious features. As a result, SFP attenuates the impact of spuri-

ous features on the model’s representation space and guides the

model learning process toward invariant features. Additionally, we

8
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provide a detailed theoretical analysis to establish the rationality of

our approach and offer a proof framework for understanding OOD

structures via model sparsity. Experimental results corroborate the

effectiveness of our proposed method.
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A PRELIMINARIES AND PROOFS

A.1 Preliminaries on Important Notations

We first define the following set of symbols:

Data Row Space Basis Coordinate vector Singular value matrix

𝑋𝑖𝑑 ∈ R𝑝×𝑑 𝑆 ∈ R𝑑 , dim(𝑆) = 𝑝 𝐹 ∈ R𝑑×𝑝 𝑧 ∈ R𝑝 I𝐹⊤𝐹

𝑋𝑜𝑜𝑑 ∈ R𝑞×𝑑 𝑈 ∈ R𝑑 , dim(𝑈 ) = 𝑞 𝐺 ∈ R𝑑×𝑞 𝑣 ∈ R𝑝 I𝐺⊤𝐺

W ∈ R𝑚×𝑑 𝑅 ∈ R𝑑 , dim(𝑅) =𝑚 𝐸 ∈ R𝑑×𝑚 𝑟 ∈ R𝑚 I𝐸⊤𝐸

𝑓 (𝑋𝑖𝑑 ) ∈ R𝑝×𝑚 𝐴 ∈ R𝑚, dim(𝐴) = 𝑝 𝐸⊤𝐹 ∈ R𝑚×𝑝 𝑎 ∈ R𝑝 Σ𝐸⊤𝐹

𝑓 (𝑋𝑜𝑜𝑑 ) ∈ R𝑞×𝑚 𝐵 ∈ R𝑚, dim(𝐵) = 𝑞 𝐸⊤𝐺 ∈ R𝑚×𝑞 𝑏 ∈ R𝑞 Σ𝐸⊤𝐺

wherein 𝑝 and 𝑞 are the sample numbers of the in-distribution data and out-of-distribution data in the training set, respectively. 𝑑 and

𝑚 are the dimensions of the data and the model, respectively. Based on the above table, for each sample 𝑥𝑖𝑑 ∈ 𝑋𝑖𝑑 , it can be denoted as

𝑥𝑖𝑑 = (𝐹𝑧)⊤. Additionally, 𝑋𝑖𝑑 is represented for the in-distribution training set as (𝐹𝒛)⊤, where 𝒛 stands for the set of 𝑧. Similarly, 𝒗, 𝒓 , 𝒂
and 𝒃 are the set of 𝑣 , 𝑟 , 𝑎 and 𝑏, respectively.

Definition A.1 (Row space). Give a matrix W ∈ R𝑚×𝑑
, the rowspace 𝑅 of W is the span of the row vectors of W , which can be denoted

as 𝑪 (W⊤).

Definition A.2 (Basis and Coordinate). Let 𝐸 ∈ R𝑑×dim(𝑅)
have orthonormal columns that span 𝑅. For arbitrary vector𝑤 ∈ W, there exist

a 𝑟 ∈ Rdim(𝑅)
that satisfies𝑤 = 𝐸𝑟 , wherein 𝐸 is called the orthonormal basis of space 𝑅 and 𝑟 is the coordinate vector of𝑤 under 𝐸.

Proof of Eqation. 4.

∞∑︁
𝑡=1

𝜕L𝑡

𝜕W𝑡
=

∞∑︁
𝑡=1

2

(
W𝑡 −W∗) E[𝑋⊤𝑋 ]

= 2

∞∑︁
𝑡=1

(𝐸𝒓𝒕 − 𝐸𝒓∗)⊤
{
𝑝𝑖𝑑𝐹𝒛 (𝐹𝒛)⊤ + 𝑝𝑜𝑜𝑑𝐺𝒗 (𝐺𝒗)⊤

}
= 2

∞∑︁
𝑡=1

{
𝐸𝐸⊤ (𝑝𝑖𝑑𝐹𝒂𝒕⊤ + 𝑝𝑜𝑜𝑑𝐺𝒃𝒕

⊤) − 𝐸𝒓∗
}⊤ ×

{
𝑝𝑖𝑑𝐹𝒛 (𝐹𝒛)⊤ + 𝑝𝑜𝑜𝑑𝐺𝒗 (𝐺𝒗)⊤

}
= 2

∞∑︁
𝑡=1

{
(𝑝𝑖𝑑𝒂𝒕𝐹⊤ + 𝑝𝑜𝑜𝑑𝒃𝒕𝐺

⊤)𝐸𝐸⊤ − 𝒓∗⊤𝐸⊤
}
×
{
𝑝𝑖𝑑𝐹𝒛 (𝐹𝒛)⊤ + 𝑝𝑜𝑜𝑑𝐺𝒗 (𝐺𝒗)⊤

}
= 2

∞∑︁
𝑡=1

(
𝑝𝑖𝑑𝒂𝒕𝐹

⊤ + 𝑝𝑜𝑜𝑑𝒃𝒕𝐺
⊤) 𝐸𝐸⊤ {

𝑝𝑖𝑑𝐹𝒛 (𝐹𝒛)⊤ + 𝑝𝑜𝑜𝑑𝐺𝒗 (𝐺𝒗)⊤
}
− 𝒓∗⊤𝐸⊤E[𝑋⊤𝑋 ]

= 2

∞∑︁
𝑡=1

{
𝑝2

𝑖 𝒂𝒕𝐹
⊤𝐸𝐸⊤𝐹𝒛 (𝐹𝒛)⊤ + 𝑝2

𝑜𝒃𝒕𝐺
⊤𝐸𝐸⊤𝐺𝒗 (𝐺𝒗)⊤

}
+ 𝑝𝑖𝑝𝑜𝒂𝒕𝐹

⊤𝐸𝐸⊤𝐺𝒗 (𝐺𝒗)⊤ + 𝑝𝑖𝑝𝑜𝒃𝒕𝐺
⊤𝐸𝐸⊤𝐹𝒛 (𝐹𝒛)⊤ − 𝒓∗⊤𝐸⊤E[𝑋⊤𝑋 ]

(20)

Given that 𝐸⊤𝐹 and 𝐸⊤𝐺 represent the feature projections of the ID data basis and OOD data basis in the model space, respectively, it

follows that 𝐹⊤𝐸𝐸⊤𝐺 ≪ 𝐹⊤𝐸𝐸⊤𝐹 and 𝐹⊤𝐸𝐸⊤𝐺 ≪ 𝐺⊤𝐸𝐸⊤𝐺 . Consequently, Equation 20 can be further simplified as:

∞∑︁
𝑡=1

𝜕L𝑡

𝜕W𝑡
≈ 2

∞∑︁
𝑡=1

𝑝2

𝑖 𝒂𝒕𝐹
⊤𝐸𝐸⊤𝐹𝒛 (𝐹𝒛)⊤ + 𝑝2

𝑜𝒃𝒕𝐺
⊤𝐸𝐸⊤𝐺𝒗 (𝐺𝒗)⊤ − 𝒓∗⊤𝐸⊤E[𝑋⊤𝑋 ]

≈ 2

∞∑︁
𝑡=1

{
𝑝2

𝑖 𝒂𝒕Σ
2

𝐸⊤𝐹,𝑡𝑋𝑖𝑑 + 𝑝2

𝑜𝒃𝒕Σ
2

𝐸⊤𝐺,𝑡
𝑋𝑜𝑜𝑑

} (21)

where 𝒂𝒕 = 𝒂𝒕 − 𝒂∗ and 𝒃𝒕 = 𝒃𝒕 − 𝒃∗. Note that in order to make the expression clearer, we omit the representation of some coordinate

vectors (𝒛) in Eq. 2, so as to highlight the transformation represented by singular matrix Σ𝐸⊤𝐹,𝑡 and Σ𝐸⊤𝐺,𝑡 . □
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A.2 Proofs For Biased Performance on OOD and ID Data

Definition A.3 (Projector). Give a subspace 𝑆 of R𝑑 , and P is the projection matrix which projects a vector 𝑥 ∈ R𝑑 into the subspace 𝑆 . If

subspace 𝑆 has a orthonormal basis𝐸, we have:

𝑃2 = 𝑃⊤ = 𝑃

𝑃 (𝑥) = 𝐸⊤𝑥
(22)

Lemma A.4. There exists householder matrix 𝐻 = 𝐼 − 2𝑢𝑢𝐻 satisfying 𝑑𝑒𝑡 (𝐻 ) = −1.

Lemma A.5. If 𝐴∗ is the conjugate transpose of 𝐴, then 𝐴∗ has the same nonzero singular values with 𝐴.

Proof of Lemma A.5. Given 𝐴 ∈ 𝐶𝑚×𝑛
and 𝐴 has the rank of 𝑟 (𝐴) = min(𝑚,𝑛), 𝐴∗ ∈ 𝐶𝑛×𝑚

. Let 𝐴 = 𝐶𝑚×𝑛
𝑟 Then we have 𝐴∗𝐴 and 𝐴𝐴∗

are both non-negative definite Hermite matrices. It can be obtained for Lemma A.4 that, for all 𝜆 ∈ R, we have:
𝜆𝑚

��𝐼𝑛 −𝐴𝐴∗�� = 𝜆𝑛
��𝐼𝑚 −𝐴∗𝐴

��
(23)

□

Proof of Eqation. 7.

L𝑜𝑜𝑑 = (𝑊∞ −𝑊 ∗)𝑋⊤
𝑜𝑜𝑑

=

{
𝑊0 − 2𝑙𝑟 lim

𝑡→∞

∞∑︁
𝑡=1

𝜕L𝑡

𝜕W𝑡
−𝑊 ∗

}
𝑋⊤
𝑜𝑜𝑑

= 𝜖𝑜𝑜𝑑 − 2𝑙𝑟

∞∑︁
𝑡=1

{
𝑝2

𝑖 Σ
2

𝐸⊤𝐹,𝑡𝑋𝑖𝑑 + 𝑝2

𝑜Σ
2

𝐸⊤𝐺,𝑡
𝑋𝑜𝑜𝑑

}
𝑋𝑇
𝑜𝑜𝑑

≈ 𝜖𝑜𝑜𝑑 − 2𝑙𝑟

∞∑︁
𝑡=1

𝑝2

𝑖 Σ
2

𝐸⊤𝐹,𝑡Σ𝐹⊤𝐺 + 𝑝2

𝑜Σ
2

𝐸⊤𝐺,𝑡
I𝐺⊤𝐺

(24)

L𝑖𝑑 =
(
𝑊∞ −𝑊 ∗) 𝑋⊤

𝑖𝑑

≈ 𝜖𝑖𝑑 − 2𝑙𝑟

∞∑︁
𝑡=1

𝑝2

𝑖 Σ
2

𝐸⊤𝐹,𝑡 I𝐹⊤𝐹 + 𝑝2

𝑜Σ
2

𝐸⊤𝐺,𝑡
Σ𝐺⊤𝐹

(25)

From Lemma. 2, we have Σ𝐺⊤𝐹 = Σ𝐹⊤𝐺 . And since dim(𝑈 ) = 𝑞 ≪ dim(𝑆) = 𝑝 , the smallest singular value in singular value matrix

min Σ𝐹⊤𝐺 = min Σ𝐺⊤𝐹 = 𝜎
𝑞

𝐺⊤𝐹
, wherein 𝜎

𝑞

𝐺⊤𝐹
represents the 𝑞-th largest value in the singular value matrix. Ignoring terms representing

data, it can be derived that:

L𝑜𝑜𝑑 − L𝑖𝑑 ≈ (𝑝2

𝑖 − 𝑝2

𝑜 ) (1 − Σ𝐹⊤𝐺 ) + 𝜖 > 0, (26)

□

Discussion (Performance difference): The result intuitively shows that the undirectly learned model performs better on feature distribu-

tions with larger sample numbers. As shown in Eq. 7, the difference in model performance between OOD and ID data is linearly related to

the proportion of the corresponding samples and the correlation degree between the different feature distributions. What’s more, when

the out-of-domain data has the same proportion as in-domain data in the training dataset (𝑝𝑖 = 𝑝𝑜 ), or the data distributions of OOD are

consistent with ID, the task loss difference between OOD and ID data could be reduced to zero.

A.3 Proofs for ID-targeted Model Sparse

Lemma A.6. (3.7) Spurious features targeted model sparse can effectively reduce the performance deviation of the learned model between
in-domain data and out-domain data.���� R(𝑋𝑜𝑜𝑑 ) − R(𝑋𝑖𝑑 )

R(𝑋𝑜𝑜𝑑 )𝑠𝑝𝑎𝑟𝑠𝑒 − R(𝑋𝑖𝑑 )𝑠𝑝𝑎𝑟𝑠𝑒

���� ≈ �����
∑𝑚

𝑗=1
𝑝𝑜𝜎 𝑗 𝜉 𝑗𝛾 𝑗𝑋𝑜𝑜𝑑 −∑𝑚

𝑖=1
𝑝𝑖𝜎𝑖𝜉𝑖𝜆𝑖𝑋𝑖𝑑∑𝑚

𝑗=1
𝑝𝑜𝜎 𝑗 𝜉 𝑗𝛾 𝑗𝑋𝑜𝑜𝑑 −∑𝜗

𝑖=1
𝑝𝑖𝜎𝑖𝜉𝑖𝜆𝑖𝑋𝑖𝑑

����� ≥ 1, (27)

where 𝜎𝑖 , �̃�𝑖 is the 𝑖-th maximums in Σ𝐸⊤𝐹 and Σ𝐸⊤𝐺 . And we have 𝜎 > 0 since the singular values are non-negative.𝑚 and 𝜗 are the rank
of the singular value matrix after performing compact singular decomposition and truncated singular value decomposition on the projections,
respectively.

Proof of Lemma 3.7. As mentioned before, the projection space before the model sparse could be represented as:

𝐸𝒓 =
𝑚∑︁
𝑖=1

(
𝑝𝑖𝑑𝜎𝑖𝜉𝑖𝜆

⊤
𝑖 + 𝑝𝑜𝑜𝑑𝜎𝑖𝜉𝑖𝛾

⊤
𝑖

)
(28)

SFP prunes the model by trimming the smallest singular values in Σ as well as their corresponding left and right singular vectors. In this

way, SFP could remove the spurious features in ID data space and substructures in the model space simultaneously in a targeted manner

11
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along the directions with weaker actions for projection. The projection space after sparse with only the most important 𝜗 singular values

can be formalized as:

𝐸𝒓𝑠𝑝𝑎𝑟𝑠𝑒 =

𝜗∑︁
𝑖=1

𝑝𝑖𝑑𝜎𝑖𝜉𝑖𝜆
⊤
𝑖 +

𝑚∑︁
𝑗=1

𝑝𝑜𝑜𝑑𝜎 𝑗 𝜉 𝑗𝛾
⊤
𝑗 . (29)

Based on the representation of the projection spaces, the model response to data features R(𝑋 ) = 𝐸𝒓𝑋 can be calculated as:

R(𝑋 ) =
{
𝑝𝑖ΞΣ𝐸⊤𝐹Λ

−1 + 𝑝𝑜ΞΣ𝐸⊤𝐺Γ−1
}⊤

𝑋⊤
(30)

□

A.4 Proofs for the correspondence between model substructure and spurious features

Specifically, we define 𝑓 𝑙 (𝑥) as the feature maps output of 𝑥 at layer 𝑙 . It represents the projection of 𝑥 onto the model space defined over

the spanning set 𝐸 to be learned. We abbreviate the final probabilities as 𝑓 (𝑥) for simplification. Referring to Sec. 3.2.1, we have 𝑥 ∈ 𝑋𝑖𝑑 if

L𝑐𝑒 (𝑥) ≤ Δ. Thus, the optimization target of SFP can be formulated as:

min

𝐸
E𝑥∼𝑋L𝑐𝑒 (𝑥,W) + 𝜂

𝐿∑︁
𝑙=1

E𝑥∼𝑋𝑖𝑑
| |𝑓 𝑙 (𝑥) | |1, (31)

where 𝜂 is the sparsity factor imposed on the feature projections for the identified ID data. It serves as an adjustable weight to calibrate the

feature response of ID data, as well as sparse the corresponding substructures.

Lemma A.7. (3.8) Define 𝑒 = |𝑓 ∗ (𝑥) − 𝑓 (𝑥) | as the 𝑙1-norm between the true distibution 𝑓 ∗ (𝑥) and 𝑓 (𝑥). When 𝜂 < 2𝑒 , SFP could effectively
reduce the learning of the model to spurious features but keep the performance on the same features.

Proof of Lemma A.7. The prediction errors of feature projections 𝐿𝑓 can be defined as:

𝐿𝑐𝑒 = |𝑓 ∗ (𝑥) − 𝑓(𝑥) |2

=
∑︁

𝑖, 𝑗=𝑗1∪𝑗2
(𝑓 ∗ (𝑥) − 𝜎𝑖, 𝑗1𝜉𝑖⊤𝜆 𝑗1 − 𝜎𝑖, 𝑗2𝜉𝑖⊤𝛾 𝑗2 )2, (32)

and the corresponding gradient is:

𝜕𝐿𝑐𝑒

𝜕𝜎𝑖, 𝑗1𝜉𝑖
=

𝜕𝑒2

𝜕𝜎𝑖, 𝑗 𝜉𝑖
= 2𝑒

𝜕𝑒

𝜕𝜎𝑖, 𝑗 𝜉𝑖

= 2𝑒

��𝑓 ∗ (𝑥) − 𝜎𝑖, 𝑗1𝜉𝑖⊤𝜆 𝑗1 − 𝜎𝑖, 𝑗2𝜉𝑖⊤𝛾 𝑗2 )
��

𝜕𝜎𝑖, 𝑗 𝜉𝑖

= −2𝑒𝜆 𝑗1 ,

(33)

where 𝑖 and 𝑗 are the index of column vectors in the orthogonal basis for model space and feature space, respectively. For OOD data, the

gradient of the column vectors in the OOD projection matrix interacting with the 𝑗𝑡ℎ feature vector is −2𝑒𝛾 𝑗2 .

Therefore, for all data samples in the training set, the update of the 𝑖𝑡ℎ direction vector of the projection matrix at round 𝑡 is:

𝜎𝑖, 𝑗 𝜉
𝑡
𝑖 = 𝜎𝑖, 𝑗 𝜉

𝑡−1

𝑖 − 𝑝𝑖 (−2𝑒𝜆 𝑗1 ) − 𝑝𝑜 (−2𝑒𝛾 𝑗2 ) + 𝑝𝑖𝜂𝜆 𝑗1 (34)

Split the in-domain features into the spurious features 𝐹 ′ and the invariant features 𝐼𝑁 , and split the out-of-domain features into the

unknown features 𝐺 ′
and the invariant features 𝐼𝑁 . Since the environment features in-domain and out-domain are different with high

probability under the OOD setting, we suppose 𝐹 ′ and𝐺 ′
are orthogonal and define 𝑎, 𝑏 ∈ Ξ as the column vectors interact with 𝐹 ′ and𝐺 ′

respectively. The updates of 𝑎, 𝑏 could be formulated as:

𝜎𝑎,𝐹 ′𝜉𝑡𝑎 = 𝜎𝑎,𝐹 ′𝜉𝑡−1

𝑎 − 𝑝𝑖 (−2𝑒𝜆𝐹 ′ ) − 𝑝𝑖𝜂𝜆𝐹 ′

𝜎𝑏,𝐺 ′𝜉𝑡
𝑏
= 𝜎𝑏,𝐺 ′𝜉𝑡−1

𝑏
− 𝑝𝑜 (−2𝑒𝛾𝐺 ′ )

(35)

Also, define 𝑐 ∈ Ξ to be the set of the column vectors in the projection matrix that interacts with invariant features that are consistent in

domain and out of domain, and the updates of 𝑐 can be computed as:

𝜎𝑐,𝐼𝑁 𝜉𝑡𝑐 = 𝜎𝑐,𝐼𝑁 𝜉𝑡−1

𝑐 + 2𝑒𝑝𝑖𝜆𝐼𝑁 + 2𝑒𝑝𝑜𝛾𝐼𝑁 − 𝑝𝑖𝜂𝜆𝐼𝑁 (36)

To achieve spurious features-targeted unlearning and invariant features-targeted learning of the model, the following constraints need to be

satisfied:

2𝑒𝑝𝑖𝜆𝐼𝑁 + 2𝑒𝑝𝑜𝛾𝐼𝑁 − 𝑝𝑖𝜂𝜆𝐼𝑁 > 2𝑒𝑝𝑜𝛾𝐺 ′

⇒ 𝜂 ≤ 2𝑒𝑝𝑖𝜆𝐼𝑁 + 2𝑒𝑝𝑜𝛾𝐼𝑁 − 2𝑒𝑝𝑜𝛾𝐺 ′

𝑝𝑖𝜆𝐼𝑁
≈ 2𝑒

(37)

Since the de-learning rate of the spurious feature is positively correlated with 𝜂, the upper bound 𝜂 = 2𝑒 is taken in this work. □
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B ABLATION EXPERIMENTS

In this section, we mainly focus on two aspects: the initialization of the dense model, and the mapping relation versatility:

background-label mapping relation in the biased samples’ setting.

B.1 The initialization of the dense model
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(a) Random initialization
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(b) Random digit-color mapping

Figure 8: The effect of some random settings on the performance of SFP.

First, to demonstrate the consistent performance of the proposed SFP regardless of the randomness of the experiment environments, we

used ten different random seeds to initialize the deep learning model and record the final accuracy on FullColoredMNIST (FCMNIST). We

use (0.9, 0.7, 0.0) as the biased ratio coefficient in this experiment. Fig. 8a illustrates the mean accuracy of 10 different experiment settings.

We notice that the proposed SFP outperforms MRM and ERM in all datasets. This indicates that SFP can successfully sparse the spurious

feature-associated network structure regardless of different model initializations.

B.2 The mappings relations of OOD samples

In our experiment setting, we use the biased data samples, which have a static one-to-one digit-color relationship, as the ID data samples. On

the contrary, the OOD data samples have randomly assigned colored backgrounds. To further demonstrate that our method can successfully

prune spurious features regardless of the mapping relations, we evaluate the test accuracy in 5 different mapping relation settings and draw

the mean accuracy in Fig. 8b. As the experiment result shows, the average accuracy of SFP is relatively higher, and the variance of the

accuracy is relatively lower, which shows the superiority of the proposed SFP is stable and robust. This suggests that SFP successfully prunes

the sub-network associated with any spurious feature.

B.3 The feature responses of spurious correlations

Furthermore, to validate the effectiveness of SFP in suppressing the learning of spurious features, we examine the progression of the network’s

feature responses to in-domain samples across the entire training trajectory. The response values are measured by the average attention

across all feature channels at each layer. Specifically, we introduced a channel attention mechanism, named Squeeze-and-Excitation (SE)

module [13], to score the channel saliency of feature maps for input 𝑥𝑖 . The computed channel saliencies, denoted as 𝜋𝑙 (𝑥𝑖 ), are numerical

values produced by a Sigmoid function, ranging from 0 to 1. For models trained with ERM on unbiased data, the expected average attention

values for the feature channels at each layer are 0.5. These values represent the relative importance of the corresponding feature channel,

with smaller values denoting reduced importance. In summary, the sparsity of channel saliency determines the number of effective filters for

structures. For inputs, the mean of these channel attentions indicates the models’ fitting degree to the current samples. We conducted the

experiments on ResNet-18 and ColoredMNIST.

The results are shown in Fig. 9. As the training progresses, SFP gradually weakens the feature responses to spurious correlated data,

while under ERM and MOD methods, this response shows no significant changes. The failure of ERM is attributed to its inclination to learn

all correlations indiscriminately to enhance predictive accuracy. On the other hand, the failure of the MOD method, as a structured OOD

approach, lies in its utilization of existing pruning techniques without specific enhancements for OOD attributes. These pruning methods

often lack feature specificity, meaning they do not consider the correspondence between the structure and features. Consequently, they
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Figure 9: The feature response intensity to in-domain samples at different layers of the model.

(a) Domains (b) Waterbirds

Figure 10: The average testing accuracy over different domains on CelebA. The hair color blond, dark is used as the target, and

the gender male, female is used as the spurious attribute. The smallest combination group is blond-haired males.

apply the same sparse penalty to branches responding to invariant and spurious features simultaneously. In contrast, SFP, designed with

OOD attributes in mind, employs feature-specific network pruning. Consequently, it sidesteps the above-mentioned issues.

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 Dataset details

In this section, we will provide a clear description of the non-domainbed datasets in the main paper, including three synthetic dataset -

FullColoredMNIST, ColoredObject, and SceneObject, and two real-world datasets - CelebA and Waterbirds.

• FullColoredMNIST is a ten-class biased variant of the original MNIST dataset [41]. The digit shapes serve as invariant features

while colors as spurious ones. Ten different colors were selected to define a one-to-one corresponding relationship with ten-digit
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(a) Domains (b) Waterbirds

Figure 11: The average testing accuracy over different domains on Waterbirds. The bird species waterbird, landbird are used as

the label, while the bird’s locations water background, land background are used as a spurious attribute. The smallest domain

is waterbirds on land.

(a) Blonde female (b) Dark female (c) Blonde male (d) Dark male

Figure 12: Testing accuracy of different domains on CelebA.

(a) Waterbird, water (b) Landbird, land (c) Landbird, water (d) Waterbird, land

Figure 13: Testing accuracy of different domains on Waterbirds.

classes (e.g., 2 ⇆ 𝑔𝑟𝑒𝑒𝑛, 4 ⇆ 𝑦𝑒𝑙𝑙𝑜𝑤 ). For each domain, a bias coefficient is defined to represent the ratio of images adhering to this

specific relationship, with non-conforming images randomly colored.

• ColoredObject is constructed by superimposing ten classes of objects extracted from the MSCOCO dataset [22] onto backgrounds

of ten distinct colors [41]. These ten classes of objects include boats, airplanes, trucks, dogs, zebras, horses, birds, trains, buses, and

motorcycles. The spurious correlation is defined as the one-to-one correspondence between objects and colors.

• SceneObject [41] consists of ten classes of objects extracted from the MSCOCO dataset, which are placed into ten scenic backgrounds

from the Places dataset [44]. These scenic backgrounds render the task more complex compared to ColoredObject. Similar to

FULLCOLOREDMNIST, SceneObject establishes a one-to-one object-scene relationship, making it more biased and consequently

more challenging than previous tasks.

• CelebA dataset is a widely-used celebrity face dataset with 162770 training examples [25]. It contains 40 attribute labels (like

"Smiling", "Wearing Hat", etc.) Following previous OOD works [23, 31, 34], we classify hair color as either blonde or non-blonde, a
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(a) PACS-ResNet18 (b) PACS-ResNet18 (c) OfficeHome-ResNet18 (d) OfficeHome-ResNet18
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Figure 14: The accuracy comparison of SFP+IRM and IRM.

(a) MLP-CMNIST (b) MLP-CMNIST (c) ResNet18-FMNIST (d) ResNet18-FMNIST

Figure 15: The accuracy comparison of SFP+VREx and SparseIRM+VREx.

feature spuriously associated with the gender binary of the celebrities (male or female). The training set is divided into four domains,

including drak-haired females, blond-haired females, dark-haired males, and blond-haired males, with 1387 in the smallest group

(blond-haired males).

• WaterBirds is a subset of the Caltech-UCSD Birds-200-2011 dataset [36] with 4795 training examples, specifically constructed for

studying image recognition with spurious correlations of backgrounds [31]. It incorporates images of waterbirds and landbirds from

the Caltech-UCSD Birds-200-2011 (CUB) dataset as the foreground, paired with either water or land backgrounds obtained from the

Places dataset. The training set is divided into four domains, including landbirds on land, waterbirds on water, landbirds on water,

and waterbirds on land, with 56 in the smallest group (waterbirds on land).

C.2 Evaluation on more datasets

We further expanded the evaluation scope of SFP to two real-world datasets: WaterBirds and CelebA. The experiment is divided into two

groups, including comparisons of average accuracy across all domains and comparisons of the accuracy on each individual domain.

Fig. 10 and Fig. 11 illustrated the comparative results of cross-domain average testing accuracy based on the CelebA and Waterbirds

datasets, respectively. First, we visualized each domain of CelebA on Fig. 10a, and Waterbirds on Fig. 11a. Subsequently, we compare the

cross-domain average accuracies of different methods in Fig. 10b (CelebA) and 11b (Waterbirds). The results demonstrate the superior

performance of our proposed method, which reaches a remarkable accuracy of 96.41% on CelebA and 88.13% on Waterbirds. Specifically,

16



1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

SFP: Spurious Feature-Targeted Pruning for Out-of-Distribution Generalization ACM Multimedia 2024, October 28–November 01, 2024, Melbourne, Australia

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

(a) (b) (c)

(d) (e) (f) (g)

(h) (i) (j) (k)

Figure 16: The performance of SFP across various domains with distinct classes.

(a) ID accuracy (b) OOD accuracy (c) ID loss (d) OOD loss

Figure 17: The evaluation of SFP on different domains.
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SFP’s cross-domain average accuracy on the CelebA dataset surpasses ERM by 16.8% and DRO by 6.45% (A.b), while on the Waterbirds

dataset, it exceeds ERM by 7.23% and DRO by 4.15%.

Further insights into the testing accuracy of individual domains based on the CelebA andWaterbirds datasets are provided in Figures C and

D, respectively. Within this framework, the models were trained across all domains while tested on individual domains, with inter-domain

sample quantities varied. Specifically, the CelebA dataset encompasses four domains: blonde-haired female, blond-haired male, dark-haired

female, and dark-haired male, with the fewest samples found in the blond-haired male domain. Similarly, the Waterbirds dataset consists of

four domains: waterbirds on water background, waterbirds on land background, landbirds on water background, and landbirds on land

background, with the fewest samples observed in the waterbirds on land background domain. In this context, SFP consistently demonstrates

a satisfied performance. As depicted in Fig. 12c and Fig. 12c, SFP achieves a substantial accuracy improvement within the smallest domain,

exhibiting a remarkable 42.89% increase on CelebA (with blond male, ERM) and 20.28% increase on Waterbirds (with landbird on water

background, ERM). Across the remaining three domains, test accuracies are comparably high. SFP improves the test accuracy by a minor

3.9% over DRO on the blond-haired female domain and 7.02% over ERM on the waterbirds-on-land domain.

Discussion: It can be seen that while ERM demonstrates satisfactory performance across multiple domains, it exhibits subpar performance

within the smallest domain. What’s more, despite DRO achieving an enhancement in average accuracy, it sacrifices performance within

specific groups to bolster accuracy within others, exemplifying instances of trade-offs. In contrast, SFP achieves the most robust generalization

accuracy by iteratively learning invariant features through feature-oriented model pruning, thereby outperforming the other methods.

C.3 Evaluation on combined methods

To demonstrate the orthogonal effect of SFP, we evaluate its performance in combination mode with several popular non-structure OOD

methods. Firstly, we compare the performance of the most representative IRM and its addition version of SFP. The experiments are conducted

on DomainBed, including PACs, COLOREDMNIST, OfficeHome, FullCOLOREDMNIST, and RotatedMNIST. The results are shown in Fig. 14.

It can be seen that SFP generally beats the baselines by a large margin and achieves striking results. Specifically, ‘SFP + IRM’ outperforms IRM

with 9.52% on ‘PACS-ResNet18’, 5.41% on ‘COLOREDMNIST-MLP’, 0.92% on ‘OfficeHome-ResNet18’, and 4.45 % on ‘RotatedMNIST-MLP’.

The experimental results demonstrate that SFP can further improve the performance of non-structure methods in combination mode,

confirming its superior orthogonal capabilities.

Additionally, we compare the performance of SFP and the most comparable SparseIRM under combination mode. Fig. 15 presents the

performance comparison between SFP+VREx and SparseIRM+VREx. SFP outperforms SparseIRM with 3.41% higher test accuracy on MLP

and even 29.12% on ResNet18. An interesting phenomenon is that, on small MLP, SparseIRM first shows overfitting during the training stage,

and then, after 7 (× 300 iterations) steps, there is a significant increase in test accuracy. The training process of SparseIRM exhibits an obvious

two-stage trend, which is the same as regular non-feature-targeted model pruning. Differently, SFP consistently shows a stable learning

curve and achieves higher performance in both ID (train) and OOD (test) environments. In summary, the comparison results demonstrate

that SFP has achieved preeminent performance across most structure-based OOD generalization methods.

C.4 Evaluation on different domains

We further evaluated the performance of the SFP on each domain to explore whether varying invariant targets under the same intensity of

spurious features affect OOD generalization. The results are presented in the Fig. 16. We first illustrate several examples from the training

and testing sets. In the training set, most samples align with the previously described in-domain data settings, establishing a one-to-one

relationship between the background and the label for each digit. Each testing set contains digits of only one category, with the background

of that digit category differing from the training domain.

In this setup, we evaluated the performance of SFP on different test domains and compared the results with the ERM method and another

popular structured method MRM. Firstly, vertically within the same graph, SFP achieved better generalization performance than MRM in

almost all cases. Secondly, horizontally across different graphs, there was a significant difference in the accuracy improvement of SFP over

ERM across different classes. In examples where invariant features such as digits 0 and 1 are relatively easy to learn, the three methods

showed comparable accuracy. This indicates that ERM and MOD also learned invariant features well. However, in examples where invariant

features such as digits 5 and 8 are more challenging to learn, SFP outperformed MOD and ERM significantly. This not only highlights the

strong OOD generalization performance of SFP but also reflects the poor mastery of ERM in complex invariant feature scenarios. The

experimental conclusions in this section align with previous works [4, 26]: neural networks trained with the ERM inherently learn both

invariant and spurious features, but they tend to prioritize shortcuts at the early stage.

Similarly, we also split the dataset as in-domain and out-of-domain and tracked the performance separately during training. The results

are shown in Fig. 17. We conducted two evaluations with different initializations for each method. It can be observed that in all cases,

SFP achieved outstanding OOD generalization performance, surpassing the baseline methods by approximately 5% during convergence.

Moreover, we compared the task loss of SFP and other methods across different data domains, and the results further validated the superior

performance of the proposed approach.

18


	Abstract
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Notations and Preliminaries
	3.2 SFP: An Spurious Feature-Targeted Model Pruning Method
	3.3 Correspondence between Model Substructure and Spurious Features

	4 Experiments
	4.1 Experimental Setting
	4.2 Comparison on DomainBed Benchmark
	4.3 Comparison on Other Benchmarks
	4.4 Ablation Study

	5 Conclusion
	References
	A Preliminaries and Proofs
	A.1 Preliminaries on Important Notations
	A.2 Proofs For Biased Performance on OOD and ID Data
	A.3 Proofs for ID-targeted Model Sparse
	A.4 Proofs for the correspondence between model substructure and spurious features

	B Ablation Experiments
	B.1 The initialization of the dense model
	B.2 The mappings relations of OOD samples
	B.3 The feature responses of spurious correlations

	C Additional Experimental Results
	C.1 Dataset details
	C.2 Evaluation on more datasets
	C.3 Evaluation on combined methods
	C.4 Evaluation on different domains


