
Published as a conference paper at ICLR 2024

ROBUSTIFYING STATE-SPACE MODELS FOR LONG SE-
QUENCES VIA APPROXIMATE DIAGONALIZATION

Annan Yu,1 Arnur Nigmetov,2 Dmitriy Morozov,2
Michael W. Mahoney,2,3,4 N. Benjamin Erichson2,3

1 Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, USA
2 Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
3 International Computer Science Institute, Berkeley, CA 94704, USA
4 Department of Statistics, University of California at Berkeley, Berkeley, CA 94720, USA
ay262@cornell.edu, {anigmetov,dmorozov}@lbl.gov,
mmahoney@stat.berkeley.edu, erichson@icsi.berkeley.edu

ABSTRACT

State-space models (SSMs) have recently emerged as a framework for learning
long-range sequence tasks. An example is the structured state-space sequence (S4)
layer, which uses the diagonal-plus-low-rank structure of the HiPPO initialization
framework. However, the complicated structure of the S4 layer poses challenges;
and, in an effort to address these challenges, models such as S4D and S5 have
considered a purely diagonal structure. This choice simplifies the implementation,
improves computational efficiency, and allows channel communication. However,
diagonalizing the HiPPO framework is itself an ill-posed problem. In this paper,
we propose a general solution for this and related ill-posed diagonalization prob-
lems in machine learning. We introduce a generic, backward-stable “perturb-then-
diagonalize” (PTD) methodology, which is based on the pseudospectral theory of
non-normal operators, and which may be interpreted as the approximate diagonal-
ization of the non-normal matrices defining SSMs. Based on this, we introduce
the S4-PTD and S5-PTD models. Through theoretical analysis of the transfer
functions of different initialization schemes, we demonstrate that the S4-PTD/S5-
PTD initialization strongly converges to the HiPPO framework, while the S4D/S5
initialization only achieves weak convergences. As a result, our new models show
resilience to Fourier-mode noise-perturbed inputs, a crucial property not achieved
by the S4D/S5 models. In addition to improved robustness, our S5-PTD model av-
erages 87.6% accuracy on the Long-Range Arena benchmark, demonstrating that
the PTD methodology helps to improve the accuracy of deep learning models.

1 INTRODUCTION

Sequential data are pervasive across a wide range of fields, including natural language processing,
speech recognition, robotics and autonomous systems, as well as scientific machine learning and
financial time-series analysis, among others. Given that many of these applications produce exceed-
ingly long sequences, sequential models need to capture long-range temporal dependencies in order
to yield accurate predictions. To this end, many specialized deep learning methods have been de-
veloped to deal with long sequences, including recurrent neural networks (RNNs) (Arjovsky et al.,
2016; Chang et al., 2019; Erichson et al., 2021; Rusch & Mishra, 2021; Orvieto et al., 2023), con-
volutional neural networks (CNNs) (Bai et al., 2018; Romero et al., 2022), continuous-time models
(CTMs) (Gu et al., 2021; Yildiz et al., 2021), and transformers (Katharopoulos et al., 2020; Choro-
manski et al., 2020; Kitaev et al., 2020; Zhou et al., 2022; Nie et al., 2023).

Over the past few years, the new class of state-space models (SSMs) gained vast popularity
for sequential modeling due to their outstanding performance on the Long-Range Arena (LRA)
dataset (Tay et al., 2021). An SSM is built upon a continuous-time linear time-invariant (LTI) dy-

1

Published as a conference paper at ICLR 2024

namical system Σ = (A,B,C,D), which is a system of linear ODEs given by

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(1)

where A ∈ Cn×n, B ∈ Cn×m, C ∈ Cp×n, D ∈ Cp×m are the state, input, output and feedthrough
matrices; and u(t) ∈ Cm,x(t) ∈ Cn,y(t) ∈ Cp are the inputs, states, and outputs of the system,
respectively. The system can be discretized at time steps j∆t, where ∆t > 0 and j = 1, . . . , L, to
be fed with sequential inputs of length L. To store and process the information of the long sequential
inputs online, the SSMs are often initialized by a pre-designed LTI system. One of the most popular
schemes is called “HiPPO initialization” (Voelker et al., 2019; Gu et al., 2020), in which the Legen-
dre coefficients of the input history at time t, i.e., u ·1[0,t], are stored and updated in the state vector
x(t). This initialization is specifically designed to model long-range dependencies in sequential
data. The recently proposed S4 model (Gu et al., 2022b) leverages the HiPPO initialization and ac-
celerates training and inference by decomposing A into the sum of a diagonal matrix and a low-rank
one. The diagonal-plus-low-rank (DPLR) structure yields a barycentric representation (Antoulas
& Anderson, 1986) of the transfer function of eq. (1) that maps inputs to outputs in the frequency
domain, enabling fast computation in the frequency domain (Aumann & Gosea, 2023).

While the DPLR structure achieves an asymptotic speed-up of the model, considering A to be a di-
agonal matrix results in a simpler structure. Compared to a DPLR matrix A, a diagonal SSM is not
only faster to compute and easier to implement, but it also allows integrating channel communica-
tion via parallel scans (Smith et al., 2023), thereby improving its performance on long-range tasks.
Unfortunately, the problem of diagonalizing the HiPPO framework is exponentially ill-conditioned,
as n increases. Hence, while Gu et al. (2022b) shows analytic forms of the eigenvalues and eigen-
vectors of HiPPO matrices, they suffer from an exponentially large variance and cannot be used
in practice. So far, the most popular way of obtaining a diagonal SSM is to simply discard the
low-rank part from the DPLR structure, leveraging a stable diagonalization algorithm for a normal
matrix. Discarding the low-rank component changes the underlying diagonalization problem, how-
ever; and it abandons the theoretical insights about HiPPO. Still, the resulting model almost matches
S4’s performance, in practice. Such diagonal models are called S4D (Gu et al., 2022a) when the sys-
tems are single-input/single-output (i.e., m = p = 1) and S5 (Smith et al., 2023) when the systems
are multiple-input/multiple-output (i.e., m = p > 1), which enables channel communication.

The issue of ill-posed diagonalization problems is not merely specific to SSMs. For example, it is
known that non-normal matrices make RNNs more expressive (Kerg et al., 2019; Orhan & Pitkow,
2020). More generally, non-normality plays an important role in the training of certain neural net-
works (Sengupta & Friston, 2018; Kumar & Bouchard, 2022). While the ill-posedness of the diago-
nalization problem essentially prevents accurate computation of eigenvalues and eigenvectors (i.e.,
we cannot have a small forward error) — in fact, the true spectral information becomes meaningless1

— using a backward stable eigensolver, one can recover the non-normal matrix accurately (i.e., we
can have a small backward error) from the wrong eigenvalues and eigenvectors.

In this paper, we propose a generic “perturb-then-diagonalize” (PTD) methodology as a backward
stable eigensolver. PTD is based on the idea that a small random perturbation remedies the problem
of the blowing up of eigenvector condition number (Davies, 2008; Davies & Hager, 2009; Banks
et al., 2021), regularizing the ill-posed problem into a close but well-posed one. It is based on the
pseudospectral theory of non-normal operators (Trefethen & Embree, 2005)2 and may be interpreted
as the approximate diagonalization of the non-normal matrices.

Our PTD method can be used to diagonalize the highly non-normal HiPPO framework. Therefore,
instead of using the eigenvalues of the normal component of the HiPPO matrix to initialize the
matrix A as in the S4D and S5 models, we propose to initialize A using the eigenvalues of a
perturbed HiPPO matrix (see section 4). The resulting S4-PTD and S5-PTD models are shown to
be more robust than their S4D and S5 companions under certain Fourier-mode perturbations. Our
method is flexible and can be used to diagonalize many SSM initialization schemes that may be
invented in the future.

1If an eigenvector matrix V is ill-conditioned, then projecting a vector onto the eigenbasis is unstable so the
eigendecomposition suffers from a large variance and does not reveal any useful information of the matrix.

2The pseudospectral theory studies the effect of perturbations on the spectrum of a non-normal operator.

2

Published as a conference paper at ICLR 2024

Contribution. Here are our main contributions: (1) We propose a “perturb-then-diagonalize”
(PTD) methodology that solves ill-posed diagonalization problems in machine learning when only
the backward error is important. (2) We provide a fine-grained analysis that compares the S4 and the
S4D initialization. In particular, we quantify the change of the transfer function when discarding the
low-rank part of HiPPO, which is done in the diagonal S4D/S5 initialization. We show that while the
outputs of the S4D/S5 system on a fixed smooth input converge to those of the S4 system at a linear
rate as n → ∞, the convergence is not uniform across all input functions (see section 3.1). (3) Based
on our theoretical analysis, we observe, using the sequential CIFAR task (see section 5.2), that the
S4D/S5 models are very sensitive to certain Fourier-mode input perturbations, which impairs the
robustness of the models. (4) We propose the S4-PTD and S5-PTD models that replace the normal
component of the HiPPO matrix, used to initialize the S4D and S5 models, with a perturbed HiPPO
matrix. Our models are robust to Fourier-mode input perturbations. We theoretically estimate the
effect of the perturbation (see section 4). We propose computing the perturbation matrix by solving
an optimization problem with a soft constraint. Moreover, our method is not restricted to the HiPPO
matrix but can be applied to any initializations. (5) We provide an ablation study for the size of the
perturbation in our models. We also evaluate our S4-PTD and S5-PTD models on LRA tasks, which
reveals that the S4-PTD model outperforms the S4D model, while the S5-PTD model is comparable
with the S5 model (see section 5.1).

2 PRELIMINARIES AND NOTATION

Given an LTI system in eq. (1), we say it is asymptotically stable if the eigenvalues λj of A are all
contained in the left half-plane, i.e., if Re(λj) < 0 for all 1 ≤ j ≤ n. The transfer function of the
LTI system is defined by

G(s) = C(sI−A)−1B+D, s ∈ C \ Λ(A), (2)
where I ∈ Rn×n is the identity matrix and Λ(A) is the spectrum of A. The transfer function G is a
rational function with n poles (counting multiplicities) at the eigenvalues of A. Assume x(0) = 0.
Then the transfer function maps the inputs to the outputs of the LTI system in the Laplace domain
by multiplication, i.e., (Ly)(s) = G(s)(Lu)(s) for all s ∈ C, where L is the Laplace transform
operator (see Zhou & Doyle (1998)). Assume the LTI system in eq. (1) is asymptotically stable and
the input u(t) is bounded and integrable (with respect to the Lebesgue measure) as t ranges over R.
Then the Laplace transform reduces to the Fourier transform:

ŷ(s) = G(is)û(s), s ∈ R, (3)
where ŷ and û are the Fourier transforms of y and u, respectively, and i is the imaginary unit. Let
V ∈ Cn×n be an invertible matrix. We can conjugate the system (A,B,C,D) by V, which yields
(V−1AV,V−1B,CV,D). Since the transfer function is conjugation-invariant, the two systems
map the same inputs u(·) to the same outputs y(·), while the states x(·) are transformed by V. If A
is a normal matrix, i.e., AA∗ = A∗A, then V is unitary, in which case transforming the states by V
is a well-conditioned problem and can be done without loss of information. Issues arise, however,
when A is non-normal and V is ill-conditioned.

The state-space models use LTI systems to process time series inputs. Different initializations can
be tailored to tasks with different natures, such as the range of dependency (Gu et al., 2023). A par-
ticularly successful initialization scheme used in the S4 model is the so-called HiPPO initialization.
While there exist several variants of HiPPO, the most popular HiPPO-LegS matrices are defined by

(AH)jk = −
{
1{j>k}

√
2j − 1

√
2k − 1 , if j ̸= k,

j , if j = k,
(BH)jℓ =

√
(2j − 1)/2, (4)

for all 1 ≤ j, k ≤ n and 1 ≤ ℓ ≤ m, where 1{j>k} is the indicator that equals 1 if j > k and
0 otherwise. Such a system guarantees that the Legendre coefficients of the input history u · 1[0,t]

(with respect to a scaled measure) are stored in the states x(t) over time (Gu et al., 2020). Since
computing with the dense matrix AH is practically inefficient, one conjugates the HiPPO system
with a matrix VH to simplify the structure of AH . The matrix AH in eq. (4) has an ill-conditioned
eigenvector matrix (Gu et al., 2022b); consequently, instead of solving the ill-posed problem that
diagonalizes AH , one exploits a diagonal-plus-low-rank (DPLR) structure:

AH = A⊥
H − 1

2
BHB⊤

H , (A⊥
H)jk = −1

2

{
(−1)1{j<k}

√
2j − 1

√
2k − 1 , j ̸= k,

1 , j = k,
(5)

3

Published as a conference paper at ICLR 2024

where A⊥
H is a skew-symmetric matrix that can be unitarily diagonalized into A⊥

H = VHΛHV−1
H .

The S4 model leverages the HiPPO matrices by initializing

ADPLR = ΛH − 1

2
V−1

H BHB⊤
HVH , BDPLR = V−1

H BH (6)

and CDPLR and DDPLR randomly. Such an LTI system ΣDPLR = (ADPLR,BDPLR,CDPLR,DDPLR) is
conjugate via VH to (AH ,BH ,CDPLRV

−1
H ,DDPLR). Hence, they share the transfer function and

the same mapping from the inputs u(·) to the outputs y(·). The S4D model further simplifies the
structure by discarding the rank-1 part from AH and therefore initializes

ADiag = ΛH , BDiag =
1

2
V−1

H BH , (7)

and ADiag is henceforth restricted to be diagonal. While both the S4 and S4D models restrict that
m = p = 1, i.e., the LTI systems are single-input/single-output (SISO), the S5 model, which
also initializes ADiag = ΛH and requires it to be diagonal throughout training, leverages multiple-
input/multiple-output (MIMO) systems by allowing m = p > 1. We provide more background
information on LTI systems and state-space models in sequential modeling in Appendix B.

Throughout this paper, we use ∥·∥ to denote a vector or matrix 2-norm. Given an invertible square
matrix V, we use κ(V) = ∥V∥∥V−1∥ to denote its condition number. Given a number 1 ≤ p ≤ ∞
and a measurable function f : R → C, we use ∥f∥Lp for the standard Lp-norm of f with respect to
the Lebesgue measure on R and Lp(R) = {f : R → C | ∥f∥Lp < ∞}.

3 THEORY OF THE DIAGONAL INITIALIZATION OF STATE-SPACE MODELS

The S4 model proposes to initialize the SSM to store the Legendre coefficients of the input sig-
nal in the states x (Gu et al., 2020). This initialization, however, has an ill-conditioned spectrum,
preventing a stable diagonalization of the SSM. On the other hand, the S4D model uses a different
initialization scheme that has a stable spectrum, allowing for stable diagonalization; however, such
initialization lacks an interpretation of the states x. In this section, we conduct a fine-grained anal-
ysis of the two initializations, which shows that: (1) for any fixed input signal u(·) with sufficient
smoothness, the outputs of the two systems ΣDPLR and ΣDiag converge to each other with a linear rate
(of which the previous analysis is devoid) as n → ∞; and (2) by viewing ΣDPLR and ΣDiag as linear
operators that map input signals to the outputs, the operators do not converge in the operator norm
topology as n → ∞ (see section 3.1). While the first observation partially justifies the success of
the S4D model, the second one allows us to observe that the diagonal initialization is unstable under
certain Fourier-mode input perturbations (see section 5.2). In this section, we assume m = p = 1,
which is consistent with the S4 and S4D models. Still, our theory can be related to the S5 model, as
shown in Smith et al. (2023).

Fix an integer 1 ≤ ℓ ≤ n. We assume that CDPLR = CDiag = e⊤ℓ VH , where e⊤ℓ is the ℓth standard
basis, and DDPLR = DDiag. For a general CDPLR = CDiag, we can decompose it onto the orthonormal
basis {e⊤ℓ VH | 1 ≤ ℓ ≤ n} and study each component separately using the theory developed in this
section. Let GDPLR and GDiag be the transfer functions of ΣDPLR and ΣDiag, respectively, i.e.,
GDPLR(s)=CDPLR(sI−ADPLR)

−1BDPLR+DDPLR, GDiag(s)=CDiag(sI−ADiag)
−1BDiag+DDiag. (8)

Recall that by eq. (3), |GDPLR(si) − GDiag(si)| measures the difference between the outputs of the
two systems given a frequency-s input. We provide a fine-grained analysis of this difference in
the two transfer functions in Lemma 1. The lemma is visualized in Figure 1. We see that as n
increases, GDiag approaches GDPLR in the low-frequency domain, i.e., when |s| is small. However,
GDiag develops spikes in the high-frequency domain. Moreover, for every n ≥ 1, zooming into
the last spike located at |s| = Θ(n2) reveals that it has a constant magnitude (see the subplots on
the right in Figure 1). Hence, the convergence of GDiag to GDPLR is non-uniform (see Theorem 2).
Moreover, the frequency response is unstable at input frequencies s near these spikes, suggesting
that the S4D model is not robust to certain input perturbations (see section 5.2).

3.1 INPUT-WISE CONVERGENCE AND SYSTEM-WISE DIVERGENCE OF THE DIAGONAL
INITIALIZATION

First, we present a result to show that for a fixed input signal u(·), the outputs of ΣDPLR and ΣDiag
converge to each other as n → ∞. Moreover, while the previous result in Gu et al. (2022a) does not

4

Published as a conference paper at ICLR 2024

frequency

m
ag

ni
tu

de

GDiag(n=10000)

GDiag(n=1000)

GDiag(n=100)

GDiag(n=10)

GDPLR

Figure 1: The magnitude of transfer function of the S4 model, |GDPLR(si)|, and that of the S4D
model, |GDiag(si)| with CDPLR = CDiag = e⊤1 VH and the SSM size n set to different values. Note
that GDPLR stays the same regardless of n. Due to the limited resolution, the left panel does not
correctly reveal the heights of the spikes; however, by zooming into the last spike of |GDiag(si)|, we
see that the peak remains Θ(1) as n → ∞ (see the right panels). The figure shows that GDiag is os-
cillatory while GDPLR is smooth; moreover, |GDiag(si)| does not converge to |GDPLR(si)| uniformly.

have a rate of convergence, we show that it is linear. In fact, the rate is sharp (see Appendix F). This
partially explains why the S4D model matches the performance of the S4 model in practice.
Theorem 1. Let u(·) ∈ L2(R) be an input function with ∥u∥L2 = 1. Let yDPLR(·) and yDiag(·)
be the outputs of ΣDPLR and ΣDiag given the input u(·) and the initial states x(0) = 0, respectively.
For some q > 1/2, suppose |û(s)| = O(|s|−q

) as |s| → ∞. Then, we have ∥yDPLR − yDiag∥L2 =

O
(
n−1

)√
ℓ as n → ∞, where the constant in the O-notation only depends on q and the constant in

x̂(s) = O(|s|−q
). The constant does not depend on q if we restrict q ∈ [q′,∞) for a fixed q′ > 1/2.

The proof is deferred to Appendix E. Since the Fourier transform interchanges smoothness and de-
cay, what Theorem 1 says is that under a mild assumption that u(·) is sufficiently smooth, the output
of the diagonal system converges linearly to that of the DPLR system as n → ∞. In Section 3.2,
we show this smoothness assumption is needed. We know the two systems converge input-wise; it
is natural to ask if the convergence is uniform across all input signals:
Theorem 2. The function GDPLR(s) − GDiag(s) does not converge to zero uniformly on the imag-
inary axis as n → ∞. In particular, for every n ≥ 1, there exists an input signal un(·) ∈
L1(R) ∩ L2(R) such that if we let yn,DPLR and yn,Diag be the outputs of ΣDPLR and ΣDiag of de-
gree n, respectively, then we have ∥yn,DPLR − yn,Diag∥L2 does not converge to 0 as n → ∞.

Hence, the answer to our question is negative: combined with Theorem 1, Theorem 2 says that
while a sufficiently large S4D model mimics its S4 alternative on a fixed smooth input, when we
predetermine a size n, they inevitably disagree, by a large amount, on some inputs. Moreover,
in Theorem 2, the construction of un(·) can be made explicit (see section 5.2).

3.2 SOME NUMERICAL EXAMPLES

In this section, we provide some numerical examples corroborating Theorem 1. We defer the im-
plication of Theorem 2 to later sections (see section 4 and section 5.2). Theorem 1 tells us that if
we fix a smooth input signal u(t), then the outputs yn,DPLR and yn,Diag eventually converge to each
other at a linear rate as n → ∞. In this experiment, we fix two input functions (or more precisely,
distributions)

ue(t) = e−tH(t), ud = δ0,

where H = 1[0,∞) is the Heaviside function and δ0 is the Dirac delta function at 0. While ue(t)

is a very smooth function — in particular, we have |ûe(s)| = O(|s|−1) — the Dirac delta ud is
very non-smooth with a Fourier transform that is constantly one. We simulate both systems ΣDPLR

5

Published as a conference paper at ICLR 2024

0 5000 10000

0

0.2

0.4
DPLR

Diag

time step

ou
tp

ut
va

lu
e

In
pu

t:
u
e

n = 3

0 5000 10000

0

0.2

0.4
DPLR

Diag

n = 15

time step

ou
tp

ut
va

lu
e

0 5000 10000

0

0.2

0.4
DPLR

Diag

n = 75

time step

ou
tp

ut
va

lu
e

0 5000 10000
-5

0

5

10

15

20
Diag

DPLR

time step

ou
tp

ut
va

lu
e

In
pu

t:
u
d

0 5000 10000
-5

0

5

10

15

20
Diag

DPLR

time step
ou

tp
ut

va
lu

e
0 5000 10000

-5

0

5

10

15

20
Diag

DPLR

time step

ou
tp

ut
va

lu
e

Figure 2: Simulated outputs of the DPLR and diagonal systems with the input functions ue and
ud and varying state-space dimension n. We see that for a smooth input function ue, the outputs
of both systems converge rapidly as n increases, whereas the convergence does not happen for a
non-smooth input function ud.

and ΣDiag on both ue(t) and ud(t). More details of the simulation can be found in Appendix F.
From Figure 2, we observe that given a smooth input function ue, the output yn,Diag converges
to yn,DPLR rapidly, but the same does not hold for a non-smooth input function ud. Hence, the
smoothness assumption in Theorem 1 is essential. In Figure 8 in Appendix F, we also compute the
L2-norm of yn,DPLR − yn,Diag and verify that the convergence is linear when the input is smooth
enough. We remark that a similar study of ud can be found in Gu et al. (2022a), where the results
appear qualitatively different from those presented in Figure 2. This does not mean either work is
wrong: the key distinction is that the discretization step size of the LTI systems (see Appendix B) is
fixed in Gu et al. (2022a) a priori, introducing aliasing errors and hiding the high frequencies (Tre-
fethen, 2019, Ch. 4.). Consequently, when n is large, the difference between GDPLR and GDiag in
the high-frequency domain is overlooked. In comparison, in this paper, our theory considers the
continuous-time LTI systems, which take every mode into account.

4 PERTURBING THE HIPPO INITIALIZATION: A NEW WAY OF
DIAGONALIZING THE STATE-SPACE MODEL

In section 3, we saw the instability of the S4D transfer function at certain Fourier modes. Neverthe-
less, the diagonal structure of A is preferred over the DPLR one due to its training and inference
efficiency and its adaptivity to the MIMO model (i.e., the S5 model) (Smith et al., 2023). To avoid
instability in a diagonal model, we want to leverage the HiPPO initialization in eq. (4) instead of
the one in eq. (7) that discards the rank-1 part. One obvious solution is to diagonalize the HiPPO
matrix AH = VHΛHV−1

H and conjugate (AH ,BH ,C,D) using VH . However, as shown in Gu
et al. (2022a), the eigenvector matrix VH is exponentially ill-conditioned with respect to n, making
the spectral information meaningless. While the exact eigenvalues and eigenvectors of AH are very
ill-conditioned, since we only care about the backward error of diagonalization, we propose the fol-
lowing initialization scheme. let E ∈ Cn×n be a perturbation matrix. We diagonalize the perturbed
HiPPO matrix as

ÃH = AH +E = ṼHΛ̃HṼ−1
H . (9)

We then initialize the systems using ΣPert = (APert,BPert,CPert,DPert) = (Λ̃H , Ṽ−1
H BH ,C,D),

where C and D are random matrices. Therefore, we approximately diagonalize the HiPPO initial-
ization in the sense that although the diagonal entries in Λ̃ do not approximate the eigenvalues of
AH , the transfer function of ΣPert is an approximation of that of ΣDPLR (see Theorem 3). We call our
model S4-PTD or S5-PTD, depending on whether the model architecture is adapted from the S4D or
the S5 model, where “PTD” stands for “perturb-then-diagonalize.” Since our models are only differ-
ent from the S4D and the S5 models in initialization, we refer interested readers to Gu et al. (2022a)

6

Published as a conference paper at ICLR 2024

and Smith et al. (2023) for a discussion of computation details and time/space complexity. Our
proposed perturb-then-diagonalize method is not restricted to the HiPPO-LegS matrices in eq. (4).
This endows our method with adaptivity to any (dense) initialization scheme. This adaptivity was
absent from the previous line of work on SSMs. Consider the process of diagonalizing the matrix
AH = VHΛHV−1

H that is solved by an inexact algorithm. In a numerical analyst’s language, the
forward error is the error made in computing the eigenvalues ΛH and eigenvectors VH , whereas the
backward error asks how close a problem that we have solved exactly (i.e., AH +E) is to the actual
problem that we want to solve (i.e., AH). As we will see in Theorem 3, it is the backward error ∥E∥
(but not the forward error) that matters in our initialization because it is the matrix AH (but not the
specific forms of VH or ΛH) that is important in the transfer function.

Centered around the perturbed initialization scheme eq. (9) are two important questions: (1) What
is the difference between the perturbed initialization (APert,BPert,CPert,DPert) and the HiPPO ini-
tialization (ADPLR,BDPLR,CDPLR,DDPLR)? (2) What is the condition number of ṼH? The first
question is important because it controls the deviation of our perturbed initialization from the suc-
cessful and robust DPLR initialization. The second question is important because it shadows the
numerical robustness of conjugating the LTI system by ṼH . Moreover, since the state vector x(t)
is transformed by ṼH via conjugation (see section 2), a small condition number of ṼH shows that
its singular values are more evenly distributed. Hence, the transformation ṼH does not significantly
magnify or compress x(t) onto some particular modes. To study the first question, we define the
transfer function of the perturbed system to be

GPert(s) = CPert(sI−APert)
−1BPert +DPert.

We control the size of the transfer function perturbation by proving the following theorem.
Theorem 3. Assume CPertṼ

−1
H = CDPLRV

−1
H and DPert = DDPLR. Suppose ∥E∥ ≤ ϵ and we

normalize the matrices so that ∥ṼHBPert∥ = ∥VHBDPLR∥ = ∥CPertṼ
−1
H ∥ = ∥CDPLRV

−1
H ∥ = 1.

For any s on the imaginary axis, we have

|GPert(s)−GDPLR(s)| = (2 ln(n) + 4)ϵ+O(
√
log(n)ϵ2).

While our perturb-then-diagonalize method works for a general initialization and a bound on the
transfer function error can always be established, the proof of Theorem 3 leverages the structure
of HiPPO matrices to improve this bound. The error in Theorem 3 is the uniform error on the
imaginary axis. Using Hölder’s inequality, for any bounded and integrable input function u(·), if
yPert and yDPLR are the outputs of ΣPert and ΣDPLR, respectively, then we have

∥yPert − yDPLR∥L2 = ∥ŷPert − ŷDPLR∥L2 = ∥x̂(s)(GPert(is)−GDPLR(is))∥L2

≤ ∥x̂(s)∥L2∥GPert(is)−GDPLR(is)∥L∞ ≤ ∥x∥L2

(
(2 ln(n)+4)ϵ+O(

√
log(n)ϵ2)

)
,

(10)

where the first and the last steps follow from Parseval’s identity. Hence, Theorem 3 gives us an
upper bound on the distance between ΣPert and ΣDPLR in the operator norm topology. The theorem
states that the error made by the perturbation is linear in the size of the perturbation. Moreover, the
error depends only logarithmically on the dimension n of the state space.

Next, we consider the conditioning of ṼH , which affects the accuracy of computing Ṽ−1
H BPert

and the scaling ratio of the states in x(·) (see Appendix B). The following theorem provides a
deterministic estimate of the eigenvector condition number for the “best perturbation scheme.”
Theorem 4 ((Banks et al., 2021, Thm. 1.1.)). Given any A ∈ Cn×n and ϵ ∈ (0, 1), there exists a
matrix E ∈ Cn×n with ∥E∥ ≤ ϵ and an eigenvector matrix Ṽ of A+E such that

κ(Ṽ) ≤ 4n3/2
(
1 + ϵ−1 ∥A∥

)
.

Theorem 4 shows the promise of finding a good perturbation matrix to reduce the eigenvector con-
dition number. We remark that while Theorem 4 studies the best-case scenario, Banks et al. (2021)
also contains a probabilistic statement about Gaussian perturbations (see Appendix H). In this paper,
we propose to compute E by solving the following optimization problem with a soft constraint:

minimize Φ(E) = κ(ṼH) + γ∥E∥ s.t. AH +E = ṼHΛ̃Ṽ−1
H , Λ̃ diagonal, (11)

where γ > 0 is a hyperparameter that controls the trade-off between κ(ṼH) and ∥E∥. We imple-
ment a solver to this optimization problem using gradient descent. As γ increases, it is harder to
recover the original states x(·) from the transformed states ṼHx(·) because κ(ṼH) increases, but
∥E∥ decreases, resulting in a more robust SSM that is closer to the flawless HiPPO initialization.

7

Published as a conference paper at ICLR 2024

Model ListOps Text Retrieval Image Pathfinder Path-X Avg.
Transformer 36.37 64.27 57.56 42.44 71.40 ✗ 53.66

Luna-256 37.25 64.57 79.29 47.38 77.72 ✗ 59.37
H-Trans.-1D 49.53 78.69 63.99 46.05 68.78 ✗ 61.41

CCNN 43.60 84.08 ✗ 88.90 91.51 ✗ 68.02
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09

Liquid-S4 62.75 89.02 91.20 89.50 94.80 96.66 87.32
S4D 60.47 86.18 89.46 88.19 93.06 91.95 84.89

S4-PTD (ours) 60.65 88.32 91.07 88.27 94.79 96.39 86.58
S5 62.15 89.31 91.40 88.00 95.33 98.58 87.46

S5-PTD (ours) 62.75 89.41 91.51 87.92 95.54 98.52 87.61

Table 1: Test accuracies on LRA, where ✗ means the model isn’t outperforming random guessing.
We use the boldface number to indicate the highest test accuracy among all models for each task.
We use the underlined number to indicate the highest test accuracy within the comparable group.

5 EMPIRICAL EVALUATION AND DISCUSSION

In this section, we present empirical evaluations of our proposed S4-PTD and S5-PTD models.
In section 5.1 we compare the performance of our full model with the existing ones in the Long
Range Arena (LRA). In section 5.2, we perform a sensitivity analysis using the CIFAR-10 dataset
to provide real-world evidence that our perturbed initialization scheme is more robust than the one
in the S4D/S5 model. Finally, in section 5.3, we study the relationship between the size of the
perturbation matrix E and the performance of our models.

5.1 PERFORMANCE IN THE LONG-RANGE ARENA

The LRA benchmark comprises six tasks with sequential data (Tay et al., 2021). This collection,
with its sequence lengths ranging from 1024 to 16000, is designed to measure the model’s capability
of processing the long-range inputs. We train an S4-PTD model and an S5-PTD model to learn these
tasks, respectively. We adopt the same SSM architectures, and thus the same number of parameters,
from the original S4D (Gu et al., 2022a) and S5 papers (Smith et al., 2023). Results are reported
in Table 1, along with the accuracies of other sequential models, including the Liquid-S4 model
which is built upon S4 (Hasani et al., 2023). We report details of hyperparameters in Appendix J.
While the perturbation matrix E is also tunable, we restrict its size to be less than 10% of that of
the HiPPO matrix AH , promoting the worst-case robustness of our model (see section 5.2). We
note that the S4-PTD model outperforms the S4D model3 (and even the S4 model with the DPLR
structure for most tasks), while the S5-PTD model matches the performance of the S5 model.

5.2 ROBUSTNESS OF OUR PERTURBED MODEL OVER THE DIAGONAL MODEL

Our discussion in section 3 suggests that the S4D initialization is not as stable as the S4 initialization
(see Figure 1). Here, we demonstrate its practical implication regarding the robustness of the model.
We train an S4D model and an S4-PTD model (with ∥E∥/∥AH∥ ≈ 10−1) to learn the sCIFAR task,
where the images in the CIFAR-10 dataset (Krizhevsky et al., 2009) are flattened into sequences of
pixels. We test the two models against two different test sets: one is taken from the original CIFAR-
10 dataset while the other one is contaminated by 10% of sinusoidal noises whose frequencies are
located near the spikes of |GDiag|. We plot the training and test accuracies of the two models in Fig-
ure 3a and b. Whereas the two models both achieve high accuracies on the uncontaminated test set,
the S4D model does not generalize to the noisy dataset as the S4-PTD model does. That is, the S4D
model is not robust to these noises. In comparison, since the S4-PTD initialization is uniformly close
to the S4 initialization (see Theorem 3) when ∥E∥ is small, the S4-PTD model is robust to noises
with any mode. We also perturb the test dataset using noises at different frequencies. In Figure 4,
we verify that it is indeed the spikes in |GDiag| that makes the S4D initialization not robust. We make
two remarks. First, the noises in Figure 3a are the “worst-case” noises and intentionally made to
fail the S4D model; in practice, the distribution of sensitive modes of S4D in the frequency domain

3In Orvieto et al. (2023), the S4D model was carefully tuned to have higher accuracies. Since the model
architecture does not align with those used in this work, we only report the result from the original S4D paper.

8

Published as a conference paper at ICLR 2024

10 20 30 40 50

20

30

40

50

60

70

80

training acc.

test acc. (original)

test acc. (noisy)

epochs

ac
cu

ra
cy

(a) Accuracies for S4D

10 20 30 40 50

20

30

40

50

60

70

80

training acc.

test acc. (original)

test acc. (noisy)

epochs

ac
cu

ra
cy

(b) Accuracies for S4-PTD
∥E∥/∥AH∥

ac
cu

ra
cy κ

(Ṽ
H
)

(c) Ablation study

Figure 3: (a) and (b): the training and test accuracies of the S4D model and the S4-PTD model
on contaminated and uncontaminated CIFAR-10 dataset (see section 5.2). (c): The effect of the
perturbation size on the accuracy (shown in red) of the S4-PTD model and the eigenvector condition
number (shown in blue) of the perturbed HiPPO matrix (see section 5.3).

0 100 200 300 400
10

20

30

40

50

60

70

80

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

s

ac
cu

ra
cy

|G
D

iag (is)|
(a) Accuracy for S4D

0 100 200 300 400
10

20

30

40

50

60

70

80

0

0.2

0.4

0.6

0.8

1

1.2

1.4

s

ac
cu

ra
cy

|G
Pert (is)|

(b) Accuracy for S4-PTD
Figure 4: A Fourier-mode perturbation of frequency s is added to the test dataset. The blue curve,
plotted to the left vertical axis, shows the test accuracy of the model under perturbations of different
frequencies s. The orange curve, plotted to the right vertical axis, shows the magnitude of the
transfer function of the LTI system associated with the initialization.

gets sparser as n increases (see Figure 1), which improves its “average-case” robustness. Also, to
enable easy detection of frequencies at which the S4D is unstable, in this experiment, we fix the
state matrix A. However, we empirically observed that training the state matrix A does not resolve
the robustness issue. We provide more details about these two remarks in Appendix K.2.

5.3 ABLATION STUDY OF OUR MODEL

As mentioned in section 4, the size of the perturbation plays a key role in the performance of our S4-
PTD and S5-PTD models. When E = 0, the eigenvector condition number of AH is exponential in
n, making it numerically impossible to diagonalize when n is moderately large. On the other hand,
when E overshadows AH , the initialization scheme becomes a random one, often leading to poor
performance (Gu et al., 2021). In this section, we train an S4-PTD model to learn the sequential
CIFAR (sCIFAR) task. We control the size of the perturbation ∥E∥ by changing the hyperparameter
γ in the optimization problem eq. (11). For each perturbation matrix E, we then initialize our S4-
PTD model by diagonalizing AH +E. In Figure 3c, we plot (in red) the test accuracies with respect
to different perturbation sizes. We see that our S4-PTD model achieves its best performance when
the ratio between the perturbation size and the size of the HiPPO matrix is between 10−2 and 1, while
the accuracy drops when this ratio gets too small or too large. This aligns with our expectations. In
addition, the (blue) curve of the eigenvector condition number admits a straight-line pattern with a
slope of roughly −1, corroborating the factor ϵ−1 in Theorem 4.

6 CONCLUSION

In this paper, we propose a perturb-then-diagonalize (PTD) methodology that can be used to di-
agonalize the non-normal HiPPO matrices. Motivated by our theoretical study, we apply the PTD
method to robustify the diagonal initialization used in the S4D and S5 models. While our theory
focuses on initialization, some empirical evaluations suggest that the PTD method also robustifies
the trained diagonal models, which is an interesting future research avenue.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced
Scientific Computing Research, Scientific Discovery through Advanced Computing (SciDAC) pro-
gram, under Contract Number DE-AC02-05CH11231 at Lawrence Berkeley National Laboratory. It
used the Lawrencium computational cluster provided by the IT Division at the Lawrence Berkeley
National Laboratory (Supported by the Director, Office of Science, Office of Basic Energy Sciences,
of the U.S. Department of Energy) and resources of the National Energy Research Scientific Com-
puting Center (NERSC, using award ASCR-ERCAP0023337), a U.S. Department of Energy Office
of Science User Facility located at Lawrence Berkeley National Laboratory, both operated under
Contract No. DE-AC02-05CH11231. NBE would also like to acknowledge NSF, under Grant No.
2319621, for providing partial support of this work. Our conclusions do not necessarily reflect the
position or the policy of our sponsors, and no official endorsement should be inferred.

REFERENCES

Athanasios C. Antoulas and Brian D.O. Anderson. On the scalar rational interpolation problem.
IMA Journal of Mathematical Control and Information, 3(2-3):61–88, 1986.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120–1128. PMLR, 2016.

Quirin Aumann and Ion Victor Gosea. Practical challenges in data-driven interpolation: dealing with
noise, enforcing stability, and computing realizations. arXiv preprint arXiv:2301.04906, 2023.

Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling. arXiv preprint arXiv:1803.01271, 2018.

Jess Banks, Archit Kulkarni, Satyaki Mukherjee, and Nikhil Srivastava. Gaussian regularization of
the pseudospectrum and davies’ conjecture. Communications on Pure and Applied Mathematics,
74(10):2114–2131, 2021.

Bo Chang, Minmin Chen, Eldad Haber, and Ed H. Chi. Antisymmetricrnn: A dynamical system
view on recurrent neural networks. In International Conference on Machine Learning, 2019.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. In International Conference on Machine Learning, 2020.

Paul M. Cohn. Further algebra and applications. Springer-Verlag London, Ltd., London, 2003.
ISBN 1-85233-667-6.

E. Brian Davies. Approximate diagonalization. SIAM journal on matrix analysis and applications,
29(4):1051–1064, 2008.

E. Brian Davies and Mildred Hager. Perturbations of Jordan matrices. Journal of Approximation
Theory, 156(1):82–94, 2009.

James Demmel. The componentwise distance to the nearest singular matrix. SIAM Journal on
Matrix Analysis and Applications, 13(1):10–19, 1992.

N. Benjamin Erichson, Omri Azencot, Alejandro Queiruga, Liam Hodgkinson, and Michael W.
Mahoney. Lipschitz recurrent neural networks. In International Conference on Learning Repre-
sentations, 2021.

Albert Gu, Tri Dao, Stefano Ermon, Atri Rudra, and Christopher Ré. Hippo: Recurrent memory
with optimal polynomial projections. Advances in neural information processing systems, 33:
1474–1487, 2020.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré. Com-
bining recurrent, convolutional, and continuous-time models with linear state space layers. Ad-
vances in neural information processing systems, 34:572–585, 2021.

10

Published as a conference paper at ICLR 2024

Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. On the parameterization and initialization
of diagonal state space models. Advances in Neural Information Processing Systems, 35:35971–
35983, 2022a.

Albert Gu, Karan Goel, and Christopher Re. Efficiently modeling long sequences with structured
state spaces. In International Conference on Learning Representations, 2022b.

Albert Gu, Isys Johnson, Aman Timalsina, Atri Rudra, and Christopher Ré. How to train your hippo:
State space models with generalized orthogonal basis projections. International Conference on
Learning Representations, 2023.

Ramin Hasani, Mathias Lechner, Tsun-Hsuan Wang, Makram Chahine, Alexander Amini, and
Daniela Rus. Liquid structural state-space models. International Conference on Learning Repre-
sentations, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are
rnns: Fast autoregressive transformers with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Giancarlo Kerg, Kyle Goyette, Maximilian Puelma Touzel, Gauthier Gidel, Eugene Vorontsov,
Yoshua Bengio, and Guillaume Lajoie. Non-normal recurrent neural network (nnrnn): learn-
ing long time dependencies while improving expressivity with transient dynamics. Advances in
neural information processing systems, 32, 2019.

Nikita Kitaev, Łukasz Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. In
International Conference on Machine Learning, 2020.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Ankit Kumar and Kristofer Bouchard. Non-normality in neural networks. In AI and Optical Data
Sciences III, volume 12019, pp. 70–76. SPIE, 2022.

Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth
64 words: Long-term forecasting with transformers. In The Eleventh International Conference
on Learning Representations, 2023.

Naoki Nonaka and Jun Seita. In-depth benchmarking of deep neural network architectures for ecg
diagnosis. In Machine Learning for Healthcare Conference, pp. 414–439. PMLR, 2021.

A. Emin Orhan and Xaq Pitkow. Improved memory in recurrent neural networks with sequential
non-normal dynamics. Internation Conference on Learning Representations, 2020.

Antonio Orvieto, Samuel L. Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. arXiv preprint
arXiv:2303.06349, 2023.

David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub M. Tomczak, and Mark Hoogendoorn. Ck-
conv: Continuous kernel convolution for sequential data. In International Conference on Machine
Learning, 2022.

T. Konstantin Rusch and Siddhartha Mishra. Unicornn: A recurrent model for learning very long
time dependencies. In International Conference on Machine Learning, pp. 9168–9178. PMLR,
2021.

Biswa Sengupta and Karl J. Friston. How robust are deep neural networks? arXiv preprint
arXiv:1804.11313, 2018.

Jimmy T.H. Smith, Andrew Warrington, and Scott Linderman. Simplified state space layers for se-
quence modeling. In The Eleventh International Conference on Learning Representations, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. International Conference in Learning Representations, 2021.

11

Published as a conference paper at ICLR 2024

Lloyd N. Trefethen. Approximation Theory and Approximation Practice, Extended Edition. Society
for Industrial and Applied Mathematics, Philadelphia, PA, 2019.

Lloyd N. Trefethen and Mark Embree. Spectra and Pseudospectra: The Behaviour of Non-normal
Matrices and Operators. Springer, 2005.

Aaron Voelker, Ivana Kajić, and Chris Eliasmith. Legendre memory units: Continuous-time repre-
sentation in recurrent neural networks. Advances in neural information processing systems, 32,
2019.

Pete Warden. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv
preprint arXiv:1804.03209, 2018.

Max A. Woodbury. Inverting modified matrices. Princeton University, Princeton, N. J., 1950. Sta-
tistical Research Group, Memo. Rep. no. 42,.

Cagatay Yildiz, Markus Heinonen, and Harri Lähdesmäki. Continuous-time model-based reinforce-
ment learning. In International Conference on Machine Learning, pp. 12009–12018. PMLR,
2021.

Kemin Zhou and John Comstock Doyle. Essentials of robust control, volume 104. Prentice Hall,
Upper Saddle River, NJ, 1998.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting. In International Conference
on Machine Learning, pp. 27268–27286. PMLR, 2022.

12

Published as a conference paper at ICLR 2024

APPENDIX

The Appendix is organized as follows. In Appendix A, we survey the background of ill-posed
problems, including conditioning, stability, and backward and forward errors. In Appendix B, we
provide more background information on LTI systems, including the derivation of the transfer func-
tion, system diagonalization, and system discretization, which provides insights into our theory and
models. In Appendix C, we prove a result on the difference between the two transfer functions
associated with the S4 initialization and the S4D initialization, respectively. Using this result, we
prove Theorem 2 and 1 on the uniform divergence and the input-wise convergence in Appendix D
and E, respectively. We then present in Appendix F the details of some numerical experiments cor-
roborating these two theorems and in Appendix G an experiment on a synthetic example that shows
the S4D initialization is not as robust as the S4/S4-PTD initialization. In Appendix H, we prove the
results in section 4 that are related to perturbing the HiPPO matrix and introduce more background
of perturbed diagonalization, which are then verified in Appendix I by a numerical experiment. Fi-
nally, in Appendix J we give the details of our experiments in section 5 and in appendix K some
supplementary results on the robustness of the S4D/S4-PTD model during training.

A MORE BACKGROUND INFORMATION OF ILL-POSED PROBLEMS

To make the phrase “ill-posed” precise, we need to introduce the idea of condition numbers. The
conditioning is a property of a problem and it does not depend on the algorithm that we use. Ab-
stractly, we let the problem space X and the solution space Y be two normed vector spaces with the
norms ∥ · ∥X and ∥ · ∥Y , respectively. Each element in x ∈ X is considered as an instance of the
problem and its solution in the solution space Y is defined by a map f : X → Y . For example, if
we want to solve a system Ax = b0 with different matrices A and a fixed vector b0, then we can
make X the space of n-by-n matrices and Y the space of vectors of length n. In that case, we have
f(A) = A−1b0.4 Likewise, consider the problem of finding eigenvalues. We can make X and Y
both equal to the space of n-by-n matrices and f(A) = Λ, the eigenvalue matrix of A. Now, given
an instance x ∈ X , we define the (absolute) condition number of problem f at x to be

κ(x; f) = lim
ϵ→0

sup
∥δx∥X≤ϵ

∥f(x)− f(x+ δx)∥Y
∥δx∥X

.

Intuitively, a large condition number means that if we perturb the problem by a little bit, then the
solution may become drastically different. Hence, in general, we do not expect that a solution of
an ill-conditioned problem can be found accurately using floating-point arithmetic because a small
rounding error has a large effect on the computed solution.

Unlike the conditioning of a problem x, stability is a property of an algorithm. Let f̃ : X → Y be
an algorithm that solves f . We are particularly interested in the “backward stability” of f̃ . That is,
if for any x ∈ X , there exists an element x̃ ∈ X so that f̃(x) = f(x̃) and

Eb(x) =
∥x− x̃∥X
∥x∥X

is small, then we say that f̃ is backward stable. Intuitively, this is saying that our algorithm is
computing the solution to a nearby problem x̃. Note that this is different from saying that

Ef (x) =
∥f(x)− f̃(x)∥Y

∥f(x)∥Y
is small. This error measures how accurately we solved our problem. The error Ef is called a for-
ward error, while Eb is called a backward error. We can control the forward error using the backward
error, and this bound is established through the condition number of the problem. (Intuitively, this
says that if a problem is well-conditioned, then a small perturbation to the problem does not change
the solution by too much. Hence, a small backward error leads to a small forward error.) The
advantage of studying backward stability is two-fold. First, the backward error is decoupled from

4Of course, this function is not defined at singular matrices, but since they form a Lebesgue null set, f is
still defined almost everywhere.

1

Published as a conference paper at ICLR 2024

Problem Space Solution Space
An ill-conditioned problem

A close but
well-conditioned

problem

AH

ÃH

≈
VH

ṼH

̸=

ΛH

Λ̃H

̸=

V−1
H

Ṽ−1
H

̸=

Figure 5: An illustration of the perturbation of an ill-posed problem.

the conditioning of the problem. Hence, backward stable algorithms are much more common than
forward stable algorithms, because in many cases, the ill-conditioned problems essentially prevent
an algorithm from being forward stable. On the other hand, if an algorithm is backward stable, then
we know that its forward error must be small on well-conditioned problems.

In our paper, we consider the case where we are forced to solve an ill-conditioned problem x. We
propose to use a backward stable algorithm f̃ to solve it. Since the problem is ill-conditioned, we do
not have that f(x) is close to f̃(x), i.e., we cannot find the solutions accurately. However, we know
that f̃(x) is the solution to x̃, where x ≈ x̃. In many machine learning applications, this is enough
to guarantee an acceptable solution. (See Figure 5.)

B MORE BACKGROUND INFORMATION OF STATE-SPACE MODELS

Recall that an LTI system Σ = (A,B,C,D) is given by

x′(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t).
(12)

Assume the initial condition is given by x(0) = 0 and the input function u(·) is bounded and
integrable. Suppose the system is asymptotically stable, i.e., Λ(A) is contained in the left half-plane.
Then, we have x(·) and y(·) are also bounded and integrable. By taking the Fourier transform of the
LTI system, we have

six̂(s) = Ax̂(s) +Bû(s),

ŷ(s) = Cx̂(s) +Dû(s).
(13)

Rearranging the first equation gives us

x̂(s) = (siI−A)−1Bû(s), s ∈ R.
Plugging it into the second equation of eq. (13), we can derive the transfer function on the imaginary
axis:

ŷ(s) =
[
C(siI−A)−1B+D

]︸ ︷︷ ︸
G(si)

û(s), s ∈ R.

Let V ∈ Cn×n be an invertible matrix. Consider the system Σ̃ = (V−1AV,V−1B,CV,D):

x′(t) = V−1AVx(t) +V−1Bu(t),

y(t) = CVx(t) +Du(t).
(14)

2

Published as a conference paper at ICLR 2024

By multiplying the first equation by V, we have

Vx(t) = AVx(t) +Bu(t),

and defining the new state variable ξ(t) = Vx(t), we can write Σ̃ into

ξ(t) = Aξ(t) +Bu(t),

y(t) = Cξ(t) +Du(t).

Hence eq. (12) and (14) are equivalent with their states connected via V. We also can verify this by
computing the transfer function of Σ̃:

G̃(s) := CV(sI−V−1AV)−1V−1B+D = C(sI−A)−1B+D = G(s).

The LTI system Σ is continuous-time. In order to apply it to sequential input, we need to discretize
the system. Given a step size ∆t, there are two common ways of discretizing the system:

Bilinear : A =

(
I−∆t

2
A

)−1(
I+

∆t

2
A

)
, B = ∆t

(
I−∆t

2
A

)−1

B, (C,D) = (C,D),

ZOH : A = exp(∆tA), B = A−1(exp(∆tA)− I)B, (C,D) = (C,D).

Then, the discrete system

xt = Axt−1 +But−1,

yt = Cxt +Dut

(15)

takes the discrete sequential input (u0,u1, . . .). The discrete system eq. (15) mimics the continuous
system eq. (12) by sampling the continuous input signal u(·) at time intervals ∆t: (u0,u1, . . .) =
(u(0∆t),u(1∆t), . . .). The SSMs store the continuous LTI systems. When evaluating on a discrete
input, they discretize the continuous systems using a trainable step size ∆t and either the Bilinear
or the ZOH descritization.

C PROOF OF THE TRANSFER FUNCTION DEVIATION

In this section, we prove a result on the difference between the transfer functions GDPLR and GDiag.
The starting point is to use the Woodbury matrix identity to separate out the rank-1 part in the
resolvent that appears in GDPLR. In section 3, we let C = e⊤ℓ VH for some fixed ℓ. Since we will
reserve the letter ℓ as an index in the proof, in the appendices, we change the notation and assume
C = e⊤p VH . While this introduces a notation collision with the length of the output vector y, it
does not cause any confusion in the proofs.

Lemma 1. Let GDPLR and GDiag be defined by eq. (8). For any s ∈ C with Re(s) = 0, we have

GDPLR(s)−GDiag(s) =
−s

(−1)n−1 ∏n−1
j=1 (j−s)∏n

j=1(j+s)

√
2p− 1

∏p−2
j=0 (s−j)∏p
j=1(s+j)

√
2

(
1 + s

(−1)n−1
∏n−1

j=1 (j−s)∏n
j=1(j+s)

) . (16)

The proof of Lemma 1 is technical. Here, we provide an intuitive explanation before diving into the
proof. The idea is to expand the term (sI−A⊥

H +BHB⊤
H/2)−1 in the expression of GDiag using the

Woodbury matrix identity (Woodbury, 1950), which leads to a primary term (sI−A⊥
H)−1 that gets

canceled with that in GDPLR and residual terms that are expanded by Cramer’s rule. The importance
of eq. (16) is that it reduces the complicated matrix inversions to elementary operations, enabling
further analysis.

Proof of Lemma 1. For notational cleanliness, in this proof, we define A = AH , A⊥ = A⊥
H , and

B = BH . To begin with, we expand (sI−A⊥
H)−1BH using the Woodbury matrix identity (Wood-

3

Published as a conference paper at ICLR 2024

bury, 1950):

(sI−A⊥
H)−1BH = (sI−A−BB⊤)−1B

=
[
(sI−A)−1 + (sI−A)−1B(1−B⊤(sI−A)−1B)−1B⊤(sI−A)−1

]
B

= (sI−A)−1B+
B⊤(sI−A)−1B

1−B⊤(sI−A)−1B
(sI−A)−1B

= (sI−A)−1B+

(
1 +

2B⊤(sI−A)−1B− 1

1−B⊤(sI−A)−1B

)
(sI−A)−1B

= 2(sI−A)−1B+
2B⊤(sI−A)−1B− 1

1−B⊤(sI−A)−1B
(sI−A)−1B.

Hence, when CDPLR = CDiag = I, the difference between GDPLR and GDiag can be written as

1

2
(sI−A⊥

H)−1BH − (sI−AH)−1BH =
2B⊤(sI−A)−1B− 1

2− 2B⊤(sI−A)−1B
(sI−A)−1B. (17)

Our next step is to study B⊤(sI − A)−1B that appears in eq. (17). To wit, we use Hua’s iden-
tity (Cohn, 2003) to obtain

B⊤(sI−A)−1B = B⊤

(
−A−1 +

(
A− 1

s
A2

)−1
)
B

= B⊤
(
−A−1 + s (A(sI−A))

−1
)
B.

It is easy to see that B⊤A−1B = −1/2. Hence, we have

B⊤(sI−A)−1B =
1

2
+ sB⊤(sI−A)−1A−1B.

Note that when s = 0, the second term in the expression above vanishes, and therefore we already
have that (A⊥)−1B/2 = A−1B. To deal with the general case when s is a purely imaginary
number, we first note that A−1B = −e1/

√
2 because B is −1/

√
2 times the first column of A.

Hence, sB⊤(sI−A)−1A−1B is equal to s times the first coordinate of B⊤(sI−A)−1, which we
now compute using Cramer’s rule. The first coordinate of B⊤(sI−A)−1 can be written as

B⊤(sI−A)−1e1 = e⊤1 (sI−A)−∗B = e⊤1 (−sI−A∗)−1B,

where s = −s since s is purely imaginary. By Cramer’s rule, we have that

e⊤1 (−sI−A∗)−1B =

det


1

√
3

√
5 · · ·

√
2n− 1√

3 2− s
√
15 · · ·

√
3(2n− 1)√

5 0 3− s · · ·
√

5(2n− 1)
...

...
...

. . .
...√

2n− 1 0 0 · · · n− s



√
2det


1− s

√
3

√
5 · · ·

√
2n− 1

0 2− s
√
15 · · ·

√
3(2n− 1)

0 0 3− s · · ·
√

5(2n− 1)
...

...
...

. . .
...

0 0 0 · · · n− s



.

Obviously, the denominator is
√
2
∏n

j=1(j−s). We compute the numerator by solving a recurrence.
We use Dn to denote this determinant. Hence, we have D1 = 1 and D2 = −1− s. To compute Dn,
we expand the last row and obtain

Dn=(−1)n+1
√
2n−1 det



√
3

√
5 · · ·

√
2n−3

√
2n−1

2−s
√
15 · · ·

√
3(2n−3)

√
3(2n−1)

0 3−s · · ·
√
5(2n−3)

√
5(2n−1)

...
...

. . .
...

...
0 0 · · · n−1−s

√
(2n−3)(2n−1)

+(n−s)Dn−1.

4

Published as a conference paper at ICLR 2024

To compute the determinant of this submatrix, we have

det



√
3

√
5 · · ·

√
2n− 3

√
2n− 1

2− s
√
15 · · ·

√
3(2n− 3)

√
3(2n− 1)

0 3− s · · ·
√
5(2n− 3)

√
5(2n− 1)

...
...

. . .
...

...
0 0 · · · n− 1− s

√
(2n− 3)(2n− 1)



= (−1)n−2det



√
2n−1

√
3

√
5 · · ·

√
2n−3√

3(2n−1) 2−s
√
15 · · ·

√
3(2n−3)√

5(2n−1) 0 3−s · · ·
√
5(2n−3)

...
...

...
. . .

...√
(2n−3)(2n−1) 0 0 · · · n−1−s


= (−1)n−1

√
2n−1Dn−1.

Hence, combining the two equations above, we obtain the following recurrence:

Dn = −(2n− 1)Dn−1 + (n− s)Dn−1 = (−n+ 1− s)Dn−1.

It is then easy to show that

Dn = (−1− s)(−2− s) · · · (−(n− 1)− s) = (−1)n−1
n−1∏
j=1

(j + s).

Putting everything together, we have

B⊤(sI−A)−1B =
1

2
− s conj

(
(−1)n−1

∏n−1
j=1 (j + s)

2
∏n

j=1(j − s)

)
=

1

2
− s

(−1)n−1
∏n−1

j=1 (j − s)

2
∏n

j=1(j + s)
. (18)

Now, it remains to study the term (sI−A)−1B in eq. (17). Since it is a vector of length n, we study
it component-wise, and the derivation is similar to the one above. To begin with, we fix a component
p that we wish to study. Then, by Cramer’s rule, we have

e⊤p (sI−A)−1B

=

det



s+ 1 0 0 · · · 1 · · · 0√
3 s+ 2 0 · · ·

√
3 · · · 0√

5
√
15 s+ 3 · · ·

√
5 · · · 0√

7
√
21

√
35 · · ·

√
7 · · · 0

...
...

...
. . .

...
. . .

...√
2n− 1

√
3(2n− 1)

√
5(2n− 1) · · ·

√
2n− 1 · · · s+ n



√
2det



s+ 1 0 0 · · · 0 · · · 0√
3 s+ 2 0 · · · 0 · · · 0√
5

√
15 s+ 3 · · · 0 · · · 0√

7
√
21

√
35 · · · 0 · · · 0

...
...

...
. . .

...
. . .

...√
2n−1

√
3(2n−1)

√
5(2n−1) · · ·

√
(2p−1)(2n−1) · · · s+n



.

Clearly, we have that the denominator is equal to
√
2
∏n

j=1(j + s). To compute the numerator, we
first subtract the pth column from the first column. This shows that the numerator is equal to

s det


s+ 2 0 · · ·

√
3 · · · 0√

15 s+ 3 · · ·
√
5 · · · 0√

21
√
35 · · ·

√
7 · · · 0

...
...

. . .
...

. . .
...√

3(2n− 1)
√
5(2n− 1) · · ·

√
2n− 1 · · · s+ n

 . (19)

5

Published as a conference paper at ICLR 2024

We can then subtract
√
3 times the (p−1)th column of the submatrix from the first column, showing

that the numerator is equal to

s(s− 1) det


s+ 3 · · ·

√
5 · · · 0√

35 · · ·
√
7 · · · 0

...
. . .

...
. . .

...√
5(2n− 1) · · ·

√
2n− 1 · · · s+ n

 .

Continuing in this manner, we have that the numerator is equal to

s(s−1) · · · (s−p+2) det



√
2p−1 0 0 · · · 0√
2p+1 s+p+1 0 · · · 0√
2p+3

√
(2p+3)(2p+1) s+p+2 · · · 0

...
...

...
. . .

...√
2n−1

√
(2n−1)(2p+1)

√
(2n−1)(2p+2) · · · s+n


=
√
2p− 1s(s− 1) · · · (s− p+ 2)(s+ p+ 1)(s+ p+ 2) · · · (s+ n).

Hence, we have

e⊤p (sI−A)−1B =

√
2p− 1

∏p−2
j=0(s− j)

√
2
∏p

j=1(s+ j)
. (20)

Note that the expression above does not depend on n. Combining eq. (17), (18), (20), when CDPLR =
CDiag = e⊤p , we have

GDPLR(s)−GDiag(s) = e⊤p

[
1

2
(sI−A⊥)−1B− (sI−A)−1B

]

=

2

(
1
2 − s

(−1)n−1 ∏n−1
j=1 (j−s)

2
∏n

j=1(j+s)

)
− 1

2− 2

(
1
2 − s

(−1)n−1
∏n−1

j=1 (j−s)

2
∏n

j=1(j+s)

)√
2p− 1

∏p−2
j=0(s− j)

√
2
∏p

j=1(s+ j)

=
−s

(−1)n−1 ∏n−1
j=1 (j−s)∏n

j=1(j+s)

√
2p− 1

∏p−2
j=0 (s−j)∏p
j=1(s+j)

√
2

(
1 + s

(−1)n−1
∏n−1

j=1 (j−s)∏n
j=1(j+s)

) .

(21)

This completes the proof of the lemma.

D PROOF OF THEOREM 2

In this section, we prove Theorem 2. The idea is to locate the last spike in the figure of GDiag
(see Figure 1) and control the height of its peak by lower-bounding the denominator of eq. (16).

Proof of Theorem 2. Fix an n ≥ p. Define sn by

sn = max

{
s ≥ 0

∣∣∣∣∣A(s) := si
(−1)n−1

∏n−1
j=1 (j − si)∏n

j=1(j + si)
is real and ≤ 0

}
. (22)

Note that this set is finite because A(s) → 1 as s → ∞; thus, its supremum is attained. Therefore,
we have that∣∣∣∣∣1 + sni

(−1)n−1
∏n−1

j=1 (j − sni)∏n
j=1(j + sni)

∣∣∣∣∣ = 1−

∣∣∣∣∣sni (−1)n−1
∏n−1

j=1 (j − sni)∏n
j=1(j + sni)

∣∣∣∣∣ = |n+ sni| − sn
|n+ sni|

.

(23)

6

Published as a conference paper at ICLR 2024

In what follows, we show that sn = Ω(n2)5 Then, combined with Lemma 1, we have that as
n → ∞,

|GDPLR(sni)−GDiag(sni)| =
s2n

√
2p− 1√

2 |p−1+sni| |p+sni| (|n+sni|−sn)
= Θ(1)

1√
n2+s2n − sn

= Θ(1)

√
n2+s2n + sn

n2
.

If we can show that sn = Ω(n2), then we have that |GDPLR(sni)−GDiag(sni)| = Ω(1) and does not
converge to zero. To this end, we first rewrite the expression into

A(sn)=sni
(−1)n−1

∏n−1
j=1 (j−sni)∏n

j=1(j+sni)
=

sni

n+sni

n−1∏
j=1

sni−j

sni+j
=

sni

n+sni
exp

−i2

n−1∑
j=1

arctan
j

sn

 .

(24)
Since arctanx = Θ(x) as x → 0, if we assume, for a contradiction, that snk

= o(nk
2) for a

subsequence snk
of sn, then we must have that

nk−1∑
j=1

arctan
j

snk

−
nk−1∑
j=1

arctan
j

max{nk, 2snk
}
→ ∞ as k → ∞.

We pick some index nk ≥ p large enough such that
∑nk−1

j=1 arctan(j/snk
) −∑nk−1

j=1 arctan(j/max{nk, 2snk
}) ≥ 2π. Hence, as s increases from snk

to max{nk, 2snk
}, the

angle of the unit imaginary number

exp

−i2

nk−1∑
j=1

arctan
j

s


changes by at least 4π whereas the angle of si/(n+ si) changes by at most π/2. Hence, the winding
number of the curve

Γ : s 7→ si

nk+si
exp

−i2

nk−1∑
j=1

arctan
j

s

 , s ∈ [snk
,max{nk, 2snk

}],

is non-zero. That is, we must have an s ∈ (snk
,max{nk, 2snk

}) such that the angle of A(s) is equal
to π modulo 2π, but this is a contradiction because snk

< s. Hence, we have sn = Ω(n2).

E PROOF OF THEOREM 1

In this section, we prove Theorem 1. Since the proof is very involved, we provide some intuition
here. In Figure 1, we observe that for a sufficiently large n, as |s| increases, the difference between
the two transfer functions, GDPLR − GDiag, goes through three stages. In the first stage (i.e., the
pre-spike stage), the large spikes have yet developed. In this stage, as n increases, |GDPLR −GDiag|
decreases uniformly. In the second stage (i.e., the spike stage), the spikes start to occur. This is the
stage in which we do not get uniform convergence. However, by carefully controlling the locations
and the total measure of the spikes, we can show that when the Fourier transform of a fixed input
function with a sufficient decay is multiplied with GDPLR − GDiag, its integral on the second stage
vanishes linearly as n → ∞. Finally, after the last spike, we enter the third stage (i.e., the post-spike
stage). In this stage, |GDPLR −GDiag| enjoys rapid decay. In what follows, we carefully analyze the
three stages separately to prove Theorem 1.

Proof of Theorem 1. Let u satisfy the assumptions in Theorem 1. Without loss of generality, we
assume û(s) vanishes on (−∞, 0] because the argument would be symmetric for a negative s. Let

Hn(s) = GDPLR(s)−GDiag(s) =
−s

(−1)n−1 ∏n−1
j=1 (j−s)∏n

j=1(j+s)

√
2p− 1

∏p−2
j=0 (s−j)∏p
j=1(s+j)

√
2

(
1 + s

(−1)n−1
∏n−1

j=1 (j−s)∏n
j=1(j+s)

) .

5We say f(n) = Ω(g(n)) if there exists a constant C > 0 such that f(n) ≥ Cg(n) for all n ∈ N.

7

Published as a conference paper at ICLR 2024

We set s(1)n = cn, where c is a universal constant determined later on, and

s(2)n = max

{
s ≥ 0

∣∣∣∣∣A(s) := si
(−1)n−1

∏n−1
j=1 (j − si)∏n

j=1(j + si)
is purely imaginary and Im(A(s)) ≥ 0

}
.

(25)
By the same argument as in the proof of Theorem 2, we have s(2)n = O(n2). To compute the integral
of |Hn(si)û(s)|2 on [0,∞), we do so on each of the three stages, marked by [0, s

(1)
n), [s(1)n , s

(2)
n),

and [s
(2)
n ,∞), respectively. Since 2p− 1 is a constant appearing unanimously in |Hn(si)û(s)|2 for

all n, we absorb it into the asymptotic notations in this proof. Unless otherwise stated, the constants
in the asymptotic bounds in this proof are universal constants depending only on p; in particular,
they do not depend on n or s.

Integrate on the pre-spike stage: Since∣∣∣∣∣s (−1)n−1
∏n−1

j=1 (j − s)∏n
j=1(j + s)

∣∣∣∣∣ = |s|
|n+ s|

and s = O(n) whenever 0 ≤ s ≤ s
(1)
n , the denominator of Hn is lower-bounded by a constant

independent of n. Hence, we have |Hn(si)| = O(n−1) on [0, s
(1)
n). Using Hölder’s inequality,

we have
ˆ s(1)n

0

|Hn(si)û(s)|2 ds ≤ ∥Hn(si)∥2L∞([0,s
(1)
n))

∥û(s)∥2
L2([0,s

(1)
n))

= O(n−2). (26)

Integrate on the post-spike stage: For s ≥ s
(2)
n , the denominator of Hn is lower-bounded by

a constant independent of n. Hence, we have |Hn(si)| = O(s−1), where the constant does not
depend on n. Hence, we haveˆ ∞

s
(2)
n

|Hn(si)û(s)|2 ds =
ˆ ∞

s
(2)
n

O(s−2−2q)ds = O(n−2−4q) (27)

because s
(2)
n = O(n2).

Integrate on the spike stage: To integrate |Hn(si)û(s)|2 on [s
(1)
n , s

(2)
n], we first define the angle

function by

a(s) := arg
(

si

n+ si

)
+ 2

n−1∑
j=1

arctan

(
j

s

)
= arctan

(n
s

)
+ 2

n−1∑
j=1

arctan

(
j

s

)

≡ arg

(
si
(−1)n−1

∏n−1
j=1 (j − si)∏n

j=1(j + si)

)
(mod 2π).

The importance of a(s) is that when a(s) is close to (2k+1)π for some integer k, we get a spike in
the figure of |Hn|. We therefore partition the oscillation stage into two parts:

S1 = {s ∈ [s(1)n , s(2)n) | |a(s)− (2k + 1)π| < π/4 for some k ∈ N}, S2 = [s(1)n , s(2)n) \ S1.

The integral on S2 is studied in the same way as the decay stage:
ˆ
S2

|Hn(si)û(s)|2 ds ≤
ˆ O(n2)

O(n)

O(s−2−2q)ds = O(n−1−2q). (28)

To study the spikes, we first need to derive a simplified expression of the denominator. Fix an
s ∈ S1. We let

α(s) = min
k

|a(s)− (2k + 1)π|

and

d(s) =

∣∣∣∣∣1 + si
(−1)n−1

∏n−1
j=1 (j − si)∏n

j=1(j + si)

∣∣∣∣∣ .
8

Published as a conference paper at ICLR 2024

Since

r(s) := 1−

∣∣∣∣∣si (−1)n−1
∏n−1

j=1 (j − si)∏n
j=1(j + si)

∣∣∣∣∣ = 1− s√
s2 + n2

,

by the cosine law, we have (see Figure 6)

cos

(
π

2
− α(s)

2

)
=

−d2 + r(s)2 + 4 sin2(α(s)/2)

4r(s) sin(α(s)/2)

⇒ d(s)2 = r(s)2 + 4 sin2
(
α(s)

2

)
− 4r(s) sin2

(
α(s)

2

)
≥ r(s)2 + sin2

(
α(s)

2

)
,

where the last inequality follows from the fact that r(s) < 1/2 for a sufficiently large constant c in
the definition of s(1)n .6 Therefore, we have

|Hn(si)û(s)|2 = O(s−2−2q)
1

d(s)2
≤ O(s−2−2q)

1

r(s)2 + α(s)2
, (29)

where we used the fact that x/π ≤ sin(x) ≤ x for all 0 ≤ x ≤ π/2. Clearly, we have

r(s)2 =

(√
s2 + n2 − s√
s2 + n2

)2

=

(
s2 + n2 − s2√

s2 + n2(
√
s2 + n2 + s)

)2

= O
(
n4

s4

)
(30)

because s = Ω(n). To study α(s), we first need to compute a(s). To this end, note that since we
assume s = Ω(n), there exist two universal constants C1, C2 > 0, independent of n, such that

C1
j

s
≤ arctan

(
j

s

)
≤ C2

j

s
, 1 ≤ j ≤ n− 1.

Hence, we have

a(s) = Θ

(
n2

s

)
.

By the intermediate value theorem and monotonicity of a, there are kn = O(n) frequencies
s1, . . . , skn between s = s

(1)
n and s = s

(2)
n such that a(sj) ≡ π (mod 2π) for all 1 ≤ j ≤ kn.

Each sj is contained in a connected component S(j)
1 = (ξj , ζj) of S1 and S1 =

⋃kn

j=1 S
(j)
1 . That is,

we have

s(1)n < ξkn
< skn

< ζkn
< ξkn−1 < skn−1 < ζkn−1 < · · · < ξ1 < s1 < ζ1 < s(2)n .

Moreover, there are two universal constants C1, C2 > 0, independent of n or j, such that

C1j
−1n2 ≤ sj ≤ C2j

−1n2.

Combined with eq. (30), we have

r(s)2 = O
(
j4

n4

)
, s ∈ S

(j)
1 , 1 ≤ j ≤ kn,

where the constant is universal and does not depend on n or j. To integrate |Hn(si)û(s)|2 on S1, we
integrate it on each of (ξj , ζj). To do so, we study the value of α(s) using the Mean Value Theorem.
First, we note that for any given sj , we have

d

ds
a(sj) = −Θ(1)

n−1∑
k=1

1

1 + k2

s2j

k

s2j
= −Θ(1)

1

s2j

n−1∑
k=1

k
s2j+k2

s2j

= −Θ(1)

n−1∑
k=1

k

s2j
= −Θ(1)

n2

s2j
= −Θ(1)

j2

n2
,

6This is our only requirement of the universal constant c appearing in the definition of s(1)n .

9

Published as a conference paper at ICLR 2024

where the constant in the Θ-notation does not depend on n or j. Hence, fixing a 1 ≤ j ≤ kn and
choosing s ∈ (ξj , ζj), by the Mean Value Theorem, we have

α(s) = |a(s)− a(sj)| = Θ(1)
j2

n2
|s− sj | .

This shows ζj − sj , sj − ξj = Θ(n2/j2). Hence, we haveˆ ζj

ξj

|Hn(si)û(s)|2 ds = O((j−1n2)−2−2q)

ˆ ζj

ξj

1

r(s)2 + α(s)2
ds

≤ O(j2+2qn−4−4q)

(ˆ sj+1

sj−1

1

r(s)2
ds+

ˆ sj−1

ξj

1

α(s)2
ds+

ˆ ζj

sj+1

1

α(s)2
ds

)

≤ O(j2+2qn−4−4q)

(
n4

j4
+

n4

j4

ˆ Θ(n2/j2)

1

δ−2dδ

)
= O(j−2+2qn−4q).

(31)

Suppose q > 1/2 and let q′ = q − 1/2. Then, we have
ˆ
S1

|Hn(si)û(s)|2 ds =
kn∑
j=1

ˆ ζj

ξj

|Hn(si)û(s)|2 ds = O(1)

kn∑
j=1

j−1+2q′n−2−4q′

≤ O(n−2)

kn∑
j=1

j−1−2q′ = O(n−2),

(32)

where the constant in the last O-notation only depends on p. Combining eq. (28) and (32), we have
that when q > 1/2, it holds that

ˆ s(2)n

s
(1)
n

|Hn(si)û(s)|2 ds = O(n−2). (33)

Put everything together: Combining eq. (26), (27), and (33) and applying Parseval’s identity, we
obtain
∥yDPLR−yDiag∥L2 = ∥ŷDPLR−ŷDiag∥L2 = ∥Hn(si)û(s)∥L2

=

√√√√ˆ s
(1)
n

0

|Hn(si)û(s)|2 ds+
ˆ s

(2)
n

s
(1)
n

|Hn(si)û(s)|2 ds+
ˆ ∞

s
(2)
n

|Hn(si)û(s)|2 ds = O(n−1).

This completes the proof.

F NUMERICAL EXPERIMENTS ON THEOREM 1 AND 2

In this section, we explain details and show supplementary results for the experiment in section 3
(see Figure 2). The first experiment examines the behaviors of the DPLR system and the diagonal
system given a single Fourier mode as an input. By doing so, we observe the “numerical unstable
modes” of the S4D model. This corroborates Theorem 2. Then, we compare the two systems using
two different input functions: an exponentially decaying function and the unit impulse. We will
show that the smoothness condition in Theorem 1 is necessary and the linear convergence rate is
tight.

In each of these experiments, we simulate LTI systems on some continuous input signals. It is
done as follows: given an input signal u(t)7 and an LTI system Σ, we fix the step size to be
∆t = 10−3. For some final time step N , we discretize our input function to obtain a vector
u = (u(0), u(∆t), . . . , u(N∆t)). We then discretize the LTI system bilinearly (see Appendix B)
and compute its output y on the input u. We call this procedure “simulate”, i.e.,

y = simulate(u,Σ, N).

In this section, we let ΣDPLR,n to be the DPLR system with state size n of S4 and ΣDiag,n to be the
diagonal system with state size n of S4D, where we always take C = e1 and D = 0.

7Since u will be scalar-valued in this section, we do not make it boldface.

10

Published as a conference paper at ICLR 2024

Figure 6: Illustration of the proof of Theorem 1.

0 500 1000

-5

0

5

10
10

-3

diag

DPLR

time step

ou
tp

ut
va

lu
e

s = 200

0 500 1000

-0.2

0

0.2
diag

DPLR

s = 322.5

time step

ou
tp

ut
va

lu
e

0 500 1000

-2

0

2

4

6
10

-3

diag

DPLR

s = 500

time step
ou

tp
ut

va
lu

e

Figure 7: Simulated outputs of the DPLR and diagonal systems with cosine wave inputs of different
frequencies s. Note the scale of the y-axis when s = 322.5.

F.1 THE DIAGONAL SYSTEM BEHAVES DIFFERENTLY FOR DISTINCT FOURIER MODES

Our first experiment considers the outputs of ΣDPLR,n and ΣDiag,n when the input is a cosine wave

us(t) = cos(st).

This function has a dense Fourier mode at frequency s. We fix n = 32 and let s change. In Figure 7,
we plot simulate(us,ΣDPLR,32, 10

3) and simulate(us,ΣDiag,32, 10
3) with s = 200, 322.5, and

500, respectively. We see that when s = 200 or 500, the outputs of the two systems are close to
each other - at least, they are on the same order of magnitude. However, when s = 322.5, the output
of the diagonal system blows up. In fact, this value of s is exactly where the spike in the plot of
∥GDiag∥ occurs when n = 32. Hence, we visualize the counter-example that shows the divergence
in Theorem 2.

F.2 THE DPLR AND DIAGONAL SYSTEMS CONVERGE ON THE EXPONENTIALLY DECAYING
FUNCTION

To test the function-wise convergence of the diagonal system to the DPLR system (see Theorem 1),
we consider the following exponentially decaying function:

ue(t) = e−tH(t),

where H = 1[0,∞) is the Heaviside function. The Fourier transform of this function is

ûe(s) =
1

1 + is
.

Hence, it is a function that satisfies the assumptions of Theorem 1. In the left panel of Fig-
ure 8, we show the difference between the two simulated outputs ∥simulate(ue,ΣDPLR,n, 10

4)−

11

Published as a conference paper at ICLR 2024

simulate(ue,ΣDiag,n, 10
4)∥ as n increases. We see that as n increases, simulate(ue,ΣDiag,n

converges to simulate(ue,ΣDPLR,n, 10
4). Moreover, the slope of the curve is roughly −1, indi-

cating a linearly convergence rate as n → ∞. This matches the theoretical statement in Theorem 1.

5 10 25 50 100

10
-3

10
-2

Exponentially Decaying Input

n

si
m

ul
at

io
n

er
ro

r

5 10 25 50 100

0.45

0.46

0.47

0.48

0.49

Unit Impulse Input

n

si
m

ul
at

io
n

er
ro

r
Figure 8: The difference between the outputs ∥simulate(u,ΣDPLR,n, 10

4) −
simulate(u,ΣDiag,n, 10

4)∥ for difference values of n when u is the exponentially decay-
ing function ue (left) and the unit impulse signal δ0 (right).

In Figure 2, we show the behaviors of the two simulated outputs as n increases. For the exponentially
decaying input function ue, the outputs demonstrate a clear pattern of convergence as n → ∞.

F.3 THE DPLR AND DIAGONAL SYSTEMS DIVERGE ON THE UNIT IMPULSE

Our experiment with the exponentially decaying input shows that the DPLR and diagonal systems
converge on a sufficiently smooth input function. One may wonder, however, if the smoothness
condition is necessary. To show that a mild one is indeed required, we consider the Dirac delta
function δ0. It is well-known that the Fourier transform of it is constantly one:

δ̂0(s) = 1, s ∈ R.
In that sense, δ0 is highly non-smooth as its Fourier transform does not decay at all. Since δ0 is a
distribution rather than a classical function, we cannot sample it directly. However, we can mimic
it by setting the discrete input to be the unit impulse (1, 0, 0, . . . , 0). In the right panel of Figure 8,
we see that ∥simulate(δ0,ΣDPLR,n, 10

4) − simulate(δ0,ΣDiag,n, 10
4)∥ does not decay as n

increases. We can take a closer look in Figure 2, where we plot the two output functions with
different state-space dimensions n. In particular, we see that as n increases, the output of the DPLR
system remains the same, whereas the output of the diagonal system becomes more oscillatory. We
do not have convergence. The oscillatory behavior can be explained by our observation in Figure 1:
the larger the n, the later the spike emerges. This means that for a larger n, the outputs of two
systems differ at a higher frequency (i.e., a more oscillatory mode).

G IMPLICATION OF THE THEORY: NON-ROBUSTNESS OF THE DIAGONAL
INITIALIZATION

The analysis of GDPLR and GDiag suggests the following caveat: while the S4 and the S4D models
tend to pertain similar behaviors as n gets large, the diagonal initialization scheme used by the S4D
model is less robust to perturbations in the frequency domain (see Figure 1). In particular, by eq. (3),
for a fixed state size n, input signals with frequency modes dense at the spikes of the plot of |GDiag|
are harder to process for the SSM. In turn, the S4D model is unstable near these modes. This does
not happen with the S4 model. Our observation suggests that instead of replacing the ill-posed
diagonalization problem with a well-conditioned but distinct one (i.e., the S4D initialization), which
creates a large backward error |GDPLR(s)−GDiag(s)|, one should solve the ill-posed problem using
a backward stable algorithm, even if the forward error (i.e., the miscalculation of eigenvalues and
eigenvectors) will be large (see section 4).

12

Published as a conference paper at ICLR 2024

20 40 60 80

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

am
pl

itu
de

In
te

rp
ol

at
io

n

True Amplitude

20 40 60 80

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

S4 Prediction

20 40 60 80

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

S4D Prediction

20 40 60 80

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

S4-PTD Prediction

20 40 60 80

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

am
pl

itu
de

frequency

E
xt

ra
po

la
tio

n

20 40 60 80

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

frequency
20 40 60 80

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

frequency
20 40 60 80

0.2

0.4

0.6

0.8

1

-1

-0.5

0

0.5

1

frequency

Figure 9: An SSM is trained to learn the amplitude of a signal A sin(st) given its samples. The
model is tested using signals {Aj sin(sjt)}, where Aj and sj are sampled on a uniform grid on
[0, 1] × [0, 100]. For each Aj and sj , the model predicts an amplitude Ãj , which we show in
the contour plots. The top row shows the interpolation result, where the functions in the training
datasets have frequencies only in s ∈ [0, 40] ∪ [60, 100]. The bottom row shows the extrapolation
result, where the functions in the training datasets have frequencies only in s ∈ [0, 80]. The figure
shows the interpolation and extrapolation results for the S4 model, the S4D model, and the S4-PTD
model (see section 4). We observe that our S4-PTD model interpolates and extrapolates better than
the S4D model. In particular, the S4D model is not stable around s = 80, where the predicted
amplitude decreases to −4 when the true value increases from 0 to 1. More quantitative results for
the interpolation and extrapolation errors can be found in Appendix G.

We demonstrate on a synthetic example that the S4D model, regardless of its size n, is not robust
under input perturbation of certain frequency modes (which depend on n). Our training set contains
sinusoidal signals parameterized by a frequency s and an amplitude A:

uj(t) = Aj sin(sjt),

where Aj ∈ [0, 1] and sj ∈ Sinterp := [0, 40] ∪ [60, 100] for an interpolation problem or sj ∈
Sextrap := [0, 80] for an extrapolation problem. We sample each input function uj(·) uniformly on
t ∈ [0, 104] and train an S4 model and an S4D model with n = 32, respectively. Our goal is to learn
s and A from the sequential input. In Figure 9, we plot the model prediction of the amplitude A over
a test set of signals for which s and A are on a uniform grid on [0, 100]× [0, 1].

Figure 9 shows that while both the S4 and S4D models predict well on sampled domains (i.e., Sinterp
and Sextrap), the S4 model is significantly better at interpolating and extrapolating on the unsampled
domains. In particular, the S4D model suffers from an extrapolation disaster: for s > 80, as the
true amplitude of the signal increases from 0 to 1, the predicted amplitude decreases monotonically
with a minimum value less than −4. This happens because |GDiag| has a spike around |s| = 83,
making the information of s ∈ [0, 80] impossible to transfer to s ∈ [80, 100]. Hence, while the
S4D initialization stabilizes the diagonalization process, making the computation more efficient, its
underlying state-space model is unstable near certain Fourier modes, impairing its robustness (see
also section 5.2).

We quantitatively evaluate this point in Figure 10. More specifically, we define four domains by

Sinterp = [0, 40] ∪ [60, 100], Sextrap = [0, 80],

Uinterp = [0, 100] \ Sinterp = (40, 60), Uextrap = [0, 100] \ Sextrap = (80, 100].

We are given training samples only with s ∈ Sinterp (resp. s ∈ Sextrap) and we test the sequential
model on the entire domain [0, 100]. Given a test set, we measure the mean-squared error of our
model. We uniformly sample the test set from s ∈ Sinterp (resp. s ∈ Sextrap) and s ∈ Uinterp
(resp. s ∈ Uextrap) to evaluate our models’ performance on generalization to unseen data in the seen
domain, and their performance on interpolation (resp. extrapolation). We see that the S4D model
performs even better on the seen domain (i.e., Sinterp or Sextrap), but its interpolation and extrapolation
capabilities are much worse than those of the S4 and our S4-PTD models.

13

Published as a conference paper at ICLR 2024

10
0

10
1

10
-3

10
-2

10
-1

Interpolation Errors

epochs

er
ro

r S4, Si
S4, Ui
S4D, Si
S4D, Ui
S4-PTD, Si
S4-PTD, Ui

10
0

10
1

10
-4

10
-2

10
0

Extrapolation Errors

epochs

er
ro

r
er

ro
r S4, Se

S4, Ue
S4D, Se
S4D, Ue
S4-PTD, Se
S4-PTD, Ue

Figure 10: The interpolation and extrapolation errors of predicting the amplitude of a sinusoidal
signal made by the S4, S4D, and S4-PTD models. Each curve shows the mean-squared test error of
one model on either the seen domain, Si or Se, or the unseen domain, Ui or Ue. The yellow curve for
the S4-PTD model and the red curve for the S4 model almost overlap in the extrapolation problem.

H PROOF OF RESULTS IN SECTION 4

In this section, we present the proof of Theorem 3. In addition, we introduce a probabilistic statement
of the eigenvector condition number of a matrix perturbed by a random Gaussian matrix.

The proof of Theorem 3 is a classical forward error analysis, but to maintain the best result, we need
to explicitly compute the resolvent of AH .

Proof of Theorem 3. For notational cleanliness, in this proof, we define A = AH , B = BH , and
C = CDPLRV

−1
H . We have

|GPert(s)−GDPLR(s)| =
∣∣B(sI−A)−1C−B(sI−A−E)−1C

∣∣
=
∣∣B((sI−A)−1 − (sI−A−E)−1

)
C
∣∣

≤ ∥B∥2
∥∥(sI−A)−1 − (sI−A−E)−1

∥∥
2
∥C∥2 ,

where, by a result in Demmel (1992), we have∥∥(sI−A)−1 − (sI−A−E)−1
∥∥
2
≤ ∥E∥2

∥∥(sI−A)−1
∥∥2
2
+O(∥E∥22)

∥∥(sI−A)−1
∥∥
2
. (34)

We set
c1,1 0 0 · · · 0
c2,1 c2,2 0 · · · 0
c3,1 c3,2 c3,3 · · · 0

...
...

...
. . .

...
cn,1 cn,2 cn,3 · · · cn,n

=(−sI+A)−1=


1− s 0 0 · · · 0√

3 2− s 0 · · · 0√
5

√
15 3− s · · · 0

...
...

...
. . .

...√
2n−1

√
3(2n−1)

√
5(2n−1) · · · n−s


−1

.

Then, fixing a column i and a row j ≥ i, we have

j−1∑
k=i

ck,i
√
2j − 1

√
2k − 1 + cj,i(j − s) = 0, (35)

j∑
k=i

ck,i
√
2j + 1

√
2k − 1 + cj+1,i(j + 1− s) = 0. (36)

Multiplying eq. (35) by
√
2j + 1/

√
2j − 1, we have

j−1∑
k=i

ck,i
√
2j + 1

√
2k − 1 +

√
2j + 1√
2j − 1

cj,i(j − s) = 0. (37)

14

Published as a conference paper at ICLR 2024

Subtracting eq. (37) from eq. (35), we have

cj,i
√
2j + 1

√
2j − 1− cj,i

√
2j + 1√
2j − 1

(j − s) + cj+1,i(j + 1− s) = 0.

After simplifying, we get the recurrence relation

ci,i =
1

i− s
, ci+1,i = −

√
2i− 1

√
2i+ 1

(i− s)(i+ 1− s)
,

cj+1,i = − (j + s− 1)
√
2j + 1

(j − s+ 1)
√
2j − 1

cj,i, j ≥ i+ 1.

Solving this recurrence relation gives us

ck,i = (−1)k−i

√
2i− 1

√
2i+ 1

(i− s)(i+ 1− s)

√
2k − 1√
2i+ 1

∏k−2
ℓ=i (ℓ+ s)∏k

ℓ=i+2(ℓ− s)
, k ≥ i+ 1.

Since s is purely imaginary, we have ∣∣∣∣ℓ+ s

ℓ− s

∣∣∣∣ = 1.

Therefore, we can control the size of ck,i by8

|ck,i| =
√
2i− 1

√
2k − 1

i− s		i+ 1− s
i+ s		i+ 1 + s
k − 1− s		k − s

=

√
2i− 1

√
2k − 1

|k − 1− s| |k − s|
, k ≥ i+ 2.

Clearly, this value is maximized when s = 0. Hence, we have

|ck,i|2 ≤ (2i− 1)(2k − 1)

(k − 1)2k2
≤ 4i

(k − 1)2k
.

Note that this inequality holds also for the case when k = i+ 1. Now, we have∥∥(sI−A)−1
∥∥2
2
≤
∥∥(sI−A)−1

∥∥2
F
≤

n∑
k=2

k−1∑
i=1

4i

(k − 1)2k
+

n∑
i=1

1

i2

≤
n∑

k=2

2(k − 1)k

(k − 1)2k
+ 2 ≤ 2 ln(n) + 4.

The result follows from eq. (34).

In section 4, we show the effect of a “best-case” perturbation scheme on the eigenvector condition
number. In this appendix, we present a probabilistic statement of the eigenvector condition number
in the “average case.” Our result is heavily based on Banks et al. (2021, Thm. 1.5). To simplify our
statement, Given a square matrix M, we define its eigenvector condition number to be

κeig(M) = inf
V

κ(V),

where V ranges over all invertible matrices such that M = VΛV−1 for some diagonal Λ.
Theorem 5. Given any matrix A ∈ Cn×n, perturbation size ϵ ∈ (0, 1), and spectral radius R > 0.
Let Gn ∈ Cn×n be the Ginibre matrix and let Ω be the event that the spectrum of A + ϵGn is
contained in DR(0), the disk centered at zero of radius R. Then, we have

E
[
κeig(A+ ϵGn)

2
∣∣Ω] ≤ ∥A∥2 R2n3

ϵ2P(Ω)
.

Proof. By Banks et al. (2021, Thm. 1.5), we have that

E

 n∑
j=1

κ(λi)
2
1{λi∈DR(0)}

 ≤ ∥A∥2 R2n2

ϵ2
,

8With a slight abuse of notation, the letter i here stands for a real-valued index instead of the imaginary unit.

15

Published as a conference paper at ICLR 2024

where λ1, . . . , λn are eigenvalues of A + ϵGn and κ(λi) is defined in Banks et al. (2021). When
λj ∈ DR(0) for all 1 ≤ j ≤ n, we have

κeig(A+ ϵGn)
2 ≤ n

n∑
j=1

κ(λi)
2.

Hence, this shows

1

n
E
[
κeig(A+ ϵGn)

2
∣∣Ω]P(Ω) + E

 n∑
j=1

κ(λi)
2
1{λi∈DR(0)}

∣∣∣∣∣∣ΩC

P(ΩC) ≤ ∥A∥2 R2n2

ϵ2
.

We are done.

Comparing Theorem 5 to Theorem 4, we note that the bound in Theorem 4 is slightly better than that
in Theorem 5. However, the Gaussian perturbation in Theorem 5 is problem-independent and can be
generically implemented, whereas it is not necessarily easy to identify the perturbation in Theorem 4.

I NUMERICAL EXPERIMENTS ON THEOREM 3 AND 4

I.1 THE RELATIONSHIP BETWEEN ∥E∥ AND THE TRANSFER FUNCTION PERTURBATION

In the proof of Theorem 3, we used the inequality between the matrix spectral norm and the Frobe-
nius norm: ∥∥(sI−A)−1

∥∥2
2
≤
∥∥(sI−A)−1

∥∥2
F
.

In practice, this estimate is rarely sharp, given that sI−A is a dense matrix. Another non-sharpness
in the average case comes from the inequality∣∣B((sI−A)−1 − (sI−A−E)−1

)
C
∣∣ ≤ ∥B∥2

∥∥(sI−A)−1 − (sI−A−E)−1
∥∥
2
∥C∥2 .

To understand the average-case perturbation of the transfer function, we conduct a simulation, where
we sample E and C randomly but restrict that ∥E∥ = 0.1 and ∥C∥ = 1. We then compute the
maximum error between the perturbed transfer function and the unperturbed one. In Figure 11, we
observe that as n increases, instead of increasing logarithmically, the maximum error ∥GDPLR −
GPert∥∞ averaged over all trials decays quadratically, i.e., ∥GDPLR − GPert∥∞ = O(n−2). Hence,
in the average case, we obtain a better empirical error estimate compared to the worst-case error
estimate in Theorem 3. We remark, however, that ∥GDPLR −GPert∥∞ is not a relative error because
while we fix ∥E∥ ≤ ϵ, the norm of the state matrix ∥AH∥ increases as n → ∞.

I.2 THE RELATIONSHIP BETWEEN ∥E∥ AND κEIG(ÃH)

The performance of our perturbed model is heavily based on two things: the perturbation size ∥E∥
and the condition number of ṼH . The former value controls the difference between our initialization
to the known-to-be-good HiPPO initialization, whereas the latter one controls the unfairness when
transforming the states via ṼH . By Theorem 4, the condition number κ(ṼH) should depend linearly
on ∥E∥−1 and depend sub-quadratically on n, the state space size.

In this section, we present a numerical experiment that investigates the relationship between these
three values. To do so, we solve the optimization problem in eq. (11) with different state space
dimensions n and values of γ. We then record the size of the perturbation and the eigenvector con-
dition number of the perturbed matrix. In Figure 12, we see that the eigenvector condition number
κeig(ÃH) depends polynomially on both the state space dimension n and the relative perturbation
size ∥E∥/∥AH∥. Numerical values are reported in Table 2 and 3. Using the data, one can compute
that we have κeig(ÃH) = O((∥E∥/∥AH∥)−p), where p ≈ 0.87. Hence, we are doing slightly
better than the theory of Theorem 4. Another surprising observation that can be made with a little
bit computation is that if we normalize AH to have a spectral norm of 1, then the eigenvector con-
dition number κeig(ÃH) does not depend on n at all. This is much better than the bound proposed
in Theorem 4.

16

Published as a conference paper at ICLR 2024

8 10 14 19 25 34 45 61 82 110 149

10
-5

10
-4

10
-3

10
-2

∥G
D

PL
R
−
G

Pe
rt
∥ ∞

n

Figure 11: The perturbation error ∥GDPLR − GPert∥∞ for different state-space dimension n. For
each n, the matrix AH is perturbed by 100 randomly sampled matrices E, respectively. The red
curve shows the average error among the 100 trials. The horizontal axis is on the logarithmic scale
and the green reference line has a slope of −2.

ln(n) ln
(∥E

∥/∥
AH

∥)

ln
(κ

ei
g(
Ã

H
))

Figure 12: The relationship among the state space dimension n, the relative perturbation size
∥E∥/∥AH∥, and the eigenvector condition number κeig(ÃH).

J DETAILS OF EXPERIMENTS IN SECTION 5

In this section, we provide the details of the experiments presented in section 5.

n
γ

10 102 103 104 105 106 107

8 4.40e0 8.62e0 1.73e1 3.51e1 7.12e1 1.45e2 2.96e2
16 6.59e0 1.32e1 2.69e1 5.53e1 1.14e2 2.35e2 4.86e2
32 9.98e0 2.02e1 4.16e1 8.63e1 1.79e2 3.72e2 7.75e2
64 1.52e1 3.12e1 6.45e1 1.34e2 2.80e2 5.84e2 1.22e3
128 2.34e1 4.82e1 1.00e2 2.09e2 4.37e2 9.14e2 1.91e3

Table 2: The eigenvector condition number κeig(ÃH) when the optimization problem eq. (11) is
solved with different values of n and γ.

17

Published as a conference paper at ICLR 2024

n
γ

10 102 103 104 105 106 107

8 2.81e0 1.16e0 4.78e-1 1.98e-1 8.24e-2 3.45e-2 1.45e-2
16 6.77e0 2.86e0 1.22e0 5.18e-1 2.22e-1 9.50e-2 4.09e-2
32 1.62e1 6.96e0 3.00e0 1.30e0 5.62e-1 2.45e-1 1.07e-1
64 3.89e1 1.68e1 7.32e0 3.19e0 1.39e0 6.11e-1 2.69e-1
128 9.37e1 4.07e1 1.78e1 7.80e0 3.42e0 1.51e0 6.65e-1

Table 3: The perturbation size ∥E∥ when the optimization problem eq. (11) is solved with different
values of n and γ.

Task Depth #Features Norm Prenorm DO LR BS Epochs WD ∆ Range
ListOps 8 256 BN False 0. 0.002 50 80 0.05 (1e-3,1e0)

Text 6 256 BN True 0. 0.01 16 80 0.05 (1e-3,1e-1)
Retrieval 6 128 BN True 0. 0.004 64 40 0.03 (1e-3,1e-1)

Image 6 128 LN False 0.1 0.01 128 2000 0.01 (1e-3,1e-1)
Pathfinder 6 512 BN True 0. 0.004 64 300 0.03 (1e-2,1e0)

Path-X 6 128 BN True 0. 0.001 20 100 0.03 (1e-4,1e-1)
Speech 6 128 BN True 0. 0.01 16 40 0.05 (1e-3,1e-1)

Table 4: Configurations of the S4-PTD model, where DO, LR, BS, and WD stand for dropout rate,
learning rate, batch size, and weight decay, respectively.

J.1 DETAILS OF THE EVALUATION OF OUR MODEL IN THE LONG RANGE ARENA

To compare our perturbed models with the diagonal S4D and S5 models, we adopt the same model
parameters used in Gu et al. (2022a) and Smith et al. (2023) but possibly change the training parame-
ters, such as the learning rate, number of epochs, batch size, and weight decay rate. For choosing the
perturbation matrix, we again solve the optimization problem in eq. (11). Instead of allowing γ to be
an unbounded positive tuning parameter, we require that γ is large enough so that ∥E∥/∥AH∥ ≤ 0.1.
This improves the worst-case robustness of our model (see section 5.2). We provide the detailed con-
figuration of our S4-PTD model in Table 4 and that of our S5-PTD model in Table 5. In particular,
we note that the first two columns of Table 4 are almost the same as those in Gu et al. (2022a)9 and
the first four columns of Table 5 match those in Smith et al. (2023) — these are model parameters.
The only remaining non-trivial thing is that in the Path-X task, we start with a batch size of 32. We
half the batch size after epoch 30 and epoch 60. By making the batch size smaller, we improve the
generalization power of our model.

Task Depth H P J DO LR SSM LR BS Epochs WD
ListOps 8 128 16 8 0. 0.003 0.001 50 35 0.05

Text 6 256 192 12 0.1 0.004 0.001 50 40 0.07
Retrieval 6 128 256 16 0. 0.002 0.001 32 20 0.05

Image 6 512 384 3 0.1 0.0055 0.001 50 250 0.07
Pathfinder 6 192 256 8 0.05 0.0045 0.0009 64 230 0.05

Path-X 6 128 256 16 0. 0.0018 0.0006 32 90 0.06
Speech 6 96 128 16 0.1 0.008 0.002 16 40 0.04

Table 5: Configurations of the S5-PTD model. See Smith et al. (2023) for the meaning of the
parameter labels.

9The only exception is that in the Path-X task, we half the number of features in order to reduce the compu-
tation time. This only simplifies our perturbed model.

18

Published as a conference paper at ICLR 2024

Model 16kHz 8kHz
InceptionNet (Nonaka & Seita, 2021) 61.24 05.18

ResNet-1 (Nonaka & Seita, 2021) 77.86 08.74
XResNet-50 (Nonaka & Seita, 2021) 83.01 07.72

ConvNet (Nonaka & Seita, 2021) 95.51 07.26
S4 (Gu et al., 2022b) 96.08 91.32

Liquid-S4 (Hasani et al., 2023) 96.78 90.00
S4D (Gu et al., 2022a) 95.83 91.08

S4-PTD (ours) 96.04 91.53
S5 (Smith et al., 2023) 96.52 94.53

S5-PTD (ours) 96.87 94.49

Table 6: Test accuracies on Speech Commands classification. We use the boldface number to
indicate the highest test accuracy among all models for each task. We use the underlined number to
indicate the highest test accuracy within the comparable group.

J.2 DETAILS OF THE ROBUSTNESS TEST OF THE DIAGONAL MODEL AND OUR MODEL

In the robustness test presented in section 5.2, we train both an S4D model and an S4-PTD model.
Our models have 4 layers, 128 channels, and each layer contains an SSM with n = 32 states. The
perturbation matrix in the S4-PTD model is computed by setting γ = 0.03 in eq. (11). From Fig-
ure 3c, it can be seen that the perturbation thence computed has a magnitude of roughly 10% of the
magnitude of AH . We fix a universal discretization step ∆t (see Appendix B) for all channels. We
leave the training dataset and the validation dataset unchanged, but we add 10% of noises in the form
of cos(325.4t) to the test dataset. The frequency 325.4 is chosen at one of the sensitivity regions of
the diagonal SSM when n = 32. We train both models for 50 epochs and report the evolution of the
training accuracy, the test accuracy on uncontaminated data, and that on noisy data. As mentioned
in section 5.2, the matrix A is not trained (but see Appendix K for an example where A is trained).

J.3 DETAILS OF THE ABLATION STUDY OF OUR MODEL

In section 5.3, we train models with different perturbation sizes to solve the sCIFAR
task (Krizhevsky et al., 2009). Our models have the same architecture as those in the sensitivity
test (see section 5.2). We set the batch size to be 64 and the learning rate to be 0.001 for SSM
parameters and 0.01 for other model parameters. These are common setups that are adapted from
the original S4 and S4D papers. We use the parameter γ in eq. (11) to control the size of the per-
turbation ∥E∥. We set γ = 10−4, 10−3, . . . , 109 and train the S4-PTD model for 200 epochs to
learn a classifier. These correspond to the first 14 points in Figure 3c, where we report both the test
accuracy of the model and the eigenvector condition number at initialization. Since setting γ small
does not help reducing κeig(ÃH) all the way down to 1, the smallest condition number possible, to
obtain the rightmost point, we perturb AH by a random symmetric matrix with a large norm.

K SUPPLEMENTARY RESULTS OF THE EXPERIMENTS

K.1 FULL RESULTS ON ADDITIONAL DATASETS

In addition to the LRA dataset, we test our S4-PTD and S5-PTD models on the 35-way Speech
Commands classification task (Warden, 2018), asking the model to identify a word in a recording
from a pool of 35 words. The quantitative results are shown in Table 6.

K.2 SUPPLEMENTARY RESULTS OF THE ROBUSTNESS TEST

In the robustness test presented in section 5.2, the state matrix A is fixed throughout training, and
the non-robustness of the S4D initialization is subsequently observed at a particular frequency. In
this section, we present supplementary results that aim to clarify the following two points:

19

Published as a conference paper at ICLR 2024

10
0

10
2

0

50

100

150

200

S4D Transfer Function

|G
S4

D
(s
i)
|

A
cc

ur
ac

y
=

10
%

s 10
0

10
2

0

5

10

15

S4-PTD Transfer Function

|G
S4

-P
T

D
(s
i)
|

s

10
0

10
2

0

50

100

150

200

|G
S4

D
(s
i)
|

A
cc

ur
ac

y
=

40
%

s 10
0

10
2

0

5

10

15

|G
S4

-P
T

D
(s
i)
|

s

10
0

10
2

0

50

100

150

200

|G
S4

D
(s
i)
|

A
cc

ur
ac

y
=

55
%

s 10
0

10
2

0

5

10

15

|G
S4

-P
T

D
(s
i)
|

s

10
0

10
2

0

50

100

150

200

|G
S4

D
(s
i)
|

A
cc

ur
ac

y
=

70
%

s 10
0

10
2

0

5

10

15

|G
S4

-P
T

D
(s
i)
|

s

Figure 13: The evolution of the transfer functions in the S4D model (left) and the S4-PTD model
(right). We observe that the spikes in the S4D model are preserved during the training while the
S4-PTD model never develops any spike.

20

Published as a conference paper at ICLR 2024

1. As discussed in section 5.2, the perturbation we used is the “worst-case” perturbation that
makes S4D fail. In Figure 4, however, we showed that not all Fourier-mode perturbations
have an essential effect. In fact, we revealed a strong correlation between the effect of the
perturbation at a particular frequency and the location of the spikes in the transfer function
of the S4D initialization. We provide more details of this experiment in this section.

2. While the state matrix A is not trained in the robustness test in section 5.2, we present a
different experiment where we train the matrix A as usual. We then observe the evolution
of the transfer function. We will empirically see that training does not solve the robustness
issue of the S4D model.

In the first experiment (see Figure 4), we use the same setting as the one presented in Appendix J.2
but we contaminate the test set with a varying frequency s. From Figure 4(a), we observe a strong
correlation between the effect of the perturbation and the location of the spikes in the graph of GDiag.
In particular, a frequency s located at such a spike drives the test accuracy to below 30%. This cor-
roborates our discussion that the spikes in the graph of GDiag impairs the worst-case robustness of the
S4D initialization. We also show the analogous results for the S4-PTD model in Figure 4(b), where
the size of the perturbation is chosen to be the same as the one used for LRA tasks (see appendix J.1).
In this case, the performance of the S4-PTD model is relatively stable across all different modes of
perturbation because the transfer function GPert is relatively smooth.

Next, we empirically study the behavior of the LTI systems during training. To do so, we again train
a 4-layer SSM to learn the sCIFAR task, where all layers are either S4D layers or S4-PTD layers.
Instead of fixing the state matrix A, we also train this matrix. In particular, we set the learning rate
of the state matrix A to be 0.004 and the learning rate of the other model parameters to be 0.01. We
also apply a weight decay rate of 0.05. This is standard practice in training an SSM. We then watch
the evolution of the transfer functions of the LTI systems as the test accuracy increases. In Figure 13,
we plot the evolution of both models as the test accuracy increases from 10% (i.e., random guessing)
to 70%. While there are many copies of LTI systems in a 4-layer, multi-channel SSM, we randomly
select one and show its transfer function. We remark that other randomly selected LTI systems all
show similar behaviors. From Figure 13, we see that while the heights of the spikes in the transfer
function of the S4D LTI system decay slightly throughout training, they never vanish. In fact, the rate
of decay gets smaller throughout training. The locations of the spikes also change, albeit by a small
amount. Combining Figure 13 with Figure 4, we can conclude that training does not completely fix
the robustness issue of the S4D model. In comparison, the transfer function of the S4-PTD model
never develops any spike during the training process.

21

	Introduction
	Preliminaries and notation
	Theory of the diagonal initialization of state-space models
	Input-wise convergence and system-wise divergence of the diagonal initialization
	Some numerical examples

	Perturbing the HiPPO initialization: a new way of diagonalizing the state-space model
	Empirical evaluation and discussion
	Performance in the Long-Range Arena
	Robustness of our perturbed model over the diagonal model
	Ablation study of our model

	Conclusion
	More background information of ill-posed problems
	More background information of state-space models
	Proof of the transfer function deviation
	Proof of thm.noconverge
	Proof of thm.weakstarconverge
	Numerical experiments on thm.weakstarconverge and 2
	The diagonal system behaves differently for distinct Fourier modes
	The DPLR and diagonal systems converge on the exponentially decaying function
	The DPLR and diagonal systems diverge on the unit impulse

	Implication of the theory: non-robustness of the diagonal initialization
	Proof of results in sec:S4-PTD
	Numerical experiments on thm.perturbsys and 4
	The relationship between E and the transfer function perturbation
	The relationship between E and eig(H)

	Details of experiments in sec:experiments
	Details of the evaluation of our model in the Long Range Arena
	Details of the robustness test of the diagonal model and our model
	Details of the ablation study of our model

	Supplementary results of the experiments
	Full results on additional datasets
	Supplementary results of the robustness test

