
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SPARSE CLIP: CO-OPTIMIZING INTERPRETABILITY
AND PERFORMANCE IN CONTRASTIVE LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Contrastive Language-Image Pre-training (CLIP) has become a cornerstone in
vision-language representation learning, powering diverse downstream tasks and
serving as the default vision backbone in multimodal large language models
(MLLMs). Despite its success, CLIP’s dense and opaque latent representations
pose significant interpretability challenges. A common assumption is that inter-
pretability and performance are in tension: enforcing sparsity during training
degrades accuracy, motivating recent post-hoc approaches such as Sparse Autoen-
coders (SAEs). However, these post-hoc approaches often suffer from degraded
downstream performance and loss of CLIP’s inherent multimodal capabilities, with
most learned features remaining unimodal.
We propose a simple yet effective approach that integrates sparsity directly into
CLIP training, yielding representations that are both interpretable and performant.
Compared to SAEs, our Sparse CLIP representations preserve strong downstream
task performance, achieve superior interpretability, and retain multimodal capabil-
ities. We show that multimodal sparse features enable straightforward semantic
concept alignment and reveal training dynamics of how cross-modal knowledge
emerges. Finally, as a proof of concept, we train a vision-language model on sparse
CLIP representations that enables interpretable, vision-based steering capabili-
ties. Our findings challenge conventional wisdom that interpretability requires
sacrificing accuracy and demonstrate that interpretability and performance can be
co-optimized, offering a promising design principle for future models.

1 INTRODUCTION

Contrastive Language-Image Pre-training (CLIP) (Radford et al., 2021) has achieved significant suc-
cess in vision-language representation learning by linking images and text through contrastive training
on web-crawled image-text pairs. Its transferability and generalizability have been demonstrated
across a wide range of downstream tasks, including but not limited to zero-shot image classification
and image-text retrieval. Even beyond, CLIP has arguably become the default choice for the vision
backbone in multimodal large language models (MLLMs). Given the heavy reliance of these applica-
tions on the prior knowledge in CLIP embeddings, it is essential to improve our understanding to the
representations that CLIP generated, which is a dense latent space not directly interpretable.

Recently, researchers have begun applying Sparse Autoencoders (SAEs)—a well-established tool
for mechanistically interpreting large language models (LLMs)—to CLIP vision encoders, aiming
to gain deeper insights into the concepts captured by pretrained CLIP models (Cunningham et al.,
2023; Joseph et al., 2025b;a). Typically, an SAE introduces a bottleneck layer into the residual stream
of a pretrained CLIP encoder. By enforcing sparsity during the training of this high-dimensional
bottleneck, the SAE disentangles the original CLIP features into sparse representations, which can
potentially be associated with specific concepts.

While SAEs enhance interpretability, several limitations constrain their practical utility. First, re-
searches on LLM has shown that sparse SAE features often underperform on downstream tasks
compared to their dense counterparts. For example, Kantamneni et al. (2025) shows that for probing
task, SAE latents fail to achieve a consistent overall advantage over dense counterparts, and Farrell
et al. (2024) has had similar result on a different unlearning task. Second, they lose the multi-modal
capabilities of CLIP. Most CLIP SAEs were trained only on the residual stream of vision tower
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to get interpretable vision features. And when Papadimitriou et al. (2025) trained SAEs on the
multimodal representation space of pretrained CLIP models, they found that most features were
unimodal, activated exclusively for image or text inputs.

These limitations reflect a broader conventional view currently in the field interpretability: that
interpretability and accuracy are fundamentally in tension. In particular, enforcing sparsity during
training is widely assumed to degrade downstream task performance, which has motivated the
focus on post-hoc sparse methods (Olshausen & Field, 1996; Higgins et al., 2017; Koh et al., 2020;
Hendrycks & Hiscott, 2025). Although some work suggests that this trade-off may not be inevitable
(Rudin, 2019), the prevailing assumption has remained that training-time sparsity compromises
accuracy.

In this work, we challenge this assumption. We demonstrate that by projecting dense features into a
high-dimensional space and enforcing sparsity during CLIP training, we can transform dense CLIP
representations into interpretable features similar to those produced by SAEs. However, unlike
SAE features, these “Sparse CLIP features” maintain strong performance on downstream tasks, and
naturally preserve CLIP’s multi-modal nature, as they are directly trained using a cross-modal cosine
similarity loss. Furthermore, we show that this inherent multi-modal nature enables easy alignment
of features with concepts. Building on this, we analyzed these multi-modal representations, revealing
some intriguing multi-modal concepts that the model is able to learn, and more interestingly, how they
emerge and evolve during training. Finally, as downstream task for applications, we trained a VLM
using the sparse CLIP representations, and demonstrated vision-based steering using interpretable
features.

We summarize our contributions as follows:

• We introduce a novel but simple technique for learning sparse CLIP representations that
maintain competitive performance while achieving interpretable multimodal features.

• We demonstrate how multimodal alignment unlocks transparent analysis of CLIP’s encoded
knowledge, revealing feature evolution dynamics throughout training.

• We demonstrate real-world application of our approach by implementing interpretable
vision-based steering in vision-language models.

2 SPARSE CLIP TRAINING

2.1 ADDING SPARSITY TO CLIP PRETRAINING

Taking a broader perspective, there exists a family of concept extraction methods designed to improve
the interpretability of machine learning models. Fel et al. (2023) proposed that all concept extraction
methods can be unified within the framework of dictionary learning. To faithfully interpret an
activation matrix A ∈ Rn×m, where n is the size of dataset and m is the width of the activation, the
goal is to find two low-rank matrices (U, V ) such that A ≈ UV T . In this framework, V ∈ Rm×k

serves as the dictionary while U ∈ Rn×k represents the activation A in terms of the dictionary atoms
in V .

Different concept extraction methods approach this decomposition through various techniques.
Some methods utilize traditional tools like K-means and PCA, others employ Non-negative Matrix
Factorization (NMF), while Sparse Autoencoders (SAEs) have recently garnered significant attention
due to their ability to be trained using Stochastic Gradient Descent (SGD) and their scalability to
unseen data. We focus specifically on NMF and SAE in our discussion, in the dictionary learning
framework from Fel et al. (2023), they can be unified as:

(U∗, V ∗) = argmin
U,V

||A− UV T ||2F s.t.

{
U ≥ 0, V ≥ 0 (NMF)
U = ψ(A), ||U ||0 ≤ K (SAE)

(1)

We initially explored adding sparsity to CLIP pretraining by incorporating traditional SAE compo-
nents such as reconstruction loss and top-K activation into the CLIP training process. However, we
quickly discovered that effective sparsity could be achieved with surprisingly minimal modifications
to the original CLIP training procedure, requiring only two key changes:
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Figure 1: Comparison between Sparse CLIP and two existing methods, CLIP and SAE.

1. Non-negative constraints: Adding ReLU activation after the final projection layer.

2. Dimension expansion: Significantly increasing the dimensionality of the final projection
layer in CLIP.

Our findings turned out to be no coincidence. HaoChen et al. (2022) demonstrated that contrastive
learning, when expressed in its spectral form, is equivalent to a Matrix Factorization (MF) objective.
Building upon this foundation, Wang et al. (2024) proved that non-negative contrastive learning
is equivalent to Non-negative Matrix Factorization (NMF), with this equivalence extending to the
multimodal contrastive learning domain. Therefore, the theoretical foundations established in these
papers provide justification for why our modifications—particularly the introduction of non-negative
constraints—successfully induce sparsity in CLIP training. And putting this equivalence together with
equation 1, we can start to view non-negative CLIP and SAE as different decomposition approaches
under the same dictionary learning framework.

However, non-negativity constraints alone are insufficient for learning a satisfactory dictionary.
Our small-scale experiments demonstrate that dimension expansion is critical for enabling sparse
representations to achieve competitive performance on downstream tasks. This observation aligns
with dictionary learning theory, where a sufficiently large dictionary size is required for effective
representation learning. To the best of our knowledge, this work is the first to apply both non-
negativity constraints and dimension expansion to CLIP training.

We demonstrate the comparison between CLIP training, sparse CLIP training and SAE in figure 1.
After adding the high-dimensional-projection and non-negative constraint (ReLU) into vanilla CLIP,
Sparse CLIP is close to SAE without decoder, but still trained with constrastive loss. In the next two
sections, we will describe our training details and show benchmark results comparison of these three
architectures.

2.2 PROOF OF CONCEPT ON SMALL SCALE TRAINING

We use OpenCLIP (Ilharco et al., 2021), a well-established open-source CLIP training repository, as
our experimental foundation. To identify the optimal training recipe for sparse CLIP, we conduct
small-scale ablation studies using a ViT-B/32 model and 15M image-text pairs sampled from the
MetaCLIP dataset (Xu et al., 2024b). We evaluate performance using zero-shot classification accuracy
on ImageNet-1k (Deng et al., 2009) and L0 sparsity metrics. Detailed experimental setup is provided
in Appendix A.1. These small-scale experiments yielded several interesting observations:

Observation 1: In sparse CLIP training, both performance and sparsity increase with dimension
scaling, but only under non-negativity constraints. Figure 2a shows how non-negativity constraints
and dimension expansion—our two primary CLIP training modifications—affect model performance
and representation sparsity. The left panel reveals that increasing embedding dimensionality improves
performance only when non-negativity constraints are enforced via ReLU activation. Without
dimension expansion, non-negativity constraints alone degrade performance (leftmost point on blue

3
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Figure 2: Small-scale ablation study. We evaluated different Sparse CLIP design choices by training
ViT-B/32 models from scratch on a 15M sample dataset.

curve). The right panel shows that activated features plateau as embedding dimensionality increases,
but only under non-negativity constraints—without them, all features remain activated regardless of
dimensionality.

Observation 2: ReLU enables sparsity to form more gradually, improving model performance. Fig-
ure 2b compares how different sparsity injection methods affect both sparsity levels and performance.
We tested three sparsity-inducing techniques while keeping all other training parameters identical:
L1 loss, TopK activation (K=512) Gao et al. (2024), and ReLU activation. Unlike typical SAE
training, we apply these methods directly with CLIP loss rather than reconstruction loss. The top
panel shows that L1 and TopK methods dramatically reduce L0 sparsity from training onset, poten-
tially limiting model capacity and impairing learning effectiveness. The bottom panel confirms this
hypothesis: ReLU achieves significantly superior zero-shot accuracy, demonstrating that gradual
sparsity development preserves the model’s learning capacity during training.

Observation 3: Sparsity can be controlled by tuning the logit scale cap. CLIP uses a learnable logit
scale (temperature) parameter that multiplies cosine similarity scores before applying softmax/cross-
entropy loss. This parameter controls softmax distribution sharpness, enabling the model to amplify
differences between positive and negative pairs and learn from increasingly challenging examples
during training. We discovered that sparsity levels can be effectively controlled by adjusting the logit
scale cap. As shown in Figure 2c (left panel), reducing the logit scale cap consistently decreases L0
sparsity in activations. While we lack a complete theoretical explanation, this provides a practical
sparsity control mechanism. However, optimal sparsity exists within a specific range. The right panel
demonstrates this trade-off: when the logit scale cap drops to 20, zero-shot performance declines
substantially, indicating that excessive sparsity reduction harms the model’s representational capacity.

After conducting comprehensive ablation studies, we demonstrated the promising potential of sparse
CLIP training on smaller models and datasets. These results motivated us to scale up our experiments
with larger-scale training runs.

2.3 SCALING UP

Based on the findings on smaller models and datasets, we scale up both model size and data to train an
interpretable CLIP model with performance comparable to mainstream models. With hyperparameter
settings mostly consistent with our smaller-scale experiments, we use ViT-L/14 and train with the
complete 2.2 billion sample MetaCLIP corpus for approximately 6 epochs. We apply a dimension
expansion factor of 721, yielding a representation dimension of 55,296. Based on our observation
that logit scale cap affects sparsity, we train two models with logit scale caps of 50 and 40, producing
models with different sparsity levels (0.66% vs. 0.47%). We name them ViT-L/14 Sparse and
ViT-L/14 Sparse+. Following Bolya et al. (2025), we evaluate both models against the non-sparse
baseline model on comprehensive zero-shot classification benchmarks (Table 1) and additional tasks
(Table 2) to validate generalization ability.

1An expansion factor of 72 is the maximum we can achieve for ViT-L/14 given 80GB GPU memory
constraints. This limitation is discussed further in Section 5.
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OpenAI ViT-B/32 100% 57.5 68.8 60.1 53.5 29.4 77.8 56.4 71.1 85.5 73.3 89.6 86.1 24.6 67.8
Prisma ViT-B/32 cls@11 2.8% 56.6 67.5 59.2 52.4 28.0 76.8 55.7 69.5 84.5 69.5 89.1 85.0 22.9 66.0

ViT-L/14 baseline 100% 75.1 78.0 71.5 75.9 67.8 90.6 67.1 80.4 93.4 79.2 93.1 92.0 50.8 74.2
ViT-L/14 Sparse 0.66% 75.6 77.1 70.2 77.2 71.9 91.0 66.5 81.0 94.0 79.0 93.1 92.0 53.7 74.0
ViT-L/14 Sparse+ 0.47% 75.1 77.0 69.6 76.8 70.9 90.7 66.1 79.9 94.0 78.1 92.9 91.8 48.5 73.9

Table 1: Zero-shot image classification performance comparing natively-trained Sparse CLIP models
(ViT-L/14 Sparse and Sparse+) against their dense baseline (ViT-L/14 baseline). Results from Prisma
SAE and its baseline are included to demonstrate that post-hoc sparsification approaches fail to match
dense model performance, unlike our native training approach.

BBox Classification Zero-Shot Retrieval

Model Sparsity Acc@1 Acc@5 IR@1 IR@5 TR@1 TR@5

ViT-L/14 OpenAI 100% 52.3 84.1 36.5 61.0 56.4 79.3

ViT-L/14 baseline 100% 53.3 82.2 45.5 70.1 62.7 83.2
ViT-L/14 Sparse 0.66% 55.5 86.1 43.7 68.5 59.9 83.0
ViT-L/14 Sparse+ 0.47% 56.0 85.3 41.8 66.4 57.0 80.5

Table 2: Results on additional CLIP downstream tasks. BBox classification simulates CLIP usage in
open-vocabulary detection pipelines by classifying ground-truth bounding boxes. Zero-shot retrieval
evaluates bidirectional image-caption matching, both on COCO validation set.

Sparse CLIP Performance: As shown in Table 1, our ViT-L/14 Sparse model outperforms the dense
baseline on both standard zero-shot classification tasks (+0.5% average across 6 benchmarks) and
fine-grained classification tasks (+0.7% average across 6 benchmarks). The ViT-L/14 Sparse+ model
performs slightly worse than ViT-L/14 Sparse but remains nearly on par with the baseline. On
additional downstream tasks (Table 2), both ViT-L/14 Sparse and Sparse+ significantly outperform
the baseline on BBox classification but consistently underperform on zero-shot retrieval.

Comparison with SAE: For comparison, we evaluate Prisma SAE (Joseph et al., 2025b) on the same
zero-shot classification benchmarks (Table 1). Since Prisma SAE’s sparse features were trained only
on the vision branch, we evaluate using reconstructed dense features. Although trained solely on
ImageNet, Prisma SAE generalizes well across domains but suffers 1-2% performance loss due to
imperfect reconstruction. In contrast, our Sparse CLIP models match or surpass baseline performance
while maintaining extreme sparsity.

3 MULTI-MODAL REPRESENTATIONS

Having demonstrated that Sparse CLIP models maintain competitive performance while achieving
high sparsity, we now evaluate the interpretability enabled by their sparse representations.

3.1 INTERPRETABILITY EVALUATION

We first address an important question: How does Sparse CLIP interpretability compare to SAEs? We
hypothesize that native sparsity enforcement during training produces more interpretable features than
post-hoc SAE approaches, and we aim to demonstrate this through quantitative metrics. However,
finding such a metric is non-trivial. Common SAE metrics like Reconstruction Error and Fraction
of Variance Unexplained (FVU) don’t apply to Sparse CLIP representations, which lack a decoder
for reconstruction. Moreover, we found that there is generally no quantitative metric to effectively
measure visual interpretability.
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ImageNet-1k train (1.2M) MetaCLIP subset (800k)

Model C-score ↑ Active F% ↑ L0 ↓ C-score ↑ Active F% ↑ L0 ↓

dataset baseline 0.485 − − 0.422 − −

Prisma cls@11 0.519 45.1% 916.0 0.509 54.8% 1007.9
Daujotas’ SAE∗ 0.521 41.0% > 10k 0.450 40.5% > 10k
ViT-L/14 Sparse 0.549 88.3% 468.5 0.542 89.1% 385.5
ViT-L/14 Sparse+ 0.559 85.5% 344.3 0.557 87.7% 281.2

(a) Sparse CLIP embeddings vs. existing open-weights CLIP SAEs
across C-score, feature activation, and L0 metrics. (∗Memory con-
straints limit caching to 10k features per image; Daujotas’ SAE
exceeds this threshold, preventing exact L0 calculation.)

(b) Distribution of Sparse CLIP features
by modality score (image activation ra-
tio) and activation density (magnitude-
weighted frequency).

Figure 3: Quantitative interpretability evaluations of Sparse CLIP embeddings.

Therefore, we propose a new metric called Concept Score (C-score), which measures the interpretabil-
ity of visual embeddings regardless of dimensionality, model architecture, or training mechanism.
The C-score is computed for each feature as the average pairwise cosine similarity of all images
(from a given image dataset) that activate this feature. The overall C-score for a visual embedding
is simply the average C-score across all active features. It can be formally defined as follows: For
a given feature i and image dataset D, let Ii = {x ∈ D : ai(x) > τ} denote the set of images that
activate feature i above threshold τ . The C-score for feature i is:

C-scorei =
1

|Ii|(|Ii| − 1)

∑
xj ,xk∈Ii,j ̸=k

sim(e(xj), e(xk)) (2)

where e(x) is the visual embedding of image x, and sim(u, v) = u·v
∥u∥∥v∥ is the cosine similarity. The

overall C-score for visual embedding F on dataset D is:

C-score =
1

|Factive|
∑

i∈Factive

C-scorei (3)

where Factive = {i : |Ii| ≥ nmin} is the set of features with at least nmin activating images.

In practice, the C-score can be efficiently computed on large scale datasets using a vectorization trick.
For normalized embeddings e(x) ∈ Ii (where ∥e(x)∥ = 1):

C-scorei =

∥∥∑
x∈Ii

e(x)
∥∥2 − |Ii|

|Ii|(|Ii| − 1)
(4)

We evaluate C-score on two datasets: the ImageNet-1k training set (∼1.2M images) and a subset of
MetaCLIP containing 800k images. We employ the original OpenAI CLIP vision encoder as e(x)
and set τ = 0.001 and nmin = 2 to capture more activated features. For completeness, we also
report the percentage of activated features and L0, since C-score only measures activated features.
Table 3a presents the results. Compared to open-weights CLIP SAEs (Joseph et al., 2025a; Daujotas,
2024), Sparse CLIP embeddings consistently outperform across all three metrics. While the ViT-L/14
Sparse+ model achieves a lower L0 at the cost of slightly reduced performance, it surpasses ViT-L/14
Sparse on C-score, making it our primary focus for subsequent interpretability evaluations.

Next, we evaluate whether Sparse CLIP learns genuinely multimodal concepts—features that activate
for both image and text inputs. Papadimitriou et al. (2025) previously trained SAEs on pretrained
CLIP’s multimodal representations but found most features were unimodal, activating exclusively
for either images or text. Using the same evaluation methodology on ViT-L/14 Sparse+ features,
we observe a dramatically different outcome. As shown in Figure 3b, Sparse CLIP representations
are dominated by truly multimodal features. This stark contrast with post-hoc SAE approaches
demonstrates a key advantage of native multimodal sparse training—the ability to learn genuinely
cross-modal concepts.

3.2 ASSIGNING CONCEPT TO FEATURES

Interpreting vision features has long challenged researchers, typically requiring separate classification
models or LLM assistance. Sparse CLIP offers a direct solution: we can name features using

6
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Figure 4: Examples features of ViT-L/14
Sparse+. The top activated words and images
for these multimodal features are highly corre-
lated, so we can directly name their visual con-
cept based on text.

Figure 5: Evolution of “dog rose” feature. Top
activated words and images at different stage of
training. Activations values are normalized.

vocabulary words that trigger maximum activations. If our features are truly multimodal, these
word-based labels should accurately reflect the visual concepts each feature encodes.

To validate this approach, we constructed a comprehensive vocabulary with minimal conceptual
overlap. We selected the first word from each WordNet synonym set (McCrae et al., 2019) and
merged these with the 20K most common English words (Oikarinen & Weng, 2023) which covers
informal ones from Internet. This combination ensures broad coverage of both formal and colloquial
English, yielding a final vocabulary of 98,619 words.

We analyzed each ViT-L/14 Sparse+ feature by identifying the top-K words and images that produced
the highest activations, using this 98,619-word vocabulary and 80K randomly sampled MetaCLIP
images. We found high correlations between text and visual concepts for most features, indicating
that Sparse CLIP multimodal features indeed activate on semantically similar content across both
modalities. Figure 4 shows example features with their top-activated words and images. The ”dog”
and ”cat” features at the first two rows demonstrate robust visual understanding, with top images
spanning realistic photos, abstract logos, and OCR text. The ”British” feature captures cultural
symbols including currency, buildings, and food, while its text activations consist primarily of city
names—a pattern observed in many geographical concepts. Additional examples include an exclusive
”David Beckham” feature and a mixed ”dog rose/rose hips” feature. More interesting example
features can be found in Appendix A.2.

3.3 CONCEPT EMERGENCE AND EVOLUTION

The last three features in Figure 4 seem to suggest that there may be patterns in how multimodal
concepts emerge. Do they begin as separate single-modal features that merge later? Also, will their
learnt concepts evolve during training?

While many studies have proposed methods to interpret what concepts CLIP models have learned,
few have investigated how concepts emerge and evolve during training. This gap is understandable
given the fact that intermediate training checkpoints are typically unavailable for open-source models.
However, we found training Sparse CLIP from scratch with native interpretability provides a unique
opportunity to examine concept emergence and evolution in an easy-to-visual multimodal setting.

We analyzed ViT-L/14 Sparse+ checkpoints at 1%, 3%, 10%, 30%, and 100% training completion,
visualizing top-activated words and images for each feature at every stage. This reveals feature

7
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Figure 6: Modality distribution of
Sparse CLIP features similar to Fig-
ure 3b, but at 1% training completion.

Figure 7: Same example features as figure 4, but at 1%
training completion, which is after the first training epoch.

Vision Encoder MMMU AI2D TextVQA POPE

ViT-L/14 baseline 39.6 67.2 48.9 80.8
ViT-L/14 Sparse 40.8 66.4 51.3 82.0
ViT-L/14 Sparse+ 41.7 70.6 48.5 80.7

Table 3: Image QA benchmark results. We train VLMs with different CLIP vision encoders, and
compare the VLM performance on image QA benchmarks that covers different areas.

lifecycles—how concepts emerge, develop, and mature throughout training. Our analysis provides
insights into not only what CLIP learns, but how it acquires knowledge from large-scale image-text
data through contrastive learning.

Observation 1: Concepts emerge as multimodal features early in training. Figure 6 shows the
modality distribution at 1% training completion, which closely resembles the final distribution—most
features activate for both images and text from very early stages. The primary difference is activation
density: due to lower early-training sparsity, densities are an order of magnitude higher than at
completion. Examining specific features at 1% completion (Figure 7) confirms strong correlation
between image and text activations. However, some early concepts differ substantially from their
final forms, leading to our second observation.

Observation 2: Feature concepts evolve and sometimes completely transform during training. Ana-
lyzing top activation trajectories uncovers how concepts evolve during training. Consider the “dog
rose” feature (Figure 5): initially activating for red fruits and random creatures, it narrows to rose hips
mid-training before crystallizing into a dog rose detector that retains hip activations—clear evidence
of emergent multimodal alignment. We observe similarly striking transformations: feature 40397 pro-
gresses “goatee” → “Ryan Gosling” → “David Beckham”; feature 10884 shifts from eye makeup to
conjunctivitis; feature 38195 evolves from generic soccer players to “Lionel Messi” (Appendix A.2).
These patterns raise fundamental questions about whether transformations are knowledge-driven
or noise-driven, their correlation with performance, and their controllability—opening promising
avenues for future work.

4 APPLICATIONS

CLIP’s widespread adoption makes interpretable multimodal representations valuable for applications
like controllable image generation, open-vocabulary detection, and image search. To demonstrate
our approach’s viability, we focus on Vision-Language Models (VLMs) due to their prominence and
fundamental reliance on CLIP’s cross-modal capabilities.

We trained a minimal VLM using ViT-L/14 Sparse+ as the vision encoder and Llama 3.1 8B Instruct
as the language model, connected via a 2-layer MLP adapter. Our VLM training followed a staged
approach: first pretraining the adapter with frozen vision encoder (Sparse CLIP models) and the
LLM (LLama 3.1 8B instruct), then fine-tuning the adapter and LLM together. First stages uses
SA-1B-1M (Kirillov et al., 2023) for 2 epoch and second stage used 2.5M image-QA pairs from PLM
image dataset (Cho et al., 2025) for 4 epochs. Table 3 shows our sparse VLM achieves comparable
performance across four benchmarks covering perception, tables/diagrams, hallucination, and general
image-based QA.
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Example 1 Example 2

Input

Output
before
steering

“The image depicts a
young dog, likely a
puppy, ... The dog
has a fluffy ...”

“Password genera-
tor”

Steering
feature 8576 (dog):
1.2129 → 0.0
feature 45918 (cat):
0.0 → 2.0

feature 16340
(password):
1.3618 → 0.0

Output
after
steering

“The image features
a cat sitting on a
table... The cat is
wearing a collar ...
The cat’s fur is ...”

“A blue box with a
white window in the
middle and a white
input box below the
window.”

(a) Qualitative examples of concept steering. We query
the VLM with “What’s in the picture?” while applying
steering (steering strength is 2.0 for boosting, 0.0 for
suppression) to the features most strongly activated by
target concept words.

0.1

0.2

0.3

0.4

0 1 2 4

0.1

0.2

0.3

0.4

Sim. vs. Original w/o steering
Sim. vs. Original label, SS=1.0
Sim. vs. Original label, SS=2.0
Sim. vs. Original label, SS=3.0
Avg. Sim. vs. Random label
Sim. vs. Steering label, SS=1.0
Sim. vs. Steering label, SS=2.0
Sim. vs. Steering label, SS=3.0
Corruption Ratio, SS=1.0
Corruption Ratio, SS=2.0
Corruption Ratio, SS=3.0

# of feature modified

S
B

E
R

T 
S

im
ila

rit
y

C
or

ru
pt

io
n 

R
at

io

(b) Steering evaluation on ImageNet-1k. We mea-
sure steering effectiveness (SBERT cosine simi-
larity) toward random ImageNet labels across dif-
ferent numbers of modified features and Steering
Strengths (SS).

Figure 8: Concept steering in vision-language models, with ViT-L/14 Sparse+ as the vision encoder.

Our primary demonstration focuses on vision-based steering (Joseph et al., 2025a). As illustrated in
Figure 8a, manipulating sparse representation activations prior to the adapter layer enables precise
output control—transforming “dog” to “cat” concepts in generated text, or suppressing sensitive
concepts like “password” for security applications.

We systematically evaluate steering effectiveness on the complete ImageNet-1k validation set (50k
images) using the prompt: “What’s the main subject in this image? Your answer needs to be short”.
Our steering protocol for each image involves two operations: (1) suppressing the ground truth label
by zeroing its top-K activated features in the ViT-L/14 Sparse+ text encoder, while (2) boosting a
randomly selected alternative ImageNet-1k label by setting its top-K activations to Steering Strength
(SS). Figure 8b presents performance across different K and SS configurations, revealing the following
observations:

Suppressing top-activated concept features effectively removes concepts from outputs. Measured by
SBERT cosine similarity, VLM outputs move away from the ground truth label after steering (green
lines in Figure 8b top plot). This effect scales linearly with both the number of modified features and
the steering strength of the new concept.

Boosting top-activated features of new concepts effectively steers outputs toward them, but risks
model corruption. Similarly, VLM outputs move toward the boosted alternative label after steering
(red lines in Figure 8b top plot). However, this effect is moderated by model corruption, shown in the
bottom plot of Figure 8b and measured by identifying abnormally long responses. At high SS values,
corruption risk increases sharply with the number of modified features, causing outputs to diverge in
unintended directions. The results suggest that SS = 2.0 provides effective steering while minimizing
corruption when modifying only 1–2 features, which we adopt for the examples shown in Figure 8a.

5 LIMITATIONS AND FUTURE WORK

Training for native interpretability: Unlike most mechanistic interpretability research that analyzes
existing models, we trained CLIP variants to be natively interpretable. This fundamental difference
enables comparable performance while gaining interpretability and revealing concept evolution
during training. While insights from our sparse models don’t directly transfer to existing dense CLIP
models, comparing learned concepts across architectures presents compelling future work.
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Parameter overhead: Interpretability incurs computational costs—our projection layers require
significantly more parameters to map representations to higher-dimensional sparse space. In ViT-L/14,
the linear projection from 768 to 768×72 dimensions adds 14% of parameters to the vision tower.
Whether performance gains stem from added parameters versus sparsity remains an open question
for future investigation.

Memory constraints: CLIP training requires gathering batch activations across GPUs for cosine
similarity computation. GPU memory becomes a bottleneck for sparse CLIP due to representation
scaling. Despite extensive optimization, 72× expansion is the max we can achieve on 80GB GPUs.
Optimizing sparse CLIP training for memory efficiency and throughput remains an important research
challenge.

6 RELATED WORKS

Sparse Autoencoders for CLIP. Separately, Sparse Autoencoders (SAEs) were initially introduced
to analyze LLMs and have since been applied to interpret CLIP models. For example, Joseph et al.
(2025b) trained SAEs on each layer of the CLIP vision transformer to investigate the differences
between vision models and LLMs and systematically measured CLIP SAE steering capabilities
(Joseph et al., 2025a). More recently, Papadimitriou et al. (2025) trained SAEs on the multimodal
representation space of pretrained CLIP models and found that most features were unimodal. In con-
trast, our analysis demonstrates that features learned through sparse CLIP training are predominantly
multimodal: they are activated by both visual and textual inputs and represent similar concepts across
modalities.

Sparse CLIP Representations. Wang et al. (2024) showed that introducing non-negativity into
contrastive learning induces sparsity, as it is equivalent to Non-negative Matrix Factorization (NMF).
Although they did not explore increasing the dimensionality to strengthen the representations, their
work provides a theoretical foundation for our approach. In a different direction, Chen et al. (2023)
constructed sparse CLIP representations by projecting dense features into a high-dimensional space
predefined by a vocabulary. While this approach yields interpretable and multimodal representations,
the predefined space limits the model’s ability to capture high-level semantics beyond the vocabulary,
thus restricting its capacity to fully leverage the richness of the training data.

Interpretability and Performance. A common view is that interpretability comes at the cost of
accuracy: sparsity and disentanglement can improve feature clarity but reduce reconstruction or
predictive power (Olshausen & Field, 1996; Higgins et al., 2017; Koh et al., 2020), and recent studies
show that sparsity constraints often hurt training stability or downstream accuracy (He et al., 2022;
Xie et al., 2024; Nasibullah et al., 2024; Chen et al., 2025; Sawmya et al., 2025). This belief motivates
the dominance of post-hoc interpretability methods such as Sparse Autoencoders (Elhage et al., 2022;
Cunningham et al., 2023), which are applied to the model after it is trained. In contrast, other work
demonstrates that interpretability and performance can be co-optimized: interpretable models can
rival black-box accuracy (Rudin, 2019), concept embedding models and modular networks maintain
strong performance while improving transparency (Zarlenga et al., 2022; Swamy et al., 2023; Good
et al., 2023), and prototype-based vision models even improve accuracy alongside interpretability
(Zhu et al., 2025). Our work extends this latter line to multimodal learning, showing that sparsity
imposed during CLIP training yields interpretable features without accuracy loss.

7 CONCLUSION

We introduced Sparse CLIP, which enforces sparsity in CLIP training to produce interpretable
multimodal features without sacrificing performance. Unlike post-hoc sparse methods such as Sparse
Autoencoders, which often reduce accuracy and collapse multimodal structure, our approach preserves
performance, and we demonstrate its utility through vision-language steering. This challenges the
longstanding view that interpretability and accuracy are in tension. If confirmed across architectures
and modalities, it suggests a paradigm shift: interpretability and performance need not be trade-offs,
but can be jointly optimized as core design principles.
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A APPENDIX

A.1 SMALL-SCALE ABLATION STUDY SETUP

For Sparse CLIP small-scale ablation studies, we follows OpenCLIP original setup for most of the
hyperparameters, except for the following.

Training Dataset: We uses MetaCLIP as the source of our training data. It’s a large-scale dataset
containing around 2.2 billion image-text pairs collected from the Internet and indexed by Common-
Crawl, then curated following the methodologies described in Xu et al. (2024b) and Xu et al. (2024a).
For our preliminary experiments, we utilize a randomly sampled subset of MetaCLIP containing
approximately 15 million samples, and train the model for 30 epochs on this dataset.

Model Architecture: For our preliminary experiments, we employ the default ViT-B/32 configuration
from OpenCLIP to enable fast training while maintaining reasonable model capacity. This architecture
uses a 12-layer Vision Transformer (ViT) for both the vision and text encoders, with an embedding
dimension of 512.

Input Image Processing: Input images are resized to 224×224 pixels for efficient training. Non-
square images are resized based on their shortest edge and then center-cropped to preserve aspect
ratios.

Loss Function: We apply the standard CLIP loss, which computes the average cosine similarity loss
on both visual and text embeddings during training.

Representation Dimensionality: We use a 32× dimension expansion (16,384 dimensions for ViT-
B/32) unless otherwise specified in ablation studies.

Batch size and Learning rate: Following OpenCLIP’s configuration, we use a learning rate of 5e-4
and global batch size of 32K, implemented via either 512×64 or 128×256 (batch size per GPU x
GPUs).

Evaluation Metrics: We use zero-shot classification accuracy on the ImageNet-1K (Deng et al.,
2009) test set as the primary metric for evaluating model performance during training. For measuring
sparsity, we use average L0 value of the activation.

A.2 ADDITIONAL QUALITATIVE RESULTS

A.2.1 FEATURE VISUALIZATION

As mentioned in Section 3.2, we show visualization for more interesting example features here in
Fig 9.

A.2.2 FEATURE EVOLUTION

Many features exhibit fascinating evolution trajectories during training. We provide detailed visual-
izations for the representative examples mentioned in Section 3.3.
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Figure 9: More example ViT-L/14 Sparse+ features with their highest activated words and images.
Notice that we show un-normalized activation values here.

Figure 10: A full picture for evolution of the “dog rose” feature.
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Figure 11: Evolution of the “David Beckham” feature. It starts as a feature for “beard”, turned into
“gosling” in the middle of training, and finally become a dedicated “David Beckham” feature.

Figure 12: Evolution of the “Ryan Gosling” feature. It become Gosling at the same time when the
original Gosling feature taken by David Beckham, as shown in Figure 11.
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Figure 13: Evolution of the “conjunctivitis” feature: Initially, this feature activates for eye makeup
products but eventually converges to “conjunctivitis” in text while still activating for some eye makeup
images. This suggests the model may struggle to distinguish between eye makeup and inflamed eyes.

Figure 14: Evolution of the “British” feature. The feature begins by activating for images of
British-style houses during early training, then gradually generalizes to represent a wider range of
geographical and cultural concepts.
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Figure 15: Evolution of the “Messi” feature. It starts as an image-only feature for a group of sports
pictures, turned into a soccer only feature in the middle of training, and finally became the dedicated
“Messi” feature on both modalities.
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