
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PRECISECACHE: PRECISE FEATURE CACHING FOR
EFFICIENT AND HIGH-FIDELITY VIDEO GENERATION

Anonymous authors
Paper under double-blind review

Wan2.1-14B (1×) +Ours (~2.6× speedup) +TeaCache (~1.9× speedup)

Figure 1: Qualitative Results of PreciseCache on Wan2.1-14B (Wang et al., 2025). Compared
with previous methods, our PreciseCache achieves higher acceleration (about 2.6× speedup) of the
base model without sacrificing the quality of generated videos.

ABSTRACT

High computational costs and slow inference hinder the practical application of
video generation models. While prior works accelerate the generation process
through feature caching, they often suffer from notable quality degradation. In
this work, we reveal that this issue arises from their inability to distinguish truly
redundant features, which leads to the unintended skipping of computations on
important features. To address this, we propose PreciseCache, a plug-and-play
framework that precisely detects and skips truly redundant computations, thereby
accelerating inference without sacrificing quality. Specifically, PreciseCache con-
tains two components: LFCache for step-wise caching and BlockCache for block-
wise caching. For LFCache, we compute the Low-Frequency Difference (LFD)
between the prediction features of the current step and those from the previous
cached step. Empirically, we observe that LFD serves as an effective measure
of step-wise redundancy, accurately detecting highly redundant steps whose com-
putation can be skipped through reusing cached features. To further accelerate
generation within each non-skipped step, we propose BlockCache, which pre-
cisely detects and skips redundant computations at the block level within the net-
work. Extensive experiments on various backbones demonstrate the effectiveness
of our PreciseCache, which achieves an average of 2.6× speedup without notice-
able quality loss. Source code will be released.

1 INTRODUCTION

Video generation models (Zheng et al., 2024; Yang et al., 2024; Kong et al., 2024; Wang et al.,
2025) have demonstrated impressive capabilities in producing high-fidelity and temporally coherent
videos. However, they always suffer from extremely slow inference speed, posing a significant chal-
lenge to their application. Although some works attempt to alleviate the problem through distillation
(Geng et al., 2025; Song et al., 2023), they always need additional training, which is computationally
intensive. To address this, feature caching (Zhao et al., 2024b; Liu et al., 2025b; Lv et al., 2024)
has emerged as a popular approach to accelerate the process of video generation, which skips the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

network inference in several denoising steps by reusing the cached features from previous steps.
However, these works usually adopt a uniform caching scheme (i.e., performing a full inference
every n steps, caching the features, and reusing them until the next full inference), which over-
looks the varying importance of different timesteps in determining the output quality, resulting in
insufficient speedup or noticeable quality degradation. As a result, some recent works (Liu et al.,
2025a; Kahatapitiya et al., 2024; Chu et al., 2025) propose adaptive caching mechanisms that design
metrics to adaptively decide whether to perform the full model inference or reuse cached features at
each denoising timestep. However, these methods require complicated additional fitting or extensive
hyperparameter tuning, and their cache decision criteria remain suboptimal, leading to unsatisfying
generated results. Consequently, designing adaptive run-time caching mechanisms that maximizes
acceleration while preserving video quality remains challenging.

Noise Space Data Space

Latent Model Prediction Cached Prediction

Denoising Process

Figure 2: The Illustration of the Denoising
Process for Video Generation. At high-noise
timesteps, the prediction of the model varies sig-
nificantly. Reusing the cached features in this
stage (the red line) can significantly affect both the
content and the quality of generated videos com-
pared to the videos generated without caching (the
orange line). In contrast, the feature caching dur-
ing low-noise timesteps only introduces negligible
impacts (the green line).

In this work, we propose PreciseCache, an
adaptive video generation acceleration frame-
work that precisely identifies redundant fea-
tures and skips their computation through
feature caching, thereby enabling maximal
speedup without compromising video quality.
To this end, at each denoising step, we ana-
lyze the influence of reusing cached features on
the final generation quality. The results (Fig-
ure 3a) indicate that as the denoising process
progresses from high to low noise stages, the in-
fluence of reusing cached features gradually di-
minishes (Figure 2). This is consistent with the
intuition that the diffusion process models low-
frequency structural information at high-noise
steps while refining the generated content with
high-frequency details at low-noise steps (Wan,
2025). The structural information is crucial for
video generation, while high-frequency details
are usually perceptually insignificant, where
the computation can be skipped to achieve ac-
celeration. Consequently, we propose Low-
Frequency Difference (LFD), which measures
the difference between the low-frequency components of the model’s outputs at adjacent denoising
steps. Experiments in Figure 4b illustrate that LFD effectively estimates the redundancy of each
denoising step (as illustrated in Figure 3a) and therefore can be leveraged to indicate caching.

Based on the above analysis, we propose LFCache for step-wise caching. Specifically, at each
denoising step, we aim to leverage the LFD between the network prediction at the current step and
that at the previous cached step as the criterion to indicate caching. However, directly calculating
LFD cannot achieve acceleration because it requires calculating the current-step predictions through
the full model inference. To address this challenge, we observe that the LFD exhibits low sensitivity
to the resolution of the input latent (Figure 5), suggesting that a lightweight downsampled latent is
sufficient for its estimation. Consequently, at each denoising step in our LFCache framework, the
noisy latent is firstly downsampled and fed into the model for a quick “trial” inference, obtaining
an estimated prediction. The LFD is calculated between this prediction and the cached prediction,
which is then used to indicate caching. Due to the reduced latent size, the additional overhead for
the inference of the downsampled latent is negligible compared to the overall generation time.

The LFCache identifies and eliminates the redundancy at the timestep level, focusing on the final
output of the entire network at each denoising step. Beyond this, we introduce BlockCache, which
delves into the network and further accelerates the generation process by performing the block-
wise caching inside each non-skipped timestep identified by LFCache. Specifically, we assess the
redundancy of each transformer block by measuring the difference between its input and output
features. Our analysis (Figure 6) reveals that only a subset of transformer blocks make substantial
modifications to the input feature (which we refer to as pivotal blocks), while others have minimal
impact (which we refer to as non-pivotal blocks). BlockCache caches and reuses the outputs of these
non-pivotal blocks to reduce redundant computation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

We evaluate our PreciseCache on various state-of-the-art video diffusion models, including Open-
sora (Zheng et al., 2024), HunyuanVideo (Kong et al., 2024), CogVideoX (Yang et al., 2024), and
Wan2.1 (Wang et al., 2025). Experimental results demonstrate that our approach can achieve an
average of 2.6× speedup while preserving video generation quality, outperforming a wide range of
previous caching-based acceleration methods.

2 RELATED WORK

2.1 VIDEO DIFFUSION MODEL

Diffusion models (Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2023) have become the
leading paradigm for high-quality generative modeling in recent years. Within the video genera-
tion domain, diffusion-based approaches have attracted increasing attention, driven by the rising
demand for temporally coherent and high-resolution dynamic content (Blattmann et al., 2023b;a;
Hong et al., 2023; Wang et al., 2024b;c). Recent advances have consequently seen a shift from
conventional U-Net architectures (Ronneberger et al., 2015) towards more scalable Diffusion Trans-
formers (DiTs) (Peebles & Xie, 2023), which offer enhanced capacity to model intricate temporal
dynamics across frames. State-of-the-art DiT-based video diffusion models such as Sora (Brooks
et al., 2024; Zheng et al., 2024), CogvideoX (Yang et al., 2024), HunyuanVideo (Kong et al., 2024),
and Wan2.1 (Wang et al., 2025) have demonstrated impressive performance in synthesizing coherent
and high-fidelity videos. Despite these advancements, the inherently iterative denoising process in
diffusion models introduces considerable inference latency, which remains a critical challenge for
real-time or large-scale deployment.

2.2 DIFFUSION MODEL INFERENCE-TIME ACCELERATION

Many works (Song et al., 2023; Meng et al., 2023; Sauer et al., 2024) accelerate the generation
process through distillation. However, they usually require large-scale training, which is time-
consuming and resource-intensive. As an alternative, training-free inference acceleration meth-
ods (Song et al., 2021; Karras et al., 2022; Lu et al., 2022; Bolya & Hoffman, 2023; Wang et al.,
2024a; Zou et al., 2025; Zhang et al., 2025b;a; Xi et al., 2025; Ye et al., 2024) have gained consid-
erable attention for speeding up diffusion model inference without costly retraining. Among these
methods, Feature caching is one of the most popular methods for training-free video generation ac-
celeration, which leverages redundancy across iterative denoising steps. Early static caching meth-
ods (Selvaraju et al., 2024; Chen et al., 2024; Zhao et al., 2024b) rely on fixed schemes, but lack flex-
ibility to adapt to varying process dynamics. To overcome this, adaptive caching approaches (Wim-
bauer et al., 2024; Liu et al., 2025a; Chu et al., 2025; Kahatapitiya et al., 2024; Zhou et al., 2025)
propose to adaptively decide when to apply the caching and reusing mechanism during the denois-
ing process. However, these methods usually suffer from notable quality degradation or extensive
hyperparameter tuning.

3 METHOD

In this section, we introduce the PreciseCache method in detail. First, we analyze the influence
of reusing the cached feature at each timestep on the final generated result, proposing the Low-
Frequency Difference (LFD) metric to precisely estimate this influence at each timestep during
the video generation process. Then, we introduce LFCache for timestep-level caching. At each
denoising step, our LFCache framework first feeds a downsampled latent into the model, obtaining
an estimated output at this step. LFD is calculated between this output and the cached output, which
is used to determine whether to apply caching. Finally, we further propose BlockCache, which
performs the caching and reusing mechanism at the block level within the non-skipped timesteps.
The overall algorithm of our PreciseCache is shown in Algorithm 1.

3.1 PRELIMINARIES

Rectified Flow (Liu et al., 2022) models a linear path between the data distribution π0 and Gaussian
noise π1 via an ODE: dZt = v(Zt, t)dt, t ∈ [0, 1], where v is parameterized by a neural network
ϵθ. Given samples X0 ∼ π0, X1 ∼ π1, the forward trajectory is defined by Xt = (1−t)X0+tX1,
yielding the differential form dXt = (X1−X0)dt. The training objective minimizes the regression
loss between the ground truth velocity and the network prediction:

min
θ

∫ 1

0

E
[
∥(X1 −X0)− ϵθ(Xt, t)∥2

]
dt. (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0.06

(a). Caching 𝑭𝑖

M
S
E

0
Timestep 𝒁0

0.06

M
S
E

0
Timestep 𝒁0

0.06

M
S
E

0
Timestep 𝒁0

(b). Caching 𝑭𝑖
𝐿𝐹 (c). Caching 𝑭𝑖

𝐻𝐹

𝒁50 𝒁50 𝒁50

Figure 3: The Impact of Reusing the Cached Model Prediction at Each Timestep. Considering
a 50-step denoising process from the Gaussian Noise Z50 to a clean latent Z0, we respectively
reuse the model output at timestep ti+1 for each i ∈ {49, 48, · · · , 0}, and perform the subsequent
denoising steps to generate the final video. We then compare each resulting video with the baseline
(i.e., generated without caching and reusing) to evaluate the impact of reusing cached predictions.
Different colors indicate different prompts.

0.12

0

M
S
E

𝒁0Timestep

(a). ฮ𝑭𝑖 − 𝑭𝑖+1ฮ
2

0.12

0

M
S
E

𝒁0Timestep

0.12

0

M
S
E

𝒁0Timestep

(b). ቛ𝑭𝑖
𝐿𝐹 − 𝑭𝑖+1

𝐿𝐹 ቛ
2

(c). ቛ𝑭𝑖
𝐻𝐹 − 𝑭𝑖+1

𝐻𝐹 ቛ
2

𝒁50 𝒁50 𝒁50

Figure 4: The Difference between Model Predictions at Adjacent Timesteps. Although the dif-
ference is relatively large in the low-noise stage, it primarily arises from high-frequency components,
which have limited influence on the perceptual quality of the generated results. Different colors in-
dicate different prompts.

At inference, a Gaussian noise ZN ∼ N (0, I) is iteratively updated using the ODE Solver (Lu et al.,
2022; Wang et al., 2024c) represented by the Euler Method: Zi−1 = Zi + (ti−1 − ti) ϵθ(Zi, ti).
Compared to DDPM (Ho et al., 2020), RF achieves high-quality generation with significantly fewer
steps due to its linear sampling path. This efficiency makes it well-suited for T2V generation tasks
(Zheng et al., 2024; Wang et al., 2025; Yang et al., 2024; Kong et al., 2024).

Feature Caching. DiT-based video generation remains computationally intensive due to the com-
plexity of modeling spatiotemporal dependencies and the need for iterative denoising over numerous
steps. To address this, feature caching is a widely adopted technique to accelerate video generation,
where most works focus on step-wise caching. Considering the noisy latent Zi at the ith denois-
ing step, a full inference of network ϵθ is performed, i.e., Fi = ϵθ(Zi, ti), and the output Fi is
cached. In the subsequent n timesteps {ti−1, ti−2, · · · , ti−n}, instead of performing a full inference
as Fi−k = ϵθ(Zi−k, ti−k) where k ∈ {1, · · · , n}, the cached Fi is reused for updating the noisy
latent, i.e., Fi−k = Fi. Although this vanilla feature caching mechanism achieves significant ac-
celeration, the interval n is fixed. On the other hand, different denoising steps have varying degrees
of influence on the final output. Accurately identifying the redundant features within the generation
process to achieve adaptive caching remains a challenging problem.

3.2 LOW-FREQUENCY DIFFERENCE

Adaptive caching requires the mechanism to dynamically decide whether to perform a full network
inference at each denoising step ti (i.e., Fi = ϵθ(Zi, ti)), or to reuse the cached predictions of
the model from the previous step. Intuitively, this depends on its impact on the final generated
videos: if reusing the previous cached prediction at ti significantly influences the content and quality
of the generated video, a full inference of the network ϵθ needs to be conducted; otherwise, the
computation of this step can be skipped through reusing the cached prediction.

Based on this intuition, we begin by analyzing the impact of reusing the cached feature at each step
on the final generated video. Considering the video generation process consisting of N steps, we
respectively skip the computation at each step ti (where i ∈ {N − 1, N − 2, · · · , 0}) by reusing

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

the model’s prediction from the previous step ti+1, and then generate the final videos. We measure
the Mean Squared Error (MSE) between videos generated with caching and the ground truth, which
are generated without caching. Generally, our results (Figure 3a) indicate that reusing the cached
feature at early high-noise steps significantly affects the generated results, whereas at later low-noise
steps, its impact is negligible.

The above analysis precisely quantifies the influence of applying caching at each single denoising
step. Intuitively, if this influence is estimated immediately at ti during the denoising process, it can
then be leveraged to decide whether the computation at ti can be skipped through feature caching.
However, it is a non-trivial task because the influence of each step in Figure 3a cannot be obtained be-
fore the corresponding video is generated. As an alternative, most prior works like (Liu et al., 2025a)
directly leverage the difference between the current network prediction Fi and the cached prediction
as the metric to indicate caching (Figure 4a), which does not align with the above observation and
would lead to sub-optimal caching strategies. In this work, we propose to further decompose the
model prediction Fi into low-frequency and high-frequency components (FLF

i and FLF
i) through

the Fast Fourier Transform (FFT), and investigate their separate effects during denoising, i.e.,

FLF
i = FFT (ϵθ(Zi, ti))low;F

HF
i = FFT (ϵθ(Zi, ti))high. (2)

We observe that caching FLF
i predominantly affects the generated results (Figure 3b), whereas

FHF
i has a negligible influence (Figure 3c). Based on this insight, we further calculate their differ-

ence between adjacent denoising steps, i.e.,

∆LF
i =

∥∥FLF
i − FLF

i+1

∥∥
2
; ∆HF

i =
∥∥FHF

i − FHF
i+1

∥∥
2
, i ∈ {N − 1, · · · , 0} (3)

We find that the Low-Frequency Difference (LFD) ∆LF
i closely aligns with the observation in

Figure 3a. This implies that at high-noise timesteps, the network generates critical structural and
content information for the video, while at low-noise timesteps, it primarily produces high-frequency
details that are perceptually insignificant and thus can be safely cached to accelerate generation.

3.3 LFCACHE
0.1

𝒁!𝒁"!
0

M
SE

Timestep

Downsampled Latent

Full-resolution Latent

Figure 5: The Relationship between Latent
Resolution and LFD. We observe that down-
sampling has little effect on the computation of
LFD. The experiment is conducted on Wan2.1-
14B (Wang et al., 2025).

Directly applying Low-Frequency Difference
to indicate caching cannot accelerate the video
generation process because obtaining ∆LF

i re-
quires performing a full forward pass at the
timestep ti to calculate Fi. To address this, we
propose LFCache framework, where a down-
sampled latent is first fed into the model for
“trail” at each denoising step. Specifically,
given the latent Zi ∈ RT×H×W×C at the
timestep ti, (where T , H , W and C represent
the temporal, height, width, and channel of the
latent). We first downsample the latent on its
temporal, height and width dimensions, i.e.,

Z̃i = Downsample (Zi) , (4)

where Z̃i ∈ R(T/r)×(H/s)×(W/s)×C , r denotes
the downsample factor at the temporal dimen-
sion and s denotes the downsample factor at the spatial dimension. Then, we feed the downsam-
pled latent Z̃i into the network ϵθ to obtain an estimated output F̃i, i.e., F̃i = ϵθ(Z̃i, ti). Due
to the reduced size of the downsampled latent, this process is highly efficient, taking a negligi-
ble computational overhead within the overall video generation process. Similarly, we downsam-
ple the cached prediction Fi+1, obtaining F̃i+1 and calculate the low-frequency difference, i.e.,
∆̃LF

i =
∥∥∥F̃LF

i − F̃LF
i+1

∥∥∥
2
. The analysis in Figure 5 indicates that the ∆̃LF

i is highly consistent with

∆LF
i , which can be used as an effective caching indicator during the process of generation.

Following prior works (Liu et al., 2025a), at each denoising step, we use the accumulated differences
as the final indicator to indicate caching. Specifically, after doing a full inference and obtaining the
output of the model Fa at timestep ta, we accumulate the low-frequency difference at subsequent
timesteps, i.e.,

∑b
i=a ∆̃

LF
i . If

∑b
i=a ∆̃

LF
i is greater than a pre-defines threshold δ at tb, the com-

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Video Generation with PreciseCache.

1: Initialize ϵθ, ZN ∼ N (0, I)
2: Initialize E ← 0 // Accumulated error
3: FN ← ϵθ(ZN , tN) // Always do the full inference at the first timestep tN
4: F̃LF

N ← Downsample(FFT (FN)low)
5: ZN−1 ← UpdateLatent{ZN ,FN}
6: for i = N − 1, N − 2, . . . , 1 do
7: Z̃i ← Downsample(Zi)

8: F̃i ← ϵθ(Z̃i, ti) // Obtain the network output of downsampled input
9: F̃LF

i ← FFT (F̃i)low // Calculate the low-frequency component at ti
10: F̃LF

i+1 ← FFT (Downsample(Fi+1))low // Calculate the low-frequency component at ti+1

11: ∆̃LF
i ←

∥∥∥F̃LF
i − F̃LF

i+1

∥∥∥
2

// Calculate the Low-Frequency Difference (LFD)

12: E ← E + ∆̃LF
i // Update the accumulate error

13: if E < δ then
14: Fi ← Fi+1 // Directly reuse the cached output
15: else
16: Fi ← ϵθ(Zi, ti) // Inference with BlockCache
17: E ← 0 // Reset error
18: end if
19: Zi−1 ← UpdateLatent(Zi,Fi) // Update latent
20: end for
21: Output: Z0

putation of this timestep cannot be skipped and Fb should be calculated through the inference of
the network. Otherwise, we reuse the Fa to update the latent at tb. This procedure is shown in
Algorithm 1.

3.4 BLOCKCACHE

M
SE

Block ID

0.25

0
0 39

Figure 6: The Importance of Each Trans-
former Block within the Video Diffusion Trans-
former. Different colors represent different de-
noising steps. The experiment is conducted on
Wan2.1-14B (Wang et al., 2025).

LFCache effectively identifies which timesteps
in the denoising process can be directly skipped
by reusing the cached output of the entire DiT
model (i.e., ϵθ). On the other hand, even at
those non-skipped timesteps, redundancy still
exists within the computations of individual
transformer blocks. To address this and achieve
further acceleration, we propose BlockCache,
which eliminates the redundancy at the block
level in those non-skipped steps identified by
LFCache. Specifically, considering the non-
skipped timestep tki

∈ {N,N − k1, · · · , N −
kn} identified in section 3.3, the inference of
the DiT model with M transformer blocks (i.e.,
Fki

= ϵθ(Zki
, tki

)) can be decomposed as

F 0
ki

= Zki
; F j

ki
= Bj(F j−1

ki
, tki

); Fki
= FM

ki
, (5)

where j ∈ {1, . . . ,M} and Bj indicates the jth block in ϵθ. We analyze the redundancy of each
block Bj by calculating the difference between its input and output. The results in Figure 6 illustrate
that only a subset of blocks (which we refer to as pivotal blocks) make notable modifications of
the input, while remaining blocks have minimal impact (which we refer to as non-pivotal blocks).
Based on this observation, our BlockCache aims to eliminate the redundant computation of non-
pivotal blocks. Specifically, considering the non-skipped step tki

, a full inference of the network
is conducted, and the difference Dj

ki
between the input and output of each block is cached, i.e.,

Dj
ki

= F j
ki
−F j−1

ki
. Then, we select the blocks with top c% largest difference, which are identified

as the pivotal blocks: Iki
=

{
j |

∥∥∥Dj
ki

∥∥∥
2

is in the top c% of all values
}

. Other blocks are non-

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

pivotal blocks, which are highly redundant and thus can be skipped. In the following L non-skipped
denoising steps tki−l

(l ∈ {1, · · · , L}), we use the cached difference Dj
ki

to estimate the output of
non-pivotal blocks. The inference procedure with BlockCache can be represented as

F 0
ki−l

= Zki−l
, F j

ki−l
=

{
Bj

(
F j−1
ki−l

, tki−l

)
, j ∈ Ii

F j−1
ki−l

+Dj
ki
, j /∈ Ii

, Fki−l
= FN

ki−l
. (6)

With the skipping of the non-pivotal blocks, BlockCache minimizes redundancy during generation
without compromising the quality of the results. For implementation, our BlockCache is easier to in-
tegrate into diverse model architectures for acceleration and only requires minimal hyper-parameter
tuning compared to previous block-level caching methods such as (Kahatapitiya et al., 2024).

4 EXPERIMENTS

4.1 SETUP

Baselines. To validate the efficacy of PreciseCache, we implement our method on various state-of-
the-art base models for video generation, including Open-Sora 1.2 (Zheng et al., 2024), Hunyuan-
Video (Kong et al., 2024), CogVideoX (Yang et al., 2024), and Wan2.1 (Wang et al., 2025). We
compare our methods with previous SOTA cached-based acceleration methods for video generation
models, including PAB (Zhao et al., 2024b), TeaCache (Liu et al., 2025a), and FasterCache (Lv
et al., 2024). For these methods, we utilize their official implementations available on GitHub. For
base models not directly supported by their official code, we implement the method ourselves.

Evaluation Metrics and Datasets. We evaluate inference efficiency and generated video quality
of PreciseCache. To measure the inference efficiency, we report Multiply-Accumulate Operations
(MACs) and inference latency. For assessing visual quality, we generate videos using the prompt
from VBench (Huang et al., 2024) and evaluate performance using VBench’s comprehensive met-
rics. We also report some widely adopted perceptual and fidelity metrics, including LPIPS, PSNR,
and SSIM, which measure the similarity between videos generated with cache-based acceleration
methods and those directly generated by base models without caching.

Implementation Details. Determining an appropriate threshold δ for LFCache is a non-trivial
task, as the optimal value tends to vary across different base models and prompts. To address
this challenge, we convert determining a specific threshold value into determining a relative fac-
tor α. Specifically, in our implementation, caching is disabled for the first three timesteps during
which we record the maximum low-frequency difference observed, i.e., ∆̃LF

max. We then set the
threshold δ as ∆̃LF

max × α. This strategy substantially reduces the difficulty of manually tuning the
threshold parameter. For LFCache, we provide two basic configurations, i.e., PreciseCache-Base
and PreciseCache-Turbo, where α is set to 0.5 and 0.7 for all the models. Based on PreciseCache-
Turbo, we further provide a faster configuration, i.e., PreciseCache-Flash, where the BlockCache is
enabled with the cache rate set to 40% and L set to 3. The downsample rate in LFCache is set to [2,
4, 4] in the temporal, height, and width dimensions, respectively. To separate frequency components
using FFT, we define a low-frequency region as a centered circular mask with radius equal to 1

5

of the minimum spatial dimension, i.e., radius = 1
5 min(H,W). All experiments are executed on

NVIDIA A800 80GB GPUs utilizing PyTorch, with FlashAttention (Dao et al., 2022) enabled by
default to optimize computational efficiency.

4.2 MAIN RESULTS

Quantitative Evaluation. Table 1 reports a detailed quantitative assessment comparing our ap-
proach with state-of-the-art acceleration methods: PAB (Zhao et al., 2024b), TeaCache (Liu et al.,
2025a), and FasterCache (Lv et al., 2024), focusing on both computational efficiency and visual
fidelity. Our PreciseCache consistently illustrates notable speedup while strictly maintaining the vi-
sual quality of the base model, demonstrating robustness across diverse base architectures, sampling
strategies, video resolutions, and durations.

Qualitative Comparison. Figure 7 illustrates qualitative results comparing videos generated using
PreciseCache-flash and several baseline methods. Visual comparisons demonstrate that our method
achieves significant acceleration without altering the generated video content or compromising qual-
ity. In contrast, existing baselines often produce different content and suboptimal quality videos
Additional qualitative examples are provided in Figure 9 for further reference.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Quantitative Comparison of efficiency and visual quality on 4 A800 GPUs.

Method Efficiency Visual Quality
MACs (P) ↓ Speedup ↑ Latency (s) ↓ VBench ↑ LPIPS ↓ SSIM ↑ PSNR ↑

Open-Sora 1.2 (480P, 192 frames)
Open-Sora 1.2 (T = 30) 6.30 1× 47.23 78.79% - - -
PAB 5.33 1.26× 38.40 78.15% 0.1041 0.8821 26.43
TeaCache 3.29 1.95× 24.73 78.23% 0.0974 0.8897 26.84
FasterCache 4.13 1.67× 29.15 78.46% 0.0835 0.8932 27.03
Ours-base 3.73 1.72× 27.95 78.71% 0.0617 0.9081 28.78
Ours-turbo 3.10 2.07× 23.27 78.49% 0.0786 0.8971 27.11
Ours-flash 2.45 2.60× 18.38 78.19% 0.0979 0.8903 26.78

HunyuanVideo (480P, 65 frames)
HunyuanVideo (T = 50) 14.92 1× 73.64 80.66% - - -
PAB 10.73 1.35× 54.54 79.37% 0.1143 0.8732 27.01
TeaCache 8.93 1.64× 44.90 80.51% 0.0911 0.8952 28.15
FasterCache 10.29 1.43× 51.50 80.59% 0.0893 0.9017 28.96
Ours-base 9.15 1.61× 45.74 80.65% 0.0654 0.9102 29.15
Ours-turbo 7.49 1.95× 37.76 80.49% 0.0884 0.9043 29.06
Ours-flash 6.04 2.44× 30.18 80.02% 0.0902 0.8977 28.64

CogVideoX (480P, 48 frames)
CogVideoX (T = 50) 6.03 1× 21.13 80.18% - - -
PAB 4.45 1.32× 16.01 79.76% 0.0860 0.8978 28.04
TeaCache 3.33 1.79× 11.80 79.79% 0.0802 0.9013 28.76
FasterCache 3.71 1.60× 13.21 79.83% 0.0766 0.9066 28.93
Ours-base 3.59 1.65× 12.81 80.14% 0.0619 0.9110 29.23
Ours-turbo 2.96 2.02× 10.46 79.91% 0.0742 0.9021 28.97
Ours-flash 2.31 2.58× 8.19 79.80% 0.0849 0.9001 28.79

Wan2.1-14B (720P, 81 frames)
Wan2.1-14B (T = 50) 329.2 1× 907.3 83.62% - - -
PAB 233.5 1.38× 657.5 82.91% 0.1853 0.8607 26.18
TeaCache 166.3 1.94× 467.7 83.24% 0.1012 0.8719 27.22
FasterCache 183.9 1.73× 524.5 83.47% 0.0741 0.9078 28.45
Ours-base 204.5 1.59× 570.6 83.56% 0.0451 0.9189 29.12
Ours-turbo 151.0 2.15× 422.1 83.52% 0.0633 0.9127 28.98
Ours-flash 122.4 2.63× 344.9 83.43% 0.0812 0.9035 28.76

4.3 ABLATION STUDIES

To comprehensively evaluate the effectiveness of PreciseCache, we conduct ablation studies to in-
vestigate the performance under different number of GPU, the downsampling size in LFCache, and
the feature reusing strategy. Without loss of generality, experiments are conducted on Wan2.1-14B
(Wang et al., 2025) and HunyuanVideo (Kong et al., 2024).
Table 2: Latency on Different Number of GPUs with
DSP (Zhao et al., 2024a). Without loss of generality,
we use Wan2.1-14B (Wang et al., 2025) and Hunyuan-
Video (Kong et al., 2024) as the base models and gen-
erate the 1080P videos, reporting the latency (s) under
different numbers of A800 GPUs.

#GPU HunyuanVideo +PreciseCache Wan-2.1 +PreciseCache
1 982 (1×) 470 (2.08×) 3326 (1×) 1330 (2.50×)
2 566 (1.73×) 275 (3.57×) 1732 (1.92×) 753 (4.41×)
4 329 (2.98×) 161 (6.10×) 907 (3.67×) 416 (8.00×)
8 175 (5.61×) 88 (11.16×) 459 (7.25×) 229 (14.52×)

Table 3: Influence of Downsample Size.
Without loss of generality, experiments are
conducted on Wan2.1-14B (Wang et al.,
2025) with 4 A800 GPUs.

Factor (T ×H ×W) Latency ↓ VBench ↑ LPIPS ↓
Baseline 907 (1×) 83.62% -
1× 2× 2 918 (0.98×) 83.57% 0.0797
1× 4× 4 525 (1.73×) 83.49% 0.0801
1× 8× 8 401 (2.26×) 83.18% 0.1946
2× 4× 4 416 (2.18×) 83.52% 0.0793
4× 4× 4 403 (2.25×) 83.02% 0.1875

Performances on Different Number of GPUs. Following previous works (Lv et al., 2024), we
adopt the Dynamic Sequence Parallelism (DSP) to facilitate multi-GPU inference. Table 2 illustrates
the inference latency of PreciseCache-turbo under different numbers of A800 GPUs, where our
methods consistently achieves significantly lower inference latency than base models. Notably,
PreciseCache-turbo can achieve even further acceleration ratio on Wan2.1-14B (Wang et al., 2025)
under fewer number of GPU, e.g., it can achieve about 2.5× acceleration using 1 GPU. These results
highlight the effectiveness of our PreciseCache in various number of GPUs.

Size of Downsampling. As illustrated in section 3.3, a downsampled latent is fed into the model to
obtain the estimated output at each denoising step. We conduct experiments to illustrate the impact
of downsampling size (Table 3). Experiments show that a small downsampling ratio results in a
large latent size, which significantly increases the inference time. Conversely, over-downsampling

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

+ FasterCache+ OursWan2.1-14B + TeaCache + FasterCache+ OursHunyuanVideo + TeaCache

A duck swims in a pond and a model ship floats nearby

A woman knits a sweater and a cat plays with the yarn

Furry dog fetching a rubber ball

Figure 7: Qualitative Comparison. Zoom in for the best views.
can yield predictions that fail to adequately estimate the output at the current timestep, leading to
suboptimal caching strategies and degraded video generation quality. Empirically, we find that a
sampling rate of 2 × 4 × 4 along the temporal (T) and spatial (H , W) dimensions can achieve a
satisfying trade-off between acceleration and generation quality.

Table 4: Feature Reusing Strategy for
Step-wise Caching. Without loss of general-
ity, we conduct experiments on Wan2.1-14B
(Wang et al., 2025), generating videos with
1080P resolution.

Strategy VBench ↑ LPIPS ↓
Reuse prediction (F) 83.52% 0.0793
Reuse residuals (R) 83.50% 0.0791

TaylorSeer 83.54% 0.0801

Feature Reusing Strategy. For the LFCache, we
directly store the model’s final prediction Fi (i.e.,
the results after classifier-free guidance) at each non-
skipped timestep and reuse this cached prediction in
the subsequent skipped steps. On the other hand,
we notice that some prior works adopt different fea-
ture reusing strategies, such as caching the residual
(Liu et al., 2025a) (i.e., Ri = Fi − Zi) at the non-
skipped steps ti. At the skipped steps, the prediction
is estimated according to this cached residual and the
input noisy latent. Some works such as TaylorSeer
(Liu et al., 2025b) also design more sophisticated reuse strategies with better performance. We con-
ducted experiments to compare these strategies and found that their performances are comparable
(Table 4) under our PreciseCache. As a result, we adopt the vanilla approach for simplicity. This
observation further implies that designing methods to identify where and when to cache could be
more important than exploring how to cache for training-free video generation acceleration.

5 CONCLUSION

In this work, we propose PreciseCache, an effective training-free method for accelerating the video
generation process, containing LFCache for step-wise caching and BlockCache for block-wise
caching. First, we introduce the low-frequency difference, which can precisely reflect the redun-
dancy of each denoising step. Then, we propose LFCache which indicates step-wise caching through
the low-frequency difference between the downsampled output at the current step and that of the
cached step. Furthermore, we propose the BlockCache to reduce the redundancy at the non-skipped
timesteps by caching the blocks which has minimal impact on the input feature. Extensive experi-
ments illustrate the effectiveness of our method with different base models under various numbers
of GPUs, highlighting its potential for real-world applications.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023a.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
models. pp. 22563–22575, 2023b.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. pp. 4599–4603, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. OpenAI
Blog, 1:8, 2024.

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis,
Yiren Zhao, and Tao Chen. δ-dit: A training-free acceleration method tailored for diffusion
transformers. arXiv preprint arXiv:2406.01125, 2024.

Huanpeng Chu, Wei Wu, Guanyu Fen, and Yutao Zhang. Omnicache: A trajectory-oriented
global perspective on training-free cache reuse for diffusion transformer models. arXiv preprint
arXiv:2508.16212, 2025.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344–16359, 2022.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. pp. 6840–
6851, 2020.

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-
training for text-to-video generation via transformers. 2023.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21807–21818, 2024.

Kumara Kahatapitiya, Haozhe Liu, Sen He, Ding Liu, Menglin Jia, Chenyang Zhang, Michael S.
Ryoo, and Tian Xie. Adaptive caching for faster video generation with diffusion transformers.
arXiv preprint arXiv:2411.02397, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. volume 35, pp. 26565–26577, 2022.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. pp. 7353–7363, 2025a.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to fore-
casting: Accelerating diffusion models with taylorseers. arXiv preprint arXiv:2503.06923, 2025b.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In International Conference on Learning Representations, 2022.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. volume 35, pp. 5775–5787,
2022.

Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K.
Wong. Fastercache: Training-free video diffusion model acceleration with high quality. In arxiv,
2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14297–14306, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. pp. 4195–4205,
2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234–241. Springer, 2015.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In European Conference on Computer Vision, pp. 87–103. Springer, 2024.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration. arXiv preprint arXiv:2407.01425, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. 2021.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Team Wan. Wan2.2, July 2025. URL https://github.com/Wan-Video/Wan2.2.

Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pan-
deng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing
Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou,
Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou,
Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu,
Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han,
Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. arXiv
preprint arXiv:2503.20314, 2025.

Hongjie Wang, Difan Liu, Yan Kang, Yijun Li, Zhe Lin, Niraj K Jha, and Yuchen Liu. Attention-
driven training-free efficiency enhancement of diffusion models. pp. 16080–16089, 2024a.

Jiangshan Wang, Yue Ma, Jiayi Guo, Yicheng Xiao, Gao Huang, and Xiu Li. Cove: Unleashing the
diffusion feature correspondence for consistent video editing. Advances in Neural Information
Processing Systems, 37:96541–96565, 2024b.

Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li,
and Ying Shan. Taming rectified flow for inversion and editing. arXiv preprint arXiv:2411.04746,
2024c.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating
diffusion models through block caching. pp. 6211–6220, 2024.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
spatial-temporal sparsity. 2025.

11

https://github.com/Wan-Video/Wan2.2

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Hancheng Ye, Jiakang Yuan, Renqiu Xia, Xiangchao Yan, Tao Chen, Junchi Yan, Botian Shi, and
Bo Zhang. Training-free adaptive diffusion with bounded difference approximation strategy. Ad-
vances in Neural Information Processing Systems, 37:306–332, 2024.

Evelyn Zhang, Jiayi Tang, Xuefei Ning, and Linfeng Zhang. Training-free and hardware-friendly
acceleration for diffusion models via similarity-based token pruning. 2025a.

Jintao Zhang, Jia Wei, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageattention: Accurate 8-bit
attention for plug-and-play inference acceleration. 2025b.

Xuanlei Zhao, Shenggan Cheng, Zangwei Zheng, Zheming Yang, Ziming Liu, and Yang You.
Dsp: Dynamic sequence parallelism for multi-dimensional transformers. arXiv preprint
arXiv:2403.10266, 2024a.

Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid
attention broadcast. arXiv preprint arXiv:2408.12588, 2024b.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all,
March 2024. URL https://github.com/hpcaitech/Open-Sora.

Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding,
Feiyang Tan, Hengshuang Zhao, and Xiang Bai. Less is enough: Training-free video diffusion
acceleration via runtime-adaptive caching. arXiv preprint arXiv:2507.02860, 2025.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
transformers with token-wise feature caching. 2025.

A APPENDIX

A.1 PIPELINE OF PRECISECACHE

We provide the overall pipeline of PreciseCache in fig. 8 for clearer illustration.

PreciseCache

Module

DiT

Cache
DiT with

BlockCache

1st Block𝒁𝑖

𝑭𝑖

𝑭𝑖+1

𝒁𝑖−1

෪𝒁𝑖

𝒁𝑖

DownSample

Calculate ෪Δ𝑖
𝐿𝐹

෪𝑭𝑖𝑭𝑖+1

𝐸 = 𝐸 + ෪Δ𝑖
𝐿𝐹

𝑖𝑓 𝐸 > 𝛿𝑖𝑓 𝐸 < 𝛿

PreciseCache

Module

…

…

𝒁𝑖 𝒁𝑖

2nd Block

𝑭𝒌𝒊

𝟎

𝑭𝒌𝒊

𝟏

Diff 𝑫𝒌𝒊

𝟏

…
𝑭𝒌𝒊

𝟐

Diff 𝑫𝒌𝒊

𝟐

𝑗th Block

𝑭𝒌𝒊

𝒋−𝟏

𝑭𝒌𝒊

𝒋

Diff 𝑫𝒌𝒊

𝒋

…

…

…

𝑀th Block

𝑭𝒌𝒊

𝑴−𝟏

𝑭𝒌𝒊

𝑴

Diff 𝑫𝒌𝒊

𝑴

𝒁𝒌𝒊

𝑭𝒌𝒊𝑭𝑖𝑭𝑖

1st Block

Cache

…

…

𝑀th Block

𝑭𝒌𝒊−𝒍

𝑴

𝒁𝒌𝒊−𝒍

𝑭𝒌𝒊−𝒍

‖𝑫𝒌𝒊

𝟐 ‖2 not in top c%

‖𝑫𝒌𝒊

1 ‖2 in top c%

‖𝑫𝒌𝒊

𝒋
‖2 not in top c%

‖𝑫𝒌𝒊

M‖2 in top c%

Cache

(a). Overall Process

of Video Generation

(b). Pipeline of

PreciseCache (c). Example of Inference with BlockCache

The Non-cached Step 𝑘𝑖 A Following Step 𝑘𝑖−𝑙

Figure 8: Pipeline of PreciseCache.

12

https://github.com/hpcaitech/Open-Sora

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A.2 THEORETICAL ANALYSIS OF THE LFD THRESHOLD

In this section, we provide a simple theoretical analysis that connects the Low-Frequency Difference
(LFD) threshold used in PreciseCache to the deviation between the cached sampling trajectory and
the original full sampling trajectory. Under mild Lipschitz assumptions on the sampler and the
decoder, we show that the pixel-space error between the cached video and the full video is linearly
bounded by the LFD threshold δ. This gives a principled interpretation of the threshold parameter
(denoted as α in our ablations), beyond purely empirical tuning.

A.2.1 NOTATION AND PRELIMINARIES

Let Zi denote the latent variable at timestep ti, and let

Fi = ϵθ(Zi, ti) (7)

be the network output (e.g., noise prediction) at timestep ti. We denote the full-precision (no-cache)
sampling trajectory by {Zfull

i }Ni=0 and {F full
i }Ni=1, and the trajectory produced by PreciseCache by

{Zcache
i }Ni=0 and {F cache

i }Ni=1. Both trajectories start from the same initial noise: Zcache
N = Zfull

N .

We write the one-step latent update in the generic form

Zi−1 = UpdateLatenti(Zi,Fi), (8)

which covers standard diffusion samplers such as Euler and DDIM.

We use a linear operator A to represent the low-frequency projection and downsampling used in
LFD computation, i.e.,

F̃LF
i = A(Fi). (9)

In practice, A consists of FFT, low-frequency masking, and optional spatial downsampling.

The Low-Frequency Difference (LFD) at timestep ti is then

∆̃LF
i =

∥∥∥F̃LF
i − F̃LF

i+1

∥∥∥
2
=

∥∥A(Fi − Fi+1

)∥∥
2
. (10)

During sampling, PreciseCache maintains an accumulated quantity

E =
∑
k

∆̃LF
k . (11)

When E < δ, the algorithm reuses a cached network output; when E ≥ δ, it recomputes the network
output, and then resets E ← 0. The scalar δ > 0 is the LFD threshold; in the main experiments, we
use a normalized version of this threshold and denote it by α.

A.2.2 LIPSCHITZ ASSUMPTION ON THE ONE-STEP UPDATE

We first introduce a standard Lipschitz assumption on the one-step update operator.

Assumption 1 (Lipschitz one-step update). For each timestep i, there exist constants LZ,i ≥ 0
and LF,i ≥ 0 such that for all Z,Z ′,F ,F ′,∥∥UpdateLatenti(Z,F)−UpdateLatenti(Z

′,F ′)
∥∥
2
≤ LZ,i∥Z−Z ′∥2+LF,i∥F −F ′∥2. (12)

In particular, for fixed Z,∥∥UpdateLatenti(Z,F)−UpdateLatenti(Z,F ′)
∥∥
2
≤ LF,i∥F − F ′∥2. (13)

We further define global constants

LZ = max
i

LZ,i, LF = max
i

LF,i. (14)

For standard explicit solvers, these constants depend on the step sizes and the noise schedule, and
are finite for the fixed sampling schedule used in our experiments.

A.2.3 BOUNDING THE NETWORK OUTPUT DEVIATION BY THE LFD THRESHOLD

We next relate the deviation between cached and full network outputs to the LFD threshold δ.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Consider a contiguous caching segment of timesteps

i = s, s− 1, . . . , e, (15)

such that at timestep s + 1 the model output F full
s+1 is recomputed, and for all i = s, . . . , e the

algorithm reuses the same cached output:

F cache
i = F full

s+1. (16)

By construction of the algorithm, the accumulated LFD within this segment satisfies

E =

s∑
k=e

∆̃LF
k < δ, (17)

and once E would exceed δ, a new recomputation is triggered and a new segment starts.

For any i ∈ {e, . . . , s}, we can write

F cache
i − F full

i = F full
s+1 − F full

i =

s∑
k=i

(
F full
k+1 − F full

k

)
. (18)

By the triangle inequality, ∥∥F cache
i − F full

i

∥∥
2
≤

s∑
k=i

∥∥F full
k+1 − F full

k

∥∥
2
. (19)

To connect the right-hand side to the LFDs, we make the following assumption.

Assumption 2 (Low-frequency dominance). Along the full sampling trajectory, there exists a
constant cLF ≥ 1 such that for all timesteps k,∥∥F full

k+1 − F full
k

∥∥
2
≤ cLF

∥∥A(F full
k+1 − F full

k

)∥∥
2
= cLF ∆̃

LF
k . (20)

That is, the temporal change of the network output is dominated by its energy in the low-frequency
subspace captured by A.

Substituting equation 20 into equation 19 yields∥∥F cache
i − F full

i

∥∥
2
≤ cLF

s∑
k=i

∆̃LF
k ≤ cLFE < cLF δ. (21)

For timesteps i at which no caching is used, we have F cache
i = F full

i , and thus∥∥F cache
i − F full

i

∥∥
2
= 0 ≤ cLF δ. (22)

Therefore, for all timesteps i = 1, . . . , N , we obtain a uniform bound∥∥F cache
i − F full

i

∥∥
2
≤ cLF δ. (23)

A.2.4 LATENT ERROR RECURRENCE AND GLOBAL BOUND

We now propagate the deviation in network outputs to a deviation in the latent trajectory. Define the
latent error at timestep i as

ei =
∥∥Zcache

i −Zfull
i

∥∥
2
, i = 0, . . . , N, (24)

and the output deviation at timestep i as

di =
∥∥F cache

i − F full
i

∥∥
2
. (25)

By construction, eN = 0 since we start from the same initial noise.

Using the joint Lipschitz property equation 12, for each i we have

ei−1 =
∥∥UpdateLatenti(Z

cache
i ,F cache

i)−UpdateLatenti(Z
full
i ,F full

i)
∥∥
2

≤ LZ,i

∥∥Zcache
i −Zfull

i

∥∥
2
+ LF,i

∥∥F cache
i − F full

i

∥∥
2

≤ LZei + LF di. (26)

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Using the uniform bound equation 23 on di, we obtain

di ≤ cLF δ, ∀i. (27)

Substituting into equation 26 gives

ei−1 ≤ LZei + LF cLF δ. (28)

Unrolling the recursion equation 28 from i = N down to i = 1 with eN = 0, we obtain

e0 ≤ LF cLF δ

N−1∑
t=0

Lt
Z . (29)

We can thus define a constant

CZ = LF cLF

N−1∑
t=0

Lt
Z , (30)

which depends on the sampler, the model, and the fixed number of sampling steps N , but does not
depend on the threshold δ. Equation equation 29 then becomes∥∥Zcache

0 −Zfull
0

∥∥
2
= e0 ≤ CZ δ. (31)

Therefore, under Assumptions 1 and 2, the deviation between the final latents produced by Precise-
Cache and by the full sampler is bounded linearly in the LFD threshold δ.

A.2.5 FROM LATENT DEVIATION TO VIDEO QUALITY DEGRADATION

Finally, let D denote the decoder that maps the final latent Z0 to the video in pixel space (e.g., a
VAE decoder). We assume that D is Lipschitz continuous.

Assumption 3 (Lipschitz decoder). There exists a constant Ldec ≥ 0 such that for all Z0,Z
′
0,∥∥D(Z0)−D(Z ′

0)
∥∥
2
≤ Ldec

∥∥Z0 −Z ′
0

∥∥
2
. (32)

Applying this to Zcache
0 and Zfull

0 and using equation 31, we obtain∥∥D(Zcache
0)−D(Zfull

0)
∥∥
2
≤ Ldec

∥∥Zcache
0 −Zfull

0

∥∥
2
≤ LdecCZ δ. (33)

Equation equation 33 shows that, under the above assumptions, the pixel-space deviation between
the video generated with PreciseCache and that generated by the full sampler is bounded by a con-
stant times the LFD threshold δ. Since many common video quality metrics (e.g., PSNR and some
distance-based perceptual metrics) are monotonic with respect to the ℓ2 distance in pixel space, this
provides a theoretical justification that:

• smaller δ (or equivalently, smaller normalized threshold α) leads to a tighter worst-case
upper bound on video quality degradation, at the cost of fewer cache hits and lower speed-
up;

• larger δ allows more aggressive caching and higher speed-up, while relaxing the upper
bound on the worst-case quality degradation.

In summary, the threshold parameter used in PreciseCache is not merely an empirically tuned hy-
perparameter, but directly controls a provable upper bound on the worst-case deviation between the
cached and full sampling trajectories in both latent and pixel spaces.

A.3 MORE QUALITATIVE RESULTS

We provide more qualitative results of our PreciseCache in Figure 9, illustrating the effectiveness of
our method.

A.4 LIMITATIONS AND FUTURE WORKS

Although PreciseCache can achieve significant acceleration of video generation without training,
its BlockCache component requires caching the features of each transformer block, which leads

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Baseline (1.0x) +PreciseCache (2.6x speedup)

Figure 9: More Qualitative Results of PreciseCache on Wan2.1-14B. Zoom in for the best views.

to increased GPU memory usage. Consequently, running PreciseCache-flash with BlockCache on
Wan2.1-14B to generate 1080P videos cannot be completed on a single 80G A800 GPU. This issue
can be addressed through multi-GPU inference. We notice that the increase in GPU memory usage
is a common problem of cache-based acceleration methods for the need to store features, which
remains to be explored by future work.

16

	Introduction
	Related Work
	Video Diffusion Model
	Diffusion Model Inference-time Acceleration

	Method
	Preliminaries
	Low-Frequency Difference
	LFCache
	BlockCache

	Experiments
	Setup
	Main Results
	Ablation Studies

	Conclusion
	Appendix
	Pipeline of PreciseCache
	Theoretical Analysis of the LFD Threshold
	Notation and Preliminaries
	Lipschitz Assumption on the One-Step Update
	Bounding the Network Output Deviation by the LFD Threshold
	Latent Error Recurrence and Global Bound
	From Latent Deviation to Video Quality Degradation

	More Qualitative Results
	Limitations and Future Works

