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Wan2.1-14B (1×) +Ours (~2.6× speedup) +TeaCache (~1.9× speedup)

Figure 1: Qualitative Results of PreciseCache on Wan2.1-14B (Wang et al., 2025). Compared
with previous methods, our PreciseCache achieves higher acceleration (about 2.6× speedup) of the
base model without sacrificing the quality of generated videos.

ABSTRACT

High computational costs and slow inference hinder the practical application of
video generation models. While prior works accelerate the generation process
through feature caching, they often suffer from notable quality degradation. In
this work, we reveal that this issue arises from their inability to distinguish truly
redundant features, which leads to the unintended skipping of computations on
important features. To address this, we propose PreciseCache, a plug-and-play
framework that precisely detects and skips truly redundant computations, thereby
accelerating inference without sacrificing quality. Specifically, PreciseCache con-
tains two components: LFCache for step-wise caching and BlockCache for block-
wise caching. For LFCache, we compute the Low-Frequency Difference (LFD)
between the prediction features of the current step and those from the previous
cached step. Empirically, we observe that LFD serves as an effective measure
of step-wise redundancy, accurately detecting highly redundant steps whose com-
putation can be skipped through reusing cached features. To further accelerate
generation within each non-skipped step, we propose BlockCache, which pre-
cisely detects and skips redundant computations at the block level within the net-
work. Extensive experiments on various backbones demonstrate the effectiveness
of our PreciseCache, which achieves an average of 2.6× speedup without notice-
able quality loss. Source code will be released.

1 INTRODUCTION

Video generation models (Zheng et al., 2024; Yang et al., 2024; Kong et al., 2024; Wang et al.,
2025) have demonstrated impressive capabilities in producing high-fidelity and temporally coherent
videos. However, they always suffer from extremely slow inference speed, posing a significant chal-
lenge to their application. Although some works attempt to alleviate the problem through distillation
(Geng et al., 2025; Song et al., 2023), they always need additional training, which is computationally
intensive. To address this, feature caching (Zhao et al., 2024b; Liu et al., 2025b; Lv et al., 2024)
has emerged as a popular approach to accelerate the process of video generation, which skips the
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network inference in several denoising steps by reusing the cached features from previous steps.
However, these works usually adopt a uniform caching scheme (i.e., performing a full inference
every n steps, caching the features, and reusing them until the next full inference), which over-
looks the varying importance of different timesteps in determining the output quality, resulting in
insufficient speedup or noticeable quality degradation. As a result, some recent works (Liu et al.,
2025a; Kahatapitiya et al., 2024; Chu et al., 2025) propose adaptive caching mechanisms that design
metrics to adaptively decide whether to perform the full model inference or reuse cached features at
each denoising timestep. However, these methods require complicated additional fitting or extensive
hyperparameter tuning, and their cache decision criteria remain suboptimal, leading to unsatisfying
generated results. Consequently, designing adaptive run-time caching mechanisms that maximizes
acceleration while preserving video quality remains challenging.

Noise Space Data Space

Latent Model Prediction Cached Prediction

Denoising Process

Figure 2: The Illustration of the Denoising
Process for Video Generation. At high-noise
timesteps, the prediction of the model varies sig-
nificantly. Reusing the cached features in this
stage (the red line) can significantly affect both the
content and the quality of generated videos com-
pared to the videos generated without caching (the
orange line). In contrast, the feature caching dur-
ing low-noise timesteps only introduces negligible
impacts (the green line).

In this work, we propose PreciseCache, an
adaptive video generation acceleration frame-
work that precisely identifies redundant fea-
tures and skips their computation through
feature caching, thereby enabling maximal
speedup without compromising video quality.
To this end, at each denoising step, we ana-
lyze the influence of reusing cached features on
the final generation quality. The results (Fig-
ure 3a) indicate that as the denoising process
progresses from high to low noise stages, the in-
fluence of reusing cached features gradually di-
minishes (Figure 2). This is consistent with the
intuition that the diffusion process models low-
frequency structural information at high-noise
steps while refining the generated content with
high-frequency details at low-noise steps (Wan,
2025). The structural information is crucial for
video generation, while high-frequency details
are usually perceptually insignificant, where
the computation can be skipped to achieve ac-
celeration. Consequently, we propose Low-
Frequency Difference (LFD), which measures
the difference between the low-frequency components of the model’s outputs at adjacent denoising
steps. Experiments in Figure 4b illustrate that LFD effectively estimates the redundancy of each
denoising step (as illustrated in Figure 3a) and therefore can be leveraged to indicate caching.

Based on the above analysis, we propose LFCache for step-wise caching. Specifically, at each
denoising step, we aim to leverage the LFD between the network prediction at the current step and
that at the previous cached step as the criterion to indicate caching. However, directly calculating
LFD cannot achieve acceleration because it requires calculating the current-step predictions through
the full model inference. To address this challenge, we observe that the LFD exhibits low sensitivity
to the resolution of the input latent (Figure 5), suggesting that a lightweight downsampled latent is
sufficient for its estimation. Consequently, at each denoising step in our LFCache framework, the
noisy latent is firstly downsampled and fed into the model for a quick “trial” inference, obtaining
an estimated prediction. The LFD is calculated between this prediction and the cached prediction,
which is then used to indicate caching. Due to the reduced latent size, the additional overhead for
the inference of the downsampled latent is negligible compared to the overall generation time.

The LFCache identifies and eliminates the redundancy at the timestep level, focusing on the final
output of the entire network at each denoising step. Beyond this, we introduce BlockCache, which
delves into the network and further accelerates the generation process by performing the block-
wise caching inside each non-skipped timestep identified by LFCache. Specifically, we assess the
redundancy of each transformer block by measuring the difference between its input and output
features. Our analysis (Figure 6) reveals that only a subset of transformer blocks make substantial
modifications to the input feature (which we refer to as pivotal blocks), while others have minimal
impact (which we refer to as non-pivotal blocks). BlockCache caches and reuses the outputs of these
non-pivotal blocks to reduce redundant computation.
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We evaluate our PreciseCache on various state-of-the-art video diffusion models, including Open-
sora (Zheng et al., 2024), HunyuanVideo (Kong et al., 2024), CogVideoX (Yang et al., 2024), and
Wan2.1 (Wang et al., 2025). Experimental results demonstrate that our approach can achieve an
average of 2.6× speedup while preserving video generation quality, outperforming a wide range of
previous caching-based acceleration methods.

2 RELATED WORK

2.1 VIDEO DIFFUSION MODEL

Diffusion models (Ho et al., 2020; Rombach et al., 2022; Peebles & Xie, 2023) have become the
leading paradigm for high-quality generative modeling in recent years. Within the video genera-
tion domain, diffusion-based approaches have attracted increasing attention, driven by the rising
demand for temporally coherent and high-resolution dynamic content (Blattmann et al., 2023b;a;
Hong et al., 2023; Wang et al., 2024b;c). Recent advances have consequently seen a shift from
conventional U-Net architectures (Ronneberger et al., 2015) towards more scalable Diffusion Trans-
formers (DiTs) (Peebles & Xie, 2023), which offer enhanced capacity to model intricate temporal
dynamics across frames. State-of-the-art DiT-based video diffusion models such as Sora (Brooks
et al., 2024; Zheng et al., 2024), CogvideoX (Yang et al., 2024), HunyuanVideo (Kong et al., 2024),
and Wan2.1 (Wang et al., 2025) have demonstrated impressive performance in synthesizing coherent
and high-fidelity videos. Despite these advancements, the inherently iterative denoising process in
diffusion models introduces considerable inference latency, which remains a critical challenge for
real-time or large-scale deployment.

2.2 DIFFUSION MODEL INFERENCE-TIME ACCELERATION

Many works (Song et al., 2023; Meng et al., 2023; Sauer et al., 2024) accelerate the generation
process through distillation. However, they usually require large-scale training, which is time-
consuming and resource-intensive. As an alternative, training-free inference acceleration meth-
ods (Song et al., 2021; Karras et al., 2022; Lu et al., 2022; Bolya & Hoffman, 2023; Wang et al.,
2024a; Zou et al., 2025; Zhang et al., 2025b;a; Xi et al., 2025; Ye et al., 2024) have gained consid-
erable attention for speeding up diffusion model inference without costly retraining. Among these
methods, Feature caching is one of the most popular methods for training-free video generation ac-
celeration, which leverages redundancy across iterative denoising steps. Early static caching meth-
ods (Selvaraju et al., 2024; Chen et al., 2024; Zhao et al., 2024b) rely on fixed schemes, but lack flex-
ibility to adapt to varying process dynamics. To overcome this, adaptive caching approaches (Wim-
bauer et al., 2024; Liu et al., 2025a; Chu et al., 2025; Kahatapitiya et al., 2024; Zhou et al., 2025)
propose to adaptively decide when to apply the caching and reusing mechanism during the denois-
ing process. However, these methods usually suffer from notable quality degradation or extensive
hyperparameter tuning.

3 METHOD

In this section, we introduce the PreciseCache method in detail. First, we analyze the influence
of reusing the cached feature at each timestep on the final generated result, proposing the Low-
Frequency Difference (LFD) metric to precisely estimate this influence at each timestep during
the video generation process. Then, we introduce LFCache for timestep-level caching. At each
denoising step, our LFCache framework first feeds a downsampled latent into the model, obtaining
an estimated output at this step. LFD is calculated between this output and the cached output, which
is used to determine whether to apply caching. Finally, we further propose BlockCache, which
performs the caching and reusing mechanism at the block level within the non-skipped timesteps.
The overall algorithm of our PreciseCache is shown in Algorithm 1.

3.1 PRELIMINARIES

Rectified Flow (Liu et al., 2022) models a linear path between the data distribution π0 and Gaussian
noise π1 via an ODE: dZt = v(Zt, t)dt, t ∈ [0, 1], where v is parameterized by a neural network
ϵθ. Given samples X0 ∼ π0, X1 ∼ π1, the forward trajectory is defined by Xt = (1−t)X0+tX1,
yielding the differential form dXt = (X1−X0)dt. The training objective minimizes the regression
loss between the ground truth velocity and the network prediction:

min
θ

∫ 1

0

E
[
∥(X1 −X0)− ϵθ(Xt, t)∥2

]
dt. (1)

3
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Figure 3: The Impact of Reusing the Cached Model Prediction at Each Timestep. Considering
a 50-step denoising process from the Gaussian Noise Z50 to a clean latent Z0, we respectively
reuse the model output at timestep ti+1 for each i ∈ {49, 48, · · · , 0}, and perform the subsequent
denoising steps to generate the final video. We then compare each resulting video with the baseline
(i.e., generated without caching and reusing) to evaluate the impact of reusing cached predictions.
Different colors indicate different prompts.
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Figure 4: The Difference between Model Predictions at Adjacent Timesteps. Although the dif-
ference is relatively large in the low-noise stage, it primarily arises from high-frequency components,
which have limited influence on the perceptual quality of the generated results. Different colors in-
dicate different prompts.

At inference, a Gaussian noise ZN ∼ N (0, I) is iteratively updated using the ODE Solver (Lu et al.,
2022; Wang et al., 2024c) represented by the Euler Method: Zi−1 = Zi + (ti−1 − ti) ϵθ(Zi, ti).
Compared to DDPM (Ho et al., 2020), RF achieves high-quality generation with significantly fewer
steps due to its linear sampling path. This efficiency makes it well-suited for T2V generation tasks
(Zheng et al., 2024; Wang et al., 2025; Yang et al., 2024; Kong et al., 2024).

Feature Caching. DiT-based video generation remains computationally intensive due to the com-
plexity of modeling spatiotemporal dependencies and the need for iterative denoising over numerous
steps. To address this, feature caching is a widely adopted technique to accelerate video generation,
where most works focus on step-wise caching. Considering the noisy latent Zi at the ith denois-
ing step, a full inference of network ϵθ is performed, i.e., Fi = ϵθ(Zi, ti), and the output Fi is
cached. In the subsequent n timesteps {ti−1, ti−2, · · · , ti−n}, instead of performing a full inference
as Fi−k = ϵθ(Zi−k, ti−k) where k ∈ {1, · · · , n}, the cached Fi is reused for updating the noisy
latent, i.e., Fi−k = Fi. Although this vanilla feature caching mechanism achieves significant ac-
celeration, the interval n is fixed. On the other hand, different denoising steps have varying degrees
of influence on the final output. Accurately identifying the redundant features within the generation
process to achieve adaptive caching remains a challenging problem.

3.2 LOW-FREQUENCY DIFFERENCE

Adaptive caching requires the mechanism to dynamically decide whether to perform a full network
inference at each denoising step ti (i.e., Fi = ϵθ(Zi, ti)), or to reuse the cached predictions of
the model from the previous step. Intuitively, this depends on its impact on the final generated
videos: if reusing the previous cached prediction at ti significantly influences the content and quality
of the generated video, a full inference of the network ϵθ needs to be conducted; otherwise, the
computation of this step can be skipped through reusing the cached prediction.

Based on this intuition, we begin by analyzing the impact of reusing the cached feature at each step
on the final generated video. Considering the video generation process consisting of N steps, we
respectively skip the computation at each step ti (where i ∈ {N − 1, N − 2, · · · , 0}) by reusing
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the model’s prediction from the previous step ti+1, and then generate the final videos. We measure
the Mean Squared Error (MSE) between videos generated with caching and the ground truth, which
are generated without caching. Generally, our results (Figure 3a) indicate that reusing the cached
feature at early high-noise steps significantly affects the generated results, whereas at later low-noise
steps, its impact is negligible.

The above analysis precisely quantifies the influence of applying caching at each single denoising
step. Intuitively, if this influence is estimated immediately at ti during the denoising process, it can
then be leveraged to decide whether the computation at ti can be skipped through feature caching.
However, it is a non-trivial task because the influence of each step in Figure 3a cannot be obtained be-
fore the corresponding video is generated. As an alternative, most prior works like (Liu et al., 2025a)
directly leverage the difference between the current network prediction Fi and the cached prediction
as the metric to indicate caching (Figure 4a), which does not align with the above observation and
would lead to sub-optimal caching strategies. In this work, we propose to further decompose the
model prediction Fi into low-frequency and high-frequency components (FLF

i and FLF
i ) through

the Fast Fourier Transform (FFT), and investigate their separate effects during denoising, i.e.,

FLF
i = FFT (ϵθ(Zi, ti))low;F

HF
i = FFT (ϵθ(Zi, ti))high. (2)

We observe that caching FLF
i predominantly affects the generated results (Figure 3b), whereas

FHF
i has a negligible influence (Figure 3c). Based on this insight, we further calculate their differ-

ence between adjacent denoising steps, i.e.,

∆LF
i =

∥∥FLF
i − FLF

i+1

∥∥
2
; ∆HF

i =
∥∥FHF

i − FHF
i+1

∥∥
2
, i ∈ {N − 1, · · · , 0} (3)

We find that the Low-Frequency Difference (LFD) ∆LF
i closely aligns with the observation in

Figure 3a. This implies that at high-noise timesteps, the network generates critical structural and
content information for the video, while at low-noise timesteps, it primarily produces high-frequency
details that are perceptually insignificant and thus can be safely cached to accelerate generation.

3.3 LFCACHE
0.1

𝒁!𝒁"!
0

M
SE

Timestep

Downsampled Latent

Full-resolution Latent

Figure 5: The Relationship between Latent
Resolution and LFD. We observe that down-
sampling has little effect on the computation of
LFD. The experiment is conducted on Wan2.1-
14B (Wang et al., 2025).

Directly applying Low-Frequency Difference
to indicate caching cannot accelerate the video
generation process because obtaining ∆LF

i re-
quires performing a full forward pass at the
timestep ti to calculate Fi. To address this, we
propose LFCache framework, where a down-
sampled latent is first fed into the model for
“trail” at each denoising step. Specifically,
given the latent Zi ∈ RT×H×W×C at the
timestep ti, (where T , H , W and C represent
the temporal, height, width, and channel of the
latent). We first downsample the latent on its
temporal, height and width dimensions, i.e.,

Z̃i = Downsample (Zi) , (4)

where Z̃i ∈ R(T/r)×(H/s)×(W/s)×C , r denotes
the downsample factor at the temporal dimen-
sion and s denotes the downsample factor at the spatial dimension. Then, we feed the downsam-
pled latent Z̃i into the network ϵθ to obtain an estimated output F̃i, i.e., F̃i = ϵθ(Z̃i, ti). Due
to the reduced size of the downsampled latent, this process is highly efficient, taking a negligi-
ble computational overhead within the overall video generation process. Similarly, we downsam-
ple the cached prediction Fi+1, obtaining F̃i+1 and calculate the low-frequency difference, i.e.,
∆̃LF

i =
∥∥∥F̃LF

i − F̃LF
i+1

∥∥∥
2
. The analysis in Figure 5 indicates that the ∆̃LF

i is highly consistent with

∆LF
i , which can be used as an effective caching indicator during the process of generation.

Following prior works (Liu et al., 2025a), at each denoising step, we use the accumulated differences
as the final indicator to indicate caching. Specifically, after doing a full inference and obtaining the
output of the model Fa at timestep ta, we accumulate the low-frequency difference at subsequent
timesteps, i.e.,

∑b
i=a ∆̃

LF
i . If

∑b
i=a ∆̃

LF
i is greater than a pre-defines threshold δ at tb, the com-
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Algorithm 1 Video Generation with PreciseCache.

1: Initialize ϵθ, ZN ∼ N (0, I)
2: Initialize E ← 0 // Accumulated error
3: FN ← ϵθ(ZN , tN ) // Always do the full inference at the first timestep tN
4: F̃LF

N ← Downsample(FFT (FN )low)
5: ZN−1 ← UpdateLatent{ZN ,FN}
6: for i = N − 1, N − 2, . . . , 1 do
7: Z̃i ← Downsample(Zi)

8: F̃i ← ϵθ(Z̃i, ti) // Obtain the network output of downsampled input
9: F̃LF

i ← FFT (F̃i)low // Calculate the low-frequency component at ti
10: F̃LF

i+1 ← FFT (Downsample(Fi+1))low // Calculate the low-frequency component at ti+1

11: ∆̃LF
i ←

∥∥∥F̃LF
i − F̃LF

i+1

∥∥∥
2

// Calculate the Low-Frequency Difference (LFD)

12: E ← E + ∆̃LF
i // Update the accumulate error

13: if E < δ then
14: Fi ← Fi+1 // Directly reuse the cached output
15: else
16: Fi ← ϵθ(Zi, ti) // Inference with BlockCache
17: E ← 0 // Reset error
18: end if
19: Zi−1 ← UpdateLatent(Zi,Fi) // Update latent
20: end for
21: Output: Z0

putation of this timestep cannot be skipped and Fb should be calculated through the inference of
the network. Otherwise, we reuse the Fa to update the latent at tb. This procedure is shown in
Algorithm 1.

3.4 BLOCKCACHE

M
SE

Block ID

0.25

0
0 39

Figure 6: The Importance of Each Trans-
former Block within the Video Diffusion Trans-
former. Different colors represent different de-
noising steps. The experiment is conducted on
Wan2.1-14B (Wang et al., 2025).

LFCache effectively identifies which timesteps
in the denoising process can be directly skipped
by reusing the cached output of the entire DiT
model (i.e., ϵθ). On the other hand, even at
those non-skipped timesteps, redundancy still
exists within the computations of individual
transformer blocks. To address this and achieve
further acceleration, we propose BlockCache,
which eliminates the redundancy at the block
level in those non-skipped steps identified by
LFCache. Specifically, considering the non-
skipped timestep tki

∈ {N,N − k1, · · · , N −
kn} identified in section 3.3, the inference of
the DiT model with M transformer blocks (i.e.,
Fki

= ϵθ(Zki
, tki

)) can be decomposed as

F 0
ki

= Zki
; F j

ki
= Bj(F j−1

ki
, tki

); Fki
= FM

ki
, (5)

where j ∈ {1, . . . ,M} and Bj indicates the jth block in ϵθ. We analyze the redundancy of each
block Bj by calculating the difference between its input and output. The results in Figure 6 illustrate
that only a subset of blocks (which we refer to as pivotal blocks) make notable modifications of
the input, while remaining blocks have minimal impact (which we refer to as non-pivotal blocks).
Based on this observation, our BlockCache aims to eliminate the redundant computation of non-
pivotal blocks. Specifically, considering the non-skipped step tki

, a full inference of the network
is conducted, and the difference Dj

ki
between the input and output of each block is cached, i.e.,

Dj
ki

= F j
ki
−F j−1

ki
. Then, we select the blocks with top c% largest difference, which are identified

as the pivotal blocks: Iki
=

{
j |

∥∥∥Dj
ki

∥∥∥
2

is in the top c% of all values
}

. Other blocks are non-

6
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pivotal blocks, which are highly redundant and thus can be skipped. In the following L non-skipped
denoising steps tki−l

(l ∈ {1, · · · , L}), we use the cached difference Dj
ki

to estimate the output of
non-pivotal blocks. The inference procedure with BlockCache can be represented as

F 0
ki−l

= Zki−l
, F j

ki−l
=

{
Bj

(
F j−1
ki−l

, tki−l

)
, j ∈ Ii

F j−1
ki−l

+Dj
ki
, j /∈ Ii

, Fki−l
= FN

ki−l
. (6)

With the skipping of the non-pivotal blocks, BlockCache minimizes redundancy during generation
without compromising the quality of the results. For implementation, our BlockCache is easier to in-
tegrate into diverse model architectures for acceleration and only requires minimal hyper-parameter
tuning compared to previous block-level caching methods such as (Kahatapitiya et al., 2024).

4 EXPERIMENTS

4.1 SETUP

Baselines. To validate the efficacy of PreciseCache, we implement our method on various state-of-
the-art base models for video generation, including Open-Sora 1.2 (Zheng et al., 2024), Hunyuan-
Video (Kong et al., 2024), CogVideoX (Yang et al., 2024), and Wan2.1 (Wang et al., 2025). We
compare our methods with previous SOTA cached-based acceleration methods for video generation
models, including PAB (Zhao et al., 2024b), TeaCache (Liu et al., 2025a), and FasterCache (Lv
et al., 2024). For these methods, we utilize their official implementations available on GitHub. For
base models not directly supported by their official code, we implement the method ourselves.

Evaluation Metrics and Datasets. We evaluate inference efficiency and generated video quality
of PreciseCache. To measure the inference efficiency, we report Multiply-Accumulate Operations
(MACs) and inference latency. For assessing visual quality, we generate videos using the prompt
from VBench (Huang et al., 2024) and evaluate performance using VBench’s comprehensive met-
rics. We also report some widely adopted perceptual and fidelity metrics, including LPIPS, PSNR,
and SSIM, which measure the similarity between videos generated with cache-based acceleration
methods and those directly generated by base models without caching.

Implementation Details. Determining an appropriate threshold δ for LFCache is a non-trivial
task, as the optimal value tends to vary across different base models and prompts. To address
this challenge, we convert determining a specific threshold value into determining a relative fac-
tor α. Specifically, in our implementation, caching is disabled for the first three timesteps during
which we record the maximum low-frequency difference observed, i.e., ∆̃LF

max. We then set the
threshold δ as ∆̃LF

max × α. This strategy substantially reduces the difficulty of manually tuning the
threshold parameter. For LFCache, we provide two basic configurations, i.e., PreciseCache-Base
and PreciseCache-Turbo, where α is set to 0.5 and 0.7 for all the models. Based on PreciseCache-
Turbo, we further provide a faster configuration, i.e., PreciseCache-Flash, where the BlockCache is
enabled with the cache rate set to 40% and L set to 3. The downsample rate in LFCache is set to [2,
4, 4] in the temporal, height, and width dimensions, respectively. To separate frequency components
using FFT, we define a low-frequency region as a centered circular mask with radius equal to 1

5

of the minimum spatial dimension, i.e., radius = 1
5 min(H,W ). All experiments are executed on

NVIDIA A800 80GB GPUs utilizing PyTorch, with FlashAttention (Dao et al., 2022) enabled by
default to optimize computational efficiency.

4.2 MAIN RESULTS

Quantitative Evaluation. Table 1 reports a detailed quantitative assessment comparing our ap-
proach with state-of-the-art acceleration methods: PAB (Zhao et al., 2024b), TeaCache (Liu et al.,
2025a), and FasterCache (Lv et al., 2024), focusing on both computational efficiency and visual
fidelity. Our PreciseCache consistently illustrates notable speedup while strictly maintaining the vi-
sual quality of the base model, demonstrating robustness across diverse base architectures, sampling
strategies, video resolutions, and durations.

Qualitative Comparison. Figure 7 illustrates qualitative results comparing videos generated using
PreciseCache-flash and several baseline methods. Visual comparisons demonstrate that our method
achieves significant acceleration without altering the generated video content or compromising qual-
ity. In contrast, existing baselines often produce different content and suboptimal quality videos
Additional qualitative examples are provided in Figure 9 for further reference.
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Table 1: Quantitative Comparison of efficiency and visual quality on 4 A800 GPUs.

Method Efficiency Visual Quality
MACs (P) ↓ Speedup ↑ Latency (s) ↓ VBench ↑ LPIPS ↓ SSIM ↑ PSNR ↑

Open-Sora 1.2 (480P, 192 frames)
Open-Sora 1.2 (T = 30) 6.30 1× 47.23 78.79% - - -
PAB 5.33 1.26× 38.40 78.15% 0.1041 0.8821 26.43
TeaCache 3.29 1.95× 24.73 78.23% 0.0974 0.8897 26.84
FasterCache 4.13 1.67× 29.15 78.46% 0.0835 0.8932 27.03
Ours-base 3.73 1.72× 27.95 78.71% 0.0617 0.9081 28.78
Ours-turbo 3.10 2.07× 23.27 78.49% 0.0786 0.8971 27.11
Ours-flash 2.45 2.60× 18.38 78.19% 0.0979 0.8903 26.78

HunyuanVideo (480P, 65 frames)
HunyuanVideo (T = 50) 14.92 1× 73.64 80.66% - - -
PAB 10.73 1.35× 54.54 79.37% 0.1143 0.8732 27.01
TeaCache 8.93 1.64× 44.90 80.51% 0.0911 0.8952 28.15
FasterCache 10.29 1.43× 51.50 80.59% 0.0893 0.9017 28.96
Ours-base 9.15 1.61× 45.74 80.65% 0.0654 0.9102 29.15
Ours-turbo 7.49 1.95× 37.76 80.49% 0.0884 0.9043 29.06
Ours-flash 6.04 2.44× 30.18 80.02% 0.0902 0.8977 28.64

CogVideoX (480P, 48 frames)
CogVideoX (T = 50) 6.03 1× 21.13 80.18% - - -
PAB 4.45 1.32× 16.01 79.76% 0.0860 0.8978 28.04
TeaCache 3.33 1.79× 11.80 79.79% 0.0802 0.9013 28.76
FasterCache 3.71 1.60× 13.21 79.83% 0.0766 0.9066 28.93
Ours-base 3.59 1.65× 12.81 80.14% 0.0619 0.9110 29.23
Ours-turbo 2.96 2.02× 10.46 79.91% 0.0742 0.9021 28.97
Ours-flash 2.31 2.58× 8.19 79.80% 0.0849 0.9001 28.79

Wan2.1-14B (720P, 81 frames)
Wan2.1-14B (T = 50) 329.2 1× 907.3 83.62% - - -
PAB 233.5 1.38× 657.5 82.91% 0.1853 0.8607 26.18
TeaCache 166.3 1.94× 467.7 83.24% 0.1012 0.8719 27.22
FasterCache 183.9 1.73× 524.5 83.47% 0.0741 0.9078 28.45
Ours-base 204.5 1.59× 570.6 83.56% 0.0451 0.9189 29.12
Ours-turbo 151.0 2.15× 422.1 83.52% 0.0633 0.9127 28.98
Ours-flash 122.4 2.63× 344.9 83.43% 0.0812 0.9035 28.76

4.3 ABLATION STUDIES

To comprehensively evaluate the effectiveness of PreciseCache, we conduct ablation studies to in-
vestigate the performance under different number of GPU, the downsampling size in LFCache, and
the feature reusing strategy. Without loss of generality, experiments are conducted on Wan2.1-14B
(Wang et al., 2025) and HunyuanVideo (Kong et al., 2024).
Table 2: Latency on Different Number of GPUs with
DSP (Zhao et al., 2024a). Without loss of generality,
we use Wan2.1-14B (Wang et al., 2025) and Hunyuan-
Video (Kong et al., 2024) as the base models and gen-
erate the 1080P videos, reporting the latency (s) under
different numbers of A800 GPUs.

#GPU HunyuanVideo +PreciseCache Wan-2.1 +PreciseCache
1 982 (1×) 470 (2.08×) 3326 (1×) 1330 (2.50×)
2 566 (1.73×) 275 (3.57×) 1732 (1.92×) 753 (4.41×)
4 329 (2.98×) 161 (6.10×) 907 (3.67×) 416 (8.00×)
8 175 (5.61×) 88 (11.16×) 459 (7.25×) 229 (14.52×)

Table 3: Influence of Downsample Size.
Without loss of generality, experiments are
conducted on Wan2.1-14B (Wang et al.,
2025) with 4 A800 GPUs.

Factor (T ×H ×W ) Latency ↓ VBench ↑ LPIPS ↓
Baseline 907 (1×) 83.62% -
1× 2× 2 918 (0.98×) 83.57% 0.0797
1× 4× 4 525 (1.73×) 83.49% 0.0801
1× 8× 8 401 (2.26×) 83.18% 0.1946
2× 4× 4 416 (2.18×) 83.52% 0.0793
4× 4× 4 403 (2.25×) 83.02% 0.1875

Performances on Different Number of GPUs. Following previous works (Lv et al., 2024), we
adopt the Dynamic Sequence Parallelism (DSP) to facilitate multi-GPU inference. Table 2 illustrates
the inference latency of PreciseCache-turbo under different numbers of A800 GPUs, where our
methods consistently achieves significantly lower inference latency than base models. Notably,
PreciseCache-turbo can achieve even further acceleration ratio on Wan2.1-14B (Wang et al., 2025)
under fewer number of GPU, e.g., it can achieve about 2.5× acceleration using 1 GPU. These results
highlight the effectiveness of our PreciseCache in various number of GPUs.

Size of Downsampling. As illustrated in section 3.3, a downsampled latent is fed into the model to
obtain the estimated output at each denoising step. We conduct experiments to illustrate the impact
of downsampling size (Table 3). Experiments show that a small downsampling ratio results in a
large latent size, which significantly increases the inference time. Conversely, over-downsampling
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+ FasterCache+ OursWan2.1-14B + TeaCache + FasterCache+ OursHunyuanVideo + TeaCache

A duck swims in a pond and a model ship floats nearby

A woman knits a sweater and a cat plays with the yarn

Furry dog fetching a rubber ball

Figure 7: Qualitative Comparison. Zoom in for the best views.
can yield predictions that fail to adequately estimate the output at the current timestep, leading to
suboptimal caching strategies and degraded video generation quality. Empirically, we find that a
sampling rate of 2 × 4 × 4 along the temporal (T ) and spatial (H , W ) dimensions can achieve a
satisfying trade-off between acceleration and generation quality.

Table 4: Feature Reusing Strategy for
Step-wise Caching. Without loss of general-
ity, we conduct experiments on Wan2.1-14B
(Wang et al., 2025), generating videos with
1080P resolution.

Strategy VBench ↑ LPIPS ↓
Reuse prediction (F ) 83.52% 0.0793
Reuse residuals (R) 83.50% 0.0791

TaylorSeer 83.54% 0.0801

Feature Reusing Strategy. For the LFCache, we
directly store the model’s final prediction Fi (i.e.,
the results after classifier-free guidance) at each non-
skipped timestep and reuse this cached prediction in
the subsequent skipped steps. On the other hand,
we notice that some prior works adopt different fea-
ture reusing strategies, such as caching the residual
(Liu et al., 2025a) (i.e., Ri = Fi − Zi) at the non-
skipped steps ti. At the skipped steps, the prediction
is estimated according to this cached residual and the
input noisy latent. Some works such as TaylorSeer
(Liu et al., 2025b) also design more sophisticated reuse strategies with better performance. We con-
ducted experiments to compare these strategies and found that their performances are comparable
(Table 4) under our PreciseCache. As a result, we adopt the vanilla approach for simplicity. This
observation further implies that designing methods to identify where and when to cache could be
more important than exploring how to cache for training-free video generation acceleration.

5 CONCLUSION

In this work, we propose PreciseCache, an effective training-free method for accelerating the video
generation process, containing LFCache for step-wise caching and BlockCache for block-wise
caching. First, we introduce the low-frequency difference, which can precisely reflect the redun-
dancy of each denoising step. Then, we propose LFCache which indicates step-wise caching through
the low-frequency difference between the downsampled output at the current step and that of the
cached step. Furthermore, we propose the BlockCache to reduce the redundancy at the non-skipped
timesteps by caching the blocks which has minimal impact on the input feature. Extensive experi-
ments illustrate the effectiveness of our method with different base models under various numbers
of GPUs, highlighting its potential for real-world applications.
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A APPENDIX

A.1 PIPELINE OF PRECISECACHE

We provide the overall pipeline of PreciseCache in fig. 8 for clearer illustration.
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A.2 THEORETICAL ANALYSIS OF THE LFD THRESHOLD

In this section, we provide a simple theoretical analysis that connects the Low-Frequency Difference
(LFD) threshold used in PreciseCache to the deviation between the cached sampling trajectory and
the original full sampling trajectory. Under mild Lipschitz assumptions on the sampler and the
decoder, we show that the pixel-space error between the cached video and the full video is linearly
bounded by the LFD threshold δ. This gives a principled interpretation of the threshold parameter
(denoted as α in our ablations), beyond purely empirical tuning.

A.2.1 NOTATION AND PRELIMINARIES

Let Zi denote the latent variable at timestep ti, and let

Fi = ϵθ(Zi, ti) (7)

be the network output (e.g., noise prediction) at timestep ti. We denote the full-precision (no-cache)
sampling trajectory by {Zfull

i }Ni=0 and {F full
i }Ni=1, and the trajectory produced by PreciseCache by

{Zcache
i }Ni=0 and {F cache

i }Ni=1. Both trajectories start from the same initial noise: Zcache
N = Zfull

N .

We write the one-step latent update in the generic form

Zi−1 = UpdateLatenti(Zi,Fi), (8)

which covers standard diffusion samplers such as Euler and DDIM.

We use a linear operator A to represent the low-frequency projection and downsampling used in
LFD computation, i.e.,

F̃LF
i = A(Fi). (9)

In practice, A consists of FFT, low-frequency masking, and optional spatial downsampling.

The Low-Frequency Difference (LFD) at timestep ti is then

∆̃LF
i =

∥∥∥F̃LF
i − F̃LF

i+1

∥∥∥
2
=

∥∥A(Fi − Fi+1

)∥∥
2
. (10)

During sampling, PreciseCache maintains an accumulated quantity

E =
∑
k

∆̃LF
k . (11)

When E < δ, the algorithm reuses a cached network output; when E ≥ δ, it recomputes the network
output, and then resets E ← 0. The scalar δ > 0 is the LFD threshold; in the main experiments, we
use a normalized version of this threshold and denote it by α.

A.2.2 LIPSCHITZ ASSUMPTION ON THE ONE-STEP UPDATE

We first introduce a standard Lipschitz assumption on the one-step update operator.

Assumption 1 (Lipschitz one-step update). For each timestep i, there exist constants LZ,i ≥ 0
and LF,i ≥ 0 such that for all Z,Z ′,F ,F ′,∥∥UpdateLatenti(Z,F )−UpdateLatenti(Z

′,F ′)
∥∥
2
≤ LZ,i∥Z−Z ′∥2+LF,i∥F −F ′∥2. (12)

In particular, for fixed Z,∥∥UpdateLatenti(Z,F )−UpdateLatenti(Z,F ′)
∥∥
2
≤ LF,i∥F − F ′∥2. (13)

We further define global constants

LZ = max
i

LZ,i, LF = max
i

LF,i. (14)

For standard explicit solvers, these constants depend on the step sizes and the noise schedule, and
are finite for the fixed sampling schedule used in our experiments.

A.2.3 BOUNDING THE NETWORK OUTPUT DEVIATION BY THE LFD THRESHOLD

We next relate the deviation between cached and full network outputs to the LFD threshold δ.

13
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Consider a contiguous caching segment of timesteps

i = s, s− 1, . . . , e, (15)

such that at timestep s + 1 the model output F full
s+1 is recomputed, and for all i = s, . . . , e the

algorithm reuses the same cached output:

F cache
i = F full

s+1. (16)

By construction of the algorithm, the accumulated LFD within this segment satisfies

E =

s∑
k=e

∆̃LF
k < δ, (17)

and once E would exceed δ, a new recomputation is triggered and a new segment starts.

For any i ∈ {e, . . . , s}, we can write

F cache
i − F full

i = F full
s+1 − F full

i =

s∑
k=i

(
F full
k+1 − F full

k

)
. (18)

By the triangle inequality, ∥∥F cache
i − F full

i

∥∥
2
≤

s∑
k=i

∥∥F full
k+1 − F full

k

∥∥
2
. (19)

To connect the right-hand side to the LFDs, we make the following assumption.

Assumption 2 (Low-frequency dominance). Along the full sampling trajectory, there exists a
constant cLF ≥ 1 such that for all timesteps k,∥∥F full

k+1 − F full
k

∥∥
2
≤ cLF

∥∥A(F full
k+1 − F full

k

)∥∥
2
= cLF ∆̃

LF
k . (20)

That is, the temporal change of the network output is dominated by its energy in the low-frequency
subspace captured by A.

Substituting equation 20 into equation 19 yields∥∥F cache
i − F full

i

∥∥
2
≤ cLF

s∑
k=i

∆̃LF
k ≤ cLFE < cLF δ. (21)

For timesteps i at which no caching is used, we have F cache
i = F full

i , and thus∥∥F cache
i − F full

i

∥∥
2
= 0 ≤ cLF δ. (22)

Therefore, for all timesteps i = 1, . . . , N , we obtain a uniform bound∥∥F cache
i − F full

i

∥∥
2
≤ cLF δ. (23)

A.2.4 LATENT ERROR RECURRENCE AND GLOBAL BOUND

We now propagate the deviation in network outputs to a deviation in the latent trajectory. Define the
latent error at timestep i as

ei =
∥∥Zcache

i −Zfull
i

∥∥
2
, i = 0, . . . , N, (24)

and the output deviation at timestep i as

di =
∥∥F cache

i − F full
i

∥∥
2
. (25)

By construction, eN = 0 since we start from the same initial noise.

Using the joint Lipschitz property equation 12, for each i we have

ei−1 =
∥∥UpdateLatenti(Z

cache
i ,F cache

i )−UpdateLatenti(Z
full
i ,F full

i )
∥∥
2

≤ LZ,i

∥∥Zcache
i −Zfull

i

∥∥
2
+ LF,i

∥∥F cache
i − F full

i

∥∥
2

≤ LZei + LF di. (26)
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Using the uniform bound equation 23 on di, we obtain

di ≤ cLF δ, ∀i. (27)

Substituting into equation 26 gives

ei−1 ≤ LZei + LF cLF δ. (28)

Unrolling the recursion equation 28 from i = N down to i = 1 with eN = 0, we obtain

e0 ≤ LF cLF δ

N−1∑
t=0

Lt
Z . (29)

We can thus define a constant

CZ = LF cLF

N−1∑
t=0

Lt
Z , (30)

which depends on the sampler, the model, and the fixed number of sampling steps N , but does not
depend on the threshold δ. Equation equation 29 then becomes∥∥Zcache

0 −Zfull
0

∥∥
2
= e0 ≤ CZ δ. (31)

Therefore, under Assumptions 1 and 2, the deviation between the final latents produced by Precise-
Cache and by the full sampler is bounded linearly in the LFD threshold δ.

A.2.5 FROM LATENT DEVIATION TO VIDEO QUALITY DEGRADATION

Finally, let D denote the decoder that maps the final latent Z0 to the video in pixel space (e.g., a
VAE decoder). We assume that D is Lipschitz continuous.

Assumption 3 (Lipschitz decoder). There exists a constant Ldec ≥ 0 such that for all Z0,Z
′
0,∥∥D(Z0)−D(Z ′

0)
∥∥
2
≤ Ldec

∥∥Z0 −Z ′
0

∥∥
2
. (32)

Applying this to Zcache
0 and Zfull

0 and using equation 31, we obtain∥∥D(Zcache
0 )−D(Zfull

0 )
∥∥
2
≤ Ldec

∥∥Zcache
0 −Zfull

0

∥∥
2
≤ LdecCZ δ. (33)

Equation equation 33 shows that, under the above assumptions, the pixel-space deviation between
the video generated with PreciseCache and that generated by the full sampler is bounded by a con-
stant times the LFD threshold δ. Since many common video quality metrics (e.g., PSNR and some
distance-based perceptual metrics) are monotonic with respect to the ℓ2 distance in pixel space, this
provides a theoretical justification that:

• smaller δ (or equivalently, smaller normalized threshold α) leads to a tighter worst-case
upper bound on video quality degradation, at the cost of fewer cache hits and lower speed-
up;

• larger δ allows more aggressive caching and higher speed-up, while relaxing the upper
bound on the worst-case quality degradation.

In summary, the threshold parameter used in PreciseCache is not merely an empirically tuned hy-
perparameter, but directly controls a provable upper bound on the worst-case deviation between the
cached and full sampling trajectories in both latent and pixel spaces.

A.3 MORE QUALITATIVE RESULTS

We provide more qualitative results of our PreciseCache in Figure 9, illustrating the effectiveness of
our method.

A.4 LIMITATIONS AND FUTURE WORKS

Although PreciseCache can achieve significant acceleration of video generation without training,
its BlockCache component requires caching the features of each transformer block, which leads

15
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Baseline (1.0x) +PreciseCache (2.6x speedup)

Figure 9: More Qualitative Results of PreciseCache on Wan2.1-14B. Zoom in for the best views.

to increased GPU memory usage. Consequently, running PreciseCache-flash with BlockCache on
Wan2.1-14B to generate 1080P videos cannot be completed on a single 80G A800 GPU. This issue
can be addressed through multi-GPU inference. We notice that the increase in GPU memory usage
is a common problem of cache-based acceleration methods for the need to store features, which
remains to be explored by future work.
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