Under review as a conference paper at ICLR 2026

PRECISECACHE: PRECISE FEATURE CACHING FOR
EFFICIENT AND HIGH-FIDELITY VIDEO GENERATION

Anonymous authors
Paper under double-blind review

y v

Wan2.1-14B (1><;- ' +Ours (~2.6%x spccdlﬁ)) " +TeaCache (~ lsedup)
Figure 1: Qualitative Results of PreciseCache on Wan2.1-14B (Wang et al [2025). Compared
with previous methods, our PreciseCache achieves higher acceleration (about 2.6 x speedup) of the
base model without sacrificing the quality of generated videos.

ABSTRACT

High computational costs and slow inference hinder the practical application of
video generation models. While prior works accelerate the generation process
through feature caching, they often suffer from notable quality degradation. In
this work, we reveal that this issue arises from their inability to distinguish truly
redundant features, which leads to the unintended skipping of computations on
important features. To address this, we propose PreciseCache, a plug-and-play
framework that precisely detects and skips truly redundant computations, thereby
accelerating inference without sacrificing quality. Specifically, PreciseCache con-
tains two components: LFCache for step-wise caching and BlockCache for block-
wise caching. For LFCache, we compute the Low-Frequency Difference (LFD)
between the prediction features of the current step and those from the previous
cached step. Empirically, we observe that LFD serves as an effective measure
of step-wise redundancy, accurately detecting highly redundant steps whose com-
putation can be skipped through reusing cached features. To further accelerate
generation within each non-skipped step, we propose BlockCache, which pre-
cisely detects and skips redundant computations at the block level within the net-
work. Extensive experiments on various backbones demonstrate the effectiveness
of our PreciseCache, which achieves an average of 2.6 x speedup without notice-
able quality loss. Source code will be released.

1 INTRODUCTION

Video generation models (Zheng et al., 2024} [Yang et all, 2024} [Kong et al.| 2024} [Wang et all}
2025)) have demonstrated impressive capabilities in producing high-fidelity and temporally coherent

videos. However, they always suffer from extremely slow inference speed, posing a significant chal-
lenge to their application. Although some works attempt to alleviate the problem through distillation
(Geng et al} 2025}, [Song et al., 2023)), they always need additional training, which is computationally
intensive. To address this, feature caching (Zhao et all, [2024b} [Liu et al [2025b} [Lv et al., [2024)

has emerged as a popular approach to accelerate the process of video generation, which skips the

Under review as a conference paper at ICLR 2026

network inference in several denoising steps by reusing the cached features from previous steps.
However, these works usually adopt a uniform caching scheme (i.e., performing a full inference
every n steps, caching the features, and reusing them until the next full inference), which over-
looks the varying importance of different timesteps in determining the output quality, resulting in
insufficient speedup or noticeable quality degradation. As a result, some recent works (Liu et al.,
2025a; |Kahatapitiya et al., |2024; |Chu et al., 2025)) propose adaptive caching mechanisms that design
metrics to adaptively decide whether to perform the full model inference or reuse cached features at
each denoising timestep. However, these methods require complicated additional fitting or extensive
hyperparameter tuning, and their cache decision criteria remain suboptimal, leading to unsatisfying
generated results. Consequently, designing adaptive run-time caching mechanisms that maximizes
acceleration while preserving video quality remains challenging.

In this work, we propose PreciseCache, an Denoising Process
adaptive video generation acceleration frame-

work that precisely identifies redundant fea- P
tures and skips their computation through

feature caching, thereby enabling maximal Shimanes
speedup without compromising video quality.

To this end, at each denoising step, we ana- P AUAVY
lyze the influence of reusing cached features on Nor ——

the final generation quality. The results (Fig-

ure [3p) indicate that as the denoising process

progresses from high to low noise stages, thein- ~ Noise Space Data Space
fluence of reusing cached features gradually di-
minishes (Figure [2). This is consistent with the . .
intuition that the diffusion process models low- Figure 2: The Illustration of the Denoising
frequency structural information at high-noise Process for Video Generation. At high-noise
steps while refining the generated content with ~timesteps, the prediction of the model varies sig-
high-frequency details at low-noise steps (Wan| nificantly. Reusing the cached features in this
2025). The structural information is crucial for ~stage (the red line) can significantly affect both the
video generation, while high-frequency details ~content and the quality of generated videos com-
are usually perceptually insignificant, where pared to .the videos generated without cachlng (the
the computation can be skipped to achieve ac- Orange line). In contrast, the feature caching dur-
celeration. Consequently, we propose Low- 11 low-noise timesteps only introduces negligible
Frequency Difference (LFD), which measures impacts (the green line).

the difference between the low-frequency components of the model’s outputs at adjacent denoising
steps. Experiments in Figure @ illustrate that LFD effectively estimates the redundancy of each
denoising step (as illustrated in Figure [3p) and therefore can be leveraged to indicate caching.

LY
' 44

Latent 5: Model Prediction Cached Prediction

Based on the above analysis, we propose LFCache for step-wise caching. Specifically, at each
denoising step, we aim to leverage the LFD between the network prediction at the current step and
that at the previous cached step as the criterion to indicate caching. However, directly calculating
LFD cannot achieve acceleration because it requires calculating the current-step predictions through
the full model inference. To address this challenge, we observe that the LFD exhibits low sensitivity
to the resolution of the input latent (Figure[5), suggesting that a lightweight downsampled latent is
sufficient for its estimation. Consequently, at each denoising step in our LFCache framework, the
noisy latent is firstly downsampled and fed into the model for a quick “trial” inference, obtaining
an estimated prediction. The LFD is calculated between this prediction and the cached prediction,
which is then used to indicate caching. Due to the reduced latent size, the additional overhead for
the inference of the downsampled latent is negligible compared to the overall generation time.

The LFCache identifies and eliminates the redundancy at the timestep level, focusing on the final
output of the entire network at each denoising step. Beyond this, we introduce BlockCache, which
delves into the network and further accelerates the generation process by performing the block-
wise caching inside each non-skipped timestep identified by LFCache. Specifically, we assess the
redundancy of each transformer block by measuring the difference between its input and output
features. Our analysis (Figure [6) reveals that only a subset of transformer blocks make substantial
modifications to the input feature (which we refer to as pivotal blocks), while others have minimal
impact (which we refer to as non-pivotal blocks). BlockCache caches and reuses the outputs of these
non-pivotal blocks to reduce redundant computation.

Under review as a conference paper at ICLR 2026

We evaluate our PreciseCache on various state-of-the-art video diffusion models, including Open-
sora (Zheng et al., 2024), HunyuanVideo (Kong et al.,|2024), CogVideoX (Yang et al., 2024), and
Wan2.1 (Wang et al., 2025). Experimental results demonstrate that our approach can achieve an
average of 2.6x speedup while preserving video generation quality, outperforming a wide range of
previous caching-based acceleration methods.

2 RELATED WORK

2.1 VIDEO DIFFUSION MODEL

Diffusion models (Ho et al., [2020; Rombach et al.l |2022; [Peebles & Xiel [2023) have become the
leading paradigm for high-quality generative modeling in recent years. Within the video genera-
tion domain, diffusion-based approaches have attracted increasing attention, driven by the rising
demand for temporally coherent and high-resolution dynamic content (Blattmann et al.| |2023bgaj;
Hong et all) |2023; Wang et al., 2024bic). Recent advances have consequently seen a shift from
conventional U-Net architectures (Ronneberger et al.,|2015) towards more scalable Diffusion Trans-
formers (DiTs) (Peebles & Xie} [2023), which offer enhanced capacity to model intricate temporal
dynamics across frames. State-of-the-art DiT-based video diffusion models such as Sora (Brooks
et al.,2024; Zheng et al.| |2024), CogvideoX (Yang et al.,[2024), HunyuanVideo (Kong et al.,|2024),
and Wan2.1 (Wang et al.,|2025) have demonstrated impressive performance in synthesizing coherent
and high-fidelity videos. Despite these advancements, the inherently iterative denoising process in
diffusion models introduces considerable inference latency, which remains a critical challenge for
real-time or large-scale deployment.

2.2 DIFFUSION MODEL INFERENCE-TIME ACCELERATION

Many works (Song et al.| 2023; Meng et al., 2023} [Sauer et al., [2024) accelerate the generation
process through distillation. However, they usually require large-scale training, which is time-
consuming and resource-intensive. As an alternative, training-free inference acceleration meth-
ods (Song et al.l 2021} |[Karras et al., 2022; |Lu et al., 2022; |Bolya & Hoffman, [2023}; [Wang et al.,
2024a; [Zou et al.|, [2025; Zhang et al., 2025bja; |Xi et al., 2025; [Ye et al.| 2024) have gained consid-
erable attention for speeding up diffusion model inference without costly retraining. Among these
methods, Feature caching is one of the most popular methods for training-free video generation ac-
celeration, which leverages redundancy across iterative denoising steps. Early static caching meth-
ods (Selvaraju et al.,|2024; |Chen et al.|[2024; Zhao et al.| 2024b) rely on fixed schemes, but lack flex-
ibility to adapt to varying process dynamics. To overcome this, adaptive caching approaches (Wim-
bauer et al., 2024} Liu et al., 2025a; (Chu et al., 2025; |Kahatapitiya et al., 2024} Zhou et al., 2025)
propose to adaptively decide when to apply the caching and reusing mechanism during the denois-
ing process. However, these methods usually suffer from notable quality degradation or extensive
hyperparameter tuning.

3 METHOD

In this section, we introduce the PreciseCache method in detail. First, we analyze the influence
of reusing the cached feature at each timestep on the final generated result, proposing the Low-
Frequency Difference (LFD) metric to precisely estimate this influence at each timestep during
the video generation process. Then, we introduce LFCache for timestep-level caching. At each
denoising step, our LFCache framework first feeds a downsampled latent into the model, obtaining
an estimated output at this step. LFD is calculated between this output and the cached output, which
is used to determine whether to apply caching. Finally, we further propose BlockCache, which
performs the caching and reusing mechanism at the block level within the non-skipped timesteps.
The overall algorithm of our PreciseCache is shown in Algorithm T}

3.1 PRELIMINARIES

Rectified Flow (Liu et al.;,|2022)) models a linear path between the data distribution 7y and Gaussian
noise 71 via an ODE: dZ; = v(Z;,t)dt, t € [0, 1], where v is parameterized by a neural network
€g. Given samples X ~ 7o, X1 ~ 71, the forward trajectory is defined by X; = (1—¢) X+t X1,
yielding the differential form dX; = (X7 — X()dt. The training objective minimizes the regression
loss between the ground truth velocity and the network prediction:

1
mgin/ E [||(X1 X)) — ee(xt,t)nﬂ dt. (1)
0

Under review as a conference paper at ICLR 2026

0.06 0.06 0.06
& & I
g g &
0 - - 0 - - 0 !
Zso Timestep Z, Zs Timestep Z, Zs Timestep Z,
(a). Caching F; (b). Caching FfF (c). Caching F{"F

Figure 3: The Impact of Reusing the Cached Model Prediction at Each Timestep. Considering
a 50-step denoising process from the Gaussian Noise Zs to a clean latent Zj, we respectively
reuse the model output at timestep ;41 for each ¢ € {49,48,--- 0}, and perform the subsequent
denoising steps to generate the final video. We then compare each resulting video with the baseline
(i.e., generated without caching and reusing) to evaluate the impact of reusing cached predictions.
Different colors indicate different prompts.

0.12 0.12 0.12
5 9 i
g g s
0 1 e 0 - ; 0
Zs Timestep Z, Zs Timestep Z, Zs Timestep Z,
LF _ pLF HF _ pHF
(a). ||F; _Fi+1||2 (b). ”Fi - Fiy ”2 (©). |[Fi" —Fiyy ”z

Figure 4: The Difference between Model Predictions at Adjacent Timesteps. Although the dif-
ference is relatively large in the low-noise stage, it primarily arises from high-frequency components,
which have limited influence on the perceptual quality of the generated results. Different colors in-
dicate different prompts.

At inference, a Gaussian noise Zy ~ N (0, I) is iteratively updated using the ODE Solver (Lu et al.}
2022; Wang et al, 2024c) represented by the Euler Method: Z; 1 = Z; + (t;—1 — ;) €a(Z;, t;).
Compared to DDPM (Ho et al.| 2020), RF achieves high-quality generation with significantly fewer
steps due to its linear sampling path. This efficiency makes it well-suited for T2V generation tasks
(Zheng et al.| [2024; Wang et al., 2025} [Yang et al., 2024} Kong et al., 2024)).

Feature Caching. DiT-based video generation remains computationally intensive due to the com-
plexity of modeling spatiotemporal dependencies and the need for iterative denoising over numerous
steps. To address this, feature caching is a widely adopted technique to accelerate video generation,
where most works focus on step-wise caching. Considering the noisy latent Z; at the :th denois-
ing step, a full inference of network eg is performed, i.e., F; = €g(Z;,1;), and the output F; is
cached. In the subsequent n timesteps {t;_1,t;—2, - ,t;—n }, instead of performing a full inference
as F,_p = €g(Z;_i,t;i—i) where k € {1,--- ,n}, the cached F; is reused for updating the noisy
latent, i.e., F;_; = F;. Although this vanilla feature caching mechanism achieves significant ac-
celeration, the interval n is fixed. On the other hand, different denoising steps have varying degrees
of influence on the final output. Accurately identifying the redundant features within the generation
process to achieve adaptive caching remains a challenging problem.

3.2 LOW-FREQUENCY DIFFERENCE

Adaptive caching requires the mechanism to dynamically decide whether to perform a full network
inference at each denoising step ¢; (i.e., F; = €g(Z;,t;)), or to reuse the cached predictions of
the model from the previous step. Intuitively, this depends on its impact on the final generated
videos: if reusing the previous cached prediction at ¢; significantly influences the content and quality
of the generated video, a full inference of the network €g needs to be conducted; otherwise, the
computation of this step can be skipped through reusing the cached prediction.

Based on this intuition, we begin by analyzing the impact of reusing the cached feature at each step
on the final generated video. Considering the video generation process consisting of N steps, we
respectively skip the computation at each step ¢; (where i € {N — 1, N — 2,--.,0}) by reusing

Under review as a conference paper at ICLR 2026

the model’s prediction from the previous step ¢, 1, and then generate the final videos. We measure
the Mean Squared Error (MSE) between videos generated with caching and the ground truth, which
are generated without caching. Generally, our results (Figure [3p) indicate that reusing the cached
feature at early high-noise steps significantly affects the generated results, whereas at later low-noise
steps, its impact is negligible.

The above analysis precisely quantifies the influence of applying caching at each single denoising
step. Intuitively, if this influence is estimated immediately at ¢; during the denoising process, it can
then be leveraged to decide whether the computation at ¢; can be skipped through feature caching.
However, it is a non-trivial task because the influence of each step in Figure[3h cannot be obtained be-
fore the corresponding video is generated. As an alternative, most prior works like (Liu et al.}|2025a)
directly leverage the difference between the current network prediction F;; and the cached prediction
as the metric to indicate caching (Figure [dp), which does not align with the above observation and
would lead to sub-optimal caching strategies. In this work, we propose to further decompose the
model prediction Fj into low-frequency and high-frequency components (F*f and FL¥) through
the Fast Fourier Transform (FFT), and investigate their separate effects during denoising, i.e.,

FM = FFT (e0(Ziyti))iow; FI'F = FFT (€o(Zi,ti))nigh-)

We observe that caching FL'¥" predominantly affects the generated results (Figure), whereas
FHF has a negligible influence (Figure). Based on this insight, we further calculate their differ-
ence between adjacent denoising steps, 1.e.,

AP = ||FM = Bl AT = BT - BTl i€ {N = 1,0} 3)

We find that the Low-Frequency Difference (LFD) AL closely aligns with the observation in
Figure [3p. This implies that at high-noise timesteps, the network generates critical structural and
content information for the video, while at low-noise timesteps, it primarily produces high-frequency
details that are perceptually insignificant and thus can be safely cached to accelerate generation.

3.3 LFCACHE

Directly applying Low-Frequency Difference
to indicate caching cannot accelerate the video
generation process because obtaining AX¥ re-
quires performing a full forward pass at the
timestep t; to calculate F;. To address this, we
propose LFCache framework, where a down-
sampled latent is first fed into the model for
“trail” at each denoising step. Specifically,
given the latent Z; € RTXHXWXC at the
timestep t;, (where T', H, W and C represent 0
the temporal, height, width, and channel of the Zs, Timestep Z,

latent). We first downsample the latent on its Figure 5: The Relationship between Latent
temporal, height and width dimensions, i.e., Resolution and LFD. We observe that down-
Z; = Downsample (Z,), (4) sampling has little effect on the computation of
_ LFD. The experiment is conducted on Wan2.1-
where Z; € RT/m)xH/)x(W/)xC 1 denotes 14B (Wang et al | [2025).
the downsample factor at the temporal dimen-
sion and s denotes the downsample factor at the spatial dimension. Then, we feed the downsam-
pled latent Z; into the network €g to obtain an estimated output F;, i.e., F; = €¢(Z;,t;). Due
to the reduced size of the downsampled latent, this process is highly efficient, taking a negligi-
ble computational overhead within the overall video generation process. Similarly, we downsam-

ple the cached prediction F;,;, obtaining F;,; and calculate the low-frequency difference, i.e.,
ﬁfF = HIT“Z.LF — ﬁ’ﬁf; H . The analysis in Figureindicates that the ﬁfF is highly consistent with
2

0.1 Downsampled Latent

Full-resolution Latent

MSE

AEF which can be used as an effective caching indicator during the process of generation.

Following prior works (Liu et al.,2025a), at each denoising step, we use the accumulated differences
as the final indicator to indicate caching. Specifically, after doing a full inference and obtaining the
output of the model F, at timestep t,, we accumulate the low-frequency difference at subsequent

timesteps, i.e., > o_, AFF. If Y0 AEF is greater than a pre-defines threshold & at ¢, the com-

Under review as a conference paper at ICLR 2026

Algorithm 1 Video Generation with PreciseCache.

1: Initialize €g, Zn ~ N(0,1)

2: Initialize ' <+ 0 // Accumulated error

3: Fy + €9(Zn,tn) /I Always do the full inference at the first timestep ¢

4: FEY + Downsample(FFT (Fx)iow)

5: Zn_1 ¢+ UpdauteLatent{ZJ\f7 Fy}

6:f0ri—N—1N ,1do

7. Zi <+ Downsample(Z)

8: F;«+ Ge(Zl, t;) // Obtain the network output of downsampled input

9 FLF « FFT(F)iow // Calculate the low-frequency component at t;
10: Fﬁg +— FFT (Downsample(F;11))ow // Calculate the low-frequency component at ¢, 1
11: AZ-L Fo HFZ-LF Fﬁg H /I Calculate the Low-Frequency Difference (LFD)
122 E+ E+ KZLF // Update the accumulate error
13: if E < ¢ then
14: F,— F, // Directly reuse the cached output
15: else
16: F;, + €9(Z;,1;) // Inference with BlockCache
17: E+0 // Reset error
18: end if
19: Z;_; + UpdateLatent(Z;, F;) // Update latent
20: end for

21: Output: Z,

putation of this timestep cannot be skipped and Fj, should be calculated through the inference of
the network. Otherwise, we reuse the F}, to update the latent at ¢;. This procedure is shown in
Algorithm T 025

3.4 BLOCKCACHE

LFCache effectively identifies which timesteps

in the denoising process can be directly skipped

by reusing the cached output of the entire DiT 8
model (i.e., €g). On the other hand, even at =
those non-skipped timesteps, redundancy still
exists within the computations of individual
transformer blocks. To address this and achieve
further acceleration, we propose BlockCache,
which eliminates the redundancy at the block 0
level in those non-skipped steps identified by
LFCache. Specifically, considering the non- Figure 6: The Importance of Each Trans-
skipped timestep t;, € {N,N — ky,--- ,N — former Block within the Video Diffusion Trans-
k,} identified in section the inference of former. Different colors represent different de-
the DiT model with M transformer blocks (i.e., noising steps. The experiment is conducted on
Fki = EG(Zk,- , tki)) can be decomposed as Wan2.1-14B (Wang et al.,|2025).

F) = Zy,; F,g'i = Bj(F,gi_l,tki); F,, = FM, (5)

0 Block ID 39

where j € {1,..., M} and B7 indicates the jth block in €g. We analyze the redundancy of each
block B by calculating the difference between its input and output. The results in Figure Ef,illustrate
that only a subset of blocks (which we refer to as pivotal blocks) make notable modifications of
the input, while remaining blocks have minimal impact (which we refer to as non-pivotal blocks).
Based on this observation, our BlockCache aims to eliminate the redundant computation of non-
pivotal blocks. Specifically, considering the non-skipped step ¢, a full inference of the network

is conducted, and the difference D{C between the input and output of each block is cached, i.e.,
ch = F]g — F,gi_l. Then, we select the blocks with top ¢% largest difference, which are identified

as the pivotal blocks: Zj,, = { J| HD% H is in the top ¢% of all Values}. Other blocks are non-
i ||

Under review as a conference paper at ICLR 2026

pivotal blocks, which are highly redundant and thus can be skipped. In the following L non-skipped

denoising steps t;,_, (I € {1,---, L}), we use the cached difference DJ to estimate the output of
non-pivotal blocks. The 1nference procedure with BlockCache can be represented as

B (FJ ot l), jeT,

, F., ,=F) . (6)
RS TS L

Fk(?i—l = Zk?‘fl’ F/gz 1 {
With the skipping of the non-pivotal blocks, BlockCaChe minimizes redundancy during generation
without compromising the quality of the results. For implementation, our BlockCache is easier to in-
tegrate into diverse model architectures for acceleration and only requires minimal hyper-parameter
tuning compared to previous block-level caching methods such as (Kahatapitiya et al., 2024)).

4 EXPERIMENTS

4.1 SETUP

Baselines. To validate the efficacy of PreciseCache, we implement our method on various state-of-
the-art base models for video generation, including Open-Sora 1.2 (Zheng et al., 2024), Hunyuan-
Video (Kong et al) 2024), CogVideoX (Yang et al) 2024), and Wan2.1 (Wang et al., [2025). We
compare our methods with previous SOTA cached-based acceleration methods for video generation
models, including PAB (Zhao et al., [2024b), TeaCache (Liu et al., 2025a), and FasterCache (Lv
et al.} [2024). For these methods, we utilize their official implementations available on GitHub. For
base models not directly supported by their official code, we implement the method ourselves.

Evaluation Metrics and Datasets. We evaluate inference efficiency and generated video quality
of PreciseCache. To measure the inference efficiency, we report Multiply-Accumulate Operations
(MAC:s) and inference latency. For assessing visual quality, we generate videos using the prompt
from VBench (Huang et al.l [2024) and evaluate performance using VBench’s comprehensive met-
rics. We also report some widely adopted perceptual and fidelity metrics, including LPIPS, PSNR,
and SSIM, which measure the similarity between videos generated with cache-based acceleration
methods and those directly generated by base models without caching.

Implementation Details. Determining an appropriate threshold § for LFCache is a non-trivial
task, as the optimal value tends to vary across different base models and prompts. To address
this challenge, we convert determining a specific threshold value into determining a relative fac-
tor a. Specifically, in our implementation, caching is disabled for the first three timesteps during

which we record the maximum low-frequency difference observed, i.e., Am .- We then set the
threshold 4 as A#I(L x «. This strategy substantially reduces the difficulty of manually tuning the

threshold parameter. For LFCache, we provide two basic configurations, i.e., PreciseCache-Base
and PreciseCache-Turbo, where « is set to 0.5 and 0.7 for all the models. Based on PreciseCache-
Turbo, we further provide a faster configuration, i.e., PreciseCache-Flash, where the BlockCache is
enabled with the cache rate set to 40% and L set to 3. The downsample rate in LFCache is set to [2,
4, 4] in the temporal, height, and width dimensions, respectively. To separate frequency components

using FFT, we define a low-frequency region as a centered circular mask with radius equal to %

of the minimum spatial dimension, i.e., radius = % min(H, W). All experiments are executed on

NVIDIA A800 80GB GPUs utilizing PyTorch, with FlashAttention (Dao et al., 2022) enabled by
default to optimize computational efficiency.

4.2 MAIN RESULTS

Quantitative Evaluation. Table || reports a detailed quantitative assessment comparing our ap-
proach with state-of-the-art acceleration methods: PAB (Zhao et all [2024b)), TeaCache (Liu et al.|
2025a)), and FasterCache (Lv et al) 2024), focusing on both computational efficiency and visual
fidelity. Our PreciseCache consistently illustrates notable speedup while strictly maintaining the vi-
sual quality of the base model, demonstrating robustness across diverse base architectures, sampling
strategies, video resolutions, and durations.

Qualitative Comparison. Figure[7]illustrates qualitative results comparing videos generated using
PreciseCache-flash and several baseline methods. Visual comparisons demonstrate that our method
achieves significant acceleration without altering the generated video content or compromising qual-
ity. In contrast, existing baselines often produce different content and suboptimal quality videos
Additional qualitative examples are provided in Figure 9] for further reference.

7

Under review as a conference paper at ICLR 2026

Table 1: Quantitative Comparison of efficiency and visual quality on 4 A800 GPUs.

Method Efficiency Visual Quality
MACs (P) | | Speedup T | Latency (s) | | VBench T [LPIPS | [SSIM T | PSNR T |
Open-Sora 1.2 (480P, 192 frames)
Open-Sora 1.2 (T = 30) 6.30 1x 47.23 78.79% - - -
PAB 5.33 1.26x 38.40 78.15% 0.1041 0.8821 26.43
TeaCache 3.29 1.95% 24.73 78.23% 0.0974 0.8897 26.84
FasterCache 4.13 1.67x 29.15 78.46% 0.0835 0.8932 27.03
Ours-base 3.73 1.72x 27.95 78.71% 0.0617 0.9081 28.78
Ours-turbo 3.10 2.07x 23.27 78.49 % 0.0786 0.8971 27.11
Ours-flash 245 2.60 % 18.38 78.19 % 0.0979 0.8903 26.78
HunyuanVideo (480P, 65 frames)
HunyuanVideo (7' = 50) 14.92 1x 73.64 80.66% - - -
PAB 10.73 1.35% 54.54 79.37% 0.1143 0.8732 27.01
TeaCache 8.93 1.64x 44.90 80.51% 0.0911 0.8952 28.15
FasterCache 10.29 1.43%x 51.50 80.59% 0.0893 0.9017 28.96
Ours-base 9.15 1.61x 45.74 80.65% 0.0654 0.9102 29.15
Ours-turbo 7.49 1.95x 37.76 80.49% 0.0884 0.9043 29.06
Ours-flash 6.04 2.44 % 30.18 80.02% 0.0902 0.8977 28.64
CogVideoX (480P, 48 frames)
CogVideoX (T' = 50) 6.03 1x 21.13 80.18% - - -
PAB 445 1.32x 16.01 79.76% 0.0860 0.8978 28.04
TeaCache 3.33 1.79% 11.80 79.79% 0.0802 0.9013 28.76
FasterCache 3.71 1.60x 13.21 79.83% 0.0766 0.9066 28.93
Ours-base 3.59 1.65x 12.81 80.14% 0.0619 0.9110 29.23
Ours-turbo 2.96 2.02% 10.46 79.91% 0.0742 0.9021 28.97
Ours-flash 2.31 2.58x 8.19 79.80 % 0.0849 0.9001 28.79
Wan2.1-14B (720P, 81 frames)

Wan2.1-14B (T = 50) 329.2 1x 907.3 83.62% - - -
PAB 233.5 1.38% 657.5 82.91% 0.1853 0.8607 26.18
TeaCache 166.3 1.94x 467.7 83.24% 0.1012 0.8719 27.22
FasterCache 183.9 1.73x 524.5 83.47% 0.0741 0.9078 28.45
Ours-base 204.5 1.59x 570.6 83.56% 0.0451 0.9189 29.12
Ours-turbo 151.0 2.15x% 422.1 83.52% 0.0633 0.9127 28.98
Ours-flash 122.4 2.63% 344.9 83.43% 0.0812 0.9035 28.76

4.3 ABLATION STUDIES

To comprehensively evaluate the effectiveness of PreciseCache, we conduct ablation studies to in-
vestigate the performance under different number of GPU, the downsampling size in LFCache, and
the feature reusing strategy. Without loss of generality, experiments are conducted on Wan2.1-14B
(Wang et al.} 2025) and HunyuanVideo (Kong et al., 2024).

Table 2: Latency on Different Number of GPUs with Table 3: Influence of Downsample Size.
DSP (Zhao et al], 2024a). Without loss of generality, Without loss of generality, experiments are
we use Wan2.1-14B (Wang et al|[2025) and Hunyuan- conducted on Wan2.1-14B (Wang et al.,
Video (Kong et al.| 2024) as the base models and gen- 2025) with 4 A800 GPUs.

erate the 1080P videos, reporting the latency (s) under

different numbers of A800 GPUs. Factor (T’ ><AH x W) Latency | VBench 1 ‘ LPIPS |
Baseline 907 (1x) 83.62% -

#GPU | HunyuanVideo | +PreciseCache Wan-2.1 +PreciseCache 1x2x2 918 (0.98x) | 83.57% 0.0797

1 982 (1x) 470 (2.08x) 3326 (1x) 1330 (2.50%) 1x4x4 525(1.73x) | 83.49% 0.0801

2 566 (1.73x) 275 (3.57x) | 1732(1.92x) 753 (4.41x) 1x8x8 401 (2.26x) | 83.18% 0.1946

4 329 (2.98x) 161 (6.10x) 907 (3.67x) 416 (8.00x) 2x4x4 416 (2.18x) | 83.52% 0.0793

8 175 (5.61x) 88 (11.16x) 459 (7.25%) 229 (14.52x%) 4x4x4 403 (2.25%) 83.02% ‘ 0.1875

Performances on Different Number of GPUs. Following previous works (Lv et al., 2024), we
adopt the Dynamic Sequence Parallelism (DSP) to facilitate multi-GPU inference. Table2]illustrates
the inference latency of PreciseCache-turbo under different numbers of A800 GPUs, where our
methods consistently achieves significantly lower inference latency than base models. Notably,
PreciseCache-turbo can achieve even further acceleration ratio on Wan2.1-14B (Wang et al., [2025))
under fewer number of GPU, e.g., it can achieve about 2.5 x acceleration using 1 GPU. These results
highlight the effectiveness of our PreciseCache in various number of GPUs.

Size of Downsampling. As illustrated in section[3.3] a downsampled latent is fed into the model to
obtain the estimated output at each denoising step. We conduct experiments to illustrate the impact
of downsampling size (Table 3). Experiments show that a small downsampling ratio results in a
large latent size, which significantly increases the inference time. Conversely, over-downsampling

Under review as a conference paper at ICLR 2026

A duck swims in a pond and a model ship floats nearby
T s > iy

eater and a cat plays with the yarn
) g g

L ¥

‘l
!;L y
_ G ! ¥y
Furry dog fetching a rubber ball
K = r S

s
0 &

+ Ours + FasterCache + TeaCache HunyuanVideo + Ours + FasterCache + TeaCache
Figure 7: Qualitative Comparison. Zoom in for the best views.

can yield predictions that fail to adequately estimate the output at the current timestep, leading to
suboptimal caching strategies and degraded video generation quality. Empirically, we find that a
sampling rate of 2 x 4 x 4 along the temporal (") and spatial (H, W) dimensions can achieve a
satisfying trade-off between acceleration and generation quality.

Wan2.1-14B

Feature Reusing Strategy. For the LFCache, we Table 4: Feature Reusing Strategy for
directly store the model’s final prediction F; (i.e., Step-wise Caching. Without loss of general-
the results after classifier-free guidance) at each non- ity, we conduct experiments on Wan2.1-14B
skipped timestep and reuse this cached prediction in (Wang et al.| [2025)), generating videos with
the subsequent skipped steps. On the other hand, 1080P resolution.

we noticc': that some prior works adopt different. fea- Strategy ‘ VBench 1 ‘ LPIPS |
ture reusing strategies, such as caching the residual =

@D (i.e., R; = F, — Z,) at the non- Reuse pre(.hctlon (F) 83.52% 0.0793
skipped steps t;. At the skipped steps, the prediction Reuse residuals (R) | 83.50% | 0.0791

is estimated according to this cached residual and the TaylorSeer 83.54% | 0.0801
input noisy latent. Some works such as TaylorSeer

2025D)) also design more sophisticated reuse strategies with better performance. We con-
ducted experiments to compare these strategies and found that their performances are comparable
(Table [4) under our PreciseCache. As a result, we adopt the vanilla approach for simplicity. This
observation further implies that designing methods to identify where and when to cache could be
more important than exploring how to cache for training-free video generation acceleration.

5 CONCLUSION

In this work, we propose PreciseCache, an effective training-free method for accelerating the video
generation process, containing LFCache for step-wise caching and BlockCache for block-wise
caching. First, we introduce the low-frequency difference, which can precisely reflect the redun-
dancy of each denoising step. Then, we propose LECache which indicates step-wise caching through
the low-frequency difference between the downsampled output at the current step and that of the
cached step. Furthermore, we propose the BlockCache to reduce the redundancy at the non-skipped
timesteps by caching the blocks which has minimal impact on the input feature. Extensive experi-
ments illustrate the effectiveness of our method with different base models under various numbers
of GPUs, highlighting its potential for real-world applications.

Under review as a conference paper at ICLR 2026

REFERENCES

Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023a.

Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler,
and Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion
models. pp. 22563-22575, 2023b.

Daniel Bolya and Judy Hoffman. Token merging for fast stable diffusion. pp. 4599-4603, 2023.

Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
Taylor, Troy Luhman, Eric Luhman, et al. Video generation models as world simulators. OpenAl
Blog, 1:8, 2024.

Pengtao Chen, Mingzhu Shen, Peng Ye, Jianjian Cao, Chongjun Tu, Christos-Savvas Bouganis,
Yiren Zhao, and Tao Chen. J-dit: A training-free acceleration method tailored for diffusion
transformers. arXiv preprint arXiv:2406.01125, 2024.

Huanpeng Chu, Wei Wu, Guanyu Fen, and Yutao Zhang. Omnicache: A trajectory-oriented
global perspective on training-free cache reuse for diffusion transformer models. arXiv preprint
arXiv:2508.16212, 2025.

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. Flashattention: Fast and memory-
efficient exact attention with io-awareness. Advances in neural information processing systems,
35:16344-16359, 2022.

Zhengyang Geng, Mingyang Deng, Xingjian Bai, J Zico Kolter, and Kaiming He. Mean flows for
one-step generative modeling. arXiv preprint arXiv:2505.13447, 2025.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. pp. 6840-
6851, 2020.

Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale pre-
training for text-to-video generation via transformers. 2023.

Ziqi Huang, Yinan He, Jiashuo Yu, Fan Zhang, Chenyang Si, Yuming Jiang, Yuanhan Zhang, Tianx-
ing Wu, Qingyang Jin, Nattapol Chanpaisit, et al. Vbench: Comprehensive benchmark suite for
video generative models. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 21807-21818, 2024.

Kumara Kahatapitiya, Haozhe Liu, Sen He, Ding Liu, Menglin Jia, Chenyang Zhang, Michael S.
Ryoo, and Tian Xie. Adaptive caching for faster video generation with diffusion transformers.
arXiv preprint arXiv:2411.02397, 2024.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. volume 35, pp. 26565-26577, 2022.

Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
Bo Wu, Jianwei Zhang, et al. Hunyuanvideo: A systematic framework for large video generative
models. arXiv preprint arXiv:2412.03603, 2024.

Feng Liu, Shiwei Zhang, Xiaofeng Wang, Yujie Wei, Haonan Qiu, Yuzhong Zhao, Yingya Zhang,
Qixiang Ye, and Fang Wan. Timestep embedding tells: It’s time to cache for video diffusion
model. pp. 7353-7363, 2025a.

Jiacheng Liu, Chang Zou, Yuanhuiyi Lyu, Junjie Chen, and Linfeng Zhang. From reusing to fore-
casting: Accelerating diffusion models with taylorseers. arXiv preprint arXiv:2503.06923, 2025b.

Xingchao Liu, Chengyue Gong, et al. Flow straight and fast: Learning to generate and transfer data
with rectified flow. In International Conference on Learning Representations, 2022.

10

Under review as a conference paper at ICLR 2026

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. volume 35, pp. 5775-5787,
2022.

Zhengyao Lv, Chenyang Si, Junhao Song, Zhenyu Yang, Yu Qiao, Ziwei Liu, and Kwan-Yee K.
Wong. Fastercache: Training-free video diffusion model acceleration with high quality. In arxiv,
2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and
Tim Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 14297-14306, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. pp. 4195-4205,
2023.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684—10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedi-
cal image segmentation. In International Conference on Medical image computing and computer-
assisted intervention, pp. 234-241. Springer, 2015.

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion dis-
tillation. In European Conference on Computer Vision, pp. 87-103. Springer, 2024.

Pratheba Selvaraju, Tianyu Ding, Tianyi Chen, Ilya Zharkov, and Luming Liang. Fora: Fast-forward
caching in diffusion transformer acceleration. arXiv preprint arXiv:2407.01425, 2024.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. 2021.
Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.
Team Wan. Wan2.2, July 2025. URL https://github.com/Wan-Video/Wan2.2,

Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
Jianxiao Yang, Jianyuan Zeng, Jiayu Wang, Jingfeng Zhang, Jingren Zhou, Jinkai Wang, Jixuan
Chen, Kai Zhu, Kang Zhao, Keyu Yan, Lianghua Huang, Mengyang Feng, Ningyi Zhang, Pan-
deng Li, Pingyu Wu, Ruihang Chu, Ruili Feng, Shiwei Zhang, Siyang Sun, Tao Fang, Tianxing
Wang, Tianyi Gui, Tingyu Weng, Tong Shen, Wei Lin, Wei Wang, Wei Wang, Wenmeng Zhou,
Wente Wang, Wenting Shen, Wenyuan Yu, Xianzhong Shi, Xiaoming Huang, Xin Xu, Yan Kou,
Yangyu Lv, Yifei Li, Yijing Liu, Yiming Wang, Yingya Zhang, Yitong Huang, Yong Li, You Wu,
Yu Liu, Yulin Pan, Yun Zheng, Yuntao Hong, Yupeng Shi, Yutong Feng, Zeyinzi Jiang, Zhen Han,
Zhi-Fan Wu, and Ziyu Liu. Wan: Open and advanced large-scale video generative models. arXiv
preprint arXiv:2503.20314, 2025.

Hongjie Wang, Difan Liu, Yan Kang, Yijun Li, Zhe Lin, Niraj K Jha, and Yuchen Liu. Attention-
driven training-free efficiency enhancement of diffusion models. pp. 16080-16089, 2024a.

Jiangshan Wang, Yue Ma, Jiayi Guo, Yicheng Xiao, Gao Huang, and Xiu Li. Cove: Unleashing the
diffusion feature correspondence for consistent video editing. Advances in Neural Information
Processing Systems, 37:96541-96565, 2024b.

Jiangshan Wang, Junfu Pu, Zhongang Qi, Jiayi Guo, Yue Ma, Nisha Huang, Yuxin Chen, Xiu Li,
and Ying Shan. Taming rectified flow for inversion and editing. arXiv preprint arXiv:2411.04746,
2024c.

Felix Wimbauer, Bichen Wu, Edgar Schoenfeld, Xiaoliang Dai, Ji Hou, Zijian He, Artsiom
Sanakoyeu, Peizhao Zhang, Sam Tsai, Jonas Kohler, et al. Cache me if you can: Accelerating
diffusion models through block caching. pp. 6211-6220, 2024.

Haocheng Xi, Shuo Yang, Yilong Zhao, Chenfeng Xu, Muyang Li, Xiuyu Li, Yujun Lin, Han Cai,
Jintao Zhang, Dacheng Li, et al. Sparse videogen: Accelerating video diffusion transformers with
spatial-temporal sparsity. 2025.

11

https://github.com/Wan-Video/Wan2.2

Under review as a conference paper at ICLR 2026

Zhuoyi Yang, Jiayan Teng, Wendi Zheng, Ming Ding, Shiyu Huang, Jiazheng Xu, Yuanming Yang,
Wenyi Hong, Xiaohan Zhang, Guanyu Feng, et al. Cogvideox: Text-to-video diffusion models
with an expert transformer. arXiv preprint arXiv:2408.06072, 2024.

Hancheng Ye, Jiakang Yuan, Renqiu Xia, Xiangchao Yan, Tao Chen, Junchi Yan, Botian Shi, and
Bo Zhang. Training-free adaptive diffusion with bounded difference approximation strategy. Ad-
vances in Neural Information Processing Systems, 37:306-332, 2024.

Evelyn Zhang, Jiayi Tang, Xuefei Ning, and Linfeng Zhang. Training-free and hardware-friendly
acceleration for diffusion models via similarity-based token pruning. 2025a.

Jintao Zhang, Jia Wei, Pengle Zhang, Jun Zhu, and Jianfei Chen. Sageattention: Accurate 8-bit
attention for plug-and-play inference acceleration. 2025b.

Xuanlei Zhao, Shenggan Cheng, Zangwei Zheng, Zheming Yang, Ziming Liu, and Yang You.
Dsp: Dynamic sequence parallelism for multi-dimensional transformers. arXiv preprint
arXiv:2403.10266, 2024a.

Xuanlei Zhao, Xiaolong Jin, Kai Wang, and Yang You. Real-time video generation with pyramid
attention broadcast. arXiv preprint arXiv:2408.12588, 2024b.

Zangwei Zheng, Xiangyu Peng, Tianji Yang, Chenhui Shen, Shenggui Li, Hongxin Liu, Yukun
Zhou, Tianyi Li, and Yang You. Open-sora: Democratizing efficient video production for all,
March 2024. URL https://github.com/hpcaitech/Open—Soral

Xin Zhou, Dingkang Liang, Kaijin Chen, Tianrui Feng, Xiwu Chen, Hongkai Lin, Yikang Ding,
Feiyang Tan, Hengshuang Zhao, and Xiang Bai. Less is enough: Training-free video diffusion
acceleration via runtime-adaptive caching. arXiv preprint arXiv:2507.02860, 2025.

Chang Zou, Xuyang Liu, Ting Liu, Siteng Huang, and Linfeng Zhang. Accelerating diffusion
transformers with token-wise feature caching. 2025.

A APPENDIX

A.1 PIPELINE OF PRECISECACHE

We provide the overall pipeline of PreciseCache in fig. [§] for clearer illustration.

Fi+1|

Z; Z,

i

ZkH

— | DI in thp <%

7 1st Block 1st Block |

FO
| DownSample | ki
Z; > | Diff |_'D’1‘i [
Z; ‘ F,lil_ —1 ’HDfﬁ ||, not fin top ¢%

. e T A [v

PreciseCache F%
Module EI oo ..
F: . .
F.: i+1 — -1 J 1 X
. _’l Calculate ALF | l F;c.- 1 . 1”0""”2 notfn top ¢%
| [jth Block] [pifr |"lel [Cache }
Zi1 | E=E +AF | l F]ki — l
ifE<S FE>s . e 500
i Z; Z; ifE> 1 Fﬁ_l ||D,":£||2 in tpp c%
PreciseCache Cache BE:;Z::E;IS [Mth Block] | Diff |—*Dle [Mth Block]
Module Fl;‘d h) FkM
i —1
e F; F; Fy, Fiy_y
(a). Overall Process (b). Pipeline of The Non-cached Step k; A Following Step ki-y
of Video Generation PreciseCache (c). Example of Inference with BlockCache

Figure 8: Pipeline of PreciseCache.

12

https://github.com/hpcaitech/Open-Sora

Under review as a conference paper at ICLR 2026

A.2 THEORETICAL ANALYSIS OF THE LFD THRESHOLD

In this section, we provide a simple theoretical analysis that connects the Low-Frequency Difference
(LFD) threshold used in PreciseCache to the deviation between the cached sampling trajectory and
the original full sampling trajectory. Under mild Lipschitz assumptions on the sampler and the
decoder, we show that the pixel-space error between the cached video and the full video is linearly
bounded by the LFD threshold d. This gives a principled interpretation of the threshold parameter
(denoted as « in our ablations), beyond purely empirical tuning.

A.2.1 NOTATION AND PRELIMINARIES

Let Z; denote the latent variable at timestep ¢;, and let
F; = €9(Z;, ;) (7

be the network output (e.g., noise prediction) at timestep t;. We denote the full-precision (no-cache)
sampling trajectory by { ZM!} N “and {F/""} | and the trajectory produced by PreciseCache by
{Zgachey} N and {Fra<he} N | Both trajectories start from the same initial noise: Z$@<he = Ztull,

We write the one-step latent update in the generic form
Z;_1 = UpdateLatent,(Z;, F;), (8)
which covers standard diffusion samplers such as Euler and DDIM.

We use a linear operator A to represent the low-frequency projection and downsampling used in
LFD computation, i.e.,

FM = A(F)). ©)
In practice, A consists of FFT, low-frequency masking, and optional spatial downsampling.
The Low-Frequency Difference (LFD) at timestep ¢; is then

ALF SLF _ 7LF

A7 = HFZ - Fi+1H2 = ||.A(E - Fi+1)

||2. (10)

During sampling, PreciseCache maintains an accumulated quantity
E=Y ApF. (11)
k

When E < 4, the algorithm reuses a cached network output; when £ > ¢, it recomputes the network
output, and then resets F <— 0. The scalar 6 > 0 is the LFD threshold; in the main experiments, we
use a normalized version of this threshold and denote it by a.

A.2.2 LIPSCHITZ ASSUMPTION ON THE ONE-STEP UPDATE

We first introduce a standard Lipschitz assumption on the one-step update operator.

Assumption 1 (Lipschitz one-step update). For each timestep ¢, there exist constants Lz ; > 0
and Lg; > O such that forall Z, Z', F, F”,

HUpdateLatenti(Z, F) — UpdateLatent,(Z’, F’)H2 < LzillZ-Z'|2+Lp:|F—F'|2. (12)
In particular, for fixed Z,
|UpdateLatent,(Z, F) — UpdateLatent;(Z, F')||, < Lp||F — F'|2. (13)

We further define global constants

LZ :maxLzyi, LF :maXLp_,i. (14)

For standard explicit solvers, these constants depend on the step sizes and the noise schedule, and
are finite for the fixed sampling schedule used in our experiments.

A.2.3 BOUNDING THE NETWORK OUTPUT DEVIATION BY THE LFD THRESHOLD

We next relate the deviation between cached and full network outputs to the LFD threshold §.

13

Under review as a conference paper at ICLR 2026

Consider a contiguous caching segment of timesteps

i=s8—1,...,e, (15)
such that at timestep s + 1 the model output F1%!} is recomputed, and for all i = s,...,e the
algorithm reuses the same cached output:

Fcachc _ fuli (16)
% - Fs+1
By construction of the algorithm, the accumulated LFD within this segment satisfies
S

E=Y"AFF <5, (17)

k=e

and once F would exceed J, a new recomputation is triggered and a new segment starts.

Foranyi € {e,..., s}, we can write
S
Ecache _ Efull — fil} _ Fifull — Z(F]fj_nl _]gul])' (18)
k=i
By the triangle inequality,
S
cache full full full
[t — B, < > FSL - F (19)

k=i
To connect the right-hand side to the LFDs, we make the following assumption.

Assumption 2 (Low-frequency dominance). Along the full sampling trajectory, there exists a
constant ¢z > 1 such that for all timesteps k&,

[— M, < e AGEES — B, = corf 20
That is, the temporal change of the network output is dominated by its energy in the low-frequency
subspace captured by A.

Substituting equation 20]into equation [T9]yields

s
||Fvicache o Efull||2 < CLFZE%F <crpE < cppé. 1)
k=1

For timesteps i at which no caching is used, we have Fache = Ffull and thus

||F*:icache . EfU11’|2 =0< CLF(;- (22)
Therefore, for all timesteps ¢ = 1, ..., N, we obtain a uniform bound
HFicache _ Ef1111”2 S CLF6~ (23)

A.2.4 LATENT ERROR RECURRENCE AND GLOBAL BOUND

‘We now propagate the deviation in network outputs to a deviation in the latent trajectory. Define the
latent error at timestep ¢ as

ei = || Z5* — Z",, i=0,...,N, (24)
and the output deviation at timestep ¢ as
d; = HFicache o ‘FifUHHQ' (25)

By construction, ey = 0 since we start from the same initial noise.
Using the joint Lipschitz property equation[I2] for each ¢ we have
€i—1 = ||UpdateLatenti(ZfaChe, Ffehe) — UpdateLatent,; (ZM, Fl-f““)H2
< Lz, Hzfache _ ZifullHQ + Lp; HFicache _ _Fifulle
< Lze; + Lpd;. (26)

14

Under review as a conference paper at ICLR 2026

Using the uniform bound equation [23|on d;, we obtain
d; < crpd, Vi. 27)
Substituting into equation [26| gives
ei—1 < Lge; + Lpcprd. (28)

Unrolling the recursion equation [28]from ¢ = N down to ¢ = 1 with ey = 0, we obtain
N-1
€p S LFCLF5 Z LtZ (29)
t=0

‘We can thus define a constant
N-1

Cz=Lrerr Y LY, (30)
t=0
which depends on the sampler, the model, and the fixed number of sampling steps NV, but does not
depend on the threshold §. Equation equation [29]then becomes

|5t~ 2", = 0 < Cr v

Therefore, under Assumptions 1 and 2, the deviation between the final latents produced by Precise-
Cache and by the full sampler is bounded linearly in the LFD threshold §.

A.2.5 FROM LATENT DEVIATION TO VIDEO QUALITY DEGRADATION

Finally, let D denote the decoder that maps the final latent Z to the video in pixel space (e.g., a
VAE decoder). We assume that D is Lipschitz continuous.

Assumption 3 (Lipschitz decoder). There exists a constant Lqe. > 0 such that for all Zy, Z{),

ID(Z0) — D(Zp)|, < Laec||Z0 — Zg) - (32)

Applying this to Z§2h® and Z{""" and using equation 31} we obtain

|’D(Z(c)ache) _ D(Z6u11)||2 < Ldec||Z5aChe _ Z(f)ull < LdecCZ 5. (33)

I,
Equation equation |33| shows that, under the above assumptions, the pixel-space deviation between
the video generated with PreciseCache and that generated by the full sampler is bounded by a con-
stant times the LFD threshold §. Since many common video quality metrics (e.g., PSNR and some
distance-based perceptual metrics) are monotonic with respect to the /- distance in pixel space, this
provides a theoretical justification that:

* smaller § (or equivalently, smaller normalized threshold «/) leads to a tighter worst-case
upper bound on video quality degradation, at the cost of fewer cache hits and lower speed-

up;
* larger § allows more aggressive caching and higher speed-up, while relaxing the upper
bound on the worst-case quality degradation.

In summary, the threshold parameter used in PreciseCache is not merely an empirically tuned hy-
perparameter, but directly controls a provable upper bound on the worst-case deviation between the
cached and full sampling trajectories in both latent and pixel spaces.

A.3 MORE QUALITATIVE RESULTS

We provide more qualitative results of our PreciseCache in Figure[J] illustrating the effectiveness of
our method.

A.4 LIMITATIONS AND FUTURE WORKS

Although PreciseCache can achieve significant acceleration of video generation without training,
its BlockCache component requires caching the features of each transformer block, which leads

15

Under review as a conference paper at ICLR 2026

Baseline (1.0x) +PreciseCache (2.6x speedup)

Figure 9: More Qualitative Results of PreciseCache on Wan2.1-14B. Zoom in for the best views.

to increased GPU memory usage. Consequently, running PreciseCache-flash with BlockCache on
Wan2.1-14B to generate 1080P videos cannot be completed on a single 80G A800 GPU. This issue
can be addressed through multi-GPU inference. We notice that the increase in GPU memory usage
is a common problem of cache-based acceleration methods for the need to store features, which
remains to be explored by future work.

16

	Introduction
	Related Work
	Video Diffusion Model
	Diffusion Model Inference-time Acceleration

	Method
	Preliminaries
	Low-Frequency Difference
	LFCache
	BlockCache

	Experiments
	Setup
	Main Results
	Ablation Studies

	Conclusion
	Appendix
	Pipeline of PreciseCache
	Theoretical Analysis of the LFD Threshold
	Notation and Preliminaries
	Lipschitz Assumption on the One-Step Update
	Bounding the Network Output Deviation by the LFD Threshold
	Latent Error Recurrence and Global Bound
	From Latent Deviation to Video Quality Degradation

	More Qualitative Results
	Limitations and Future Works

