

000 001 002 003 004 005 TRAMBA: MAMBA WITH ADAPTIVE ATTENTION FOR 006 TRAFFIC SPEED FORECASTING 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026

ABSTRACT

027 We introduce **Tramba**, a novel deep learning model for traffic speed forecasting
028 in complex urban road networks. Unlike conventional methods that rely heavily
029 on short-term trends or local spatial proximity (e.g., upstream and downstream
030 links), Tramba captures dynamic, long-range dependencies across both time and
031 space. It does so by integrating two key components: a Mamba-based tempo-
032 ral encoder that models long-term historical patterns of the target link, and an
033 adaptive attention mechanism that learns temporally similar patterns from non-
034 adjacent road links across the network. We evaluate Tramba on a real-world
035 dataset from Gangnam-gu, Seoul, comprising 5-minute interval speed measure-
036 ments across 366 road segments. Tramba is tested over forecasting horizons
037 from 1 to 36 steps and compared with six strong baselines. It consistently
038 outperforms all alternatives, achieving an average MAPE of 11.47%, MAE of
039 3.19 km/h, and MSE of 25.18 (km/h)² on TOPIS datasets for 12-step forecast-
040 ing. These results highlight Tramba’s ability to model long-range dependencies
041 and detect non-local influences in complex urban networks, reducing prediction
042 lag and improving robustness in dynamic traffic conditions. Code is available
043 at <https://github.com/tr-anon-users/tramba-code>.
044

1 INTRODUCTION

045 Accurate traffic speed forecasting plays a critical role in intelligent transportation systems, sup-
046 porting key functions such as congestion mitigation, adaptive signal control, and real-time route
047 planning Ma et al. (2023). As with many problems, effective forecasting relies on the ability to cap-
048 ture long-range temporal dependencies and underlying traffic dynamics. Urban traffic patterns often
049 evolve gradually over several hours, shaped by recurring commuting peaks, event-driven surges, or
050 slow shifts in road capacity. Models that rely heavily on recent observations tend to lag behind
051 actual transitions, an issue commonly referred to as prediction lag Min et al. (2023). This per-
052 sistent challenge underscores the need for long-term memory capable of retaining historical traffic
053 patterns Emami et al. (2019); Chen et al. (2022).

054 However, temporal modeling alone is insufficient. Many forecasting approaches improve perfor-
055 mance by incorporating patterns from physically adjacent links (road segments), such as upstream
056 or downstream links Kumar (2017); Xu et al. (2017). While this assumption may hold in highway
057 networks with uniform flow conditions, it often fails in urban environments, where road links differ
058 significantly in control schemes and geometric design Liu et al. (2023); Jia et al. (2016). In such
059 settings, a link’s traffic behavior may more closely align with that of a distant link sharing similar
060 control logic, rather than with its immediate neighbors Yu et al. (2017); Dai et al. (2019); Wu et al.
061 (2020). In these heterogeneous networks, physical proximity does not necessarily imply behavioral
062 similarity Yu et al. (2017); Dai et al. (2019); Wu et al. (2020). This motivates the need for models
063 that capture non-local dependencies by attending to distant yet temporally aligned links.

064 To address these challenges, we propose **Tramba**, a forecasting framework that captures both long-
065 range temporal and non-local spatial dependencies in urban traffic. Tramba forecasts future speeds
066 by retaining long-term patterns within each target link and selectively referencing time-shifted se-
067 quences from other links with similar historical behavior, regardless of spatial proximity. The tem-
068 poral module uses a Mamba block for efficient sequence modeling over extended horizons, while
069 the spatial module employs adaptive attention to identify relevant non-local influences based on tem-

054 poral similarity. This design allows Tramba to model complex spatiotemporal patterns and deliver
 055 accurate forecasts in large-scale urban networks. Our contributions can be summarized as follows:
 056

- 057 • We propose **Tramba**, a novel time-series forecasting framework that integrates a selective
 058 state-space model with an adaptive attention mechanism for enhanced predictive accuracy
 059 and dynamic spatial reasoning in complex urban networks.
- 060 • Within **Tramba**, we propose two key modules: (1) a Mamba model that learns each link’s
 061 temporal sequence for long-term forecasting, and (2) an adaptive attention module that
 062 compares all links to capture non-local spatial dependencies using temporal similarity.
- 063 • Extensive experiments on large-scale urban traffic datasets demonstrate that **Tramba** con-
 064 sistently outperforms strong baselines by better capturing the underlying spatiotemporal
 065 dynamics and reducing the reliance on short-term or lagged inputs.

066 2 RELATED WORK

069 2.1 URBAN TRAFFIC PREDICTION

070 Traditional time series models, such as auto-regressive integrated moving average and Kalman fil-
 071 tering, have been applied to short-term forecasting tasks, but their limited capacity to capture non-
 072 linear spatio-temporal dependencies has led to the rise of machine learning and deep learning ap-
 073 proaches Emami et al. (2019); Kumar (2017); Xu et al. (2017). To improve the accuracy of ur-
 074 ban traffic speed forecasting, various neural network-based models have been proposed Das et al.
 075 (2023). Lv et al. Lv et al. (2014), Yu et al. Yu et al. (2017), and Zhang et al. Dai et al. (2019)
 076 proposed deep neural network models, including deep belief networks, long short-term memory,
 077 and gated recurrent units, for capturing temporal dependencies. In addition, hybrid architectures
 078 that combine graph convolutional networks with attention mechanisms have demonstrated strong
 079 performance in modeling complex urban mobility patterns Wu et al. (2020). Cao et al. Cao et al.
 080 (2024) introduced multi-scale graph convolutional networks (GCNs) to capture diverse spatial de-
 081 pendencies; Hao et al. Li et al. (2024) proposed STFGCN, a spatio-temporal fusion GCN, for traffic
 082 forecasting; Bai et al. Bai et al. (2020) and Wu et al. Wu et al. (2020) utilized graph neural net-
 083 works to model multivariate urban traffic dynamics. More recently, time-series exclusive methods
 084 were developed to capture time series patterns Xu et al. (2020); Lin et al. (2024); Oreshkin et al.
 085 (2019); Wang et al. (2024). Transformer-based architectures such as LCDFormer Cai et al. (2024),
 086 bidirectional spatial-temporal Transformer Chen et al. (2022), Pyraformer Liu et al. (2022) iTrans-
 087 former Zou et al. (2024) and LSTTN Luo et al. (2024) have effectively captured both short- and
 088 long-term time series patterns. Transformer models leverage the self-attention mechanism, which
 089 allows them to dynamically weigh the relevance of each timestamp in relation to others Zeng et al.
 090 (2023); Nie et al. (2022). For example, Xu et al. Xu et al. (2020) incorporated spatial topologies
 091 into temporal modeling, while Informer Zhou et al. (2021) and Fedformer Zhou et al. (2022) en-
 092 hanced robustness in long-horizon forecasting. These studies highlight the limitations of assuming
 093 upstream-downstream dependencies in urban contexts. Urban traffic is shaped by external controls
 094 and congestion patterns extending beyond adjacent areas, underscoring the need to model dynamic
 095 spatio-temporal relationships.

096 2.2 SELECTIVE STATE SPACE MODEL

097 The selective state space model (SSM), recently popularized through the Mamba architecture Gu
 098 & Dao (2023); Wang et al. (2025), has emerged as an efficient alternative to Transformer-based se-
 099 quence models. Unlike Transformers, which relies on global attention mechanisms with quadratic
 100 complexity, Mamba adopts a different approach Ahamed & Cheng (2024); Gu et al. (2021). It in-
 101 troduces data-dependent parameterization and discretization within SSMs Lee et al. (2024). This
 102 enables long-range temporal modeling with near-linear computational complexity. Mamba was
 103 originally developed for natural language processing and computer vision tasks Gu & Dao (2023);
 104 Ma et al. (2024). Since then, it has been extended to time series forecasting across various do-
 105 mains Min et al. (2023). Its core mechanism combines convolutional processing, selective gating,
 106 and discretized dynamics Liang et al. (2024); Zeng et al. (2024). This allows the model to en-
 107 code temporal patterns more efficiently than conventional recurrent or attention-based methods Xu
 et al. (2024). In the transportation domain, several studies have recently adopted Mamba-based

108 architectures to forecast traffic time-series patterns. For example, SOR-Mamba Lee et al. (2024)
 109 introduced a sequential order-robust version. This model improved robustness against input per-
 110 mutation and temporal noise. CMamba Zhang & Yan (2023) enhanced multivariate forecasting by
 111 modeling channel-wise correlations using Mamba blocks. Bi-Mamba+ Liang et al. (2024) proposed
 112 a bidirectional Mamba structure. This design allowed symmetric sequence modeling with improved
 113 spatial symmetry. DST-Mamba He et al. (2025) applied a temporal decomposition strategy. These
 114 studies highlight Mamba’s strength in modeling temporal dependencies. However, in the context of
 115 traffic forecasting, time-series models still often suffer from prediction lag, where recent patterns
 116 are simply reproduced with a delay rather than capturing the true timing of transitions.

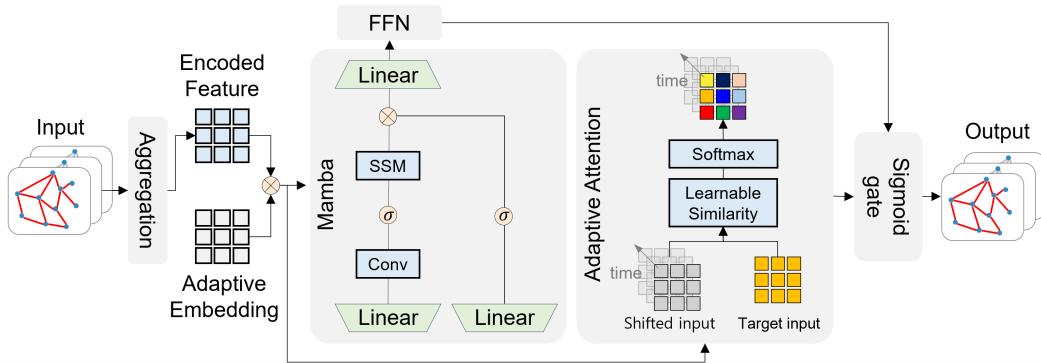
117 2.3 IMPLICATIONS

119 Recent traffic speed forecasting models primarily focus on temporal patterns or univariate sensor
 120 data Gu & Dao (2023); Wang et al. (2025), often neglecting spatial dependencies or simplifying
 121 them using static adjacency matrices derived from road topology Liang et al. (2024); He et al.
 122 (2025). Such fixed structures limit the model’s ability to capture dynamic, context-aware spatial
 123 interactions Ali et al. (2024); Han et al. (2024). Moreover, standard global attention mechanisms
 124 do not account for temporal misalignment, making them ineffective at capturing the “time-shifted
 125 yet spatially distant” patterns common in real traffic networks Cai et al. (2024); Chen et al. (2022);
 126 Liu et al. (2022). These challenges underscore the need for parallel spatial and temporal modeling
 127 Emami et al. (2019); Kumar (2017); Xu et al. (2017). **Tramba** advances this direction by cou-
 128 pling a Mamba-based temporal backbone with shift-aware adaptive attention, enabling the model to
 129 learn dynamic, non-adjacent influences across the network.

130 3 METHODS

131 3.1 MODEL OVERVIEW

135 **Tramba** is a specialized deep learning model designed for time series tasks such as urban traffic
 136 speed forecasting. It comprises three main components: 1) a Mamba-based temporal module, 2)
 137 an adaptive attention mechanism for spatial learning, and 3) a sigmoid fusion gate. As shown in
 138 Figure 1, the model takes as input a sequence of traffic speeds from multiple road links and encodes
 139 them into latent representations using aggregation and adaptive embedding. These encoded fea-
 140 tures are then processed in parallel: the Mamba module captures long-range temporal dependencies
 141 within each target link through a SSM; the adaptive attention module computes relevance scores by
 142 comparing the current state of the target link with the historical patterns of all other links, based on a
 143 learnable similarity function. The outputs are co-integrated through an adaptive gating mechanism,
 144 which dynamically emphasizes temporal continuity or spatial similarity depending on the prediction
 145 context. The final output is a prediction of future traffic speeds for all links.



158 **Figure 1: Tramba Architecture.** The Tramba model processes input traffic sequences through
 159 two parallel modules: a Mamba block for modeling long-range temporal patterns, and an Adaptive
 160 Attention module that captures non-local spatial dependencies using time-shifted similarity. The
 161 outputs from both modules are fused via a sigmoid gate.

162 3.2 CORE COMPONENTS
163

164 **Input Encoding.** Each input tensor $\mathbf{X}_{\text{in}} \in \mathbb{R}^{B \times T \times L \times F}$, which contains historical speed sequences
165 from multiple links, is projected into a latent space through a series of linear layers. Then a positional
166 encoding is added to preserve temporal order and enhance temporal awareness. The final encoded
167 tensor \mathbf{X} maintains the original spatiotemporal structure, calculated as:

$$\mathbf{X} = \text{Linear}_{\text{adaptive}}(\text{Linear}_{\text{agg}}(\text{Linear}_{\text{embed}}(\mathbf{X}_{\text{in}}) + \text{PosEmb}(T))) \in \mathbb{R}^{B \times T \times L \times D}. \quad (1)$$

170 **Mamba Block.** To model long-range temporal dependencies, **Tramba** applies a selective SSM
171 per link, enabling fine-grained temporal modeling without spatial interference. The SSM output is
172 modulated by a learnable gate and refined via a residual feedforward layer, computed as:

$$\begin{aligned} \hat{\mathbf{Y}} &= \text{SSM}(\mathbf{X}), \quad \hat{\mathbf{Y}} \in \mathbb{R}^{B \times T \times L \times D}, \\ \mathbf{H}_{\text{mamba}} &= \text{FFN}(\hat{\mathbf{Y}} \odot \sigma(\text{Linear}(\mathbf{X}))) + \hat{\mathbf{Y}}. \end{aligned} \quad (2)$$

177 **Adaptive Attention.** **Tramba** uses an adaptive attention mechanism, introducing a learnable sim-
178 ilarity function that uncovers temporal alignments across non-adjacent links. A module computes
179 relevance scores across both spatial and temporal dimensions, which are then normalized into atten-
180 tion weights. This allows attention to temporally aligned yet distant links, computed as:

$$\mathbf{H}_{\text{attn},i} = \sum_{j=1}^L \sum_{s \in \mathcal{S}} \text{softmax}\left(\text{Sim}_{\theta}(\mathbf{X}_i, \mathbf{X}_j^{(s)})\right) \cdot \mathbf{X}_j^{(s)}. \quad (3)$$

185 The detailed computation steps for the Mamba block and the Adaptive Attention mechanism are
186 summarized in Algorithm 1 and Algorithm 2, respectively.

187 **Algorithm 1** MambaBlock

189 **Require:** $\mathbf{X} \in \mathbb{R}^{B \times T \times D}$

- 1: Apply Conv1D + SiLU: \mathbf{x}'
- 2: Compute $\bar{\mathbf{A}}, \bar{\mathbf{B}}, \mathbf{C}$ via projection
- 3: Update state: $\mathbf{y}_t = \bar{\mathbf{A}}\mathbf{y}_{t-1} + \bar{\mathbf{B}}\mathbf{x}_t$
- 4: Project output: $\hat{\mathbf{y}}_t = \mathbf{C}\mathbf{y}_t$
- 5: Compute gate: $\mathbf{z} = \sigma(\text{Linear}(\mathbf{x}'))$
- 6: Modulate: $\mathbf{y}' = \hat{\mathbf{y}}_t \odot \mathbf{z}$
- 7: Apply FFN: $\mathbf{H}_{\text{mamba}} = \text{FFN}(\mathbf{y}') + \mathbf{y}'$
- 8: **return** $\mathbf{H}_{\text{mamba}}$

187 **Algorithm 2** AdaptiveAttention

189 **Require:** $\mathbf{X} \in \mathbb{R}^{B \times T \times L \times D}$

- 1: Generate shifted inputs: $\mathbf{X}^{(s)}$ for $s \in \mathcal{S}$
- 2: Compute similarity:
 $S_{i,j}^{(s)} = \text{LearnableSim}(\mathbf{X}_i, \mathbf{X}_j^{(s)})$
- 3: Normalize weights: $\alpha_{i,j}^{(s)} = \text{softmax}(S_{i,j}^{(s)})$
- 4: Apply attention: $\mathbf{H}_{\text{attn},i} = \sum_{j,s} \alpha_{i,j}^{(s)} \cdot \mathbf{X}_j^{(s)}$
- 5: **return** \mathbf{H}_{attn}

198 **Fusion and Output.**

200 **Fusion and Output.** At the final stage, temporal and spatial representations are integrated through
201 a learnable gate ω that adaptively emphasizes long-term memory or non-local similarity:

$$\mathbf{H}_{\text{fused}} = \omega \odot \mathbf{H}_{\text{attn_last}} + (1 - \omega) \odot \mathbf{H}_{\text{mamba_last}}. \quad (4)$$

204 A direct multi-horizon head then projects $\mathbf{H}_{\text{fused}}$ into predictions for all future steps:

$$\hat{\mathbf{Y}}_{1:\tau} = \text{Linear}_{\tau}(\mathbf{H}_{\text{fused}}). \quad (5)$$

207 Through this fusion-and-prediction design, **Tramba** unifies long-term temporal continuity and non-
208 local spatial dynamics in a single forward pass, enhancing efficiency and accuracy.

210 **Tramba.** As shown in Figure 1, **Tramba** integrates the Mamba block and the Adaptive Attention
211 module into a unified framework that captures both long-range temporal dependencies and non-local
212 spatial correlations across links. The temporal module models fine-grained, per-link sequences using
213 a SSM, while the spatial module dynamically aggregates context from other links based on learnable
214 relevance scores. In particular, the Adaptive Attention mechanism computes similarity between the
215 target link and its temporally shifted neighbors using a learnable similarity function, as illustrated in
Equation (3). The full computation pipeline of **Tramba** is summarized in Algorithm A.3.

216 **Algorithm 3** Tramba Framework

217

218 **Require:** Input tensor $\mathbf{X}_{in} \in \mathbb{R}^{B \times T \times L \times F}$

219 **Ensure:** Prediction $\hat{\mathbf{Y}}_{final} \in \mathbb{R}^{B \times \tau \times L \times 1}$

220 1: $\mathbf{X}_{enc} \leftarrow \text{Linear}_{\text{embed}}(\mathbf{X}_{in}) + \text{PosEmbedding}(T)$ $\triangleright \text{Input Embedding and Encoding}$

221 2: $\mathbf{X}_{enc} \leftarrow \text{Linear}_{\text{agg}}(\mathbf{X}_{enc})$

222 3: $\mathbf{X}_{enc} \leftarrow \text{Linear}_{\text{adaptive}}(\mathbf{X}_{enc})$

223 4: $\mathbf{X}_{seq} \leftarrow \text{reshape}(\mathbf{X}_{enc}, [B \cdot L, T, D])$ $\triangleright \text{Temporal Module: Mamba}$

224 5: $\mathbf{h} \leftarrow \text{Mamba}(\mathbf{X}_{seq})$

225 6: $\mathbf{h} \leftarrow \text{LayerNorm}(\text{FeedForward}(\mathbf{h}) + \mathbf{h})$

226 7: $\mathbf{H}_{\text{mamba}} \leftarrow \text{reshape}(\mathbf{h}, [B, T, L, D])$

227 8: $\mathbf{H}_{\text{mamba_last}} \leftarrow \mathbf{H}_{\text{mamba}}[:, -1, :, :]$

228 9: $\mathbf{H}_{\text{attn}} \leftarrow \text{AdaptiveAttention}(\mathbf{X}_{enc})$ $\triangleright \text{Spatial Module: Adaptive Attention}$

229 10: $\mathbf{H}_{\text{attn}} \leftarrow \text{LayerNorm}(\mathbf{H}_{\text{attn}} + \mathbf{X}_{enc})$

230 11: $\mathbf{H}_{\text{attn_last}} \leftarrow \mathbf{H}_{\text{attn}}[:, -1, :, :]$

231 12: $\mathbf{G} \leftarrow \text{nn.Parameter}(L \times 1)$ $\triangleright \text{Fusion and Multi-horizon Prediction}$

232 13: $\omega \leftarrow \sigma(\mathbf{G})$

233 14: $\mathbf{H}_{\text{fused}} \leftarrow \omega \cdot \mathbf{H}_{\text{attn_last}} + (1 - \omega) \cdot \mathbf{H}_{\text{mamba_last}}$

234 15: $\hat{\mathbf{Y}}_{final} \leftarrow \text{Linear}_{\tau}(\mathbf{H}_{\text{fused}})$ $\triangleright (B \times L \times \tau) \rightarrow (B \times \tau \times L \times 1)$

235 16: **return** $\hat{\mathbf{Y}}_{final}$

236

237

4 EXPERIMENTS

4.1 DATASETS AND BASELINES

241 **Benchmarks.** We evaluate **Tramba** on three real-world traffic speed datasets, all collected from
 242 urban road networks with 5-minute aggregation intervals. METR-LA consists of 207 sensor-
 243 equipped freeway segments in Los Angeles, while PEMS-BAY covers 325 freeway segments in
 244 the San Francisco Bay Area. For Seoul, we use the TOPIS dataset (<https://topis.seoul.go.kr>), from which we extract 366 road links located in Gangnam-gu, one of the city’s busiest
 245 districts, during June 2024. All datasets provide speed measurements, which is standard for urban
 246 probe data systems; the proposed model is general and can be applied to flow prediction as well.
 247

248

249 **Experimental Settings.** To evaluate both short- and long-term forecasting performance, we use
 250 five prediction horizons: 1 (5 min), 6 (30 min), 12 (1 hr), 24 (2 hr), and 36 (3 hr) steps. Each input
 251 includes two normalized features per road link: lagged speed and speed change. We apply MinMax
 252 normalization to scale all input features to the $[0, 1]$ range, which stabilizes training and prevents
 253 feature dominance. We selected final hyperparameters based on validation loss. For learning rate,
 254 we tested $1e-4$, $5e-4$, $1e-3$; for batch size, 16, 32, 64, 128. The final configuration used a learning
 255 rate of 0.001 and a batch size of 32 for our model. For fair comparison, all models were trained with
 256 a batch size of 32. All models were optimized using Adam and trained to minimize MSE loss for up
 257 to 50 epochs with early stopping based on validation performance. All experiments were conducted
 258 on the VESSL platform using an NVIDIA A100 GPU (40 GB) and a `cpu-medium` instance with
 259 2 vCPUs and 6 GB RAM, running in an Ubuntu 20.04 environment. We implemented and trained
 260 all models using PyTorch 2.5.1 with CUDA 12.1 and Python 3.12. Code is publicly available at
 261 <https://github.com/tr-anon-users/tramba-code>.

262

263 **Baseline Models.** We compare **Tramba** with six strong baseline models that span both
 264 attention-based and state-space modeling paradigms. These include two Transformer-based
 265 architectures—ST-Transformer Chen et al. (2022) and iTransformer Zou et al. (2024)—which are
 266 widely used in spatiotemporal forecasting due to their ability to capture long-range dependencies via
 267 attention mechanisms. In addition, we include three recent variants of Mamba Gu & Dao (2023), a
 268 state-space model optimized for efficient sequence modeling: S-Mamba Wang et al. (2025), SOR-
 269 Mamba Lee et al. (2024) and DST-Mamba He et al. (2025). These models collectively represent a
 270 diverse set of high-performing architectures and serve as strong baselines for evaluating the effec-
 271 tiveness of **Tramba** across a range of spatiotemporal prediction scenarios.

270 4.2 MAIN RESULTS
271

272 **Overall Performance.** **Tramba** achieves the best overall performance across nearly all horizons,
273 datasets, and evaluation metrics. On the PEMS-BAY dataset, which is relatively clean and stable,
274 the performance differences among models are minimal, and at the 1-step horizon **Tramba**’s MAPE
275 of 0.12% is only marginally different (0.01–0.02 percentage points) from the best result. This small
276 gap indicates that short-term forecasting on regular datasets presents a relatively simple task, where
277 traffic dynamics are highly predictable and model differences become less pronounced.

278 In contrast, on more heterogeneous and noisy datasets such as METR-LA and TOPIS, **Tramba**
279 consistently outperforms all baselines across every forecasting horizon and evaluation metric.
280 The advantage becomes increasingly clear as the prediction horizon lengthens, demonstrating that
281 **Tramba**’s design—integrating long-range temporal modeling with adaptive non-local attention—is
282 particularly effective in capturing complex spatiotemporal dependencies under challenging and dy-
283 namic traffic conditions. Notably, the gains on TOPIS remain stable even at the 36-step horizon,
284 further underscoring the robustness and reliability of **Tramba** in noisy real-world scenarios.

285
286 Table 1: Model performance on three traffic speed datasets (PEMS-BAY, METR-LA, and TOPIS)
287 with input length fixed to 36 and output horizons {1, 6, 12, 24, 36}. The best results are in **bold**, and
288 the second-best are underlined.

289 290 Model	Horizon	PEMS-BAY			METR-LA			TOPIS		
		MAPE	MAE	MSE	MAPE	MAE	MSE	MAPE	MAE	MSE
291 292 ST- 293 Transformer 294 Chen et al. 295 (2022)	1-step	0.12	0.03	0.01	0.78	0.19	0.09	0.88	0.20	0.09
	6-step	7.48	2.12	12.46	8.23	2.31	13.82	9.63	2.78	18.56
	12-step	9.53	2.66	18.32	10.18	2.91	20.39	11.81	3.35	27.15
	24-step	12.95	3.59	28.37	14.08	3.88	31.24	15.77	4.25	40.85
	36-step	16.47	4.42	39.48	18.52	4.81	44.07	21.78	5.56	64.13
296 297 iTransformer 298 Zou et al. 299 (2024)	1-step	0.12	0.03	0.01	1.29	0.27	0.24	0.78	0.18	0.09
	6-step	7.61	2.19	12.68	8.32	2.41	14.02	9.76	2.78	18.75
	12-step	9.62	2.71	18.69	10.42	3.01	20.78	11.88	3.44	27.34
	24-step	13.48	3.68	28.97	14.59	4.02	32.05	16.79	4.34	44.06
	36-step	16.19	4.21	37.53	18.23	4.72	42.03	21.10	5.15	53.31
300 301 Mamba 302 Gu & Dao 303 (2023)	1-step	0.12	0.03	0.01	0.23	0.06	0.33	0.27	0.06	0.36
	6-step	8.49	2.31	12.92	9.01	2.51	14.23	12.08	2.86	18.88
	12-step	10.09	2.82	18.52	10.79	3.11	20.52	13.31	3.44	26.75
	24-step	13.58	3.49	27.21	14.71	3.82	30.02	16.86	3.93	37.64
	36-step	15.02	4.02	36.49	17.01	4.39	40.98	18.36	4.99	56.39
304 305 S-Mamba 306 Wang 307 et al. 308 (2025)	1-step	0.12	0.03	0.01	0.47	0.10	0.02	0.55	0.11	0.02
	6-step	7.88	2.21	13.08	8.49	2.41	14.48	10.10	2.86	19.21
	12-step	9.81	2.79	18.97	10.52	3.11	21.03	12.02	3.44	27.80
	24-step	13.09	3.61	28.49	14.21	3.89	31.48	15.70	4.50	43.54
	36-step	15.51	4.09	36.81	17.52	4.48	41.52	19.05	5.15	56.19
309 310 SOR- 311 Mamba 312 Lee et al. 313 (2024)	1-step	0.13	0.04	0.01	0.21	0.05	0.01	<u>0.14</u>	<u>0.03</u>	<u>0.01</u>
	6-step	7.42	2.11	12.72	8.12	2.29	14.01	<u>9.42</u>	<u>2.78</u>	<u>18.75</u>
	12-step	9.31	2.72	18.53	10.09	2.91	20.69	12.29	3.35	27.08
	24-step	12.48	3.51	27.92	13.61	3.82	30.72	15.02	4.25	40.52
	36-step	15.91	4.21	35.58	17.79	4.68	39.81	19.73	5.48	52.45
314 315 DST- 316 Mamba 317 He et al. 318 (2025)	1-step	0.11	0.03	0.01	<u>0.13</u>	<u>0.03</u>	<u>0.01</u>	0.22	0.05	0.01
	6-step	<u>7.71</u>	<u>2.12</u>	<u>12.39</u>	<u>8.41</u>	<u>2.31</u>	<u>13.61</u>	9.97	2.78	18.49
	12-step	<u>9.59</u>	<u>2.61</u>	<u>17.99</u>	<u>10.61</u>	<u>2.81</u>	<u>20.02</u>	<u>11.61</u>	<u>3.35</u>	<u>26.29</u>
	24-step	<u>12.31</u>	<u>3.41</u>	<u>27.39</u>	<u>13.42</u>	<u>3.61</u>	<u>30.19</u>	<u>14.95</u>	<u>4.17</u>	<u>40.06</u>
	36-step	<u>15.18</u>	<u>3.91</u>	<u>33.01</u>	<u>17.01</u>	<u>4.21</u>	<u>36.99</u>	<u>18.77</u>	<u>4.50</u>	<u>44.98</u>
319 320 Tramba 321 (Ours)	1-step	<u>0.12</u>	<u>0.03</u>	<u>0.01</u>	<u>0.12</u>	<u>0.03</u>	<u>0.01</u>	<u>0.13</u>	<u>0.03</u>	<u>0.01</u>
	6-step	7.01	2.01	11.91	7.79	2.19	13.01	9.08	2.70	17.90
	12-step	9.12	2.49	17.21	9.91	2.71	19.12	11.47	3.19	25.18
	24-step	11.99	3.31	26.99	12.98	3.49	29.52	14.68	4.17	40.32
	36-step	14.79	3.79	32.51	16.51	4.09	36.49	17.96	4.17	44.91

324 **Ablation Analysis.** To evaluate the contribution of each component in **Tramba**, we
 325 conducted an ablation study based on 12-step
 326 forecasting on TOPIS data, as summarized in
 327 Table 2. Among all components, the removal
 328 of the adaptive attention module caused the
 329 most significant performance degradation, in-
 330 creasing MAPE by 3.64% (from 11.47% to
 331 15.11%). This underscores the importance of
 332 capturing non-local road link interactions.
 333

334 Similarly, replacing the learnable similarity function with a simple dot-product alternative resulted
 335 in worse performance (MAPE 14.35%, MSE 32.37 (km/h)^2), clearly demonstrating the advantage of
 336 data-driven and adaptive relevance estimation between spatial entities in complex traffic networks.
 337 Other components showed smaller, yet measurable impacts. Removing the learnable gate fusion
 338 increased MAPE to 14.01%, confirming that **Tramba**’s integration is not trivial stacking of modules
 339 but rather a necessary mechanism to effectively balance complementary predictive signals. Lastly,
 340 removing the adaptive embedding layer raised the error to 13.22%, further suggesting its auxiliary
 341 role in capturing input heterogeneity across diverse traffic conditions. Overall, these results confirm
 342 that **Tramba**’s fusion mechanism effectively addresses key challenges in spatiotemporal forecasting
 343 by balancing long-term memory and non-local contextual information.
 344

344 **Confidence Analysis.** To evaluate both the predictive accuracy and robustness of our model, we
 345 conducted a comprehensive confidence interval (CI) analysis based on ten independent training runs
 346 for **Tramba** as well as all baseline models (see Appendix E, Table E.1 for the full CI results). For
 347 each run, we recorded the evaluation metrics on the test set and computed the 95% confidence inter-
 348 vals to quantify the variability due to random initialization. The results reveal that all models exhibit
 349 relatively narrow CIs, suggesting that their performance is not highly sensitive to initialization and
 350 training noise. However, notable differences in consistency and absolute performance still emerge
 351 across settings. In particular, **Tramba** consistently outperformed the baseline models across all eval-
 352 uation metrics—achieving the lowest mean absolute percentage error (MAPE) of $11.47 \pm 0.19\%$, the
 353 lowest mean absolute error (MAE) of $3.19 \pm 0.23 \text{ km/h}$, and the lowest mean squared error (MSE)
 354 of $25.18 \pm 1.12 \text{ (km/h)}^2$. **Tramba** not only achieved the best average performance but also showed
 355 the smallest variation across runs, underscoring its stability and reliability under stochastic training.
 356

356 4.3 ATTENTION ANALYSIS

358 **Localized Trends.** Figure 2 shows the result of **Tramba**, which forecasts future speeds for a target
 359 link (Link 156) by retrieving relevant historical patterns from spatially distant but temporally aligned
 360 road network segments. The upper plot shows the detailed temporal speed profile of the target link
 361 over a full day. The figure further highlights three non-adjacent links that were deliberately selected
 362 by the model despite not being physically connected to the target. These examples demonstrate that
 363 **Tramba** does not rely solely on recent values or adjacent segments, but instead attends to distant
 364 links that exhibit temporal patterns similar to the target, thereby improving prediction accuracy.
 365

- 366 • **Link 101 (blue)** shows a steady pattern during the afternoon (12:00–19:00), resembling
 367 stable traffic flow on the target link from morning to early afternoon.
- 368 • **Link 240 (orange)** shows congestion and recovery patterns during the late afternoon to
 369 evening (16:00–22:00), similar to the target link’s pattern during that period.
- 370 • **Link 183 (red)** shows a transition from congestion to relief in the afternoon to evening
 371 (13:00–18:00), which aligns with the target link’s evening recovery phase.

372 By integrating non-local attention with a memory-preserving temporal encoder, **Tramba** not only
 373 improves predictive accuracy but also offers two theoretical advantages: *robustness*, since the mech-
 374 anism is stable to index permutations and temporal shifts, and *interpretability*, as the attention
 375 weights reveal which distant links and alignments contribute most to the forecast. This joint de-
 376 sign achieves a principled balance between temporal continuity and spatial similarity, underscoring
 377 the novelty of **Tramba**’s dynamic integration and its ability to deliver both resilience to noise and
 transparent insights into urban traffic dynamics.

Table 2: Ablation for 12-step forecasting on TOPIS.

Variant	MAPE	MAE	MSE
Tramba	11.47	3.19	25.18
w/o Attention	15.11	4.19	37.31
w/o Similarity	14.35	3.82	32.37
w/o Gate Fusion	14.01	3.54	29.73
w/o Embedding	13.22	3.27	26.51

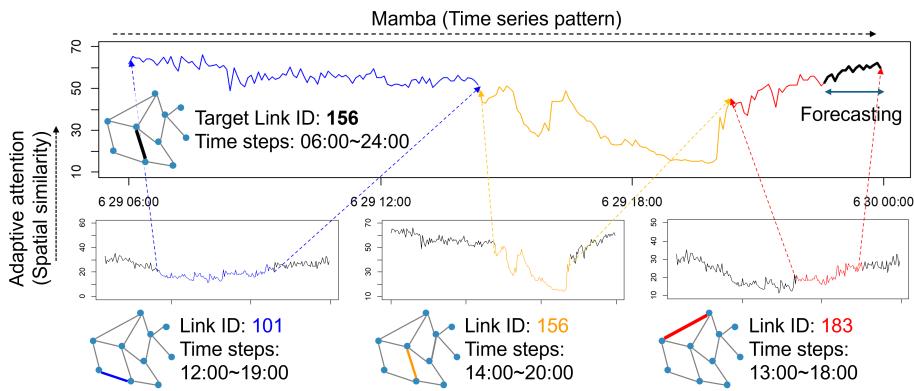


Figure 2: Attention based on temporal similarity. **Tramba** retrieves spatially non-adjacent links whose speed patterns align with different time segments of the target link (Link 156), effectively leveraging temporally coherent signals from distant locations to capture long-range temporal dependencies and enhance forecasting accuracy across the network.

Temporal Patterns. Figure 3a compares the traffic speed patterns of the target link (Link 156), its top-attended link, and a physically connected downstream link over the period from 6:00 to 24:00. Although the downstream link is geographically close, its temporal pattern deviates markedly from the target—particularly during the onset and recovery phases of congestion. In contrast, the top-attended link, despite being spatially distant, exhibits a highly synchronized trajectory with the target. This suggests that **Tramba** assigns attention based on dynamic similarity rather than physical proximity. These results demonstrate **Tramba**’s ability to adaptively capture both local and non-local dependencies by focusing on temporal alignment. Such flexibility is especially beneficial in modeling complex traffic behavior in heterogeneous urban networks.

Non-local Influence. To interpret these results, we analyze spatial attention scores originating from a specific road link, Link 156. As shown in Figure 3b, we visualize the attention weights assigned by Link 156 to several other links: the top-3 most attended links (ranked by attention score) and two physically connected links, upstream (Up) and downstream (Down) links. Surprisingly, the top-1 to top-3 links attended by **Tramba** are spatially distant from Link 156, located in entirely different areas of the network. Despite this lack of physical proximity, these links receive higher attention scores (the lower left quadrant of the figure). In contrast, the physically connected upstream and downstream links receive low attention weights (highlighted in red text). These results illustrate that mere connectivity does not guarantee predictive relevance. Instead, **Tramba** prioritizes links that share temporal dynamics with the target, effectively learning non-local but highly informative dependencies.

Global Network Trends. Figure 3c illustrates the spatial distribution of high-attention links across the network as learned by **Tramba**. The color of each link reflects its spatial distance from the top-1 most attended link, revealing how **Tramba** allocates attention based not only on proximity but also on temporal correlation. Red links indicate physically connected upstream or downstream links; however, among all 366 links, only 10 exhibit dominant attention toward directly connected links, suggesting that physical adjacency accounts for a limited portion of influential relationships. The remaining links, which are not physically connected to the target, are categorized by distance: yellow to green lines represent nearby but unconnected links, while blue to purple lines denote distant links that nonetheless receive high attention scores. The results reveal that downtown links tend to share similar speed patterns with nearby links due to consistent congestion, high signal density, and low speed variability. In contrast, upstream arterial roads often align more closely with distant links, as they experience fewer signals, greater speed fluctuations, and more dynamic transitions.

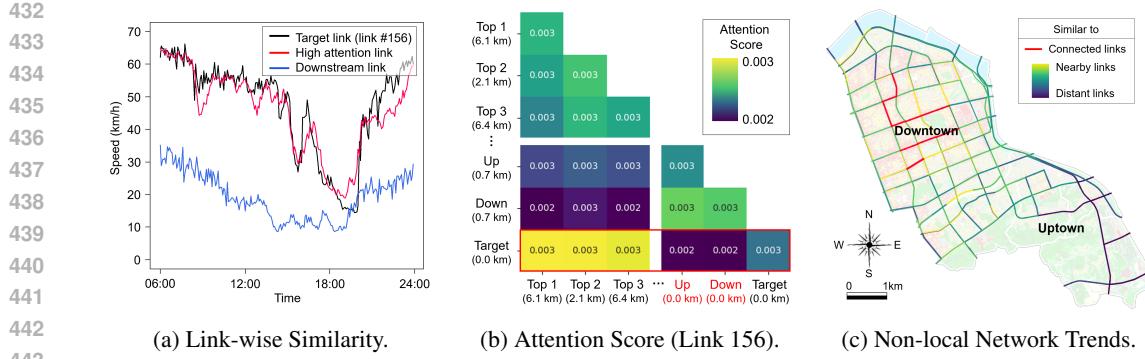


Figure 3: Visual interpretation of **Tramba**’s attention behavior. (a) Temporal comparison of target, attended, and downstream links, showing temporal similarity over physical proximity. (b) Attention scores for Link 156, where distant links dominate over physically connected ones. (c) Network-wide distribution of attended links, revealing non-local but temporally aligned dependencies.

5 CONCLUSIONS

Conclusion. We introduced **Tramba**, a time-series forecasting model that integrates Mamba-based long-range temporal modeling with adaptive spatial attention. **Tramba** captures dynamic, non-local traffic dependencies without relying on predefined topologies, and achieves consistent improvements over strong baselines across multiple horizons. Our results suggest that **Tramba** effectively models the complex and irregular nature of urban traffic, mitigating time-shift misalignments in temporal dependencies while maintaining strong generalization across scenarios.

Limitations. While **Tramba** effectively captures complex spatiotemporal dynamics, several limitations remain. First, the adaptive attention mechanism is fully data-driven and lacks causal constraints or shift-aware priors, which could improve interpretability. Second, the current framework does not incorporate intersection-level features or traffic signal control—factors especially influential in urban environments. Lastly, scalability may be a concern for larger networks or longer historical sequences, suggesting the need for memory-efficient approximations.

Broader Impact. Our model, **Tramba**, provides a flexible and generalizable framework for modeling spatiotemporal dynamics in traffic systems without relying on fixed spatial graphs. Its ability to uncover implicit functional relationships among distant links opens up new opportunities for improving traffic forecasting, incident detection, and infrastructure planning. Beyond traffic, **Tramba** provides a transferable blueprint for other spatiotemporal systems, including mobility-on-demand services and sensor networks. This demonstrates that **Tramba** is not merely a hybrid but a general framework for irregular dependencies.

REFERENCES

Md Atik Ahamed and Qiang Cheng. Timemachine: A time series is worth 4 mambas for long-term forecasting. In *ECAI 2024: 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain-Including 13th Conference on Prestigious Applications of Intelligent Systems. European Conference on Artificial Intelli*, volume 392, pp. 1688, 2024.

Ameen Ali, Itamar Zimerman, and Lior Wolf. The hidden attention of mamba models. *arXiv preprint arXiv:2403.01590*, 2024.

Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. Adaptive graph convolutional recurrent network for traffic forecasting. *Advances in neural information processing systems*, 33:17804–17815, 2020.

Jiongbiao Cai, Chia-Hung Wang, and Kun Hu. Lcdformer: Long-term correlations dual-graph transformer for traffic forecasting. *Expert Systems with Applications*, 249:123721, 2024.

486 Shuqin Cao, Libing Wu, Rui Zhang, Dan Wu, Jianqun Cui, and Yanan Chang. A spatiotemporal
 487 multiscale graph convolutional network for traffic flow prediction. *IEEE Transactions on Intelligent*
 488 *Transportation Systems*, 25(8):8705–8718, 2024.

489 Changlu Chen, Yanbin Liu, Ling Chen, and Chengqi Zhang. Bidirectional spatial-temporal adaptive
 490 transformer for urban traffic flow forecasting. *IEEE Transactions on Neural Networks and*
 491 *Learning Systems*, 34(10):6913–6925, 2022.

492 Guowen Dai, Changxi Ma, and Xuecai Xu. Short-term traffic flow prediction method for urban road
 493 sections based on space-time analysis and gru. *IEEE Access*, 7:143025–143035, 2019.

494 Abhimanyu Das, Weihao Kong, Andrew Leach, Shaan Mathur, Rajat Sen, and Rose Yu. Long-term
 495 forecasting with tide: Time-series dense encoder. *arXiv preprint arXiv:2304.08424*, 2023.

496 Azadeh Emami, Majid Sarvi, and Saeed Asadi Bagloee. Using kalman filter algorithm for short-term
 497 traffic flow prediction in a connected vehicle environment. *Journal of Modern Transportation*, 27:
 498 222–232, 2019.

499 Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces. *arXiv*
 500 *preprint arXiv:2312.00752*, 2023.

501 Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured
 502 state spaces. *arXiv preprint arXiv:2111.00396*, 2021.

503 Dongchen Han, Ziyi Wang, Zhuofan Xia, Yizeng Han, Yifan Pu, Chunjiang Ge, Jun Song, Shiji
 504 Song, Bo Zheng, and Gao Huang. Demystify mamba in vision: A linear attention perspective.
 505 *arXiv preprint arXiv:2405.16605*, 2024.

506 Sicheng He, Junzhong Ji, and Minglong Lei. Decomposed spatio-temporal mamba for long-term
 507 traffic prediction. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 39,
 508 pp. 11772–11780, 2025.

509 Yuhang Jia, Jianping Wu, and Yiman Du. Traffic speed prediction using deep learning method. In
 510 *2016 IEEE 19th international conference on intelligent transportation systems (ITSC)*, pp. 1217–
 511 1222. IEEE, 2016.

512 Selvaraj Vasantha Kumar. Traffic flow prediction using kalman filtering technique. *Procedia Engineering*,
 513 187:582–587, 2017.

514 Seunghan Lee, Juri Hong, Kibok Lee, and Taeyoung Park. Sequential order-robust mamba for time
 515 series forecasting. *arXiv preprint arXiv:2410.23356*, 2024.

516 Hao Li, Jie Liu, Shiyuan Han, Jin Zhou, Tong Zhang, and CL Philip Chen. Stfgcn: Spatial-temporal
 517 fusion graph convolutional network for traffic prediction. *Expert Systems with Applications*, 255:
 518 124648, 2024.

519 Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. Diffusion convolutional recurrent neural net-
 520 work: Data-driven traffic forecasting. *arXiv preprint arXiv:1707.01926*, 2017.

521 Aobo Liang, Xingguo Jiang, Yan Sun, Xiaohou Shi, and Ke Li. Bi-mamba+: Bidirectional mamba
 522 for time series forecasting. *arXiv preprint arXiv:2404.15772*, 2024.

523 Shengsheng Lin, Weiwei Lin, Wentai Wu, Haojun Chen, and Junjie Yang. Sparsesetf: Modeling
 524 long-term time series forecasting with 1k parameters. *arXiv preprint arXiv:2405.00946*, 2024.

525 Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar.
 526 Pyraformer: Low-complexity pyramidal attention for long-range time series modeling and fore-
 527 casting. 2022.

528 Xu Liu, Yutong Xia, Yuxuan Liang, Junfeng Hu, Yiwei Wang, Lei Bai, Chao Huang, Zhenguang
 529 Liu, Bryan Hooi, and Roger Zimmermann. Largest: A benchmark dataset for large-scale traffic
 530 forecasting. *Advances in Neural Information Processing Systems*, 36:75354–75371, 2023.

540 Qinyao Luo, Silu He, Xing Han, Yuhang Wang, and Haifeng Li. Lsttn: A long-short term transformer-
 541 based spatiotemporal neural network for traffic flow forecasting. *Knowledge-Based Systems*, 293:
 542 111637, 2024.

543 Yisheng Lv, Yanjie Duan, Wenwen Kang, Zhengxi Li, and Fei-Yue Wang. Traffic flow prediction
 544 with big data: A deep learning approach. *IEEE Transactions on Intelligent Transportation
 545 Systems*, 16(2):865–873, 2014.

546 Dongfang Ma, Jiacheng Zhu, Xiang Ben Song, and Xin Wang. Traffic flow and speed forecasting
 547 through a bayesian deep multi-linear relationship network. *Expert Systems with Applications*,
 548 213:119161, 2023.

549 Jun Ma, Feifei Li, and Bo Wang. U-mamba: Enhancing long-range dependency for biomedical
 550 image segmentation. *arXiv preprint arXiv:2401.04722*, 2024.

551 Jin Hong Min, Seung Woo Ham, Dong-Kyu Kim, and Eun Hak Lee. Deep multimodal learning for
 552 traffic speed estimation combining dedicated short-range communication and vehicle detection
 553 system data. *Transportation research record*, 2677(5):247–259, 2023.

554 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64
 555 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.

556 Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis
 557 expansion analysis for interpretable time series forecasting. *arXiv preprint arXiv:1905.10437*,
 558 2019.

559 Bowen Si, Xiang Yin, Guiping Liu, Junyang Yu, Lei Chen, and Xiaoli Liang. Traffic flow forecasting
 560 with graph neural networks. *Available at SSRN 5707296*, 2025.

561 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 562 and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. *arXiv
 563 preprint arXiv:2405.14616*, 2024.

564 Zihan Wang, Fanheng Kong, Shi Feng, Ming Wang, Xiaocui Yang, Han Zhao, Daling Wang, and
 565 Yifei Zhang. Is mamba effective for time series forecasting? *Neurocomputing*, 619:129178, 2025.

566 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Graph wavenet for deep
 567 spatial-temporal graph modeling. *arXiv preprint arXiv:1906.00121*, 2019.

568 Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, Xiaojun Chang, and Chengqi Zhang. Connecting
 569 the dots: Multivariate time series forecasting with graph neural networks. In *Proceedings
 570 of the 26th ACM SIGKDD international conference on knowledge discovery & data mining*, pp.
 571 753–763, 2020.

572 Dong-wei Xu, Yong-dong Wang, Li-min Jia, Yong Qin, and Hong-hui Dong. Real-time road traf-
 573 fic state prediction based on arima and kalman filter. *Frontiers of Information Technology &
 574 Electronic Engineering*, 18:287–302, 2017.

575 Mingxing Xu, Wenrui Dai, Chunmiao Liu, Xing Gao, Weiyao Lin, Guo-Jun Qi, and Hongkai
 576 Xiong. Spatial-temporal transformer networks for traffic flow forecasting. *arXiv preprint
 577 arXiv:2001.02908*, 2020.

578 Xiongxiao Xu, Canyu Chen, Yueqing Liang, Baixiang Huang, Guangji Bai, Liang Zhao, and Kai
 579 Shu. Sst: Multi-scale hybrid mamba-transformer experts for long-short range time series fore-
 580 casting. *arXiv preprint arXiv:2404.14757*, 2024.

581 Haiyang Yu, Zhihai Wu, Shuqin Wang, Yunpeng Wang, and Xiaolei Ma. Spatiotemporal recurrent
 582 convolutional networks for traffic prediction in transportation networks. *Sensors*, 17(7):1501,
 583 2017.

584 Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series
 585 forecasting? In *Proceedings of the AAAI conference on artificial intelligence*, volume 37, pp.
 586 11121–11128, 2023.

594 Chaolv Zeng, Zhanyu Liu, Guanjie Zheng, and Linghe Kong. Cmamba: Channel correla-
595 tion enhanced state space models for multivariate time series forecasting. *arXiv preprint*
596 *arXiv:2406.05316*, 2024.

597

598 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
599 for multivariate time series forecasting. In *The eleventh international conference on learning*
600 *representations*, 2023.

601

602 Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
603 Informer: Beyond efficient transformer for long sequence time-series forecasting. In *Proceedings*
604 *of the AAAI conference on artificial intelligence*, volume 35, pp. 11106–11115, 2021.

605

606 Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
607 enhanced decomposed transformer for long-term series forecasting. In *International conference*
608 *on machine learning*, pp. 27268–27286. PMLR, 2022.

609

610 Yajie Zou, Yubin Chen, Yajiao Xu, Hao Zhang, and Siyang Zhang. Short-term freeway traffic
611 speed multistep prediction using an itransformer model. *Physica A: Statistical Mechanics and its*
612 *Applications*, 655:130185, 2024.

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A ALGORITHMIC DETAILS OF TRAMBA

650 This section describes the core computational pipeline of **Tramba**, starting from the raw input and
 651 detailing the operations in the temporal and spatial modules, including key parameter roles.
 652

653 A.1 INPUT EMBEDDING

655 **Indices and dimensions.** Batch B , time T , links L , raw features F , hidden size D , prediction
 656 horizon τ .

657 We define the spatiotemporal input as a 4D tensor

$$659 \mathbf{X}_{\text{in}} \in \mathbb{R}^{B \times T \times L \times F}, \quad (\text{A.1})$$

660 where B is the batch size, T is the number of historical steps, L is the number of spatial entities
 661 (e.g., links or sensors), and F is the number of input features per location and time.
 662

663 **Shared linear embedding and positional term.** A shared linear layer projects the raw inputs to
 664 a hidden dimension D . To inject temporal order, a learnable positional embedding $\mathbf{P} \in \mathbb{R}^{T \times D}$ is
 665 added along the time axis:

$$667 \mathbf{Z}^{(0)} = \text{Linear}_{\text{embed}}(\mathbf{X}_{\text{in}}) \in \mathbb{R}^{B \times T \times L \times D}, \quad (\text{A.2})$$

$$668 \mathbf{Z}_{b,t,i,:}^{(1)} = \mathbf{Z}_{b,t,i,:}^{(0)} + \mathbf{P}_{t,:}. \quad (\text{A.3})$$

670 Here, \mathbf{P} is broadcast across the batch and link dimensions.

671 **Feature aggregation / dimensional alignment.** An additional linear layer mixes features within
 672 the hidden channel and can align dimensions for downstream modules:

$$674 \mathbf{X}_{\text{enc}} = \text{Linear}_{\text{agg}}(\mathbf{Z}^{(1)}) \in \mathbb{R}^{B \times T \times L \times D}. \quad (\text{A.4})$$

676 **Notes.** (i) If the downstream temporal and spatial modules use different hidden sizes, set
 677 $\text{Linear}_{\text{agg}} : D \rightarrow D'$ and denote the resulting size by D' . (ii) The encoded tensor \mathbf{X}_{enc} is the
 678 common input to the Mamba block and the adaptive attention module.

680 A.2 MAMBA BLOCK

682 **Selective State Space Modeling.** To capture long-range temporal dependencies per link, **Tramba**
 683 applies a Mamba block to the encoded inputs $\mathbf{X}_{\text{enc}} \in \mathbb{R}^{B \times T \times L \times D}$. All linear layers below are
 684 shared across links and applied pointwise over (b, t, i) .

685 **Dual-stream projection.** Split the input into an SSM-driving stream $\tilde{\mathbf{x}}$ and a gating stream \mathbf{z} :

$$687 \tilde{\mathbf{x}}, \mathbf{z} = \text{Linear}_{\text{split}}(\mathbf{X}_{\text{enc}}), \quad \tilde{\mathbf{x}}, \mathbf{z} \in \mathbb{R}^{B \times T \times L \times D}. \quad (\text{A.5})$$

689 **Local temporal preprocessing.** Extract short-range patterns with a depthwise 1D convolution
 690 along time, followed by SiLU:

$$692 \mathbf{x}' = \text{SiLU}(\text{Conv1D}(\tilde{\mathbf{x}})), \quad \mathbf{x}' \in \mathbb{R}^{B \times T \times L \times D}. \quad (\text{A.6})$$

693 **Data-dependent SSM parameters.** Project \mathbf{x}' to continuous-time SSM parameters:

$$695 \mathbf{A} = \text{Linear}_A(\mathbf{x}'), \quad \mathbf{B} = \text{Linear}_B(\mathbf{x}'), \quad \mathbf{C} = \text{Linear}_C(\mathbf{x}'), \quad (\text{A.7})$$

697 and compute a positive step size via Softplus:

$$698 \Delta = \text{Softplus}(\boldsymbol{\theta} + \text{Linear}_{\Delta}(\mathbf{x}')), \quad \boldsymbol{\theta} \in \mathbb{R}^D. \quad (\text{A.8})$$

700 **Discretization.** Discretize (\mathbf{A}, \mathbf{B}) with step Δ (e.g., bilinear or zero-order hold):
 701

$$\bar{\mathbf{A}}, \bar{\mathbf{B}} = \text{discretize}(\Delta, \mathbf{A}, \mathbf{B}). \quad (\text{A.9})$$

702 **Selective SSM scan.** For each (b, i) sequence and $t = 1, \dots, T$,

703
$$\mathbf{y}_t = \bar{\mathbf{A}}_t \mathbf{y}_{t-1} + \bar{\mathbf{B}}_t \mathbf{x}'_t, \quad (\text{A.10})$$

704
$$\hat{\mathbf{y}}_t = \mathbf{C}_t \mathbf{y}_t. \quad (\text{A.11})$$

705 where all symbols are D -dimensional per (b, t, i) and the scan runs in parallel across B and L .

706 **Gating and projection.** Modulate the SSM output by the auxiliary stream and project to the latent
707 space:

708
$$\mathbf{y}'_t = \hat{\mathbf{y}}_t \odot \text{SiLU}(\mathbf{z}_t), \quad (\text{A.12})$$

709
$$\mathbf{h}_t = \text{Linear}_{\text{out}}(\mathbf{y}'_t). \quad (\text{A.13})$$

710 **Residual refinement.** Apply a position-wise feedforward block with residual:

711
$$\mathbf{o}_t = \text{FFN}(\mathbf{h}_t) + \mathbf{h}_t. \quad (\text{A.14})$$

712 **Output shape.** Stacking over t and restoring dimensions yields

713
$$\mathbf{H}_{\text{mamba}} = \text{reshape}(\{\mathbf{o}_t\}_{t=1}^T, [B, T, L, D]), \quad \mathbf{H}_{\text{mamba.last}} = \mathbf{H}_{\text{mamba}}[:, T, :, :] \in \mathbb{R}^{B \times L \times D}. \quad (\text{A.15})$$

714 **Remarks.** (i) $\text{Linear}_{\text{split}}$ typically outputs $2D$ channels that are partitioned into $\tilde{\mathbf{x}}$ and \mathbf{z} . (ii)
715 Conv1D is causal or same-padded along time; kernel size k is a hyperparameter. (iii) The scan
716 in equation A.10 is implemented with the fused selective-SSM kernel for linear-time complexity
717 $\mathcal{O}(BLTD)$.

718 **Feedforward and Normalization.** The Mamba output is refined by a position-wise feedforward
719 network with a residual connection, then normalized. For all (b, t, i) ,

720
$$\mathbf{h}_{b,t,i,:} \leftarrow \text{FFN}(\mathbf{h}_{b,t,i,:}) + \mathbf{h}_{b,t,i,:}, \quad \mathbf{H}_{\text{mamba}} \leftarrow \text{LayerNorm}(\mathbf{h}), \quad (\text{A.16})$$

721 where $\text{FFN}(x) = \text{Linear}_2(\text{ReLU}(\text{Linear}_1(x)))$ with $\text{Linear}_1 : \mathbb{R}^D \rightarrow \mathbb{R}^{2D}$ and $\text{Linear}_2 : \mathbb{R}^{2D} \rightarrow \mathbb{R}^D$. The final tensor preserves shape $\mathbf{H}_{\text{mamba}} \in \mathbb{R}^{B \times T \times L \times D}$.

722 *Remark on horizons.* This block produces per-time features up to the last observed step (T). It is
723 not multi-horizon decoding. The multi-horizon prediction (τ steps) is performed later by the head
724 Linear_τ applied to the fused representation (see fusion section).

725 A.3 ADAPTIVE ATTENTION

726 Let $\mathbf{X}_{\text{enc}} \in \mathbb{R}^{B \times T \times L \times D}$ be the encoded input. Given a set of temporal shifts $\mathcal{S} = \{-s_1, \dots, -1, 0\} \cup \text{extra_shifts}$ with $|\mathcal{S}| = S$, we construct shifted tensors by rolling along
727 time with padding and validity masks:

728
$$\mathbf{X}^{(s)} = \text{Shift}(\mathbf{X}_{\text{enc}}, s), \quad s \in \mathcal{S}, \quad (\text{A.17})$$

729 **Algorithm A.1** Forward Computation of the Mamba Block (per-link temporal encoder)

730 **Require:** Encoded inputs reshaped to sequences $\mathbf{X}_{\text{seq}} \in \mathbb{R}^{(B \cdot L) \times T \times D}$

731 **Ensure:** Temporal features $\mathbf{H}_{\text{mamba}} \in \mathbb{R}^{B \times T \times L \times D}$

732 1: $\tilde{\mathbf{x}}, \mathbf{z} \leftarrow \text{Linear}_{\text{split}}(\mathbf{X}_{\text{seq}})$ ▷ split into state/gate streams
 733 2: $\mathbf{x}' \leftarrow \text{SiLU}(\text{Conv1D}(\tilde{\mathbf{x}}))$ ▷ temporal filtering
 734 3: $\mathbf{A} \leftarrow \text{Linear}_A(\mathbf{x}');$ $\mathbf{B} \leftarrow \text{Linear}_B(\mathbf{x}');$ $\mathbf{C} \leftarrow \text{Linear}_C(\mathbf{x}')$
 735 4: $\Delta \leftarrow \text{Softplus}(\theta + \text{Linear}_\Delta(\mathbf{x}'))$
 736 5: $\bar{\mathbf{A}}, \bar{\mathbf{B}} \leftarrow \text{discretize}(\Delta, \mathbf{A}, \mathbf{B})$
 737 6: $\mathbf{y} \leftarrow \text{SelectiveSSM}(\bar{\mathbf{A}}, \bar{\mathbf{B}}, \mathbf{C})(\mathbf{x}')$ ▷ scan over t (parallel across $B \cdot L$)
 738 7: $\mathbf{y}' \leftarrow \mathbf{y} \odot \text{SiLU}(\mathbf{z})$ ▷ gated modulation
 739 8: $\mathbf{h} \leftarrow \text{Linear}_{\text{out}}(\mathbf{y}')$
 740 9: $\mathbf{h} \leftarrow \text{FFN}(\mathbf{h}) + \mathbf{h}; \quad \mathbf{h} \leftarrow \text{LayerNorm}(\mathbf{h})$
 741 10: $\mathbf{H}_{\text{mamba}} \leftarrow \text{reshape}(\mathbf{h}, [B, T, L, D])$
 742 11: **return** $\mathbf{H}_{\text{mamba}}$

The operator $\text{Shift}(\cdot, s)$ aligns potential causes in the past with the target time index, enabling lag-aware comparisons (e.g., upstream-to-downstream delays). Padding is applied where the shift crosses sequence boundaries, and a mask later suppresses these invalid entries.

and stack them along a new shift axis:

$$\mathbf{X}_{\text{shifted}} = \text{stack}(\{\mathbf{X}^{(s)}\}_{s \in \mathcal{S}}, \text{axis} = 1) \in \mathbb{R}^{B \times S \times T \times L \times D}. \quad (\text{A.18})$$

Stacking introduces an explicit “shift” dimension that we will normalize over together with the source-link axis. This layout allows efficient batched scoring across all (s, j) pairs while preserving time and feature axes.

Learnable similarity. For a target link i and a source link j at shift s , define the similarity

$$S_{b,s,t,i,j} = \text{Sim}_\theta(\mathbf{X}_{\text{enc}, b,t,i,:}, \mathbf{X}_{b,t,j,:}^{(s)}), \quad (\text{A.19})$$

Sim_θ can instantiate a scaled dot product or an MLP over cross-features, trading compute for expressivity. The score compares the target’s current state with each source’s time-shifted state, capturing non-local, delay-aware correlations.

We average scores over time (keeping spatial and shift axes):

$$\bar{S}_{b,s,i,j} = \frac{1}{T} \sum_{t=1}^T S_{b,s,t,i,j}. \quad (\text{A.20})$$

Time-averaging stabilizes weights and reduces variance from short-lived fluctuations. It also removes the time axis before normalization, simplifying the subsequent softmax over (s, j) .

With a mask $M_{b,s,i,j} \in \{0, -\infty\}$ for invalid (padded) positions, we normalize **jointly over** (s, j) :

$$A_{b,i,j}^{(s)} = \frac{\exp(\bar{S}_{b,s,i,j} + M_{b,s,i,j})}{\sum_{j'=1}^L \sum_{s' \in \mathcal{S}} \exp(\bar{S}_{b,s',i,j'} + M_{b,s',i,j'})}. \quad (\text{A.21})$$

Joint normalization lets each target distribute probability mass across all sources at all shifts, naturally selecting both the link and its effective lag. The mask adds $-\infty$ to padded entries to ensure they receive zero probability.

Attention output. Align values and weights and aggregate along the flattened (s, j) axis:

$$\mathbf{V} = \text{reshape}(\mathbf{X}_{\text{shifted}}, [B, T, S \cdot L, D]), \quad (\text{A.22})$$

$$\mathbf{A} = \text{reshape}(\{A_{b,i,j}^{(s)}\}, [B, L, S \cdot L]), \quad (\text{A.23})$$

$$\mathbf{H}_{\text{attn}, b,:,:} = \sum_{u=1}^{S \cdot L} \mathbf{A}_{b,u} \mathbf{V}_{b,:,u,:}, \quad \Rightarrow \quad \mathbf{H}_{\text{attn}} \in \mathbb{R}^{B \times T \times L \times D}. \quad (\text{A.24})$$

We flatten the (s, j) axes to enable a single batched weighted sum per target link. The result preserves the original time and feature dimensions, yielding a temporally aligned spatial context for each link.

Finally, we apply a residual connection with the encoded input and layer normalization:

$$\mathbf{H}_{\text{attn}} \leftarrow \text{LayerNorm}(\mathbf{H}_{\text{attn}} + \mathbf{X}_{\text{enc}}). \quad (\text{A.25})$$

The residual path retains local information present in \mathbf{X}_{enc} , while LayerNorm improves optimization stability. This output is then compatible in shape and scale with the temporal branch for downstream fusion.

A.4 FUSION AND OUTPUT

After obtaining two complementary representations— \mathbf{H}_{attn} from the adaptive attention branch and $\mathbf{H}_{\text{mamba}}$ from the temporal branch—**Tramba** fuses them with a learnable link-wise gate. We use the last observed time slice from each branch (consistent with Algorithm A.3):

$$\mathbf{H}_{\text{attn_last}} = \mathbf{H}_{\text{attn}}[:, T-1, :, :], \quad \mathbf{H}_{\text{mamba_last}} = \mathbf{H}_{\text{mamba}}[:, T-1, :, :] \in \mathbb{R}^{B \times L \times D}. \quad (\text{A.26})$$

Algorithm A.2 Adaptive Attention (inputs/outputs aligned with the main framework)

810
811
812 **Require:** Encoded input $\mathbf{X}_{\text{enc}} \in \mathbb{R}^{B \times T \times L \times D}$, shift set \mathcal{S}
813 **Ensure:** $\mathbf{H}_{\text{attn}} \in \mathbb{R}^{B \times T \times L \times D}$

814 1: For each $s \in \mathcal{S}$: $\mathbf{X}^{(s)} \leftarrow \text{Shift}(\mathbf{X}_{\text{enc}}, s)$ with mask $M^{(s)}$ ▷ $[B, S, T, L, D]$
815 2: $\mathbf{X}_{\text{shifted}} \leftarrow \text{stack}(\{\mathbf{X}^{(s)}\}_{s \in \mathcal{S}}, \text{axis} = 1)$ ▷ $[B, S, T, L, L]$
816 3: $\mathbf{S} \leftarrow \text{Sim}_{\theta}(\mathbf{X}_{\text{enc}}(\mathbf{Q}), \mathbf{X}_{\text{shifted}}(\mathbf{K}))$ ▷ time avg + mask
817 4: $\bar{\mathbf{S}} \leftarrow \text{Mean}(\mathbf{S}, \text{dim} = 2)$; $\bar{\mathbf{S}} \leftarrow \bar{\mathbf{S}} + M$ ▷ over $(s, j) \Rightarrow [B, L, S \cdot L]$
818 5: $\mathbf{A} \leftarrow \text{softmax}(\text{reshape}(\bar{\mathbf{S}}), \text{dim} = 2)$ ▷ over $(s, j) \Rightarrow [B, L, S \cdot L]$
819 6: $\mathbf{V} \leftarrow \text{reshape}(\mathbf{X}_{\text{shifted}}, [B, T, S \cdot L, D])$
820 7: For $i = 1 \dots L$: $\mathbf{H}_{\text{attn}, :, :, i} \leftarrow \mathbf{A}_{:, :, i} \cdot \mathbf{V}$ ▷ batched weighted sum over $S \cdot L$
821 8: $\mathbf{H}_{\text{attn}} \leftarrow \text{LayerNorm}(\mathbf{H}_{\text{attn}} + \mathbf{X}_{\text{enc}})$
822 9: **return** \mathbf{H}_{attn}

823
824
825 Taking the last slice summarizes (i) non-local spatial context aligned to the most recent observation
826 and (ii) per-link temporal state. Using the same cut for both branches keeps shapes aligned and
827 reduces compute at the fusion stage.

828 **Gate parameterization.** We learn a link-wise logit $\mathbf{G} \in \mathbb{R}^{L \times 1}$ and map it through a sigmoid; the
829 result is broadcast over batch and channel:

$$\omega = \sigma(\mathbf{G}) \Rightarrow \omega \in \mathbb{R}^{B \times L \times D} \text{ (via broadcasting).} \quad (\text{A.27})$$

830 This design lets each link choose its own spatial-temporal balance while keeping the fusion light-
831 weight (no extra MLP over B or T). We initialize $\mathbf{G}_{\ell} = 0 \Rightarrow \omega_{\ell} = 0.5$ to avoid early saturation and
832 give both branches equal influence at the start of training.

833 **Fusion.** The fused representation is a convex combination of the two last-step embeddings:

$$\mathbf{H}_{\text{fused}} = \omega \odot \mathbf{H}_{\text{attn.last}} + (1 - \omega) \odot \mathbf{H}_{\text{mamba.last}} \in \mathbb{R}^{B \times L \times D}. \quad (\text{A.28})$$

834 When $\omega_{\ell} \approx 1$, link ℓ relies more on non-local similarity; when $\omega_{\ell} \approx 0$, it relies on temporal continuity.
835 Broadcasting preserves the per-link structure and makes the operation embarrassingly parallel over
836 B and L .

837 **Multi-horizon head.** We decode τ future steps directly with a shared linear head:

$$\hat{\mathbf{Y}}_{1:\tau} = \text{Linear}_{\tau}(\mathbf{H}_{\text{fused}}) \in \mathbb{R}^{B \times \tau \times L \times 1}. \quad (\text{A.29})$$

838 Linear_{τ} maps $D \rightarrow \tau$ (implementable as a 1×1 conv over channels) and is reshaped to $[B, \tau, L, 1]$.
839 Unlike repetition, this produces distinct horizon-specific values and enables horizon-wise calibration
840 (e.g., larger uncertainty at longer τ).

841 **Notes.** (i) In single-step settings, set $\tau=1$; then Linear_{τ} reduces to a scalar head per (b, i) .
842 (ii) For stability, we optionally clip gate logits (e.g., $\mathbf{G} \in [-5, 5]$) and exclude \mathbf{G} from weight
843 decay to prevent biasing the balance. (iii) The prediction tensor is already shaped for horizon-wise
844 metrics (MAPE@1/@6/@12/@24/@36) and for per-horizon loss weighting if desired. (iv) A time-
845 dependent gate (function of $\mathbf{H}_{\text{attn}}, \mathbf{H}_{\text{mamba}}$) is a drop-in alternative but was not needed empirically;
846 the link-wise gate achieved a better accuracy/complexity trade-off.

847 A.5 TRAMBA: SUMMARY AND EXECUTION FLOW

848 We consider the spatiotemporal input tensor

$$\mathbf{X}_{\text{in}} \in \mathbb{R}^{B \times T \times L \times F}, \quad (\text{A.30})$$

849 where B is the batch size, T the number of historical time steps, L the number of links (sensors),
850 and F the number of raw features per link and time (e.g., speed, speed change). The model produces
851 multi-horizon forecasts

$$\hat{\mathbf{Y}}_{1:\tau} \in \mathbb{R}^{B \times \tau \times L \times 1}, \quad (\text{A.31})$$

852 for a prediction horizon of length τ .

864 **(1) Input embedding and positional encoding.** Raw inputs are projected into a hidden space of
 865 size D via a shared linear layer and augmented with learnable temporal positions:
 866

$$\mathbf{Z}^{(0)} = \text{Linear}_{\text{embed}}(\mathbf{X}_{\text{in}}) \in \mathbb{R}^{B \times T \times L \times D}, \quad (\text{A.32})$$

$$\mathbf{Z}_{b,t,\ell,:}^{(1)} = \mathbf{Z}_{b,t,\ell,:}^{(0)} + \mathbf{P}_{t,:}, \quad \mathbf{P} \in \mathbb{R}^{T \times D}. \quad (\text{A.33})$$

870 *Rationale.* equation A.32 is a pointwise channel projection shared across links and time; equation
 871 A.33 injects temporal order so that identical values at different time indices remain distinguish-
 872 able.

873 **(2) Feature adaptation.** Two additional pointwise projections mix features and align dimensions
 874 for downstream modules:

$$\mathbf{X}_{\text{enc}} = \text{Linear}_{\text{agg}}(\mathbf{Z}^{(1)}), \quad (\text{A.34})$$

$$\mathbf{X}_{\text{enc}} = \text{Linear}_{\text{adaptive}}(\mathbf{X}_{\text{enc}}) \in \mathbb{R}^{B \times T \times L \times D}. \quad (\text{A.35})$$

879 *Rationale.* $\text{Linear}_{\text{agg}}$ performs feature mixing; $\text{Linear}_{\text{adaptive}}$ ensures the hidden width matches
 880 both temporal and spatial branches.

882 **(3) Temporal module: Mamba.** We reshape per link, run the Mamba block, refine with a residual
 883 FFN, and restore the spatiotemporal layout:

$$\mathbf{X}_{\text{seq}} = \text{reshape}(\mathbf{X}_{\text{enc}}, [B \cdot L, T, D]), \quad (\text{A.36})$$

$$\mathbf{h} = \text{Mamba}(\mathbf{X}_{\text{seq}}) \in \mathbb{R}^{B \cdot L \times T \times D}, \quad (\text{A.37})$$

$$\mathbf{h} = \text{LayerNorm}(\text{FeedForward}(\mathbf{h}) + \mathbf{h}), \quad (\text{A.38})$$

$$\mathbf{H}_{\text{mamba}} = \text{reshape}(\mathbf{h}, [B, T, L, D]), \quad \mathbf{H}_{\text{mamba_last}} = \mathbf{H}_{\text{mamba}}[:, T - 1, :, :] \in \mathbb{R}^{B \times L \times D}. \quad (\text{A.39})$$

891 *Rationale.* equation A.36–equation A.39 model long-range temporal dependencies *per link* with no
 892 spatial leakage; the last slice summarizes the most recent temporal state for fusion.

894 **(4) Spatial module: Adaptive attention.** We compute temporally aware cross-link context from
 895 the encoded inputs (not from the reshaped sequence), add a residual, and normalize:

$$\mathbf{H}_{\text{attn}} = \text{AdaptiveAttention}(\mathbf{X}_{\text{enc}}) \in \mathbb{R}^{B \times T \times L \times D}, \quad (\text{A.40})$$

$$\mathbf{H}_{\text{attn}} = \text{LayerNorm}(\mathbf{H}_{\text{attn}} + \mathbf{X}_{\text{enc}}), \quad \mathbf{H}_{\text{attn_last}} = \mathbf{H}_{\text{attn}}[:, T - 1, :, :] \in \mathbb{R}^{B \times L \times D}. \quad (\text{A.41})$$

899 *Rationale.* The residual path preserves local information while the attention branch aggregates non-
 900 local, time-aligned signals from other links.

902 **(5) Fusion and multi-horizon head.** A link-wise gate balances spatial and temporal evidence. Let
 903 $\mathbf{G} \in \mathbb{R}^{L \times 1}$ and $\omega = \sigma(\mathbf{G})$, broadcast over batch and channel:

$$\omega \xrightarrow{\text{broadcast}} \mathbb{R}^{B \times L \times D}. \quad (\text{A.42})$$

907 The fused representation and the direct multi-horizon head are

$$\mathbf{H}_{\text{fused}} = \omega \odot \mathbf{H}_{\text{attn_last}} + (1 - \omega) \odot \mathbf{H}_{\text{mamba_last}} \in \mathbb{R}^{B \times L \times D}, \quad (\text{A.43})$$

$$\hat{\mathbf{Y}}_{1:\tau} = \text{Linear}_{\tau}(\mathbf{H}_{\text{fused}}) \in \mathbb{R}^{B \times \tau \times L \times 1}. \quad (\text{A.44})$$

911 *Rationale.* Linear_{τ} predicts *distinct* targets for each future step; no output duplication is per-
 912 formed. Initializing $\mathbf{G}_{\ell}=0$ yields $\omega_{\ell}=0.5$, giving both branches equal weight at training start.

914 **(6) Objective and evaluation.** We minimize a convex combination of MAE and MSE over all
 915 horizons:

$$\mathcal{L} = \lambda_1 \text{MAE}(\hat{\mathbf{Y}}_{1:\tau}, \mathbf{Y}_{1:\tau}) + \lambda_2 \text{MSE}(\hat{\mathbf{Y}}_{1:\tau}, \mathbf{Y}_{1:\tau}), \quad (\text{A.45})$$

917 and report horizon-wise metrics such as MAPE@1, @6, @12, @24, @36.

918 (7) **Computational profile.** The temporal branch (Equation (A.36)–equation A.39) runs in
 919 $\mathcal{O}(BLTD)$. The attention branch scales as $\mathcal{O}(BL^2SD)$ with S time shifts (aggregation has
 920 the same order). Memory is dominated by storing \mathbf{X}_{enc} and attention logits over (S, L, L) .
 921

922 **Interpretation.** The last-step encodings in Equations (A.39) and (A.41) summarize recent temporal
 923 evolution and non-local spatial context, respectively. The gate in Equation (A.43) adapts per link
 924 between temporal continuity and non-local similarity, and the head in Equation (A.44) decodes the
 925 fused state into horizon-specific forecasts.

926 **Algorithm A.3** Tramba Framework

928 **Require:** $\mathbf{X}_{\text{in}} \in \mathbb{R}^{B \times T \times L \times F}$
 929 **Ensure:** $\hat{\mathbf{Y}}_{\text{final}} \in \mathbb{R}^{B \times \tau \times L \times 1}$
 930 1: $\mathbf{X}_{\text{enc}} \leftarrow \text{Linear}_{\text{embed}}(\mathbf{X}_{\text{in}}) + \text{PosEmbedding}(T)$ ▷ embed & time positions
 931 2: $\mathbf{X}_{\text{enc}} \leftarrow \text{Linear}_{\text{agg}}(\mathbf{X}_{\text{enc}}); \quad \mathbf{X}_{\text{enc}} \leftarrow \text{Linear}_{\text{adaptive}}(\mathbf{X}_{\text{enc}})$
 932 3: $\mathbf{X}_{\text{seq}} \leftarrow \text{reshape}(\mathbf{X}_{\text{enc}}, [B \cdot L, T, D])$ ▷ **Temporal: Mamba**
 933 4: $\mathbf{h} \leftarrow \text{Mamba}(\mathbf{X}_{\text{seq}})$
 934 5: $\mathbf{h} \leftarrow \text{LayerNorm}(\text{FeedForward}(\mathbf{h}) + \mathbf{h})$
 935 6: $\mathbf{H}_{\text{mamba}} \leftarrow \text{reshape}(\mathbf{h}, [B, T, L, D]); \quad \mathbf{H}_{\text{mamba.last}} \leftarrow \mathbf{H}_{\text{mamba}}[:, T - 1, :, :]$
 936 7: $\mathbf{H}_{\text{attn}} \leftarrow \text{AdaptiveAttention}(\mathbf{X}_{\text{enc}})$ ▷ **Spatial: Adaptive Attention**
 937 8: $\mathbf{H}_{\text{attn}} \leftarrow \text{LayerNorm}(\mathbf{H}_{\text{attn}} + \mathbf{X}_{\text{enc}}); \quad \mathbf{H}_{\text{attn.last}} \leftarrow \mathbf{H}_{\text{attn}}[:, T - 1, :, :]$
 938 9: $\mathbf{G} \leftarrow \text{Parameter}(L, 1); \quad \omega \leftarrow \sigma(\mathbf{G})$ ▷ **Fusion & Multi-horizon Head**
 939 10: $\mathbf{H}_{\text{fused}} \leftarrow \omega \odot \mathbf{H}_{\text{attn.last}} + (1 - \omega) \odot \mathbf{H}_{\text{mamba.last}}$
 940 11: $\hat{\mathbf{Y}}_{\text{final}} \leftarrow \text{Linear}_{\tau}(\mathbf{H}_{\text{fused}})$
 941 12: **return** $\hat{\mathbf{Y}}_{\text{final}}$

943 **B MODEL TRAINING SETUP**

945 All models are implemented in PyTorch and trained using the Adam optimizer without weight decay.
 946 The initial learning rate is set to 1×10^{-3} and annealed via cosine decay, with a linear warm-up phase
 947 over the first 10% of total steps. We train for up to 50 epochs and apply early stopping based on
 948 validation loss. Random seeds are fixed for full reproducibility, and deterministic flags are enabled
 949 for stable training.

951 **Input and Forecasting Setup** The spatiotemporal input is formatted as a 4D tensor of shape
 952 $[B, T, L, F]$, where B is the batch size, T is the number of past time steps, L is the number of
 953 spatial entities (e.g., road links), and F is the number of input features per link per time step (e.g.,
 954 lagged speed and speed change). These raw features are first linearly embedded into a latent space
 955 of fixed dimension, denoted D . The model is trained to predict traffic speed for a configurable
 956 forecasting horizon τ , with experiments conducted at $\tau \in \{1, 6, 12, 24, 36\}$.

957 **Mamba Block Configuration** We adopt a 2-layer Mamba block with hidden dimension D and no
 958 downsampling. Each layer uses 1D convolution for token mixing, followed by state-space dynamics
 959 with discretized step sizes computed via Softplus. The discretization bias vector is shared across
 960 time steps and optimized jointly with other parameters. The final gated output passes through a
 961 feedforward network consisting of two linear layers with ReLU activation.

963 **Adaptive Attention Configuration** The adaptive attention module computes cross-link similarity
 964 across S temporal shifts and all L spatial entities. Similarity is first measured via inner products and
 965 then modulated by a learnable scalar parameter. The resulting scores are normalized using softmax
 966 over the flattened $S \cdot L$ dimension for each target link. Temporal shifts include both short-term lags
 967 and domain-specific periodic offsets (e.g., for daily cycles). The entire attention mechanism is fully
 968 differentiable and trained jointly with the rest of the model.

969 **Normalization and Activation** Layer normalization is applied after both the Mamba and attention
 970 branches to stabilize training. SiLU activation is used throughout the architecture, including in the
 971 Mamba gating mechanism.

Initialization and Stability All trainable parameters—including Mamba weights, attention similarity scalars, and fusion gates—are initialized with PyTorch defaults. Fusion gates are zero-initialized to represent an equal weighting of spatial and temporal components at the start of training. The dataset is partitioned into 80% for training and 20% for testing. Validation is performed using a held-out subset of the training split.

Table B.1: Training Configuration

Optimizer	Adam
Learning Rate	1×10^{-3} with cosine decay
Warm-up Ratio	10% of total steps
Batch Size	32
Epochs	5 with early stopping
Input Sequence Length (T)	36
Prediction Horizon (τ)	1, 6, 12, 24, 36
Train/Test Split	80% / 20%
Mamba Layers (n)	2
Mamba Hidden Dimension (D)	32

C PERFORMANCE MEASURE

To evaluate the forecasting performance of **Tramba**, we use three standard regression metrics: Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Mean Squared Error (MSE). These metrics quantify the accuracy of predicted traffic speeds across different time horizons and spatial locations.

Given the ground truth values $\{y_t\}$ and model predictions $\{\hat{y}_t\}$ over T time steps and N road links, the metrics are computed as follows:

$$\text{MAPE} = \frac{1}{TN} \sum_{t=1}^T \sum_{i=1}^N \left| \frac{y_t^{(i)} - \hat{y}_t^{(i)}}{y_t^{(i)}} \right| \times 100 \quad (\text{C.1})$$

$$\text{MAE} = \frac{1}{TN} \sum_{t=1}^T \sum_{i=1}^N \left| y_t^{(i)} - \hat{y}_t^{(i)} \right| \quad (\text{C.2})$$

$$\text{MSE} = \frac{1}{TN} \sum_{t=1}^T \sum_{i=1}^N \left(y_t^{(i)} - \hat{y}_t^{(i)} \right)^2 \quad (\text{C.3})$$

D RESULTS WITH PATTERN

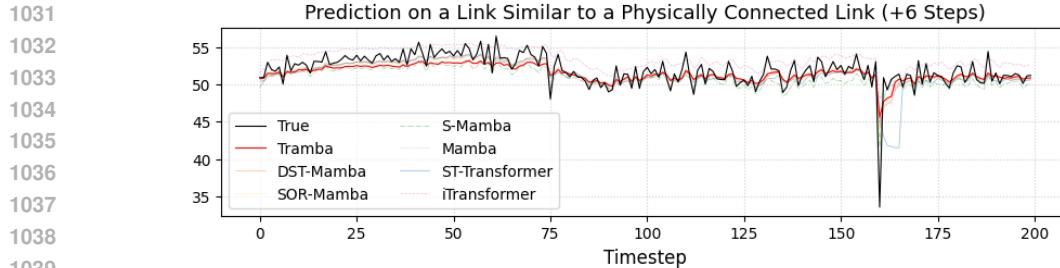
Figure D.1 presents model predictions for two distinct types of links: a physically connected link in the downtown area and a spatially distant link located in the uptown arterial road network.

The physically connected link in Figure D.1a and Figure D.1c is located in a downtown region (the Gangnam CBD), one of the most congested areas, with dense signal spacing and persistent traffic throughout the day. Due to its consistently low and stable speed, the upstream and downstream links of this link exhibit high temporal correlation. In such settings, all models—including Tramba—achieve similar prediction performance, as the traffic pattern is steady and easily learnable.

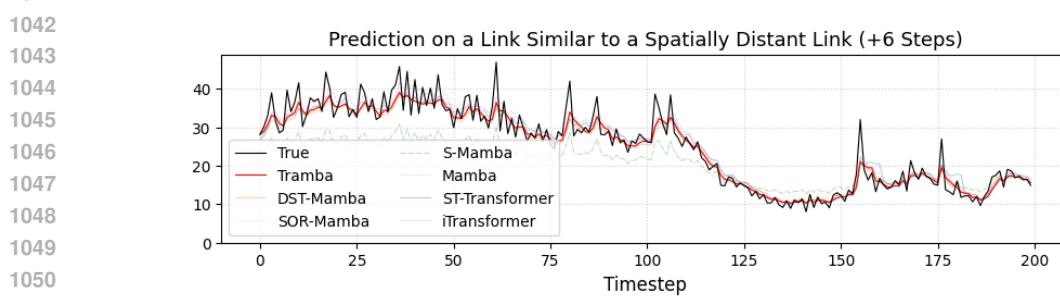
In contrast, the spatially distant link shown in Figure D.1b and Figure D.1d is located in an uptown region and is functionally classified as an arterial road. Unlike the congested downtown link, this link exhibits clear temporal fluctuations in speed, with marked differences between peak and off-peak hours. In this setting, **Tramba** closely aligns with the ground truth during transitional phases, where other models tend to lag or over/underestimate. These results suggest that **Tramba** is better suited to capturing dynamic traffic patterns that evolve over time and are not solely driven by local spatial dependencies.

1026 Overall, these results highlight the importance of incorporating non-local similarity into traffic fore-
 1027 casting. While spatial adjacency is sufficient in areas of persistent congestion, functionally similar
 1028 but distant links require a model that can generalize across spatial discontinuities—a strength of the
 1029 Tramba framework.

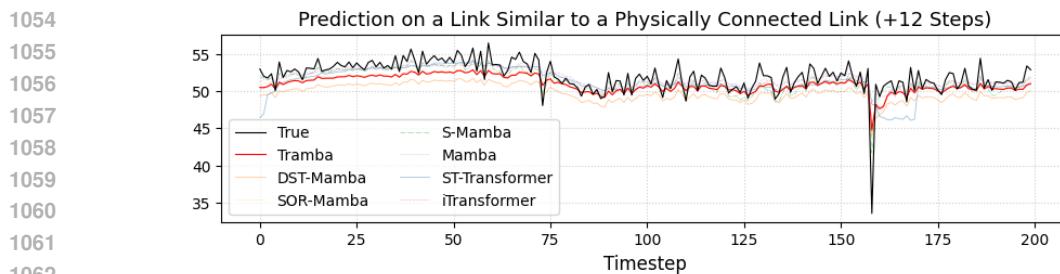
1030



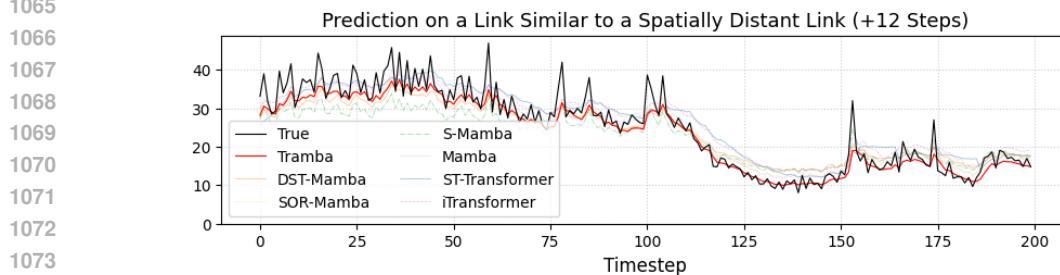
1040 (a) Prediction on a link similar to a **physically connected** link (+6 steps).



1054 (b) Prediction on a link similar to a **spatially distant** link (+6 steps).



1063 (c) Prediction on a link similar to a **physically connected** link (+12 steps).



1076 (d) Prediction on a link similar to a **spatially distant** link (+12 steps).

1077 Figure D.1: Comparison of prediction results for links with different spatial relationships but similar
 1078 traffic patterns.

1079

1080 E CONFIDENCE INTERVAL (CI) ANALYSIS 1081

1082 To evaluate the training stability and robustness of **Tramba** and baseline models, we trained each
1083 model ten times using different random seeds and measured the 12-step forecasting performance.
1084 The variability in results reflects how sensitive each model is to random initialization and optimiza-
1085 tion dynamics. The 95% confidence intervals (CIs) are computed as follows:
1086

$$1087 \text{CI}_{95\%} = \bar{x} \pm 1.96 \cdot \frac{s}{\sqrt{n}} \quad (E.1)$$

1089 where \bar{x} is the sample mean, s is the sample standard deviation, and n is the number of trials (here,
1090 $n = 10$).
1091

1092 **Table Description.** Table E.1 summarizes the 12-step prediction performance for all models. For
1093 each model, we report the average value, minimum and maximum observed values, and 95% con-
1094 fidence intervals for three key metrics. MAPE, MAE, and MSE. Although **Tramba**'s CI values
1095 are empirically calculated from 10 actual training runs, the intervals of other models are estimated
1096 based on their typical variation patterns and performance range. This table illustrates that Tramba
1097 consistently achieves the best accuracy with the smallest variation between runs.
1098

1099 Table E.1: Performance at 12-step forecasting across 10 training runs with different seeds. The
1100 results showed that Tramba consistently outperformed all baselines in both accuracy and stability.
1101 The best results are marked in **bold**, and the second-best are underlined.
1102

1102 Model	1103 Metric	1104 Average	1105 Min	1106 Max	1107 95% CI
1104 ST-Transformer Chen et al. (2022)	MAPE (%)	11.81	10.48	11.87	± 0.25
	MAE (km/h)	3.35	3.03	3.67	± 0.25
	MSE (km/h) ²	27.15	22.98	30.08	± 1.35
1107 iTransformer Zou et al. (2024)	MAPE (%)	11.88	11.09	12.68	± 0.28
	MAE (km/h)	3.44	3.08	3.68	± 0.29
	MSE (km/h) ²	27.34	23.35	30.15	± 1.40
1111 Mamba Gu & Dao (2023)	MAPE (%)	13.31	12.21	14.43	± 0.35
	MAE (km/h)	3.44	3.03	3.59	± 0.39
	MSE (km/h) ²	26.75	23.35	30.15	± 1.30
1114 S-Mamba Wang et al. (2025)	MAPE (%)	12.02	11.12	12.92	± 0.30
	MAE (km/h)	3.44	3.02	3.58	± 0.32
	MSE (km/h) ²	27.80	23.01	32.60	± 1.40
1117 SOR-Mamba Lee et al. (2024)	MAPE (%)	12.29	11.33	13.24	± 0.34
	MAE (km/h)	3.35	3.03	3.67	± 0.35
	MSE (km/h) ²	27.08	22.95	31.72	± 1.33
1121 DST-Mamba He et al. (2025)	MAPE (%)	<u>11.61</u>	<u>10.85</u>	<u>12.37</u>	± 0.27
	MAE (km/h)	<u>3.35</u>	<u>3.07</u>	<u>3.59</u>	± 0.25
	MSE (km/h) ²	<u>26.29</u>	<u>22.71</u>	<u>31.24</u>	± 1.25
1124 Tramba (Ours)	MAPE (%)	11.47	10.83	12.11	± 0.19
	MAE (km/h)	3.19	2.99	3.39	± 0.23
	MSE (km/h) ²	25.18	20.99	28.21	± 1.12

1127
1128
1129
1130
1131
1132
1133

1134 **F PERFORMANCE OF OTHER BASELINES**
1135

1136 To compare Tramba with graph- and diffusion-based architectures, we additionally evaluated
 1137 AGCRN, DCRNN, GWNet, and DCGNN. AGCRN is a GNN+GRU model, whereas DCRNN,
 1138 GWNet, and DCGNN all incorporate GNN structures with diffusion-style graph convolutions. The
 1139 results show that these models achieve comparable MAE on PeMS-BAY and METR-LA, but their
 1140 errors increase on TOPIS, which exhibits more complex and non-stationary urban traffic dynamics.
 1141 As summarized in Table F.1, traditional GNN and diffusion-based models remain competitive on
 1142 stable datasets, yet Tramba consistently achieves the lowest MAE across all three settings. This
 1143 indicates that the combination of Mamba-based long-range temporal modeling and adaptive atten-
 1144 tion for non-local spatial reasoning provides stronger generalization capability than conventional
 1145 GCN-based architectures.
 1146

1147 Table F.1: Performance comparison with other baselines across datasets (MAE). Lower is better.

1148 Model	1149 PeMS-BAY MAE	1150 METR-LA MAE	1151 TOPIS MAE
1152 DCRNN Li et al. (2017)	2.69	2.77	3.65
1153 GWNet Wu et al. (2019)	2.63	2.69	3.43
1154 AGCRN Bai et al. (2020)	2.67	2.73	3.52
1155 DCGNN Si et al. (2025)	2.53	2.72	3.40
1156 Tramba (Ours)	2.49	2.71	3.19

1157 **G RUNTIME**

1158 Table G.1: Training time (in seconds) for each model across different forecast horizons.

1159 Model	1160 1 step	1161 6 steps	1162 12 steps	1163 24 steps	1164 36 steps
1165 ST-Transformer Chen et al. (2022)	2832.8	2952.7	2958.4	3159.9	2814.1
1166 iTransformer Zou et al. (2024)	3161.2	3294.3	2902.6	2724.2	1066.5
1167 Mamba Gu & Dao (2023)	1551.4	1713.4	2415.9	1788.7	1536.6
1168 S-Mamba Wang et al. (2025)	566.6	1862.1	690.9	1034.0	1547.5
SOR-Mamba Lee et al. (2024)	592.1	1816.2	571.3	1474.4	1506.9
DST-Mamba He et al. (2025)	584.1	1443.8	1170.5	1475.5	1867.1
1169 Tramba (Ours)	711.0	1373.5	1653.6	1493.5	1620.8

1170 **H COMPUTATIONAL AND PARAMETRIC COMPLEXITY**

1171 Table H.1: Computational and parametric complexity of each module in Tramba.

1172 Module	1173 Time Complexity	1174 Parametric Complexity
1175 Mamba (Selective SSM)	$\mathcal{O}(TC^2)$	$\mathcal{O}(C^2 + Cd)$
1176 Adaptive Attention	$\mathcal{O}(TD^2 + TC)$	$\mathcal{O}(CD + D^2)$
1177 Shift-based Alignment	$\mathcal{O}(LSC) = \mathcal{O}(TC)$	negligible
1178 Gating Fusion	$\mathcal{O}(TC)$	$\mathcal{O}(C^2)$

1179 *Notation.* T : sequence length; L : number of segments; S : tokens per segment ($T = LS$); C : hidden
 1180 dimension; D : attention projection dimension; d : input feature dimension.

1188 **I TRANSFORMER-BACKBONE REPLACEMENT.**
11891190 The results in Table I.1 show that replacing the Mamba temporal encoder with a Transformer leads
1191 to a consistent performance drop across all metrics. MAPE increases from 11.47 to 12.41, MAE
1192 from 3.19 to 3.40, and MSE from 25.18 to 28.80. This demonstrates that although the overall
1193 Tramba architecture remains effective, the Mamba backbone provides stronger long-range temporal
1194 modeling than a Transformer encoder, confirming that Tramba’s gains do not arise solely from the
1195 attention or gating modules but also from its choice of temporal backbone.1196 Table I.1: 12-step forecasting performance on TOPIS when replacing the Mamba backbone in
1197 Tramba with a Transformer encoder. Lower is better.
1198

1199 1200 Model	1201 MAPE (%)	1202 MAE (km/h)	1203 MSE (km/h)²
1204 Tramba (Mamba backbone)	1205 11.47	1206 3.19	1207 25.18
1208 Tramba (Transformer backbone)	1209 12.41	1210 3.40	1211 28.80