Under review as a conference paper at ICLR 2025

DYNAMIC KERNEL SPARSIFIERS

Anonymous authors
Paper under double-blind review

ABSTRACT

A geometric graph associated with a set of points P = {1, 29, - ,z,} C R?
and a fixed kernel function K : R% x R% — R is a complete graph on P such that
the weight of edge (z;, z;) is K(x;, ;). We present a fully-dynamic data structure
that maintains a spectral sparsifier of a geometric graph under updates that change
the locations of points in P one at a time. The update time of our data structure
is n°(1) with high probability, and the initialization time is 7' +°(1), Under certain
assumption, our data structure can be made robust against adaptive adversaries,
which makes our sparsifier applicable in iterative optimization algorithms.

We further show that the Laplacian matrices corresponding to geometric graphs
admit a randomized sketch for maintaining matrix-vector multiplication and projec-
tion in n°(Y) time, under sparse updates to the query vectors, or under modification
of points in P.

1 INTRODUCTION

Kernel methods are a fundamental tool in modern data analysis and machine learning, with extensive
applications in computer science, from clustering, ranking and classification, to ridge regression ,
principal-component analysis and semi-supervised learning von Luxburg (2007); Ng et al. (2002);
Zhu (2005a;b); Liu et al. (2019). Given a set of n points in R? and a nonnegative function K :
R4 x R? — Rx, a kernel matrix has the form that the 4, j-th entry in the matrix is K(z;, z;).

Kernel matrices and kernel linear-systems naturally arise in modern machine learning and op-
timization tasks, from Kernel PCA and ridge regression Alaoui & Mahoney (2015); Avron et al.
(2017a;b); Lee et al. (2020), to Gaussian-process regression (GPR) Rasmussen & Nickisch (2010)),
federated learning Konecny et al. (2016), and the ‘state-space model’ (SSM) in deep learning Gu et al.
(2021b;a). In most of these applications, the underlying data points x; are dynamically changing
across iterations, either by nature or by design, and therefore computational efficiency of numerical
linear-algebraic operations in this setting requires dynamic algorithms to maintain the kernel matrix
under insertions and deletions of data points.

One motivating application of dynamic linear algebra on geometric graphs is dynamically main-
taining a spectral clustering Ng et al. (2002) of the kernel matrix of a weighted graph. In the static
setting, a common approach for spectral clustering is spectral sparsification Spielman & Srivastava
(2011); Ng et al. (2002), i.e., to run a spectral clustering algorithm on top of a spectral-sparsifier
for the Laplacian matrix of the weighted graph. This approach, however, fails to extend to the
dynamic setting, where a small fraction of data points are continually changing, since rebuilding the
spectral-sparsifier is prohibitively expensive — Changing a single point z; € P changes an entire row
of K(JCZ, X) .

Another motivation, arising in statistical physics and astronomy, is the N-body simulation problem
Trenti & Hut (2008). The problem asks to efficiently simulate a dynamical system of particles,
usually under the influence of physical forces, such as gravity. Let P C R? denote a set of points. In
our terminology, this setup corresponds to maintaining, for each ¢ € [d], a graph G; on the points
in P, and letting C'y denote the gravitational constant, and m, denote the mass of point x € P.
Hence, for any two points u, v € P, the non-negative weight/kernel function of the edge (u,v) is

defined as K;(u, v) := (Cﬁu’fz ‘H’g“) : (\‘qu}f::\lizl) . Denoting the weighted adjacency matrix of G'; by
2
A;, computing the force between the points in the static setting corresponds to A;1. Once again, this
approach Trenti & Hut (2008) fails to extend to the dynamic setting in which the n-bodies are slowly
moving over time, since re-computing K() would take 2(n) time.
Finally, we mention an application to semi-supervised learning tasks, where the goal is to extend a

partial function, whose values are known only on a subset of the training data, to the entire domain,

Under review as a conference paper at ICLR 2025

such that the weighted sum of differences over the set is minimized Zhu (2005b)!. In the static setting
of geometric kernels, this least-squares minimizer can be found by solving a (Laplacian) linear
system on P. Extendin this approach to the dynamic setting requires dynamic spectral sparsifiers.

As mentioned above, one of the main tools for fast linear algebra on geometric graphs is spectral
sparsification. Alman, Chu, Schild and Song Alman et al. (2020) presented a static algorithm for
constructing an e-spectral sparsifier on a geometric graph H = H(G) (s.t (1 —€)Lg = Ly =
(1 + €)Lg) in almost linear time, which avoids explicitly writing the underlying n x n dense
Kernel matrix, and facilitates several basic linear-algebraic operations on geometric graphs, in
O(n log? n) < n? time, when the dimension d is fixed. The main goal of this paper is to extend the
toolbox of Alman et al. (2020) to the dynamic setting, as motivated by the above applications. More
formally:

Given a set of n points P C R® and a function K, is there a dynamic algorithm
that can update the spectral sparsifier of the geometric graph G on P and K in
n°Y) time, where in each iteration the location of a point x; € P is changed? Is it
possible to maintain approximate matrix-vector queries w.r.t the Laplacian matrix
of (a1)dynamic geometric graph, and an approximate-inverse of the Laplacian, in
n°\Y time?

Prior to this work, no nontrivial dynamization algorithms were known for geometric graphs for the
above linear-algebra primitives. While fully-dynamic (1 & ¢)-spectral edge sparsifiers for general
graphs are known Abraham et al. (2016) (in amortized poly(log(n), 1/€¢) update time), the setting
of geometric graphs is fundamentally different, since as mentioned earlier in the introduction, each
update of a point z; € P results in an entire row update of K, i.e., O(n) edges, making Abraham
et al. (2016) too slow.

The main technical contribution of this paper is a new dynamic well separated pair decomposition
(WSPD, Definition A.15, Fischer & Har-Peled (2005); Alman et al. (2020)). The core of this data
structure is a smooth resampling technique for efficiently maintaining a WSPD under point-location
updates, with mild weight-increase to the sparsifier, by reusing randomness (in an adversarially-robust
manner).

1.1 MODEL

Before we state our main results, let us formally state the dynamic model of geometric graphs we
consider:

Definition 1.1 (Dynamic spectral sparsifier of geometric graph). Given a set of points P C R® and
kernel function K : R? x R* — R>o. Let G denote the geometric graph on to P with edge weight
w(xi, x;) == K(z;,2;). Let Lg be the Laplacian matrix of graph G. Let € € (0,0.1) denote an
accuracy parameter. We want to design a data structure that dynamically maintains a (1 + €)-spectral
sparsifier for G and supports the following operations:

 INITIALIZE(P C R% e € (0,0.1)), this operation takes point set P and constructs a
(1 + €)-spectral sparsifier of L.

» UPDATE(i € [n],z € RY), this operation takes a vector z as input, and to replace x; (in
point set P) by z, in the meanwhile, we want this update to be fast and the change in the
spectral sparsifier to be small.

For the above problem, we focus our attention on kernel functions with a natural property called
(C, L)-multiplicatively Lipschitz. For C > 1 and L > 1, we say a function is (C, L)-Lipschitz if that,
for all ¢ € [1/C,CY, it holds that - < % < cl. We formally define the sketch task of matrix
multiplication here.

Definition 1.2 (Sketch of approximation to matrix multiplication). Given a geometric graph G
with respect to point set P and kernel function K, and an n-dimensional vector v, we want to

maintain a low dimensional sketch of an approximation to the multiplication result Lov, where an
e-approximation to multiplication result Mx is a vector b such that ||b — Mzx|2 < e- [|M||F - ||z]2-.

We also give the formal definition of the sketching approximation to Laplacian solving here.

"Formally, we are given a function f : P — R together with its value on some subset X C P. Then we aim
to extend the function f to the whole set P, which can minimize 3, p ., K(u, v)(f(u) — fw))?

Under review as a conference paper at ICLR 2025

Definition 1.3 (Sketch of approximation to Laplacian solving). Given a geometric graph G with
respect to point set P and kernel function K, and an n-dimensional vector b, we want to maintain a

low dimensional sketch of an approximation to the multiplication result LI;b, i.e., a vector zZ such
that ||Z — LEbll2 < e | LG 7 - [b]l2

We here explain the necessity of maintaining a sketch of an approximation instead of the directly
maintaining the multiplication result in the dynamic regime. Let the underlying geometry graph on
n vertices be GG and the vector be v € R”. When a d-dimensional point is moved in the geometric
graph, a column and a row are changed L. We can assume the first row and first column are changed
with no loss of generality. When this happens, if the first entry of v is not 0, all entries will change
in the multiplication result. Therefore, it takes at least {2(n) time to update the multiplication result
exactly. In order to spend subpolynomial time to maintain the multiplication result, we need to reduce
the dimension of vectors. Therefore, we use a sketch matrix with m = poly log(n) rows.

2 OUR RESULTS

Our first main result is a dynamic sparsifier for geometric graphs, with subpolynomial update time in
the oblivious adversary model.

Theorem 2.1 (Informal version of Theorem D.3). Let K denote a (C, L)-multiplicative Lipschitz
kernel function. For any given data point set P C R® with size n, there is a randomized dynamic
algorithm that receives updates of locations of points in P one at a time, and maintains an almost
linear spectral sparsifier in n°) time with probability 1 — 1/ poly(n).

By introducing additional assumptions regarding dimensions, we can generate outcomes for an
adversarial setting.

Theorem 2.2 (Informal version of Theorem H.5). Let K denote a (C, L)-multiplicative Lipschitz

maxg,yep [|[2—yll2 If
ming,yep [[z—yll2”

a? = O(poly(n)), then there is a randomized dynamic algorithm that receives updates of locations
of points in P one at a time, and maintains a almost linear spectral sparsifier in n°") time with
probability 1 — 1/ poly(n). It also supports adversarial updates.

kernel function. For any given data point set P C R with size n. Define o :=

For the dynamic matrix-vector multiplication problem, we give an algorithm to maintain a sketch
of the multiplication between the Laplacian matrix of a geometric graph and a given vector in
subpolynomial time.

Theorem 2.3 (Informal version of Theorem E.1). Let G be a (C, L)-Lipschitz geometric graph on n
points. Let v be a vector in R™. There exists an data structure MULTIPLY that maintains a vector z
that is a low dimensional sketch of an approximation to the multiplication result L - v. MULTIPLY
supports the following operations:
» UPDATEG(x;, 2): move a point from x; to z and thus changing K¢ and update the sketch.
This takes n°Y) time.
» UPDATEV (,): change v to v + 6, and update the sketch. This takes n°M) time.

* QUERY: return the up-to-date sketch.
We also present a dynamic algorithm to maintain the sketch of the solution to a Laplacian system.

Theorem 2.4 (Informal version of Theorem F.1). Let G be a (C, L)-Lipschitz geometric graph on n
points. Let b be a vector in R™. There exists an data structure SOLVE that maintains a vector z that

is a low dimensional sketch of an e-approximation to the multiplication result LTG - b. It supports the
following operations:
» UPDATEG(x;, 2): move a point from x; to z and thus changing K and update the sketch.
This takes n°Y) time.
* UPDATEB(8}): change b to b+ 6, and update the sketch. This takes n°™") time.
e QUERY: return the up-to-date sketch.

Roadmap. We organize the paper as follows. We state some related works in Section 3. We provide
an overview of techniques used in Section 4. For all the formal proofs, we leave them to the Appendix.
We conclude our work in Section 5 and provide discussion of limitations in Section 6.

Under review as a conference paper at ICLR 2025

3 RELATED WORK

Dynamic Sparsifier. There has been some work focused on maintaining the dynamic sparsifier
in a efficient time Durfee et al. (2019). Their follow-up work Gao et al. (2022); Brand et al. (2022)
provides an algorithm for computing exact maximum flows on graphs with bounded integer edge
capacities. Quanrud’s work on spectral sparsification of graphs with metrics and kernels Quanrud
(2021) provide efficient algorithm for constructing an sparsifier for the graphs.

Solvers of Laplacian System. For a Laplacian linear system of a graph with m edges, it is a
widely-studied problem Spielman & Teng (2004); Koutis et al. (2014; 2011); Kelner et al. (2013);
Lee & Sidford (2013); Cohen et al. (2~014); Kyng et al. (2016); Kyng & Sachdeva (2016). It has been

shown that it can be solved in time O(m log(1/¢)). While the existing algorithm is very fast when
the graph is sparse enough, we should focused on faster algorithms since our target graph might be
dense.

Approximating the Kernel Density Function (KDF). There are some works Charikar &
Siminelakis (2017); Backurs et al. (2018) studying algorithms for kernel density function. Charikar
& Siminelakis (2017) studied the Kernel Density Estimate (KDE) problem and they gave an efficient
data structure such that, given a data set with a specific kernel function, it can approximates the kernel
density of a query point in sublinear time. Later work Backurs et al. (2018) presented a collection
of algorithms for KDF approximating the “smooth” kernel functions. Zandieh et al. (2023); Alman
& Song (2023) shows how to use kernel technique to compute attention matrix in large language
models.

Kernel Functions. Kernel method is a popular technique in data analysis and machine learning
Souza (2010). The most popular and widely-used kernel functions are in the form of K(z,y) =
f(lz — yll2). We list some of them here: the Gaussian kernel Ng et al. (2002); Rahimi & Recht
(2007), multiquadric kernel Beatson & Greengard (1997), circular kernel Boughorbel et al. (2005),
power kernel Fleuret et al. (2003), log kernel Beatson & Greengard (1997); Martinsson (2012) and
inverse multiquadric kernel Micchelli (1984); Martinsson (2012).

Dynamic Algorithms used in Optimization. In addition, dynamic algorithms have been widely
used in many of the optimization tasks. Usually, most optimization analysis are robust against
noises and errors, such as linear programming Cohen et al. (2019); Jiang et al. (2021), empirical risk
minimization Lee et al. (2019); Qin et al. (2023), semi-definite programming Huang et al. (2021); Gu
& Song (2022), general programming Deng et al. (2023), integral optimization Jiang et al. (2023),
training neural network Brand et al. (2021); Song et al. (2021a;b), and sum of squares method Jiang
et al. (2022). Approximate solutions are sufficient to for these optimizations.

4 TECHNICAL OVERVIEW

4.1 FuLLY DYNAMIC KERNEL SPARSIFICATION DATA STRUCTURE

A geometric graph w.r.t. kernel function K : R? x R? — R and points x1, ..., z, € R%isa graph on
x1,..., T, where the weight of the edge between z; and xz; is K(z;, z,). An update to a geometric
graph occurs when the location of one of these points changes.

In a geometric graph, when an update occurs, the weights of O(n) edges change. Therefore,
directly applying the existing algorithms for dynamic spectral sparsifiers (Abraham et al. (2016)) to
update the geometric graph spectral sparsifier will take {2(n) time per update. However by using
the fact that the points are located in R? and exploiting the properties of the kernel function, we can
achieve faster update.

Before presenting our dynamic data structure, we first have a high level idea of the static construc-
tion of the geometric spectral sparsifier, which is presented in Alman et al. (2020).

4.1.1 BUILDING BLOCKS OF THE SPARSIFIER

In order to construct a spectral sparsifier more efficiently, one can partition the graph into several
subgraphs such that the edge weights on each subgraph are close. On each of these subgraphs, leverage
score sampling, which is introduced in Spielman & Srivastava (2011) and used for constructing
sparsifiers, can be approximated by uniform sampling.

For a geometric graph built from a d-dimensional point set P, under the assumption that each
edge weight is obtained from a (C, L)-Lipschitz kernel function (Definition A.1), each edge weight
in the geometric graph is not distorted by a lot from the euclidean distance between the two points

Under review as a conference paper at ICLR 2025

(Lemma A.22). Therefore, we can compute this partition efficiently with by finding a well separated
pair decomposition (Callahan & Kosaraju (1995), WSPD, Definition A.15) of the given point set.

A s-WSPD of P is a collection of pairs (A;, B;) of subsets of P, such that for all a # b € P, there
exists a unique 7 satisfying a € A;,b € B;, and the distance between A; and B; (as point sets) is at
least s times the diameters of A; and B; ((4;, B;) is a s-well separated (WS) pair). In this case, the
distance between point sets A; and B; is a (1 + 1/s)-multiplicative approximation of the distance
between any point in A; and any point in B;.

Each WS pair in the WSPD can be viewed as an unweighted biclique, where the two point sets
are the two sides of the bipartite graph. On an unweighted biclique, uniform random sampling and
leverage score sampling are equivalent. Therefore, a uniformly random sample of the biclique forms
a spectral sparsifier of the biclique, and the union of the sampled edges from all bicliques form a
spectral sparsifier of the geometric graph.

However, the time needed for constructing a WSPD depends exponentially on the ambient di-
mension of the point set and thus WSPD cannot be computed efficiently when the dimension is
high. To solve this problem, one can use the ultra low dimensional Johnson Lindenstrauss (JL)
projection to project the point set down to k = o(logn) dimension, such that with high probability,
the distance distortion (multiplicative difference between the distance between two points and the
distance between their low dimensional images) between any pair of points is at most nCi(1/k)
where C; is a universal constant for the JL projection. This distortion becomes an overestimation of
the leverage score in the resulting biclique, and can be compensated by sampling n¢i (1/¥) edges.

Then one can perform a 2-WSPD on the k-dimensional points. Since JL projection gives a bijection
between the d-dimensional points and their k-dimensional images, a 2-WSPD of the k-dimensional
point set gives us a (2 - nCi/ ¥)-WSPD of the d-dimensional point set P. The d-dimensional bicliques
resulted from this (2 -n%1/#)-WSPD of P is what we use to sample edges and construct the sparsifier.

In summary, after receiving a set of points P, we use the ultra-low dimensional JL projection
to project these points to a k = o(logn) dimensional space, run a 2-WSPD on the k-dimensional
points, and then map the k-dimensional WSPD result back to the d-dimensional point set to obtain a
(2 - n@1(1/k)).-WSPD of P. For each pair (A, B) in this d-dimensional WSPD, we randomly sample
edges from Biclique(A, B). The union of all sampled edges is a spectral sparsifier of the geometric
graph on P.

4.1.2 DYNAMIC UPDATE OF THE GEOMETRIC SPECTRAL SPARSIFIER.

For a geometric graph build on a point set P, we want the above spectral sparsifier to be able to
handle the following update? :

Point location change (x; € P,z € R?): move the point from location z; to
location z. This is equivalent to removing point z € P and then adding z to P.

However, in order to update the geometric spectral sparsifier efficiently, there are a few barriers
that we need to overcome.

Updating WSPD When the point set P changes, we want to update the 2-WSPD such that the
number of WS pairs that are changed in the WSPD is small. Fischer & Har-Peled (2005) presented
an algorithm to update the list of WS pairs, but it cannot be used directly in this situation, because the
Fischer & Har-Peled (2005) algorithm is only able to return a list of WS pairs such that the singleton
containing the inserted (or removed) point is one of the vertex subsets in these pairs. However, in
order to use the up-to-date WSPD to update the sparsifier, we need to know not only the WS pairs
(A, B) where A or B is a singleton consisting of the inserted (or removed) point, but also all other
WS pairs (A, B) such that the inserted (or removed) point is in A or B. The Fischer & Har-Peled
(2005) algorithm is not able to do this.

Fortunately, one s-WSPD construction algorithm presented in Har-Peled (2011) has the property
that each point = appears only in so(d)O(log «) WS pairs. This allows us to find all WS pairs
affected by a point location change in 2°*) O (log o) time, since we are maintaining a 2-WSPD and
the dimension of the point set is k. We summarize this algorithm below. The detailed discussion of
the WSPD update can be found in Section D 4.

The Har-Peled (2011) WSPD algorithm constructs a compressed quadtree associated with the point
set P, and the WS pairs are pairs of nodes of the compressed quadtree. To summarize, a quadtree

maxg ,ep [[z—yll2

*We assume that throughout the update, the aspect ratio of the point set, denoted by o = —,
ming yep [|[z2—yll2

does not change.

Under review as a conference paper at ICLR 2025

is a hierarchical partition of a k-dimensional hypercube enclosing P. It is obtained by recursively
dividing the k-dimensional region into 2* smaller regions called cells (divide equally along each
axis), which can be further subdivided until each resulting cell contains only one point. The tree
representing this hierarchy is called a quadtree and each cell in this hierarchy corresponds to a tree
node of the quadtree. The cells containing only one point are the leaf nodes of the tree. In a quadtree,
there can be a long chain of tree nodes that contain the same set of points. We replace this chain by
the first and last nodes on the chain, and an edge between them. The resulted tree is the compressed
quadtree associated with P. The compressed quadtree has size O(|P|), and supports the following
operations in O(logn) time: (1) finding the leaf node that contains a given point x, or the parent
node under which the leaf node containing = should be inserted if ¢ P, (2) inserting a leaf node
containing a given point x, and (3) removing a leaf node containing a given point x.

The WSPD is a list of pairs of well separated compressed quadtree nodes. For efficient update, we
let the WSPD data structure to be a container (of WS pairs) that supports looking up all WS pairs
containing a tree node n for a given n in time linear in the size of output.

When a point location update occurs, suppose point z; is moved to z. We can do the following to
find all WS pairs that need to be updated.

» Use the compressed quad tree data structure to locate leaf nodes that contains z; and z (since
z is not in the point set before the update, we locate the parent node under which z should
be inserted)

* Go from each of these leaf nodes to the root of the compressed quad tree, for each tree node
n visited in this process, use the WSPD data structure to find all WS pairs containing n.

» Update all WS pairs found in the previous step and the compressed quadtree.

Algorithm 6 in Section D.4 is a detailed version of this WSPD update scheme.

Resampling from bicliques. After updating the WSPD, we want to generate a uniform sample of
edges from the new biclique. We show that with high probability, this can be done in °(!) time with
high probability.

When a point location change happens and point z; is moved to z, each pair (A, B) in the WSPD
list will undergo one and only one of the following changes,

* Remaining (A, B)

* Becoming (A\{xz;}, B) or (A, B\{z;})

* Becoming (AU {z},B) or (A,BU{z})

« Becoming (A\{z:}U{z}, B), (A, B\{w:}U{=}), (A\{a:}, BU{=}) or (AU{z}, B\{w:})

For each WS pair (A, B) that remains (A, B), we do not need to do anything about it. For each WS
pair (A, B) that is changed (A’, B'), in order to maintain a spectral sparsifier of Biclique(A’, B’), we
need to find a new uniform sample from Biclique(A’, B’). Simply drawing another uniform sample
from A’ x B’ cannot be done fast enough when |A’ x B’| is large and this resampling will cause a
lot of edge weight changes in the final sparsifier, which is not optimal.

To overcome this barrier, suppose after an update, a WS pair (A, B) is changed to (4’, B). Since
the size difference between A and A’ and the size difference between B and B’ are at most constant,
the size of (A’ x B’) N (A x B) is much larger than the size of (A’ x B’)\(A x B). Therefore,
when we draw a uniform sample from A’ x B’, most of the edges in the sample should be drawn
from (A’ x B’) N (A x B). Since we already have a uniform sample F from A x B, which contains
a uniform sample from (A’ x B’) N (A x B), we can reuse F in the following way:

Let H = EN (A’ x B’). For each edge that needs to be samples, we flip an unfair coin for which
|[(A’xB)N(AxB)|

the probability of landing on head is [A7XB]

visual example):

, and we do the following (See Figure 2 for a

e If the coin lands on head, we sample an edge from H without repetition;
* Otherwise we sample an edge from (A’ x B’)\(A x B) without repetition.

Algorithm 7 in Section D.5 is a detailed version of this resampling scheme. With properly set
probability for the coin flip, doing the sampling this way generates a uniform sample of A’ x B’, and
with high probability, the difference between the new sample and E is small.

However, in this process, although the difference between the new sample and E is small, we still
need to flip a coin for each new sample point. When the sample size is big, this can be slow.

Under review as a conference paper at ICLR 2025

The running time of resampling can be improved by removing a small number of edges from E.
Indeed, suppose we want to resample s edges from A’ x B’, the number of edges that need to be drawn

from (A’ x B")\(A x B) follows a Binomial distribution with parameters s and %.
We have the following improved resampling algorithm:
Let H=EnN (A x B).

w).

* Generate a random number = under Binomial(s, AT B| ;

* Remove = + |H| — s pairs from H;
* Sample x new edges uniformly from (A’ x B’)\(A x B) and add them to H.

Since x has n°(!) expected value, with high probability (Markov inequality), z is n°(!), the difference
between E and the new sample is 7n°(!), and the resampling process can be done in n°(!) time.

We omitted the edge case where the size of H is less than s — x. Algorithm 8 in Section D.6 is a
detailed version of this sublinear resampling scheme.

Dynamic update. Combining the above, we can update the spectral sparsifier (see Section D.7 for
details). When a point location update occurs, suppose point z; is moved to z. We use the ultra low
dimensional JL projection matrix to find the O(k)-dimensional images of x; and z. Then we update
the O(k)-dimensional WSPD. For each O(k)-dimensional modified pair in the WSPD, we find the
corresponding d-dimensional modified pairs, and resample edges from these d-dimensional modified
pairs to update the spectral sparsifier. Since there are 2°(*) log v modified pairs in each update and
for each modified pair, with probability 1 — &, the uniform sample can be update in O (5~ e~2n°(M)
time, the dynamic update can be completed in O(6~'e~2n°(!) log o) time per update.

4.2 ADAPTIVE ADVERSARIAL UPDATES

The dynamic algorithm above is only able to handle oblivious updates. Recall the building blocks
of the dynamic update algorithms. We compute the JL projection of the update points, update the
WSPD for the low dimensional projections, and resample from the corresponding d-dimensional
bicliques. Among these steps, the WSPD update algorithm is deterministic; the resampling algorithm
uses fresh randomness for every round of updates. Therefore, the only building part that can be
exploited by an adaptive adversary is the JL projection. Below in this overview, we explain how we
achieve a JL distance estimation against adaptive adversaries. In this section, we provide an overview
of techniques we use for adversarial analysis.

4.2.1 ADVERSARIAL DISTANCE ESTIMATION
Let a random vector V' = (V,Va,---,Vy) € R? be sampled from Gaussian distribution and
U= ”—‘1/”‘/ be the normalized vector. Let vector Z = (Uy, Uy, --- ,Ux) € R¥ be the projection of
U onto the first £ components. From the properties of random variables sampled from Gaussian
distribution, we can compute Pr[d(VZ+- - -+ V}2) < kB(V2+- - -+V?)] via algebraic manipulations.
Let L = || Z||?. We show that when 3 < 1, we have Pr[L < %k] < exp(4(1 — B +1np3)) and when
B > 1, we have Pr[L > %k] < exp(4(1 — B+ Inp)). By carefully choosing 8 = n=2/F < 1, we
can prove Pr[L < %’“] < n~¢. And when 8 = n'/*, we can prove Pr[L > %C] < exp(— log'? n).
With the above analysis in hand, we can prove that there exists a map f : R? — R¥ such that for
each fixed points u, v € R%, we have

lu—vll3 < [1f (w) = f(0)]3 < exp(co - Vogn)llu — vl|3
with high success probability. We design a ep-net of {z € R? | ||z||2 < 1} denoted as N which
contains | N| < (10/€9)©(°8™) points (Here we assume d = O(logn)). Then we prove that for all
net points, the approximation guarantee still holds with high success probability via union bound.
Finally, we want to generalize the distance estimation approximation guarantee to all points on the
unit ball by quantizing the off-net point to its nearest on-net point. After rescaling the constant, we
can obtain the same approximation guarantee with high probability.

Given a set of data points {z; ™1, and a sketching matrix IT € R¥*d defined in Definition G.1,
we initialize a set of precomputed projected data points z; = II - x;. To answer the approximate
distance between a query point and all points in the data structure, we compute the distance as
u; = n''* . \/dJk - ||T; — Tq||» and prove it provides exp(©(y/logn))-approximation guarantee
against adversarially chosen queries. When we need to update the ¢-th data point with a new vector
z € RY, we update z; with IT - z;.

Under review as a conference paper at ICLR 2025

4.2.2 SPARSIFIER WITH ROBUSTNESS TO ADVERSARIAL UPDATES

With the estimation robust for adversarial query, we are able to get a spectral sparsifier which supports
adversarial updates of points, by applying the data structure in the construction of sparsifier (Setting
the sketching dimension to be O(y/logn)). Here we provide overview of our design to make it
possible.

Net argument. In order to make the distance estimation robust, one needs to argue that, for arbitrary
point, it has high probability to have high precision. The data structure we use for distance estimation
has a failure probability of n~¢, where c is a constant we can set to be small. We can build an e-net
N with size of |[N| = poly(n). Then by union bound over the net, the failure probability of distance
estimation on the net is bounded by n°()=¢. Then by triangle inequality, we directly get the succeed
probability guarantee for arbitrary point queries.

« and d induce the size of the net. From the discussion above, we note that, in order to make
the e-net sufficient for union bound, it must have the size of poly(n). From another direction, we
need to make that, all the points in the set are distinguishable in the nets, i.e., for two different points
A B¢ R?, the closest points of the net to A and B are different. To make sure this, we must set
the gap €; of the net to be less than the minimum distance of the points in the set. Without loss of
generality, we first make the assumption that, all the points are in the /5 unit ball of R?, i.e., the set

{z € R | ||z|]2 < 1}. Then by the definition of aspect ratio o 1= —2=weP =9 he minimum
mings ,/cp d(z',y")

distance of the points in P is 1/«. Thus, when we set the gap e; < C - a~1 for some constant C
small enough, every pair of points x,y € P is distinguishable in the net. Then there are O(a?) points
in the net of the /5 unit ball in R? (See Figure 3).

Balancing the aspect ratio and dimension. By the above paragraph, we know the set size is O(a)
to make the points distinguishable. Recall that, our distance estimation data structure has failure
probability of n™¢. And in order to make the union bound sufficient for our net, we need to apply
it over the | N|? pairs from N. That is, to make the total failure probability sufficient, we need to
restrict | V| = poly(n). And in the former paragraphs, we already know that |N'| = O(a?), thus we
have the balancing constraint of the aspect ratio and dimension a? = O(poly(n)).

4.3 MAINTAINING A SKETCH OF AN APPROXIMATION TO LAPLACIAN MATRIX
MULTIPLICATION

Let M be an n x n matrix and x be a vector in R™. We say a vector b is an e-approximation to

Mz if ||b — Mz||p+ < €]|Mx||ari. Note that ||z]|4 := V& T Az. Let G be a graph and H be a
e-spectral sparsifier of G. By definition, this means (1 — €)Lg < Ly < (1 4 €) L. Note that, if A
is a symmetric PSD matrix and symmetric B is a matrix such that (1 — €)A < B < (1 + €) A, then
we have

|Bo— Av|ar < el Av]l s

holds for all v. Then, we have: Let G be a graph on n vertices and H be a e-spectral sparsifier
of G. For any v € R", Lyv is an e-approximation of Lgv. Thus, to maintain a sketch of an
e-approximation of Lgz, it suffices to maintain a sketch of Ly x.

The high level idea is to combine the spectral sparsifier defined in Section D and a sketch matrix to
compute a sketch of the multiplication result L v and try to maintain this sketch when the graph and
the vector change.

We here justify the decision of maintaining a sketch instead of the directly maintaining the
multiplication result. Let the underlying geometry graph on n vertices be GG and the vector be v € R™.
When a point is moved in the geometric graph, a column and a row are changed in L. We can
assume the first row and first column are changed with no loss of generality. When this happens, if
the first entry of v is not 0, all entries will change in the multiplication result. Therefore, it takes at
least Q2(n) time to update the multiplication result. In order to spend subpolynomial time to maintain
the multiplication result, we need to reduce the dimension of vectors. Therefore, we use a sketch
matrix (with m = e =2 log(n/J) rows, see Lemma E.3 for details) to project vectors down to lower
dimensions.

Maintaining the multiplication result efficiently. In order to speed up the update, we generate

two independent sketches ® and ¥, and maintain a sketch of Ly, denoted by Ly = ® Ly U7 and
a sketch of v denoted by v = Wo. Since ® and ¥ are generated independently, in expectation
OLy U T Uy = &L yv. We store this result as the sketch.

Under review as a conference paper at ICLR 2025

Our spectral sparsifier has the property that with high probability, each update to the geometric
graph G incurs only a sparse changes in the sparsifier H, and this update can be computed efficiently.
Therefore, when an update occurs to G, ALy is sparse, so PAL gUT canbe computed efficiently.
We use PALy VT to update the sketch.

When a sparse update occurs to v, WAwv can be computed efficiently. Since Ly and UAv are

m-dimensional operator and vector, Ly WA can be computed efficiently. We use LyUAvto update
the sketch.

4.4 MAINTAINING A SKETCH OF AN APPROXIMATION TO THE SOLUTION OF A LAPLACIAN
SYSTEM

‘We start with another folklore fact:
Fact 4.1 (folklore). If (1 — €)Le < Ly < (1+ €)Lg, then (1 — 2¢)LL, < L, < (14 2¢)L},.

Therefore, by using that fact, we have: Let G be a graph on n vertices and H be a e-spectral
sparsifier of GG. For any vector b, LLb is an e-approximation of Lgb. Thus, to maintain a sketch of

an e-approximation of Lgx, it suffices to maintain a sketch of LL:C. The high level idea is again to
combine the spectral sparsifier defined in Section D and a sketch matrix to compute a sketch of the

multiplication result LLU and try to maintain this sketch when the graph and the vector change.

Caveat: using a different sketch. When trying to maintain a sketch of a solution to Lyz = b,
the canonical way of doing this is to maintain T such that ® Ly T = ®b. However, here 7 is still an
n-dimensional vector and we want to maintain a sketch with lower dimension. Therefore, we apply
another sketch ¥ to T and maintain Z such that ®L 5 ¥ 7 = Pb.

Maintaining the inversion result efficiently. We maintain a sketch of L, denoted by L H =

®Ly U and a sketch of b denoted by b = ®b. Since Ly is a m-dimensional operator, its pseudoin-
verse can be computed efficiently in m® time, where w is the matrix multiplication constant. We

use LL to denote the pseudoinverse of Ly, and compute Ly - b. We store this multiplication result
as the sketch. Our spectral sparsifier has the property that with high probability, each update to the
geometric graph G incurs only a sparse changes in the spars1ﬁer H, and this update can be computed
efficiently. Therefore, when an update occurs to G, ALy is sparse, so PALy W can be computed
efﬁ01ently We use PAL Y to update the Ly and recompute LT We then update the sketch to
LL b with the updated L}I. When a sparse update occurs to b, PAb can be computed efficiently.
Since LL and ®Ab are m-dimensional operator and vector, LL ®Ab can be computed efficiently.
We use LL WAb to update the sketch.

5 CONCLUSION

In this paper, we presented dynamic algorithms for maintaining geometric graphs efficiently. Our
main contributions include the introduction of the DYNAMICGEOSPAR data structure and techniques
for handling adversarial queries and low-dimensional sketches. We demonstrated near-optimal
initialization and update times, significantly improving existing methods. By combining spectral
sparsification and Johnson-Lindenstrauss projections, we ensured efficient recomputation of graph
structures with sparse changes. We proved that our data structure can dynamically maintain a (1 + €)-
spectral sparsifier with high probability, leverage JL projections to maintain low-dimensional sketches
for efficient updates and queries, and design algorithms that are robust against adaptive adversarial
queries. These contributions have significant practical implications for real-time updates in geometric
graphs, with potential for broad impact across various domains in computer science.

6 LIMITATIONS

Our dynamic algorithms are optimized for fixed dimensionality and specific kernel functions. Perfor-
mance may degrade in high-dimensional spaces or with non-(C, L)-Lipschitz kernels. Additionally,
our methods assume a bounded aspect ratio, which may not hold in all scenarios. Future work will
address these limitations and extend applicability.

Under review as a conference paper at ICLR 2025

REFERENCES

Ittai Abraham, David Durfee, loannis Koutis, Sebastian Krinninger, and Richard Peng. On fully
dynamic graph sparsifiers. In Irit Dinur (ed.), IEEE 57th Annual Symposium on Foundations
of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New
Jersey, USA, pp. 335-344. IEEE Computer Society, 2016. doi: 10.1109/FOCS.2016.44. URL
https://doi.org/10.1109/FOCS.2016.44.

Ahmed Alaoui and Michael W Mahoney. Fast randomized kernel ridge regression with statistical
guarantees. Advances in Neural Information Processing Systems, 28:775-783, 2015.

Josh Alman and Zhao Song. Fast attention requires bounded entries. arXiv preprint arXiv:2302.13214,
2023.

Josh Alman, Timothy Chu, Aaron Schild, and Zhao Song. Algorithms and hardness for linear algebra
on geometric graphs. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pp. 541-552. IEEE, 2020.

Haim Avron, Kenneth L Clarkson, and David P Woodruff. Sharper bounds for regularized data fitting.
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(Approx-Random), 2017a.

Haim Avron, Michael Kapralov, Cameron Musco, Christopher Musco, Ameya Velingker, and Amir
Zandieh. Random fourier features for kernel ridge regression: Approximation bounds and statistical
guarantees. In International Conference on Machine Learning, pp. 253-262. PMLR, 2017b.

Arturs Backurs, Moses Charikar, Piotr Indyk, and Paris Siminelakis. Efficient density evaluation
for smooth kernels. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science
(FOCS), pp. 615-626. IEEE, 2018.

Rick Beatson and Leslie Greengard. A short course on fast multipole methods. Wavelets, multilevel
methods and elliptic PDEs, 1:1-37, 1997.

Sabri Boughorbel, Jean-Philippe Tarel, Frangois Fleuret, and Nozha Boujemaa. The gcs kernel
for svm-based image recognition. In Artificial Neural Networks: Formal Models and Their
Applications—ICANN 2005: 15th International Conference, Warsaw, Poland, September 11-15,
2005. Proceedings, Part II 15, pp. 595-600. Springer, 2005.

Jan van den Brand, Binghui Peng, Zhao Song, and Omri Weinstein. Training (overparametrized)
neural networks in near-linear time. In ITCS. arXiv preprint arXiv:2006.11648, 2021.

Jan van den Brand, Yu Gao, Arun Jambulapati, Yin Tat Lee, Yang P Liu, Richard Peng, and Aaron
Sidford. Faster maxflow via improved dynamic spectral vertex sparsifiers. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, pp. 543-556, 2022.

Paul B. Callahan and S. Rao Kosaraju. A decomposition of multidimensional point sets with applica-
tions to k-nearest-neighbors and n-body potential fields. J. ACM, 42(1):67-90, Jan 1995. ISSN
0004-5411. doi: 10.1145/200836.200853. URL https://doi.org/10.1145/200836.
200853.

Moses Charikar and Paris Siminelakis. Hashing-based-estimators for kernel density in high dimen-
sions. In 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pp.
1032-1043. IEEE, 2017.

Michael B Cohen, Rasmus Kyng, Gary L Miller, Jakub W Pachocki, Richard Peng, Anup B Rao,
and Shen Chen Xu. Solving sdd linear systems in nearly m log1/2 n time. In Proceedings of the
forty-sixth annual ACM symposium on Theory of computing, pp. 343-352, 2014.

Michael B Cohen, Jelani Nelson, and David P Woodruff. Optimal approximate matrix product in
terms of stable rank. arXiv preprint arXiv:1507.02268, 2015.

Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current matrix
multiplication time. In STOC, 2019.

10

Under review as a conference paper at ICLR 2025

Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and lindenstrauss.
Random Structures & Algorithms, 22(1):60-65, 2003.

Yichuan Deng, Zhao Song, Lichen Zhang, and Ruizhe Zhang. Efficient algorithm for solving
hyperbolic programs. arXiv preprint arXiv:2306.07587, 2023.

David Durfee, Yu Gao, Gramoz Goranci, and Richard Peng. Fully dynamic spectral vertex sparsifiers
and applications. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pp. 914-925, 2019.

John Fischer and Sariel Har-Peled. Dynamic well-separated pair decomposition made easy. In 17th
Canadian Conference on Computational Geometry, CCCG 2005, 2005.

Francois Fleuret, Hichem Sahbi, et al. Scale-invariance of support vector machines based on the
triangular kernel. In 37d International Workshop on Statistical and Computational Theories of
Vision, pp. 1-13. Citeseer, 2003.

Yu Gao, Yang P Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow faster
than goldberg-rao. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science
(FOCS), pp. 516-527. IEEE, 2022.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with structured state
spaces. CoRR, abs/2111.00396, 2021a. URL https://arxiv.org/abs/2111.00396.

Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and Christopher Ré.
Combining recurrent, convolutional, and continuous-time models with linear state-space layers,
2021b. URL https://arxiv.org/abs/2110.13985.

Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint arXiv:2211.06033,
2022.

Sariel Har-Peled. Geometric approximation algorithms. American Mathematical Soc., 2011. No.
173.

Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving sdp faster: A
robust ipm framework and efficient implementation, 2021.

Haotian Jiang, Yin Tat Lee, Zhao Song, and Lichen Zhang. Convex minimization with integer minima
in o(n*) time. arXiv preprint arXiv:2304.03426, 2023.

Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix inverse for
faster Ips. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
(STOC), 2021.

Shunhua Jiang, Bento Natura, and Omri Weinstein. A faster interior-point method for sum-of-squares
optimization, 2022.

William B Johnson and Joram Lindenstrauss. Extensions of lipschitz mappings into a hilbert space.
Contemporary mathematics, 26(189-206):1, 1984.

Daniel M Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. In SODA, pp. 1195.
Society for Industrial and Applied Mathematics, 2012.

Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple, combinatorial
algorithm for solving sdd systems in nearly-linear time. In Proceedings of the forty-fifth annual
ACM symposium on Theory of computing, pp. 911-920, 2013.

Jakub Kone¢ny, H Brendan McMahan, Felix X Yu, Peter Richtarik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency. arXiv
preprint arXiv:1610.05492, 2016.

Ioannis Koutis, Gary L Miller, and Richard Peng. A nearly-m log n time solver for sdd linear systems.
In 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 590-598. IEEE,
2011.

11

Under review as a conference paper at ICLR 2025

Ioannis Koutis, Gary L Miller, and Richard Peng. Approaching optimality for solving sdd linear
systems. SIAM Journal on Computing, 43(1):337-354, 2014.

Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians-fast, sparse,
and simple. In 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS),
pp. 573-582. IEEE, 2016.

Rasmus Kyng, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and Daniel A Spielman. Sparsified
cholesky and multigrid solvers for connection laplacians. In Proceedings of the forty-eighth annual
ACM symposium on Theory of Computing, pp. 842-850, 2016.

Jason D Lee, Ruoqi Shen, Zhao Song, Mengdi Wang, and Zheng Yu. Generalized leverage score
sampling for neural networks. In NeurIPS, 2020.

Yin Tat Lee and Aaron Sidford. Efficient accelerated coordinate descent methods and faster algorithms
for solving linear systems. In 2013 ieee 54th annual symposium on foundations of computer science,

pp. 147-156. IEEE, 2013.

Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current matrix
multiplication time. In Conference on Learning Theory, pp. 2140-2157. PMLR, 2019.

Xuanqing Liu, Si Si, Xiaojin Zhu, Yang Li, and Cho-Jui Hsieh. A unified framework for data
poisoning attack to graph-based semi-supervised learning. In Advances in Neural Information
Processing Systems (NeurIPS), 2019.

Per-Gunnar Martinsson. Encyclopedia entry on fast multipole methods. University of Colorado at
Boulder, 1(5):9, 2012.

Charles A Micchelli. Interpolation of scattered data: distance matrices and conditionally positive
definite functions. Springer, 1984.

Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In 2077 IEEE 58th Annual Symposium
on Foundations of Computer Science (FOCS), pp. 950-961. IEEE, 2017.

Jelani Nelson and Huy L Nguyén. Osnap: Faster numerical linear algebra algorithms via sparser
subspace embeddings. In FOCS, pp. 117-126. IEEE, 2013.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
In Advances in neural information processing systems (NeurlPS), pp. 849-856, 2002.

Lianke Qin, Zhao Song, Lichen Zhang, and Danyang Zhuo. An online and unified algorithm
for projection matrix vector multiplication with application to empirical risk minimization. In
International Conference on Artificial Intelligence and Statistics, pp. 101-156. PMLR, 2023.

Kent Quanrud. Spectral sparsification of metrics and kernels. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pp. 1445-1464. SIAM, 2021.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines. Advances in
neural information processing systems, 20, 2007.

Carl Edward Rasmussen and Hannes Nickisch. Gaussian processes for machine learning (gpml)
toolbox. J. Mach. Learn. Res., 11:3011-3015, 2010. ISSN 1532-4435.

Zhao Song, Shuo Yang, and Ruizhe Zhang. Does preprocessing help training over-parameterized
neural networks? Advances in Neural Information Processing Systems, 34:22890-22904, 2021a.

Zhao Song, Lichen Zhang, and Ruizhe Zhang. Training multi-layer over-parametrized neural network
in subquadratic time. arXiv preprint arXiv:2112.07628, 2021b.

César R Souza. Kernel functions for machine learning applications. Creative commons attribution-
noncommercial-share alike, 3(29):1-1, 2010.

Daniel A Spielman and Nikhil Srivastava. Graph sparsification by effective resistances. SIAM Journal
on Computing, 40(6):1913-1926, 2011.

12

Under review as a conference paper at ICLR 2025

Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the Thirty-Sixth Annual
ACM Symposium on Theory of Computing, STOC ’04, pp. 81-90, New York, NY, USA, 2004.
Association for Computing Machinery. ISBN 1581138520. doi: 10.1145/1007352.1007372. URL
https://doi.org/10.1145/1007352.1007372.

Michele Trenti and Piet Hut. N-body simulations (gravitational). Scholarpedia, 3(5):3930, 2008.
Ulrike von Luxburg. A tutorial on spectral clustering, 2007.

David P Woodruff. Sketching as a tool for numerical linear algebra. Foundations and Trends® in
Theoretical Computer Science, 10(1-2):1-157, 2014.

Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. Kdeformer: Accelerating transformers via
kernel density estimation. arXiv preprint arXiv:2302.02451, 2023.

Xiaojin Zhu. Semi-supervised learning with graphs. PhD thesis, Carnegie Mellon University,
language technologies institute, school of Computer Science, 2005a.

Xiaojin Jerry Zhu. Semi-supervised learning literature survey. Technical report, University of
Wisconsin-Madison Department of Computer Sciences, 2005b.

13

Under review as a conference paper at ICLR 2025

Roadmap. We divide the appendix as follows. Section A gives the preliminary for our paper.
Section B discusses the sketching techniques we use. Section D gives the fully dynamic spectral
sparsifier for geometric graphs. Section E gives our sketch data structure for matrix multiplication.
Section F introduces the algorithm for solving Laplacian system. Section G introduces the distance
estimation data structure supporting adversarial queries. Based on that, Section H gives our spectral
sparsifier that is robust to adaptive adversary.

A PRELIMINARY

A.1 NOTATIONS

For any two sets A, B, we use AAB to denote (A\B)U (B\A). Given two symmetric matrices A, B,
we say A < Bif Vo, v Az < T Bx. For a vector z, we use ||z||2 to denote its entry-wise £ norm.
For psd matrix A, we use A’ to denote the pseudo inverse of A. For two point sets A, B, we denote
the complete bipartite graph on A and B by Biclique(A4, B). We use j,, ; to denote an elementary
unit vector in R™ with 4-th entry 1 and others 0. We use Tpat(a, b, ¢) to denote the running time of
computing the product of two matrices in the shape of R**? and R”*¢ respectively. For a matrix
A € R™*" we use ||A|| r to denote its Frobenius norm, i.e., || A||p := (ZiE[m],je[n] A?,j)l/Q' For a

matrix, we use AT to denote the pseudo inverse of matrix A. For a vector x, and a psd matrix A, we
use ||z|4 == (z T Az)'/2.

A.2 DEFINITIONS
We define the (C, L)-Lipschitz function as follows:
Definition A.1. For C > 1 and L > 1, a function is (C, L)-Lipschitz if for all ¢ € [1/C, C],

1 _ flex)

— <

kT flz)

SCL.

We define the Laplacian of a graph:

Definition A.2 (Laplacian of graph). Let G = (V, E, w) be a connected weighted undirected graph
with n vertices and m edges, together with a positive weight function w : E — R.. If we orient the
edges of G arbitrarily, we can write its Laplacian as

Lg=ATWA,
where A € R™*™ is the signed edge-vertex incidence matrix, given by

1, if v is the head of e
A(e,v) =< —1 ifvisthe tail of e
0 otherwise

and W € R"™™ is the diagonal matrix such that W (e, e) = w(e), for all e € E. We use {a¢}eck
to denote the row vectors of A.

It follows obviously that L is positive semidefinite since for any x € R”,
" Lox =x" ATW Az = |WY2Az|3 > 0.

Since L¢ is symmetric, we can diagnolize it and write
n—1
LG = E)\iuiu?,
i=1

where A1, ..., \,_1 are the nonzero eigenvalues of Lg and w1, ..., u,_1 are the corresponding
orthonormal eigenvectors. The Moore-Penrose Pseudoinverse of L is

n—1
1
T }: T
i=1 """

14

Under review as a conference paper at ICLR 2025

A.3 BASIC ALGEBRA

Fact A.3 (Folklore). Let ¢ € (0,1/2). Given two positive semidefinite matrix A € R"*™ and
B € R™ ™ such that

(1—e) A= B=(1+¢)A,
then we have:

e Part 1. (14+¢)7tAT < BT < (1 —¢)71AT.
* Part2. ||Bx — Az|| o+ < €| Ax|| g1, V2 € R™.

Proof. Proof of Part 1. The first statement follows from Fact A.4 directly.
Proof of Part 2.

|Bx — Az|%; =2 (B — A)AT(B — A)x

|| Az|)% =€ - x T AAT A
It is obvious that
—eA<XB—-A=<eA
Thus by Fact A.5, we have
(B—A)AT(B—A) < 2AATA.
Thus we have for any x € R",
|Bx — Ax||?41 =z (B-A)A (B - Az

<.z (B-AAN(B- Az

= | Al
Thus we complete the proof. O
Fact A4. If A < B, then Bt < Af.

Proof. We denote the SVD of A and Bby A = UaX 4V, and B = UgX gV}, , then we have for
any x € R",

2" (BY — AN =2 (Vi 25U — Vi X' Us)z
=2V X5 Upr — 2"V X, Unx
=(z"UESpVpr) ' — (2T U SaVaz) ™!
=(z'Bzx)™! — (2 Ax)~!
=0,
where the last step follows from A < B. Thus we complete the proof. O

Fact A.5. Let A, C denote two psd matrices. Let B be a symmetric matrix. Suppose —C' < B < C,
then we have

BAB X CAC

A.4 JOHNSON-LINDERSTRAUSS TRANSFORM

A.4.1 ULTRA-LOW DIMENSION JL

Lemma A.6 (Ultra-low Dimensional Projection Johnson & Lindenstrauss (1984); Dasgupta & Gupta
(2003)). For k = o(log n), with high probability at least 1 — 1/ poly(n) the maximum distortion in
pairwise distance obtained from projecting n points into k dimensions (with appropriate scaling) is
at most no(l/k), eg.,

lz = yll2 < (@) = F()llz < n®V" |z —yll2

where f is the projection from R to RF.

15

Under review as a conference paper at ICLR 2025

Throughout this paper, we use Cj; to denote the constant on the exponent, i.e. the distortion is
bounded above by nCi*(1/%),

Lemma A.7 (Johnson & Lindenstrauss (1984); Dasgupta & Gupta (2003)). Let k < d. Let
Vi, Va, -+ | Vy be d independent Gaussian N (0, 1) random variables, V. = (V1,Va,--- ,Vy), and
let U = ﬁ\/. Let the vector Z = (Uy,Us, - -+ ,Uy,) € R¥ be the projection of U onto the first k

components and let L = || Z||? be the square of the norm of Z. Then
e Part 1. If B < 1, then

Bk

P < 25 < 1+ L=

an) s exp(5(1— 6 +Inf)

e Part 2. If B > 1, then

Bk 1- B)k

piir > 1< 02 (4 L2 cep(G - 5)

A.4.2 USEFUL LEMMAS ON JL
Using Lemma A.7, we can show that

Lemma A.8. Let 3 = n'/*, then we have Pr[L > %k] < exp(—1kn!/*) < exp(—log"? n).

Proof. We show that

Pr[L > %k} < eXp(g(l —B+1np))
< eXp(—gg)
1/k
= exp(—gn2)

< exp(—log"?n)

where the first step follows from Lemma A.7, the second step follows from 3/2 > 1 4 In 3, the
third step follows from 8 = n'/*, and the last step follows from n'/*¥ > log' ¥ n. O

Using Lemma A.7 and choosing parameter 3 carefully, we can show that:
Lemma A.9. Let 3 = n~2¢/k e = 2=2¢(08)/k Jo < 1, then we have Pr[L < %k] <n~C

Proof. We show that

Bk k/2 (1-P)k (d—k)/2
PriL < —| < (1 BT PR
1 — Bk, - ra—p
—gk2.1 (7 Ry - B
B (1 + @)
< pk/2. gk/2
S (ﬂe)k/Q
<n”°
where the first step comes from Lemma A.7, the second step follows that (d—k)/2 = %) k(1;5) ’

the third step follows (1 + %)a = e and w < g, the fourth step simplifies the term, and the last

step follows from 3 = n=2¢/F /e,
O
A.5 WELL SEPARATED PAIR DECOMPOSITION (WSPD)

We assume that throughout the process, all points land in [0, 1] and the aspect ratio of the point set
is at most a.

Definition A.10. The aspect ratio (a) of a point set P is

_ maxgyep d(z,y)
ming: s epd(a’,y')

16

Under review as a conference paper at ICLR 2025

We state several standard definitions from literature Callahan & Kosaraju (1995).

Definition A.11 (Bounding rectangle). Let P C R? be a set of points, we define the bounding
rectangle of P, denoted as R(P), to be the smallest rectangle in R? such that encloses all points
in P, where “rectangle” means some cartesian product [x1,x}] X [T2,25] X -+ X [zq, 2] € R™.
For all i € [d], We define the length of R in i-th dimension by I;(R) := z; — x;. We denote
Imax(R) := max;eq li(R) and lmin(R) := min;cq) l;(R). When 1;(R) are all equal for i € [d],
we say R is a d-cube, and denote its length by I(R). For any set of points P C R%, we denote
1i(P) = l;(R(P)).

Definition A.12 (Well separated point sets). Point sets P, Q are well separated with separation s if
R(P) and R(Q) can be contained in two balls of radius r, and the distance between these two balls
is at least s - r, where we say s is the separation.

Definition A.13 (Interaction product). The interaction product of point sets P, Q), denoted by P ® @)
is defined as

PoQ:={{p,q} |pe P.qeQ,p#q}

Definition A.14 (Well separated realization). Let P,Q C RY be two sets of points. A well separated
realization of P ® Q is a set {(P1,Q1), ..., (Pk, Qr)} such that

1. P,C P, Q; CQjforallic [k]
2. PnQ;=0forallic [k]

3 PeQ=UL PoQ:
4. P; and Q; are well-separated.
5. (PZ’ ® Ql) n (Pj ® Qj) = () fori # ;.

Throughout the paper, we will mention that a set P is associated with a binary tree 1. Here we
mean the tree 7" has leaves labeled by a set containing only one point which is in P. All the non-leaf
nodes are labeled by the union of the sets labeled with its subtree.

Given set P C R%, let T be a binary tree associated with P. For A, B C P, we say that a
realization of A ® B uses T if all the A; and B; in the realization are nodes in 7T'.

Definition A.15 (Well separated pair decomposition). A well separated pair decomposition (WSPD)
of a point set P is a structure consisting of a binary tree T associated with P and a well separated
realization of P ® P uses T.

The result of Callahan & Kosaraju (1995); Har-Peled (2011) states that for a point set P of n
points, a well separated pair decomposition of P of O(n) pairs can be computed in O(nlogn) time.
There are two steps of computing a well separated decomposition: (1) build compressed quad tree
(defined below in Definition A.17) for the given point set; (2) find well separated pairs from the tree
(Algorithm 1).

Definition A.16 (Quad tree). Given a point set P C [0, 1)d, a tree structure T can be constructed in
the following way:

s The root of T is the region [0,1)%

s For each tree node n € T, we can obtain 2% subregions by equally dividing n into two

halves along each of the d axes. The children of n in T are the subregions that contain
points in P. n has at most 2¢ children.

* The dividing stops when there is only one point in the cell.
In a quad tree, we define the degree of a tree node to be the number of children it has. There can
be a lot of nodes in T that has degree 1. Particularly, there can be a path of degree one nodes. Every

node on this path contain the same point set. To reduce the size of the quad tree, we compress these
degree one paths.

Definition A.17 (Compressed quad tree). Given a quad tree T, for each a path of degree one nodes,
we replace it with the first and last nodes on the path, with one edge between them. We call this
resulting tree a compressed quad tree.

Lemma A.18 (Chapter 2 in Har-Peled (2011)). The compressed quad tree data structure T has the
following properties:

* Given a point p, p exists in at most O(log &) quad tree nodes.
o The height of the tree is O(min(n, log a)).

17

Under review as a conference paper at ICLR 2025

T supports the following operations:

* QTFASTPL(T, p) returns the leaf node containing p, or the parent node under which {p}
should be inserted if p does not exist in T, in O(logn) time.
* QTINSERTP(T, p) adds p to the T in O(logn) time.
* QTDELETEP(T, p) removes p from T in O(log n) time.
Lemma A.19 (Theorem 2.2.3 in Har-Peled (2011)). Given a d-dimensional point set P of size n, a
compressed quad tree of P can be constructed in O(dnlogn) time.

Algorithm 1 Finding well separated pairs

1: procedure WSPD(Q, u, v) > @ is a compressed quad tree, u, v are tree nodes on @,
Lemma A.21
2: if u and v are well separated then
3: return (u,v)
4: else
5: if [nax (1) > lnax(v) then
6: Let uq, ..., u,, denote the children of u
7: return | J, WSPD(Q, u;, v)
8: else
9: Let vy, ..., v,, denote the children of v
10 return | J, WSPD(Q, u, v;)
11: end if
12: end if
13: end procedure
14:
15: procedure COMPUTEW SPD(Q) > @ is a compressed quad tree

16: r < root of)
17: return WSPD(Q, r,)
18: end procedure

Theorem A.20 (Callahan & Kosaraju (1995)). For point set P C R? of size n.and s > 1, a s-WSPD
of size O(s™n) can be found in O(s*n + nlogn) time and each point is in at most 2°¥ log « pairs.

Lemma A.21 (Callahan & Kosaraju (1995); Har-Peled (2011)). Given a compressed quad tree ()
of n points in R, two nodes u,v in the tree Q. The procedure COMPUTEW SPD (Algortihm 1)
generates the WSPD from the tree Q), and runs in time

024 -nlogn).

A.6 PROPERTIES OF (C, L)-LIPSCHITZ FUNCTIONS
Lemma A.22 (Lemma 6.8 in Alman et al. (2020)). Let G be a graph and G’ be another graph on
the same set of vertices with different edge weights satisfying

%wg/(e) < wG(G) < Kwer (6)

Let f : R — R be a (C, L)-lipschitz kernel function (Definition A.1), for some C < K. Let f(G) be
the graph obtained by switching each edge weight from w(e) to f(w(e)). Then,

1
ﬁwgl(e) <wea(e) < K wg (e).
A.7 LEVERAGE SCORE AND EFFECTIVE RESISTANCE
Definition A.23. Given a matrix A € R™*", we define o € R™ to denote the leverage score of A,
ie.,
o; = a; (AT A)a;, Vi € [m)].
Let (G,V, E) be an graph obtained by arbitrarily orienting the edges of an undirected graph,

with n points and m edges, together with a weight function w : £ — R. We now describe the
electrical flows on the graph. We let vector I € R™ denote the currents injected at the vertices.

18

Under review as a conference paper at ICLR 2025

Let I.qge € R™ denote currents induced in the edges (in the direction of orientation) and V' € R”

denotes the potentials induced at the vertices. Let A, W be defined as Definition A.2. By Kirchoff’s

current law, the sum of the currents entering a vertex is equal to the amount injected at the vertex, i.e.,
ATIedge — dext-

By Ohm’s law, the current flow in an edge is equal to the potential difference across its ends times its
conductance, i.e.,

Teqge = WAV.
Combining the above, we have that
It = AT(WAV) = LgV.
If Ioxt LSpan(1,,) = ker(K), that is, the total amount of current injected is equal to the total amount
extracted, then we have that
V = L Ixi.

Definition A.24 (Leverage score of a edge in a graph). We define the effective resistance or leverage
score between two vertices u and v to be the potential difference between them when a unit current is
injected at one that extracted at the other.

Lemma A.25 (Algebraic form of leverage score, Spielman & Srivastava (2011)). Let (G, E, V') be a
graph described as above, for any edge e € E, the leverage score (effective resistance) of e has the
following form

R(e) = ALLAT (e,e),
where the matrix A, L¢ is defined as Definition A.2.

Proof. We now derive an algebraic expression for the effective resistance in terms of LE. For a edge
e € E, we use R(e) to denote its effective resistance. To inject and extract a unit current across the
endpoints of an edge (u,v), we set Io; = a_, which is clearly orthogonal to 1,,. The potentials

induced by Iy at the vertices are given by V' = Lga;r. To measure the potential difference across
e = (u,v), we simply multiply by a. on the left:

Vo =V = (/J/n,v - ,U/n,u)TV = aeLgaZ-

It follows that, the effective resistance across e is given by a,ngaeT and that the matrix ALEAT has
its diagonal entries ALL, AT (e, ¢) = R(e). O
A.8 SPECTRAL SPARSIFIER
Here we give the formal definition of spectral sparsifier of a graph:
Definition A.26 (Spectral sparsifier). Given an arbitrary undirected graph G, let L denote the
Laplacian (Definition A.2) of G. We say H is a e-spectral sparsifier of G if

(1 — G)LG <Ly = (1 + G)Lg.

B SKETCHING TECHNIQUES

B.1 DEFINITIONS
We first introduce the formal definition of the sparse embedding matrix:
Definition B.1 (Sparse Embedding matrix Nelson & Nguyén (2013)). Let h : [n] X [s] — [b/s]
be a random 2-wise independent hash function and o : [n] X [s] — {+1, —1} be a random 4-wise
independent hash function. Then R € RY*™ is a sparse embedding matrix with parameter s if we set
R _1)b/s+h(i,j), = 0(i,7)/s forall (i,7) € [n] x [s] and all other entries to zero.

We also define the JL-moment property:
Definition B.2 (JL-moment property, Definition 12 in Woodruff (2014)). We say a distribution D

on matrices S € R¥*? has the (e, 8, {)-JL moment property if that for all * € R with ||z|s = 1, it
holds that
E 21 <o
E (523~ 1] < e

19

Under review as a conference paper at ICLR 2025

We give the formal definition of approximating matrix product:

Definition B.3 (Approximating matrix product (AMP) Kane & Nelson (2012); Woodruff (2014)).
Let ¢ € (0,1) be a precision parameter. Let 6 € (0,1) be the failure probability. Given any two
matrix A, B each with n rows, we say a randomized matrix R € R**™ from a distribution 11 satisfies
(€, 0)-approximate matrix product of A and B if

Pr|ATRTRB — ATB||r > ¢ | Al - || Bllr] < 6.
B.2 USEFUL RESULTS OF SPARSE EMBEDDING MATRIX

Here in this section, we introduce the following technical theorem from literature, which gives the
concentration property of the sparse embedding matrices.

Lemma B.4 (Theorem 19 in Kane & Nelson (2012)%). Let €,d € (0, 1) be two parameters. Let D be
a distribution over d columns that satisfies the (¢, 6, £)-JL moment property for some £ > 2. Then for
two matrices A, B with n rows, it holds that

Pr]|ATUTUB — ATB|p >3 ¢ Al ||Bl|r] < 6.
There is a result giving the JL-moment property of sparse embedding matrices in literature.

Lemma B.5 (Implicitly4 in Cohen et al. (2015)). The sparse embedding matrix (Definition B.1) with
m = O(e 2 -log(1/8)) and s = Q(e~! - log(1/6)) satisfies (e, 5,10g(1/5))-JL moment property.

Now we give the AMP property of the sparse embedding matrix.

Lemma B.6 (AMP of Sparse Embedding matrix). Let A € R"*% and B € R"*%5 be two
arbitrary matrices. Let R € R™*™ be a Sparse Embedding matrix as defined in Definition B.1 with
m = O0(e 2 -log(1/8)) and s = Q(e~! - log(1/8)) non-zero entries of each column, then it satisfies
(€,6)-AMP of A and B, and AT RT RB can be computed in time

s-nnz(A) + s - nnz(B) 4+ Tmat(da, m,dp).

Proof. By Lemma B.5, R satisfy (¢, d,1og(1/§))-JL moment property. Since log(1/) > 2 trivially
holds, then by Lemma B.4, we proved the correctness of the lemma. It takes s - nnz(A) time to
compute AT R, s-nnz(B) time to compute RB, and Trat(da, m, dp) to compute AT RTRB. [

C ALGORITHM

Here in this section, we give our main algorithm as follows. The main theorem of the algorithm and
the analysis with respect to the correctness and running time can be found in Appendix E.

D FULLY DYNAMIC SPECTRAL SPARSIFIER FOR GEOMETRIC GRAPHS IN
SUBLINEAR TIME

A geometric graph w.r.t. kernel function K : R? x R? — R and points z1, ..., 2, € R?is a graph on
z1,..., T, where the weight of the edge between x; and x; is K(z;, ;). An update to a geometric
graph occurs when the location of one of these points changes.

In a geometric graph, when an update occurs, the weights of O(n) edges change. Therefore,
directly applying the existing algorithms for dynamic spectral sparsifiers (Abraham et al. (2016)) to
update the geometric graph spectral sparsifier will take 2(n) time per update. However by using
the fact that the points are located in R and exploiting the properties of the kernel function, we can
achieve faster update.

Before presenting our dynamic data structure, we first have a high level idea of the static construc-
tion of the geometric spectral sparsifier, which is presented in Alman et al. (2020).

Building Blocks of the Sparsifier. In order to construct a spectral sparsifier more efficiently, one
can partition the graph into several subgraphs such that the edge weights on each subgraph are close.
On each of these subgraphs, leverage score sampling, which is introduced in Spielman & Srivastava
(2011) and used for constructing sparsifiers, can be approximated by uniform sampling.

For a geometric graph built from a d-dimensional point set P, under the assumption that each
edge weight is obtained from a (C, L)-Lipschitz kernel function (Definition A.1), each edge weight

3For examples, see Theorem 17 in Nelson & Nguyén (2013) and Theorem 13 in Woodruft (2014)]
*See Remark 2 at page 9 of Cohen et al. (2015)

20

Under review as a conference paper at ICLR 2025

Algorithm 2 Maintaining a sketch of an approximation to the solution to a Laplacian equation

1: data structure SOLVE > Theorem 2.4 and Theorem F.1
2: members

3 DYNAMICGEOSPAR dgs > This is the sparsifier H
4: d, U € R™*™: two independent sketching matrices

5: L e Rm>m > A sketch of Ly
6: Lt ermxm > A sketch of L1,
7 beR™ > A sketch of b
8: zZeR™ > A sketch of the multiplication result
9: EndMembers
10:
11: procedure INIT(z1, - ,z, € R* b e R")
12: Initialize ¢, ¥
13: dgs. INITIALIZE(Z1, ..., Zy)
14: b+ ®b
15: L+ ®-dgs.GETLAPLACIAN() - ¥ "
16: L'« PSEUDOINVERSE(L)

17: Z+ Lt-b
18: end procedure

20: procedure UPDATEG(z;, z € R?)
21: dgs.UPDATE(z;, 2)
22: L+ L+ ®-dgs.GETDIFF()- ¥

23: L., < PSEUDOINVERSE(L)

new —
24: Z<+ LT-b
25: LV« Ll

26: end procedure

28: procedure UPDATEB(Ab € R™) > Ab is sparse
29: Ab+— ®-Ab

300 Z<«zZ4+LP-AD

31: end procedure

32:
33: procedure QUERY
34: return z

35: end procedure

in the geometric graph is not distorted by a lot from the euclidean distance between the two points
(Lemma A.22). Therefore, we can compute this partition efficiently by finding a well separated pair
decomposition (WSPD, Definition A.15) of the given point set.

A s-WSPD of P is a collection of well separated (WS) pairs (A;, B;) such that foralla # b € P,
there is a pair (A, B) satisfying a € A,b € B, and the distance between A and B is at least s times
the diameters of A and B (A and B are s-well separated). Therefore, the distance between A and B
is a (1 4 1/s)-multiplicative approximation of the distance between any point in A and any point in
B and each WS pair in the WSPD can be viewed as a unweighted biclique (complete bipartite graph).
On an unweighted biclique, uniform random sampling and leverage score sampling are equivalent.
Therefore, a uniformly random sample of the biclique forms a spectral sparsifier of the biclique, and
union of the sampled edges from all bicliques form a spectral sparsifier of the geometric graph.

However, the time needed for constructing a WSPD is exponentially dependent on the ambient
dimension of the point set and thus WSPD cannot be computed efficiently when the dimension is
high. To solve this problem, one can use the ultra low dimensional Johnson Lindenstrauss (JL)
projection to project the point set down to k = o(log n) dimension such that with high probability
the distance distortion (multiplicative difference between the distance between two points and the
distance between their low dimensional images) between any pair of points is at most nCit(1/k)
where Cj is a constant. This distortion becomes an overestimation of the leverage score in the

21

Under review as a conference paper at ICLR 2025

resulting biclique, and can be compensated by sampling n°*" (/%) edges. Then one can perform a 2-
WSPD on the k-dimensional points. Since JL projection gives a bijection between the d-dimensional
points and their k-dimensional images, a 2-WSPD of the k-dimensional point set gives us a canonical
(2 - n€1(1/k)).-WSPD of the d-dimensional point set P. This (2 - n1(1/%))-WSPD of P is what we
use to construct the sparsifier.

Dynamic Update of the Geometric Spectral Sparsifier. We present the following way to update
the above sparsifier. In order to do this, we need to update the ultra low dimensional JL projection,
the WSPD and the sampled edges from each biclique. In order to update JL projection for O(n)
updates, we initialize the JL projection matrix with O(n) points so that with high probability, the
distortion is small for O(n) updates.

To update the WSPD, we note that each point appears only in O(log o) WS pairs and we can find
all these pairs in 2°(%) log o time (Section D.4).

To update the sampled edges, Algorithm 8 updates the old sample to a new one such that with high
probability, the number of edges changed in the sample is at most n°(1) and this can be done in n.°(")
time (Section D.6).

Combining the above, we can update the spectral sparsifier (Section D.7).

Below is the layout of this section. In Section D.1, we provide some definitions. In Section D.2, we
define the members of our data structure. In Section D.3, we present the algorithm for initialization.
In Section D.4 we state an algorithm to find modified pairs in WSPD when a point’s location is
changed. In Section D.5, we first propose a (slow) resampling algorithm takes O(n) time to resample
n°(M) edges. In Section D.6, we then explain how to improve the running time of (slow) resampling
algorithm. In Section D.7, we prove the correctness of our update procedure. In Section D.§, we
apply a black box reduction to our update algorithm to obtain a fully dynamic update algorithm.

D.1 DEFINITIONS
We define our problem as follows:

Definition D.1 (Restatement of Definition 1.1). Given a set of points P C R? and kernel function
K:R% xR — R>. Let G denote the geometric graph that is corresponding to P with the (i, j)
edge weight is w; j := K(z;, x;). Let Le, p denote the Laplacian matrix of graph G. Let € € (0,0.1)
denote an accuracy parameter. The goal is to design a data structure that dynamically maintain a
(1 + €)-spectral sparsifier for G and supports the following operations:

 INITIALIZE(P C R% e € (0,0.1)), this operation takes point set P and constructs a

(1 + €)-spectral sparsifier of L.
» UPDATE(i € [n],z € R?), this operation takes a vector z as input, and to replace x; (in

point set P) by z, in the meanwhile, we want to spend a small amount of time and a small
number of changes to spectral sparisifer so that

Definition D.2 (Restatement of Definition A.10). Given a set of points P = {x1,--- ,2,} C R%
We define the aspect ratio o of P to be

max; ; ||z; — ;|2

ming ; [|z; — ;]2
The main result we want to prove in this section is

Theorem D.3 (Formal version of Theorem 2.1). Let a be the aspect ratio of a d-dimensional point set
P defined above. Let k = o(logn). There exists a data structure DYNAMICGEOSPAR that maintains

a e-spectral sparsifier of size O(n'+°M) for a (C, L)-Lipschitz geometric graph such that
* DYNAMICGEOSPAR can be initialized in
O(ndk + e 2n'ToE/®) lognlog)

time.

* DYNAMICGEOSPAR can handle point location changes. For each change in point location,
the spectral sparsifier can be updated in

O(dk + 2°™ =202 Jog)
time. With high probability, the number of edges changed in the sparsifier is at most

e 2200 po og .

22

Under review as a conference paper at ICLR 2025

D.2 THE GEOMETRIC GRAPH SPECTRAL SPARSIFICATION DATA STRUCTURE
In the following definition, we formally define the members we maintain in the data structure.
Definition D.4. In DYNAMICGEOSPAR, we maintain the following objects:

e P: a set of points in R¢

o H: an n*T°W) size e-spectral sparsifier of the geometric graph generated by kernel K and
points P

» II: a JL projection matrix

* Q: the image of P after applying projection 11

e T: a quad tree of point set)

e P: a WSPD for point set Q) obtained from P

* EDGES: a set of tuples (A;,B;, E;). E; is a set of edges uniformly sampled from
Biclique(X;,Y;), where X; and Y; are the d-dimensional point sets corresponding to A;
and B; respectively

Algorithm 3 Data Structure

1: data structure DYNAMICGEOSPAR > Theorem D.3
2: members > Definition D.4
3 H > An n'*T°() size sparsifier
4: PCR? > A point set for the geometric graph
5: IT € RFxd > Projection matrix
6: Q C R¥ > A set of k = o(logn) dimensional points obtained by applying IT to all points in
P
7: T > A quad tree generated from P’
80 P={(A;B)}", > A WSPD of P based on T
9: EDGES = {(A;, B;, E;)}™ > E; is a set of edges sampled from biclique (X3, Y;), where X

and Y; are the d-dimensional point sets
10: end members
11: end data structure

D.3 INITIALIZATION

Here in this section, we assume that kernel function K(z,y) = f(||z — y||3) is (C, L)-Lipschitz
(Definition A.1).

Algorithm 4 DYNAMICGEOSPAR

1: data structure DYNAMICGEOSPAR > Theorem D.3
2: procedure INITIALIZE(P, ¢, 6, K) > Lemma D.5
3: P+ P

4: IT + arandom (k x d) JL-matrix > Lemma A.6
5: Q«+A{ll-p|pe P}

6: T <+ build a compressed quad tree for) > Lemma A.19
7 P + WSPD(T, root(T),root(T)) > Algorithm 1
8: EDGES, H < INITSPARSIFIER(P, K| ¢, k) > Algorithm 5

9: end procedure
10: end data structure

Lemma D.5. Let a > 0 be defined as Definition A.10. INITIALIZE(P C R% ¢ € (0,0.1),0 €
(0,0.1), K) (Algorithm 4) takes a d-dimensional point set P as inputs and runs in

O(ndk + e 2O/ 00 1661 log)
time, where k is the JL dimension, k = o(logn).
Proof. The running time consists of the following parts:

* Line 4 and Line 5 takes time O(ndk) to Generate the projection matrix and compute the
projected sketch;

23

Under review as a conference paper at ICLR 2025

* By Lemma A.19, Line 6 takes time
O(nklogn);

to build the quad tree.
* By Lemma A.21, Line 7 takes time

O(n x 2" logn)
to generate the WSPD.
* By Lemma D.7, Line 8 takes time
O(e 2Ok 20(h) 160 1 log)
to generate the sparsifier.
Adding them together we have the total running time is
O(ndk 4 e 2n'tOE/R 20 1og nlog a).

Thus we complete the proof.
O

We here state a trivial fact of sampling edges from a graph.

Fact D.6 (Random sample from a graph). For any graph G and a positive integer s € Z.., there
exists a random algorithm RANDSAMPLE(G, s) such that, it takes G and s as inputs, and outputs a
set containing s edges which are uniformly sampled from G without replacement. This algorithm
runs in time O(s).

Now we are able to introduce the initialization algorithm for the sparsifier.

Algorithm 5 DYNAMICGEOSPAR: init sparsifier.

1: data structure > Theorem D.3 DYNAMICGEOSPAR
2: procedure INITSPARSIFER(P, K, ¢, k) > Lemma D.7
3: ‘H < empty graph with n vertices

4: EDGES + 0

5: for (A, B) € P do

6: Find (X C P,Y C P) such that X, Y are the d-dimensional point sets corresponding to

A, B respectively.

7: G + BICLIQUE(K, X,Y)

8: s < e 2nOWE/R)(|A| + |B|) log(|A| + | B|)

9: E + RANDSAMPLE(G, s) > Fact D.6
10: EDGES «+ EDGES U{(4, B, E)}
11: Normalize edges in E by scale |A||B|/s
12: H—HUE
13: end for
14: return EDGES, H

15: end procedure
16: end data structure

Lemma D.7. The procedure INITSPARSIFIER (Algorithm 5) takes P, K, €, k as input, where P is a
WSPD of the JL projection of point set P, K is a (C, L)-Lipschitz kernel function, k = o(logn) and €
is an error parameter, runs in time

O(e 2t TOL/R) 200 160 log)
and outputs EDGES, H, such that

» EDGES is the set of tuples such that for each (A;, B;, E;) € EDGES, E; is a set of edges
sampled from Biclique(A;, B;).

* Hisa (1 £ €)- spectral sparsifier of the K-graph based on P

o the size of H is size O(e~2n'TOL/R))

Proof. We divide the proof into the following paragraphs.

24

Under review as a conference paper at ICLR 2025

Correctness We view each well separated pair as a biclique. Since P is a 2-WSPD on a JL
projection of P of distortion at most n®/%), by Lemma A.6, for any WS pair (A, B) and its
corresponding d-dimensional pair (X,Y"), we have that

maxzex yev |7 — yll2 < 9.p00/k)
mingex yey |z —yllz2 ~
By Lemma A.22, it holds that

maxre X yey K(llz = yll2) < 2. O/,
mingex,yey K|z — yll2)
By seeing the biclique as an unweighted graph where all edge weights are equal to the smallest

edge weight, one can achieve a overestimation of the leverage score of each edge. For each edge, the
leverage score (Definition A.24) is overestimated by at most

O HB(X] + |Y])/(1XIIY]))-
Therefore, by uniformly sampling
s =0(e 2 n®® - (1X] + Y1) - log(1X] + Y1)
edges from Biclique(X, Y) and normalize the edge weights by | X ||Y|/s, we obtained a e-spectral
sparsifier of Biclique(X,Y").

Since H is the union of the sampled edges over all bicliques, # is a e-spectral sparsifier of K of
at most € 2! TO/k) edges. EDGES stores the sampled edges from each biclique by definition.

Running time Since each vertex appears in at most 2°(¥) log o different WS pairs (Theorem A.20),
the total time needed for sampling is at most

e 220(k) . p1H+O(L/k) log nlog a.
Thus we complete the proof. [

D.4 FIND MODIFIED PAIRS
WSPD is stored as a list of pairs P that supports:

* WFINDPAIRS(P, A), find all pairs (A, B) and (B, A) € P time linear in the output size.
Lemma D.8. Given a compressed quad tree T of a O(k)-dimensional point set P, a WSPD P
computed from T, a point p € P and another point p', in the output of Algorithm 6, TV is a
quad tree T of P\{p} U {p'}, PV is a WSPD of P\{p} U {p'} and S is a collection of tuples
(A, B, A’, B"). P can be obtained by doing the following:

Forall (A,B, A", B') € S, replace (A, B) € P with (A, B').
This can be done in 2°F) log o time.
Proof. We divide the proof into the following parts.

Correctness By Lemma A.18, we have that, the new generated tree TV is a quad tree of
P\{p} U {p'}.

We now show that, after replacing (A, B) € P with (4’, B) forall (4, B, A’, B’) in S in Line 26,
we get a WSPD of the updated point set.

First in Line 3 and Line 3, we find the path from the root to the leaf node containing p and p’. Then
in the following two for-loops (Line 7 and Line 18), we iteratively visit the nodes on the paths. In
each iteration, we find the WS pairs related to the node by calling WFINDPAIRS. We record the
original sets and the updated sets. Then in Line 26, we replace the original pairs by the updated pairs
to get the up-to-date pair list.

Running time By Lemma A.18, the two calls to QTFASTPL takes O(logn) time. For each of p
and p/, there are at most 2°(*) log n pairs that can contain p or p’. Therefore, the total running time
of WFINDPAIRS is O(29(%)) log n, and there are 2°(*) log n tuples in S. The number of times that
the loops on lines 9 and 20 are executed is at most 2°(*) log n. Hence the total time complexity of
FINDMODIFIEDPAIRS is 2°(%) log n.

O

25

Under review as a conference paper at ICLR 2025

Algorithm 6 Find modified pairs

1: data structure DYNAMICGEOSPAR

2: procedure FINDMODIFIEDPAIRS(T, P, p, p)
I, < QTFASTPL(T,p)

lyr < QTFASTPL(T,p’)

S+ 0

> Theorem D.3
> move p to p’, Lemma D.8
> Lemma A.18
> Lemma A.18

for n € quad tree nodes on the path from [, to the quad tree root do

4
5:
6: prev P
7.
8

: P,, + WFINDPAIRS(P,n) > Lemma A.18
9: for every pair (A, B) € P, do
10: if A" = {p} or B’ = {p} then
11: A" B +
12: else
13: Remove p from (A, B) and obtain (A4’, B’)
14: end if
15: S+ SU{(A,B, A, B}
16: end for
17: end for
18: for n € quad tree nodes on the path from [, to the quad tree root do
19: P,, + WFINDPAIRS(P,n) > Lemma A.18
20: for every pair (A, B) € P, do
21: Add p’ to (A, B) and obtain (4’, B’)
22: S+ SU{(A,B,A",B)}
23: end for

24: end for

25: for (A,B,A’,B’) € Sdo

26: Prew «+ replace (A4, B) € P with (A’, B).
27: end for

28: 7% + QTINSERTP(QTDELETEP(T, p),p’)
29: return S, TV, prev

30: end procedure

31: end data structure

>Lemma A.18

Algorithm 7 Linear Time Resampling Algorithm

1: procedure RESAMPLE(E, A, B, A’, B, s)
2 E+ EN(A' x B

> Lemma D.9

3: R+ 0 .

4: q \(Axaﬁx(g/rB)\

5: forj=1— sdo

6: Draw a random number z from [0, 1]

7: if x < g then

8: if E\R # () then

9: Sample one pair from E (without repetition) and add it to R
10: else > all points of F are sampled
11: Sample one pair from ((A x B) N (A’ x B’))\E (without repetition) and add it

toR

12: end if
13: else
14: Sample one pair of points (a, b) from (A’ x B')\(A x B) and add itto R
15: end if
16: end for

17: return R
18: end procedure

D.5 LINEAR TIME RESAMPLING ALGORITHM

Here in this section, we state our linear time resampling algorithm.

26

Under review as a conference paper at ICLR 2025

Lemma D.9 (Resample). Let Cj; be the constant defined in Lemma A.6. Let V be a set, A, B be
subsets of V such that AN B = (), A’, B be two sets that are not necessarily subsets of V such that

|A” x B'|

’ r_ ! ! LI
A'NB —@and|(A><B)A(A XB)|<O(|A/‘+|B/‘)'

Letn =|V UA"UDB'| Let E be a subset of V x V.
Let H be a graph on vertex set V, A,B CV and AN B = (. Let A’, B’ be two other vertex sets
such that A’ N B’ = () (A" and B’ do not have to be subsets of V). If

* E is a uniform sample of size
e (1A + | B)) log(|A| + | B)
from A x B.
« 5= WA+ |B')) log(|A| + |B'])
“ Js = |B|| = ne)

then with high probability, RESAMPLE generates a uniform sample of size s from A’ x B’ in n°®)

time. Moreover, with probability at least 1 — 0, the size of difference between the new sample and E

is mo(),

Proof. To show that the sample is uniform, we can see this sampling process as follows: To draw s

samples from A’ x B’, the probability of each sample being drawn from (A’ x B’) N (A x B) is

(A’ x B') N (A x B)|
|A” x B'| '

Therefore, for each sample, with this probability, we draw this sample from (A’ x B’) N (A x B)
(line 7) and sample from (A’ x B")\(A x B) otherwise (line 10).

Since E is a uniform sample from Ax B, EN(A’x B’) is a uniform sample from (Ax B)N(A’'x B’)
and any uniformly randomly chosen subset of it is also a uniform sample from (A x B) N (A’ x B’).
Hence, to sample pairs from (A x B) N (A’ x B’), we can sample from E N (A x B) first (line 9)
and sample from outside £ N (A x B) when all pairs in £ N (A x B) are sampled (line 11). The
resulting set is a uniform sample from A’ x B’.

To see the size difference between E and R, we note that since

' [A" < B|

[(Ax B)A(A" x B")| < 0(|A’| m |B’|)’
the probability
[(Ax B)n (A" x B >1_ [(Ax B)A(A" x B)|
|A’ x B'| - |A" x B'|
1
>1— o
= A ey)

Therefore, to draw s = ¢ 2nCi"(L/F)(|A’| + |B|) log(|A’| + |B’|) samples from A’ x B’, the
expectation of number of samples drawn from (A’ x B’)\(A4 x B) is at most
1

—2 le.(L/k) A/ B/ 1 A/ B/ . -
€ n (1A' + [B']) log(|A"| + | B]) 0(|A/‘+|B/‘

) < € 2n M og(|A'] + |BY))

By Markov inequality, with high probability 1 — §, at most
6 e 2Lk 1o (| A'| 4 | B'|)

pairs were drawn from (A’ x B’)\(A x B).

Now we analyze the time complexity. The loop runs for O(s) time and each sample can be done in
constant time. Therefore, the total time complexity is O(s). By the third bullet point, this is in worst
case O(nlogn) time. O

27

Under review as a conference paper at ICLR 2025

Algorithm 8 Efficient Sublinear Time Resampling Algorithm

1: procedure FASTRESAMPLE(E, A, B, A’, B, s) > Lemma D.10
2: R+ 0
3: E+~ En(A xB)
4 Draw a random number z from Binomial(s, W)
5 Add to R z points uniformly drawn from (A’ x B")\(A x B) (without repetition)
6: if |[E| > s — x then
7: Draw z + |E| — s pairs from E uniformly randomly (without repetition)
8: Add pairs in E to R except these = + | E| — s pairs drawn on line 7
9 else
10 Add all pairs in E'to R
11 Addto R (s — z — | E|) points uniformly drawn from (A’ x B’)\(A4 x B)\E (without
repetition)
12: end if

13: return R
14: end procedure

D.6 EFFICIENT SUBLINEAR TIME RESAMPLING ALGORITHM

Algorithm 7 returns a set of pairs that is with high probability close to the input set £. However,
since it needs to sample all s pairs, the time complexity is bad. We modify it by trying to remove
samples from E instead of adding pairs from E to the new sample and obtain Algorithm 8.

Lemma D.10 (Fast resample). Let Cj be the constant defined in Lemma A.6. Let V be a set, A, B be
subsets of V such that AN B = (), A’, B be two sets that are not necessarily subsets of V such that
|A" x B'|)

A/ M B/ = @ and |(A X B)A(A/ X B/)| < O(W

Letn =|V UA"UDB'| Let E be a subset of V x V. If
* E is a uniform sample of size ¢ 2nCi"(L/F) (| A| 4 | B|) log(|A| + |B|) from A x B.
5= PB4+ | BY)) log(|A'] + |B'])
|E| < o(]Ax B|)
s s<o(|A" x B'|)
* Js— |l = n)
then with high probability, FASTRESAMPLE generates a uniform sample of size s from A’ x B’ in

n°Y) time. Moreover, with probability at least 1 — 6, the size of difference between the new sample
and F is n°™).

Proof. To show that the sample is uniform, we can see this sampling process as follows: To draw s
samples from A’ x B’, the probability of each sample being drawn from (A’ x B")\(A4 x B) is
(A" x BO\(A x B)|
|A’ x B'| '

Therefore, the number of samples drawn from (A’ x B’)\(A x B) satisfies a binomial distribution
with parameters
(A" x B)\(A x B)|

|A’ x B'|

s and

Let x be such a binomial random variable, we sample x pairs from (A’ x B’)\(A x B) and the rest
from (A’ x B') N (A x B).

Since E is a uniform sample from A x B, E N (A’ x B’) is a uniform sample from (A x
B) N (A’ x B’), and any uniformly randomly chosen subset of it is also a uniform sample from
(Ax B)N (A’ x B'). Hence, if |E| > s — z, we take s — x pairs from E by discarding |E| — s + «
pairs in F (line 7 and 8). If | E| < s — x, we take all samples from F and add s — 2 — | | pairs from
(A" x B')N (A x B) (line 11).

28

Under review as a conference paper at ICLR 2025

Now we try to bound the difference between E and R and the time complexity. Since x is drawn
from a binomial distribution, we have that

(47 x BO\(A x B)|

Elz]=s-

|A’ x B'|
By Markov inequality,
s |(A' x B)\(A x B)|
P . <
A A" x B] =0
Since |(A x B)A(A' x B')| < o({f2h), with probability at least 1 — 4,
1
571 . —2 . ij(L/k) A/ BI 1 A/ B/ .
x<d e ?n (1A' +|B']) log(|A'| +|B']) 0(7|A,|+‘B,|)

< 0 e 2 (LR 1og

Therefore, drawing new samples (lines 7 and 8 or line 11) takes O(z + |s — | E||) time. The difference
between E and the output sample set is also at most O(x + |s — | E||) = n°(}). With probability at
least 1 — 8, we have that

<5 e 2 o),

Since |s — | E|| < n°("), the overall time complexity and the difference between E and the output set
are at most 61 - e~ 2 . po(),

Thus we complete the proof. O
D.7 A DATA STRUCTURE THAT CAN HANDLE O(n) UPDATES
In this section, we combine the above algorithms and state our data structure.
Lemma D.11. Given two points p,p' € R<, with high probability 1 — 8, function UPDATE (Algorithm
9) can handle O(n) updates to the geometric graph and can update the e-spectral sparsifier in

O(dk + 67 2n°W log)

time per update. Moreover, after each update, the number of edge weight that are changed in the
sparsifier is at most 6~ e2n°(") log a.

Proof. Similar to Lemma D.7, in order for the updated # to be a spectral sparsifier of K, we need

* After removing IIp and adding IIp’, the resulting JL projection @ still has distortion at most
nt/k,
» The WSPD of () is updated to a WSPD of Q\{IIp} U {IIp’}

* For each WS pair (4’, B’) in the new WSPD, let X’ and Y’ be A’ and B’’s corresponding
d-dimensional point set respectively, we can obtain a uniform sample of

e 2 (DX + Y] log(IX'] + [Y]))
edges from Biclique(X', Y”).
For each of the above requirement, we divide the proof into the following paragraphs.

Bounding on the distortion of JL distance To show the first requirement, we note that by
Lemma A.6, if the JL projection matrix is initialized with O(n) points, after at most O(n) updates,

with high probability, the distance distortion between two points is still bounded above by n®(1/%),
Update to WSPD To show the second requirement, FINDMODIFIEDPAIRS returns a collections S

of pairs updates. By Lemma D.8, for each (A, B, A’, B') € S, after replacing pair (A, B) € P with
pair (A’, B'), we obtain an updated WSPD.

29

Under review as a conference paper at ICLR 2025

Algorithm 9 Data structure update

1: data structure DYNAMICGEOSPAR > Theorem D.3
2: procedure UPDATE(p € RZ, p/ € RY) > Lemma D.11
3: PreY — PUpP'\p
4: Qv + QU (IIp")\(IIp) > IT is a projection stored in memory and fixed over all the
iterations
5: S, TV PV + FINDMODIFIEDPAIRS (T, P, IIp, IIp’) > Algorithm 6
6: HEW — H
7: for all (A,B,A’,B') € Sdo
8: E + EDGES(A, B)
9: Scale each edge in F by e 2(n®E/®) (| A| + | B|) log(|A| + \B|))/|AHB\
10 X,Y, X' Y’ + d-dimensional points corresponding to A, B, A’,
11: if |(A x B)A(A' x B)| < o(5272h) then
12: s+ e OB (IX! 4+ |Y'|) log(|X'| + [Y'])
13: E™Y « FASTRESAMPLE(E, XY, X' Y’ s) > Algorithm 8
14: Scale each edge in E™*V by | X'||Y'|/s
15: else
16: E™% « all edges in Biclique(X', Y”)
17: end if
18: EDGES.UPDATE(A, B, A', B', E, E™*V) > Change (4, B, E) to (A’, B’, E"*V)
19. ’HHCW F HHCW\E U EHCW
20: end for

21: H +— HW
22: P <« prev
23: P prew
24: Q «— Qv
25: T + Tmew
26: end procedure
27: end data structure

Sample size guarantee To show the third requirement, for each (A4,B,A’,B’) in S, let
X,Y, X', Y’ be their corresponding d-dimensional point sets. We resample

e 2nCEM(X + Y']) log(1X'] + [Y])

edges from Biclique(X’,Y") by updating the edges sampled from Biclique(X,Y"). To do this, we
first multiply each edge weight in EDGES(X,Y") by

2 (X + Y] log(1X| + [Y])/|X[]Y]

so that each edge has the same weight in F and in biclique(X’, Y”). Then we apply FASTRESAMPLE.
Since

(X x Y)A(X' x Y')| < o 52h) dine 11)

* E is a uniform sample from X x Y of size e 2n“i"(L/F) (| X | 4 |Y|) log(| X | 4 |Y]) (line
8 and definition of EDGES)

s = e 2nOE/R(1X| 4+ |Y'|) log(|X'| + |Y”]) (line 12)

|s — |E|| = O(logn), because || X | + Y| — | X'| — |Y’]| is at most 1.

by Lemma D.10, the new sample can be viewed as a uniform sample from biclique(X’, Y").
Similar to Lemma D.7, the edges uniformly sampled from Biclique(X’,Y”) form a e-spectral
sparsifier of Biclique(X’,Y”) after scaling each edge weight by

XY /(2O EM (X + Y] log(1X| + [Y']))).
If the number of edges in Biclique(X’,Y”) itself is

O (e 2mOEM(X + [V og(1X'| + [Y'])))

30

Under review as a conference paper at ICLR 2025

we use all edges in the biclique without scaling. The union of all sampled edges remains a spectral
sparsifier of K.

The projection can be updated in O(dk) time, where d is the ambient dimension of the points and
k = o(logn).

By Lemma D.8, FINDMODIFIEDPAIRS takes O(2°() log(a)) time and the returned collection S
contains at most O(2°*) log(«)) changed pairs.

By Lemma D.10, with high probability 1 — & resampling takes 6 ~*e~2n°(!) time and the number
of new edges in the sample is 6 e ~2n°(1),

Therefore, with high probability, the total number of edge updates in H is with high probability

612290 1og an®® = 571 2n°W log o,
and the time needed to update the sparsifier is
O(dk + e 267 'n°Wlog a).
O

D.8 A DATA STRUCTURE THAT CAN HANDLE FULLY DYNAMIC UPDATE

By the limitation of the ultra low dimensional JL projection, when it needs to handle more than O(n)
projections, the n®i"(1/%) distortion bound cannot be preserved with high probability. Therefore,
Lemma D.11 states that DYNAMICGEOSPAR can only handle O(n) updates.

This essentially gives us an online algorithm, with support of batch update. Under the setting of
online batch, the dynamic data structure ® undergoes batch updates defined by these two parameters:
the number of batches, denoted by (, and the sensitivity parameter, denoted by w. ® has one
initialization phase and { phases: an initialization phase and { update phases and in each update
phase, the data structure ® receives updates for no more than w times.

This algorithm is designed to maintain © under the update batches. The data structure is maintained
to exactly match the original graph after series of update batches. We define the amortized randomized
update time t to be the time such that, with every batch size less than w, the running time of each
update to data structure is no more than ¢. The goal of this section is to minimize the time ¢. We
first introduce the following useful lemma from literature, which introduces the framework of the
online-batch setting.

Lemma D.12 (Section 5, Nanongkai et al. (2017)). We define G to be a geometric graph, with
updates come in batches. Let ¢ € R denote batch number. Let w € R denote the sensitivity parameter.
Then there exists a data structure ® with the batch number of (and sensitivity of w, which supports:
* An initialization procedure which runs in time tinisialize,
* An update procedure which runs in time typdate-
The two running time parameter tinitialize aNd tupdate are defined to be functions such that, they
send the maximum value of measures of the graph to non-negative numbers. For example, the upper
bounds of the edges.
Then we have the result that, for any parameter £ such that § < min{(, logg (w/2)}, there exists
a fully dynamic data structure consists of a size-O(2%) set of data structures ®. It can initialize in
time O(2% - tinitialize). And it has update time of O (4£ . (tmitiahzc/w + w(l/@tupdam)) in the worst
case. When the data structure is updated every time, the update procedure can select one instance
from the set, which satisfies that
1. The selected instance of © matches the updated graph.
2. The selected instance of © has been updated for at most & times, and the size of the update
batch every time is at most w.

By Lemma D.5, the initialization time of DYNAMICGEOSPAR is
O(ndk + e 2n*°M)log .
By Lemma D.11, the update time of DYNAMICGEOSPAR is
5 Le2nW log o

per update and it can handle O(n) batches of updates, each containing 1 update. Therefore, we can
apply Lemma D.12 to DYNAMICGEOSPAR with w = 1 and { = O(n). We obtain a fully dynamic
update data structure as stated below.

31

Under review as a conference paper at ICLR 2025

Corollary D.13 (Corollary of Lemma D.5, D.11, and D.12). There is a fully dynamic algorithm with
initialization time O(n'**(°()) log o) and update time O(n°")).

Corollary D.13 completes the proof of Theorem D.3.

E MAINTAINING A SKETCH OF AN APPROXIMATION TO MATRIX
MULTIPLICATION

The goal of this section is to prove the following statement,

Theorem E.1 (Formal version of Theorem 2.3). Let G be a (C, L)-lipschitz geometric graph onn
points. Let v be a vector in R%. Let k denote the sketch size. There exists an data structure MULTIPLY
that maintains a vector Z that is a low dimensional sketch of an e-approximation of the multiplication
Lq - v, where b is said to be an e-approximation of Lax if

lb — Laxll2 < e€l|lLallr - |lz]|2-

MULTIPLY supports the following operations:
* UPDATEG(z;, z): move a point from x; to z and thus changing Kg. This takes dk +
n°W log v time, where o is the aspect ratio of the graph.
» UPDATEV (6,): change v to v + 6,. This takes O(logn) time.
* QUERY(): return the up-to-date sketch.

We divide the section into the following parts. Section E.1 gives the high level overview of the
section. Section E.2 introduces the necessity of sketching. Section E.3 introduces our algorithms.

E.1 HIGH LEVEL OVERVIEW

The high level idea is to combine the spectral sparsifier defined in Section D and a sketch matrix to
compute a sketch of the multiplication result and try to maintain this sketch when the graph and the
vector change. We first revisit the definition of spectral sparsifiers. Let G = (V, E) be a graph and
H = (V, E') be a e-spectral sparsifier of G. Suppose |V| = n. By definition, this means

(1 — E)LG <Ly = (1 + E)LG

Lemma E.2. Let G be a graph and H be a e-spectral sparsifier of G. Lgx is an e-approximation of
L(;Ji

Proof. By Definition A.26, (1 — €)Lg < Ly = (1 + €) L. Applying Proposition A.3, we get
- <
L — Lozl s < €| Lozl Ly
which means Lz« is an e-approximation of Lgx. O
Thus, to maintain a sketch of an e-approximation of L, it suffices to maintain a sketch of L.

E.2 NECESSITY OF SKETCHING

We here justify the decision of maintaining a sketch instead of the directly maintaining the multi-
plication result. Let the underlying geometry graph on n vertices be GG and the vector be v € R".
When a point is moved in the geometric graph, a column and a row are changed in L. Without loss
of generality, we can assume the first row and first column are changed. When this happens, if the
first entry of v is not 0, all entries will change in the multiplication result. Therefore, it takes at least
O(n) time to update the multiplication result. In order to spend subpolynomial time to maintain the
multiplication result, we need to reduce the dimension of vectors. Therefore, we use a sketch matrix
to project vectors down to lower dimensions.

Lemma E.3 (Johnson & Lindenstrauss (1984)). Let € € (0,0.1) denote an accuracy parameter. Let
§ € (0,0.1) denote a failure probability. Let X = {x1,--- ,x,} € R denote a set of points. Let
® € R™*" denote a randomized sketching matrix that, if m = O(e=2log(n/d)), with probability
1 —9, we have: forall x € X

(1 =€) flzllz < [[®zlls < (1 +€) - [l

We also have the following result by using the sparse embedding matrix:

32

Under review as a conference paper at ICLR 2025

Lemma E4. Let U € R™*" be a sparse embedding matrix (Definition B.1) with m = O(e~2 -
log(1/6)). Then for a vector v € R™ and a matrix L € R™ ", we have ||(LY T Wv) — (Lv)|]2 <
€ ||vllz - | L]l p, with probability at least 1 — 6.

Proof. By Lemma B.5, we have U satisfies the (¢, d,log(1/4))-JL moment property. Since
log(1/6) > 2is trivial, then by Lemma B.4, and rescaling € with a constant factor, we complete the
proof. O

E.3 ALGORITHMS

E.3.1 MODIFICATION TO DYNAMICGEOSPAR

For the applications in Section E and F, we add a member DIFF and methods GETDIFF and GET-
LAPLACIAN to DYNAMICGEOSPAR and change methods INIT and Update to initialize and update
DIFF (Algorithm 10).

Algorithm 10 Interfaces for getting ALy after H changes

1: data structure DYNAMICGEOSPAR > Lemma E.5
2: members

3 diff > the difference in the Laplacian after the graph is updated
4: EndMembers

5:
6
7
8

: procedure GETDIFF()
diffValue <+ diff

: diff «+ {}

9: return diffValue

10: end procedure

11:

12: procedure GETLAPLACIAN()

13: return The Laplacian matrix of H

14: end procedure

15:

16: procedure INITIZLIZE(z;, 2)

17: . > Content in Algorithm 4
18: diff < {}

19: end procedure
20: procedure UPDATE(P)

21: e > Content in Algorithm 9
22: for each EDGES update pair (E, E™*"V) do

23: for each e in E\ E™V do

24: Add —e to diff

25: end for

26: for each e in E"*V\ E do

27: Add e to diff

28: end for

29: end for
30: end procedure

Lemma E.5. In data structure DYNAMICGEOSPAR, suppose GETDIFF (Algorithm 10) is called
right after each UPDATE. The returned diff is a sparse matrix of size O(no(l) log @).

Proof. By Theorem D.3, in expectation each update introduces O(n(’(l) log o) edge changes in the
sparsifier. Therefore, after an updates, there are at most O(no(l) log «) entries in diff. O

E.3.2 DYNAMIC SKETCH ALGORITHM

Here we propose the dynamic sketch algorithm as follows.
Here we give the correctness proof of Theorem E.1.

Proof of Theorem E.1. We divide the proof into correctness proof and running time proof as follows.

33

Under review as a conference paper at ICLR 2025

Algorithm 11 Maintaining a sketch of an approximation to multiplication

1: data structure MULTIPLY > Theorem E.1
2: members

3: DYNAMICGEOSPAR dgs > This is the sparsifier H
4: d, U € R™*™: two independent sketching matrices

5: L € Rm>xm > A sketch of Ly
6: veR™ > A sketch of v
7: zZeR™ > A sketch of the multiplication result
8: EndMembers

9:
10: procedure INIT(z1, - ,z, € R, v € R")
11: Initialize ® and ¥
12: dgs.INITIALIZE(21, . .., &y)
13: U+ Yo
14: L+ ®-dgs.GETLAPLACIAN() - U T
15: Z+L-v
16: end procedure
17:

18: procedure UPDATEG(z;, z € R%)
19: dgs.UPDATE(x;, 2)

20 AL <+ ®-dgs.GETDIFF() - U T
21: Z+ Z+AL-v

22: L+ L+ AL

23: end procedure

24:

25: procedure UPDATEV(Av € R™) > Av is sparse
26: AV V- Av

27: Z+ZzZ+L-Av

28: end procedure

29:
30: procedure QUERY
31: return z

32: end procedure

Correctness ByLemmakE.2, Lz is an e-approximation of L. It suffices to show that MULTIPLY
maintains a sketch of Ly x.

In function INIT, a e-spectral sparsifier H of G is initialized on line 12. On line 14, Lis computed
as Ly U . Therefore, 2 = ®Ly T T To. By Lemma E.4 we have that

||LH\I/T\I/’U—LH’U||2 SG- HLH”FH’UHQ (1)
And by Lemma E.3 one has
IZll2 € (A e) - [L¥ T Woll2. 2

Then by Eq (1) and Eq (2) and rescaling € we have that ||Z — Lyx| < € || Lul7 - [|v]2-

In function UPDATEG, the algorithms updates the spectral sparsifier (line 19) and obtains the
difference in the Laplacian (line 20). Note that AL-G = ®ALy- VT Uy, Again, since in expectation
VT = I,,, and ® and ¥ are chosen independently, in expectation AL -7 = ®AL . Therefore,
Z+ AL-U=®(Ly + ALy)v is the updated sketch of L.

Running time By Theorem D.3, line 19 takes O(dk + n°M log «) time. By Lemma E.5, AL is
sparse with e ~2n°(!) log v non-zero entries. This implies line 20 takes O(e~2n°() log o) time. So
the overall time complexity of UPDATEG is

dk + e 2n°M log .
In function UPDATEV, note that
L-AG=®-Ly U TA.

34

Under review as a conference paper at ICLR 2025

Again, since in expectation U "W = I,,.,, and ® and ¥ are chosen independently, in expectation
L AV =®LyAv.
Therefore,
Z+L-AV=®Ly(v+ Av)

is the updated sketch of Ly .

Since Aw is sparse, ¥ Av can be computed in O(m) time, and Z can also be updated in O(m) time,
where m = O(e 2 log(n/J)).

Since 7 is always an up-to-date sketch of Lz -v, QUERY always returns a sketch of an approximation
to Lgx in constant time.

Thus we complete the proof. O

F MAINTAINING A SKETCH OF AN APPROXIMATION TO SOLVING LAPLACIAN
SYSTEM

In this section, we provide a data structure which maintans a sketch of an approximation to sovling

Laplacian system. In other words, we prove the following theorem,

Theorem F.1 (Formal version of Theorem 2.4). Let K be a (C, L)-lipschitz geometric graph onn
points. Let b be a vector in R%. There exists an data structure SOLVE that maintains a vector Z that is

a low dimensional sketch of multiplication LTG - b, where Z is said to be an e-approximation of Lgb if
17~ Lbll2 < e | Lgr - [1]l2-
SOLVE supports the following operations:
» UPDATEG(x;, 2): move a point from x; to z and thus changing K. This takes n°® time.
* UPDATEB(}): change b to b+ 6. This takes n°") time.
* QUERY(): return the up-to-date sketch. This takes O(1) time.

By Fact A.3, for any vector b, L}rqb is a e-spectral sparsifier of Lgb. It suffices to maintain a sketch
of Lyb.

When trying to maintain a sketch of a solution to Lz = b, the classical way of doing this is to
maintain T such that ®L gT = ®b. However, here T is still an n-dimensional vector and we want to
maintain a sketch of lower dimension. Therefore, we apply another sketch ¥ to and maintain =
such that DLy U T 7 = Pb.

Proof of Theorem F.1. We divide the proof into the following paragraphs.

Analysis of INIT In function INIT, a e-spectral sparsifier H of G is initialized on line 13. On line
16, LT is computed as (® Ly W)T, Therefore,

7= (PLy V") o,
which is a sketch of LLx. Thus, after INIT, Lz, which is a sketch of an approximation to Lgx is
stored in z.

Analysis of UPDATEG In function UPDATEG, the algorithms updates the spectral sparsifier (line
21) and obtains the new Laplacian (line 22) and its pseudoinverse (line 23). Note that in line 24

Ll b= (®(Ly+ALyg)V ") ob

This is a sketch of (L + ALy)'h.

By Theorem D.3, line 21 takes O(dk + n°(") log a) time. By Lemma E.5, AL is sparse with
e 2n°() log o non-zero entries. This implies line 22 takes O(e~2n°™M) log o) time. Since L1 is
a m x m matrix and m = O(e~?log(n/§)), computing its pseudoinverse takes at most m* =
(e=2log(n/8))* time.

So the overall time complexity of UPDATEG is

O(dk) + e 2n°Mlog o + O((e 2 log(n/5))*).

3w is the matrix multiplication constant

35

Under review as a conference paper at ICLR 2025

Analysis of UPDATEB In function UPDATEB, note that
LV Ab=(® Ly - ®AD.
Therefore, it holds that
ZHLY - Ab=(0 Ly -0 ®(b+ Ab).

This is a sketch of LL(b + Ab).
Since Ab is sparse, ®Ab can be computed in O(m) time, and Z can also be updated in O(m) time,
where m = O(e 2 log(n/J)).

Analysis of QUERY Since 7 is always an up-to-date sketch of Ly - v, QUERY always returns a
sketch of an approximation to Lgx in constant time.
Thus we complete the proof. O

G DyNAMIC DATA STRUCTURE

In this section, we describe our data structure in Algorithm 12 to solve the dynamic distance estimation
problem with robustness to adversarial queries. We need to initialize a sketch II € R**? defined
in Definition G.1, where k = O(+/logn), and use the ultra-low dimensional projection matrix to
maintain a set of projected points {Z; € R¥}”™_,. During QUERY, the data structure compute the

estimated distance between the query point ¢ € R? and the data point z; by n'/* - /d/k-||7; —Iq||2.

Algorithm 12 Data Structure for Ultra-Low JL Distance Estimation

1: data structure ULTRAJL
2: members

3: d,n e Ny > n is dataset size, d is the data dimension
4 X = {z; e R4}, > Set of points being queried
5: X ={7; e R*}, > Set of projected points being queried
6: €€(0,0.1)

7: ke Ny > k is the dimension we project to
8: Il e RMd > Definition G.1
9: end members

10:

11: procedure INIT({zy,--- ,2,} CR% n € N,,d € Ny, ec (0,0.1)) > Lemma G.3, G.6
12: > We require that d = ©(logn)
13: n<n,dd o< 0, ¢

14: k < O©(y/logn)

15: fori=1—ndo

16: Ty < Ty

17: end for

18: fori=1—ndo

19: ?L:i —1II-x;

20: end for

21: end procedure

22:

23: procedure UPDATE(i € [n], z € RY) > Lemma G.4, G.7

24 €T; < 2

25: 5® «—1II-z

26: end procedure

27:

28: procedure QUERY(q € R%) > Lemma G.5, G.8

29: for i € [n] do

30: ui<—n1/k-\/d/k:-||5i—HqH2

31: end for

32: return u >u€eR”

33: end procedure
34: end data structure

36

Under review as a conference paper at ICLR 2025

G.1 MAIN RESULT
In this section, we introduce our main results, we start with defining ultra-low dimensional JL matrix.

Definition G.1 (Ultra-Low Dimensional JL matrix). Let II € R¥*¢ denote a random JL matrix
where each entry is i.i.d. Gaussian.

Next, we present our main result in accuracy-efficiency trade-offs, which relates to the energy
consumption in practice.

Theorem G.2 (Main result). Let d = ©(logn). Let k = O(y/logn). There is a data structure
(Algorithm 12) for the Online Approximate Dynamic Ultra-Low Dimensional Distance Estimation
Problem with the following procedures:

o INIT({z1,72,...,2,} C R¥n € Ny,d € Ny,e € (0,1)): Given n data points
{z1,29,...,2,} C R% an accuracy parameter €, and input dimension d and number
of input points n as input, the data structure preprocesses in time O(ndk).

 UPDATE(z € R%,i € [n]): Given an update vector z € R? and index i € [n), the UPDATEX
takes z and i as input and updates the data structure with the new i-th data point in O(dk)

time.
* QUERY(q € RY): Given a query point ¢ € R?, the QUERY operation takes q as input and
approximately estimates the norm distances from q to all the data points {x1,za,...,x,} C

R% in time O(nk) i.e. it outputs a vector u € R™ such that:

O(1/k

Vi€ [n], g —zills Sui <n Vo lg = il

with probability at least 1 — 1/ poly(n), even for a sequence of adversarially chosen queries.

G.2 TIME

In the section, we will provide lemmas for the time complexity of each operation in our data structure.
Lemma G.3 (INIT time). There is a procedure INIT which takes a set of d-dimensional vectors
{x1, -+ ,zn}, a precision parameter € € (0,0.1) and d,n € Ny as input, and runs in O(ndk) time.

Proof. Storing every vector x; takes O(nd) time. Computing and storing Z; takes O(n x dk) =
O(ndk) time. Thus procedure INIT runs in O(ndk) time.
We prove the time complexity of UPDATE operation in the following lemma:
Lemma G.4 (UPDATE time). There is a procedure UPDATE which takes an index i € [n] and a
d-dimensional vector z as input, and runs in O(nk) time.
Proof. Updating x; takes O(d) time. Update Z; takes O(dk) time. Thus procedure UPDATE runs in
O(dk) time. O
We prove the time complexity of QUERY operation in the following lemma:
Lemma G.5 (QUERY time). There is a procedure QUERY which takes a d-dimensional vector q as
input, and runs in O(nk) time.

Proof. Computing Ilq takes O(dk) time. Computing all the u; takes O(nk) time. Thus procedure
QUERY runs in O(nk) time. O
G.3 CORRECTNESS

In this section, we provide lemmas to prove the correctness of operations in our data structure.

Lemma G.6 (INIT correctness). There is a procedure INIT which takes a set {x1,--- ,x,} of d-
dimensional vectors and a precision parameter € € (0,0.1), and stores an adjoint vector T; for each
Z;.

Proof. During INIT operation in Algorithm 12, the data structure stores a set of adjoint vectors
Z; < II- x; for ¢ € [n]. This completes the proof.
O
Then we prove the correctness of UPDATE operation in Lemma G.7.

Lemma G.7 (UPDATE correctness). There is a procedure UPDATE which takes an index i € [n) and
a d-dimensional vector z, and uses z to replace the current ;.

37

Under review as a conference paper at ICLR 2025

Proof. During UPDATE operation in Algorithm 12, the data structure update the i-th adjoint vector
Z; by I - z. This completes the proof.
O

We prove the correctness of QUERY operation in Lemma G.8.

Lemma G.8 (QUERY correctness). There is a procedure QUERY which takes a d-dimensional vector
q as input, and output an n-dimensional vector u such that for each i € [n], ||q — z;]2 < u; <
nCW/k) g — ;|9 with probability 1 — 2/n.

Proof. The proof follows by Lemma G.9, Lemma H.2 and Lemma H.4. This completes the proof.
O

G.4 HIGH PROBABILITY

With Lemma A.9 and Lemma A.8 ready, we want to prove the following lemma:

Lemma G.9 (High probability for each point). For any integer n, let d = cologn. Let k be a positive
integer such that k = \/logn. Let f be amap f : R* — R*. Let 6, = n~¢ denote the failure
probability where ¢ > 1 is a large constant. Let cy > 1 denote some fixed constant. Then for each
fixed points u,v € RY, such that,

lu— o3 < [1f(w) = fF(W)]3 < exp(eo - VIogn)[[u —v]3.
with probability 1 — 4.

Proof. If d < k, the theorem is trivial. Else let v/, u’ € R* be the projection of point v, u € R? into
R, Then, setting L = ||u’ — v'||3 and p = %||u — v||3. We have that

Pr(L < (n /¥ fe)u] = Pr[L < (n>/VI87 [e)u]

= Pr[L < 6720\/@71/4
n-° 3)

IN

where the first step comes from k& = +/logn , the second step comes from n~2¢/logn —
exp(—2cy/log n), and the third step comes from Lemma A.9.
By Lemma A.8, we have:

Pr[L > n'/*pu) = Pr[L > nl/Viesn]

= Pr[L > exp(co+/logn)p]
< exp(~log"*)
<n~ ¢ “)

where the first step comes from the definition of & = /Iog 2, the second step follows that n/viog” —
exp(cov/Tog 1), the third step comes from Lemma A.8, and the fourth step follows that log'? (n) is
bigger than any constant c.

Therefore, rescaling from Eq. (3) and Eq. (4) we have:

lu =l < [If(u) = f(0)|3 < exp(co - v/ogn)|lu —v]3.

with probability 1 — ¢; where 6; = n™°.
H SPARSIFIER IN ADVERSARIAL SETTING

In Section G, we get a dynamic distance estimation data structure with robustness to adversarial
queries. Here in this section, we provide the analysis to generalize our spectral sparsifier to adversarial
setting, including discussion on the aspect ratio o (Definition A.10).

38

Under review as a conference paper at ICLR 2025

H.1 DISTANCE ESTIMATION FOR ADVERSARIAL SPARSIFIER

Fact H.1. Let o be defined as Definition A.10. Let N denote a e1-net on the {s unit ball {x €
RY | ||z||2 < 1}, where d = O(logn) and ¢, = O(a™'). Then we have that |[N| < a©Uogm),
Lemma H.2. Let o be defined as Definition A.10. For any integer n, let d = O(logn), let k = \/logn.
Let f : R — R¥ be amap. If o = O(1), then for an €,-net N with |N| < a®1°8™), forallu,v € N,

lu—ll3 < [|f(w) = f(0)]3 < exp(v/logn)|lu — vl3
with probability 1 — §,.

Proof. By Lemma G.9, we have that for any fix set V' of n points in R?, there exists a map f : R —
R¥ such that for all u,v € V,

lu = vll3 < [1f (w) = f(v)]3 < exp(v/logn)l|lu — vf3,

with probability 1 — §;, where §; = n~¢.
We apply the lemma on N, and by union bound over the points in /N, we have that for all points

u,v € N,

lu =l < I1f(w) = f(v)I3 < exp(v/logn)|lu —v]3,
with probability 1 — &5, where it holds that

8y = 6, -|N|?

5y - aO(log n)

IN

— pc. aO(logn)

nO(l)—c,

IN

where the first step follows from union bound, the second step follows from |N| < a©(°87) the
third steps follows from §; = n~°¢ (Lemma G.9), and the last step follows from o = O(1).
By choosing c as a constant large enough, we can get the low failure probability. O

Corollary H.3 (Failure probability on « and d). We have that, the failure probability of Lemma H.2
is bounded as long as a® = O(poly(n)).

Lemma H.4 (Adversarial Distance Estimation of the Spectral Sparsifier). Let k = +/logn be the
JL dimension, f : R¢ — R* be a JL function. Let o be defined as Definition A.10. Then we have
that for all points u,v in the {5 unit ball, there exists a point pair v',v' which is the closest to u, v
respectively such that,

lu =3 < |[f(u) = f")]I5 < exp(v/logn)[lu —vlf3
with probability 1 — n=°,

Proof. By Lemma H.2, we have that for all v/, v" € N, it holds that
o' —o'|[3 < 1) = F(')]3 < exp(y/logn)||u’ — '3 &)

with probability at least 1 — d5. From now on, we condition on the above event happens. Then for
arbitrary u,v &€ N, there exists u’, v’ € N such that

lu—|| <erand|jv—0] <e.
Recall that we set ; = O(a~!) and now all points are in ¢ ball, thus we have that u’ # v’ for u £.
Then by triangle inequality we have that
o =2 = v/ —u+u—v+v—2s
<l = ullz + flu = vz + [lv = 'l2
<|lu—vll2 + 2¢;

<(1+0(1)) - lu—wvl2, (©)
where the last step follows by setting ¢ = O(|lu — v]2) = O(a™!). Similarly, we also have
[u" ="z = (1= O0(1)) - lu—vll2. ™

By the linearity of f together with Eq.(5), (7) and (6), we have that
(1=0) - flu—vl3 < [If() = f@)]3 < (1 +O(1)) - exp(y/log n)||u — v]3.

Rescaling it, we get the desired result. Thus we complete the proof. [

39

Under review as a conference paper at ICLR 2025

H.2 SPARSIFIER IN ADVERSARIAL SETTING
Here in this section, we provide our result of spectral sparsifier that can handle adversarial updates.

Theorem H.5 (Sparsifier in adversarial setting, formal version of Theorem 2.2). Let « be the aspect
ratio of a d-dimensional point set P defined above. Let k = O(y/logn). If a® = O(poly(n)),
then there exists a data structure DYNAMICGEOSPAR that maintains a e-spectral sparsifier of size
O(n'*+°W) for a (C, L)-Lipschitz geometric graph such that

* DYNAMICGEOSPAR can be initialized in
O(ndk 4 e 2n' /M) Jog nlog)

time.

* DYNAMICGEOSPAR can handle adversarial point location changes. For each change in
point location, the spectral sparsifier can be updated in

O(dk + 2°®) e=2p°W Jog)
time. With high probability, the number of edges changed in the sparsifier is at most
e 2200 e og .

Proof. By Lemma H.4, the estimation data structure works for adversarial query points. Then the
theorem follows by Lemma D.5, D.11, and D.12.]

I FIGURES

We list our figures here.

(Ax BYn (A’ x B')
(A’ x BO\(A x B)

A’ x B’ Ax B

Figure 1: Division of the new biclique (A’ x B’): divided it into two parts (Blue part: (A’ x B")\ (A x
B) and red part (A x B) N (A’ x B’)). And we sample from them respectively.

—— Edges sampled from (A’ x B")\(A x B)
—— Edges of F
Edges of (A’ x B')\(A x B)

Edges of A x B

Figure 2: Resampling the biclique: E (The red edges) is uniformly sampled from Biclique(A, B).
After A X B becomes A’ x B’, we resample from E N (A’ x B’) with specific probabilities.

40

Under review as a conference paper at ICLR 2025

o

Figure 3: The net argument in our problem. Let d = 2. Here we restrict all the points to be in the /5
unit ball. By the definition of aspect ratio o, we know the minimum distance between two points is
1/ (A and B in the figure). Thus, by setting e = C' - a~! for some constant C small enough, every
pair of points is distinguishable.

41

