
Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

RILE: REINFORCED IMITATION LEARNING

Mert Albaba∗1,2 Sammy Christen1 Thomas Langarek1 Christoph Gebhardt1
Otmar Hilliges1 Michael J. Black2

1 ETH Zürich 2 Max Planck Institute for Intelligent Systems
{balbaba, sammyc, thomalan, cgebhard, otmarh}@ethz.ch, black@tue.mpg.de

ABSTRACT

Acquiring complex behaviors is essential for artificially intelligent agents, yet
learning these behaviors in high-dimensional settings poses a significant challenge
due to the vast search space. Traditional reinforcement learning (RL) requires
extensive manual effort for reward function engineering. Inverse reinforcement
learning (IRL) uncovers reward functions from expert demonstrations but relies on
an iterative process that is often computationally expensive. Imitation learning (IL)
provides a more efficient alternative by directly comparing an agent’s actions to
expert demonstrations; however, in high-dimensional environments, such direct
comparisons offer insufficient feedback for effective learning. We introduce RILe
(Reinforced Imitation Learning), a framework that combines the strengths of
imitation learning and inverse reinforcement learning to learn a dense reward
function efficiently and achieve strong performance in high-dimensional tasks.
RILe employs a novel trainer–student framework: the trainer learns an adaptive
reward function, and the student uses this reward signal to imitate expert behaviors.
By dynamically adjusting its guidance as the student evolves, the trainer provides
nuanced feedback across different phases of learning. Our framework produces
high-performing policies in high-dimensional tasks where direct imitation fails to
replicate complex behaviors. We validate RILe in challenging robotic locomotion
tasks, demonstrating that it significantly outperforms existing methods and achieves
near-expert performance across multiple settings.

1 INTRODUCTION

Over the years, reinforcement learning (RL) has emerged as a powerful framework for teaching
agents to perform sophisticated tasks, yet it often requires extensive manual reward function design,
which is both time-consuming and error-prone.

There are two ways to address the reward engineering problem. First, Inverse Reinforcement
Learning (IRL) (Ng & Russell, 2000; Ziebart et al., 2008) offers a remedy by inferring the reward
function from expert demonstrations, thus reducing the burden of manual reward engineering. IRL
proceeds iteratively: it first trains a policy (the learning agent’s decision-making mechanism) using
the current reward function, observes how well the agent’s behavior aligns with the expert’s, and then
refines the reward function to better guide the policy toward expert-like behaviors. Repeating this
process eventually yields a reward function capable of providing nuanced feedback at different stages
of learning. However, this iterative procedure is computationally expensive (Zheng et al., 2022),
especially in high-dimensional environments where both the reward and the policy must explore a
large state-action space.

Second, Imitation learning (IL) bypasses explicit reward design by directly comparing learned
behaviors to expert demonstrations via a comparison mechanism. Traditional IL approaches such as
Behavioral Cloning (BC) (Bain & Sammut, 1995) match the learned actions to expert demonstrations
directly, requiring a substantial amount of expert data in high-dimensional tasks. To improve data
efficiency, Adversarial Imitation Learning (AIL) methods, such as GAIL (Ho & Ermon, 2016),
introduce a discriminator that operates as a comparison mechanism and judges how expert-like the
learned behaviors are. However, both traditional IL and AIL lack a reward function that emphasizes
specific subgoals or partial improvements. Instead, they rely on a comparison metric, often a distance
measure or binary classification, that merely checks whether the agent’s behavior is (or is not) similar

1

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

to the expert. Such comparison-based signals offer no fine-grained guidance on which specific actions
or sub-strategies to prioritize. Consequently, both traditional IL and AIL struggle in high-dimensional
environments (Peng et al., 2018; Garg et al., 2021), where the agent needs more granular and adaptive
feedback than these mechanisms provide.

Adversarial Inverse Reinforcement Learning (AIRL) (Fu et al., 2018) attempts to remedy IRL’s
inefficiency by integrating a learned reward function within a discriminator. However, AIRL tightly
couples the reward function to the discriminator’s output, causing it to inherit AIL’s limitations in
high-dimensional settings where more fine-grained guidance is needed.

Real-life learning scenarios suggest a different approach: think of parents and children, or a pet
owner and their dog. The teacher also refines how they teach as the student progresses. Each success
or failure in the student’s understanding informs the teacher’s approach, creating a positive-sum
relationship: lessons learned from suboptimal behaviors ultimately yield better trainers, which, in
turn, guide the student’s learning progress more effectively. By contrast, existing approaches lack this
continuous cooperative synergy. Adversarial Imitation Learning (AIL) does update a discriminator
alongside the policy, but the discriminator’s sole role is to distinguish expert-like behavior from
non-expert behavior. Consequently, the student attempts to fool this judge into classifying its behavior
as expert-like, resulting in a competitive process rather than a cooperative trainer that dynamically
shapes rewards based on suboptimal behaviors. Meanwhile, IRL methods only refine the reward after
the policy converges, missing the opportunity for continuous co-evolution throughout training.

To address these issues, inspiring by these insights, we propose Reinforced Imitation Learning
(RILe). RIle combines the adaptive reward benefits of IRL with the computational efficiency of
AIL (Fig. 1-(d)). RILe is a novel trainer-student system that establishes a positive-sum relationship
between the trainer and the student. Specifically, RILe is composed of:

• Student Agent: Learns a policy to imitate expert demonstrations using reinforcement
learning.

• Trainer Agent: Simultaneously learns a reward function using reinforcement learning,
leveraging an adversarial discriminator for continuous feedback on student performance.

RILe’s trainer continuously updates the reward function in tandem with the student’s policy updates,
where IRL refines its reward function only after training a policy to convergence. Specifically, the
trainer queries a discriminator to measure how expert-like the student’s behavior is, then optimizes the
reward function based on that feedback, without waiting for the policy to converge. RILe preserves
nuanced reward shaping, while avoiding IRL’s heavy computational loop. As a result, RILe is
particularly effective in high-dimensional settings, where agents need fine-grained guidance at every
stage of learning. Our contributions are two-fold:

1. Efficient Reward-Function Learning via RL: We introduce a reinforcement-learning-
based approach for training a reward function simultaneously with the policy. This avoids
IRL’s repeated policy re-training and the purely discriminator-based rewards of AIL/AIRL.
Reinforcement learning enables the trainer agent to explore multiple reward regimes, yielding
a reward function that considers long-horizon effects.

2. Dynamic Reward Customization: RILe offers context-sensitive guidance at every stage of
training, because the trainer agent updates the reward function as the student evolves. This
dynamic shaping is especially valuable in high-dimensional tasks, where the learning agent
requires different forms of encouragement during intermediate-stages than later-stages of
the training. Consequently, RILe enables accurate imitation of the expert performance in
high-dimensional tasks.

We evaluate RILe in comparison to state-of-the-art methods in AIL, IRL, and AIRL, specifically GAIL
(Ho & Ermon, 2016) AIRL (Fu et al., 2018), GAIfO (Torabi et al., 2018b), BCO (Torabi et al., 2018a),
IQ-Learn (Garg et al., 2021) and DRAIL (Lai et al., 2024). Our experiments spans four scenarios: (1)
Empirically investigating how RILe’s reward-learning strategy differs from AIL and AIRL in a maze
task, (2) Quantifying the adaptability of the learned reward function in a humanoid locomotion task,
(3) Assessing RILe’s performance in both low- and high-dimensional continuous-control problems,
and (4) Analyzing the impact of explicit expert-data usage within RILe’s training process. Our results
show RILe’s superior performance, particularly in high-dimensional environments, and highlight
RILe’s ability to learn a dynamic reward function that effectively guides the student through multiple
stages of training.

2

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

2 RELATED WORK

We review research on learning from expert demonstrations, focusing on Imitation Learning (IL) and
Inverse Reinforcement Learning (IRL), the conceptual foundations of RILe.

Imitation Learning Early work in IL introduced Behavioral Cloning (BC) (Bain & Sammut,
1995), which frames policy learning as a supervised problem where the agent’s actions are directly
matched to expert demonstrations. DAgger (Ross et al., 2011) refines BC by aggregating data over
multiple iterations to mitigate compounding errors. GAIL (Ho & Ermon, 2016) employs adversarial
training: a discriminator learns to distinguish expert trajectories from the agent’s, while the generator
(agent) adapts to mimic expert-like behavior. BCO (Torabi et al., 2018a) extends BC, and GAIfO
(Torabi et al., 2018b) extends GAIL, both to handle state-only observation scenarios. DQfD (Hester
et al., 2018) introduces a two-stage approach with pre-training, while ValueDice (Kostrikov et al.,
2020) aligns policy and expert distributions via a distribution-matching objective. More recently,
DRAIL (Lai et al., 2024) leverages a diffusion-based discriminator to enhance learning efficiency
in adversarial imitation. Despite these advances, IL methods face challenges in high-dimensional
environments (Peng et al., 2018; Garg et al., 2021), where naive action matching or purely adversarial
comparisons fail to provide sufficiently granular guidance. RILe addresses these limitations through
an adaptive trainer–student framework, where a learned reward function provides more nuanced
guidance than standard IL comparison mechanisms.

Inverse Reinforcement Learning Inverse Reinforcement Learning (IRL), introduced by Ng &
Russell (2000), aims to uncover the expert’s intrinsic reward function from demonstrations. Major
developments include Apprenticeship Learning (Abbeel & Ng, 2004), Maximum Entropy IRL
(Ziebart et al., 2008), and adversarial variants like AIRL (Fu et al., 2018). IQ-Learn (Garg et al.,
2021) reformulates IRL by integrating the inverse reward learning process into Q-learning for better
scalability. More recent work focuses on unstructured data (Chen et al., 2021) and cross-embodiment
transfer (Zakka et al., 2022).

Nonetheless, IRL methods struggle with computational inefficiency and limited scalability (Arora
& Doshi, 2021), particularly in high-dimensional tasks where repeated iterations of policy learning
and reward refinement become costly. RILe mitigates these challenges by jointly learning the policy
and reward function in a single process, avoiding IRL’s iterative retraining loop and facilitating more
efficient reward shaping for complex environments.

3 BACKGROUND

3.1 MARKOV DECISION PROCESS

A standard Markov Decision Process (MDP) is defined by (S,A,R, T,K, γ). S is the state space
consisting of all possible environment states s, and A is action space containing all possible envi-
ronment actions a. R = R(s, a) : S × A → R is the reward function. T = {P (·|s, a)} is the
transition dynamics where P (·|s, a) is an unknown state state transition probability function upon
taking action a ∈ A in state s ∈ S. K(s) is the initial state distribution, i.e., s0 ∼ K(s) and γ is
the discount factor. The policy π = π(a|s) : S → A is a mapping from states to actions. In this
work, we consider γ-discounted infinite horizon settings. Following Ho & Ermon (2016), expectation
with respect to the policy π ∈ Π refers to the expectation when actions are sampled from π(s):
Eπ[R(s, a)] ≜ Eπ[

∑∞
t=0 γ

tR(st, at)], where s0 is sampled from an initial state distribution K(s),
at is given by π(·|st) and st+1 is determined by the unknown transition model as P (·|st, at). The
unknown reward function R(s, a) generates a reward given a state-action pair (s, a). We consider a
setting where R = R(s, a) is parameterized by θ as Rθ(s, a) ∈ R (Finn et al., 2016).

Our work considers an imitation learning problem from expert trajectories, consisting of states s and
actions a. The set of expert trajectories τE are sampled from an expert policy πE ∈ Π, where Π is
the set of all possible policies. We assume that we have access to m expert trajectories, all of which
have n time-steps, τE = {(si0, ai0), (si1, ai1), . . . , (sin, ain)}mi=1.

3

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

(a) RL (b) IRL

(c) GAIL + AIRL (terms in green) (d) RILe

Figure 1: Overview of the related works. (a) Reinforcement Learning (RL): learning a policy
that maximizes hand-defined reward function; (b) Inverse RL (IRL): learning a reward function
from data. IRL has two stages: 1. training a policy with frozen reward function, and 2. updating
the reward function by comparing the converged policy with data. These stages repeated several
times; (C) Generative Adversarial Imitation Learning (GAIL) + Adversarial IRL (AIRL): using
discriminator as a reward function. GAIL trains both policy and the discriminator at the same time.
AIRL implements a new structure on the discriminator, seperating reward from environment dynamics
by using two networks under the discriminator (see additional terms in green). (D) RILe: similar to
IRL, learning a reward function from data. RILe learns the reward function at the same time with the
policy, using a discriminator as a guide for learning the reward.

3.2 REINFORCEMENT LEARNING (RL)

Reinforcement learning seeks to find an optimal policy, π∗. that maximizes the discounted cumulative
reward given from the reward function R = R(s, a) (Fig. 1-(a)). In this work, we incorporate
entropy regularization using the γ-discounted casual entropy function H(π) = Eπ[−log π(a|s)] (Ho
& Ermon, 2016; Bloem & Bambos, 2014). The RL problem with a parameterized reward function
and entropy regularization is defined as

RL(Rθ(s, a)) = π∗ = argmax
π

Eπ[Rθ(s, a)] +H(π). (1)

3.3 INVERSE REINFORCEMENT LEARNING (IRL)

Given sample trajectories τE from an optimal expert policy πE , inverse reinforcement learning
aims to recover a reward function R∗

θ(s, a) that maximally rewards the expert’s behavior (Fig.
1-(b)). Formally, IRL seeks a reward function, R∗

θ(s, a), satisfying: EπE
[
∑∞
t=0 γ

tR∗
θ(st, at)] ≥

Eπ[
∑∞
t=0 γ

tR∗
θ(st, at) +H(π)] ∀π. Optimizing this reward function with reinforcement learning

yields a policy that replicates expert behavior: RL(R∗
θ(s, a)) = π∗. Since only the expert’s trajec-

tories are observed, expectations over πE are estimated from samples in τE . Incorporating entropy
regularization H(π), maximum causal entropy inverse reinforcement learning (Ziebart et al., 2008) is
defined as

IRL(τE) = argmax
Rθ(s,a)∈R

(
Es,a∈τE [Rθ(s, a)]−max

π
(Eπ[Rθ(s, a)] +H(π))

)
. (2)

4

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

3.4 ADVERSARIAL IMITATION LEARNING (AIL) AND ADVERSARIAL INVERSE
REINFORCEMENT LEARNING (AIRL)

Imitation Learning (IL) aims to directly approximate the expert policy from given expert trajectory
samples τE . It can be formulated as IL(τE) = argminπ E(s,a)∼τE [L(π(·|s), a)], where L is a loss
function, that captures the difference between policy and expert data.

GAIL (Ho & Ermon, 2016) introduces an adversarial imitation learning setting by quantifying the
difference between the agent and the expert with a discriminator Dϕ(s, a), parameterized by ϕ
(Fig. 1-(c)). The discriminator distinguishes between between expert-generated state-action pairs
(s, a) ∼ τE and non-expert ones (s, a) /∈ τE . The goal of GAIL is to find the optimal policy that
fools the discriminator while maximizing an entropy constraint. The optimization is formulated as a
zero-sum game between the discriminator Dϕ(s, a) and the policy π:

min
π

max
ϕ

Eπ[log Dϕ(s, a)] + EτE [log (1−Dϕ(s, a))]− λH(π). (3)

In other words, the reward function that is maximized by the policy is defined as a similarity function,
expressed as R(s, a) = −log (Dϕ(s, a)).

AIRL (Fu et al., 2018) extends AIL to inverse reinforcement learning, aiming to recover a reward
function decoupled from environment dynamics (Fig. 1-(c)). AIRL structures the discriminator as:

Dϕ,ψ(s, a, s
′) =

exp(fϕ(s, a, s
′))

exp(fϕ(s, a, s′)) + π(a|s)
, (4)

where fϕ(s, a, s
′) = rψ(s, a) + γVϕ(s

′) − Vϕ(s). Here, rψ(s, a) represents the learned reward
function that is decoupled from the environment dynamics, γVϕ(s′)−Vϕ(s). The AIRL optimization
problem is formulated equivalently to GAIL (see Eqn. 3). The reward function rψ(s, a) is learned
through minimizing the cross-entropy loss inherent in this adversarial setup. Therefore, the reward
function remains tightly coupled with the discriminator’s learning process.

4 RILE: REINFORCED IMITATION LEARNING

We propose Reinforced Imitation Learning (RILe) to jointly learn a reward function and a policy that
emulates expert-like behavior within a single learning process. RILe introduces a novel trainer–student
dynamic, as illustrated in Figure 2.

In RILe, the student agent learns an action policy by interacting with the environment, while the trainer
agent learns a reward function that effectively guides the student toward expert-like behavior. Both
agents are trained simultaneously via reinforcement learning, with an assistance from an adversarial
discriminator. Specifically, the trainer queries the discriminator, which judges how expert-like the
student’s behavior is, and then optimizes the reward function based on that feedback on-the-fly.
Unlike traditional AIL, where the discriminator effectively is employed as the reward function for
the student, RILe introduces a trainer agent to provide fine-grained feedback to the student, while
avoiding IRL’s iterative computational expense.

The trainer agent plays the key role in RILe. Trained via RL, the trainer explores different reward
designs and learns to provide gradually tailored feedback to the student by maximizing the cumulative
rewards it receives from the discriminator. This approach equips RILe with two key advantages over
existing IRL/AIRL/AIL frameworks: (1) On-the-fly reward function learning via RL: The reward
function is learned continuously with RL, enabling the trainer to explore different reward options and
account for long-horizon effects of its signals, (2) Context-sensitive guidance: The trainer adjusts
its reward outputs in response to the student’s current policy, thereby encouraging the student to
explore suboptimal actions that ultimately guide it closer to expert behavior. By providing tailored
feedback at different stages of training, RILe addresses the limitations of prior methods, particularly
in high-dimensional tasks.

In the remainder of this section, we define the components of RILe and explain how they jointly learn
from expert demonstrations.

Student Agent The student agent learns a policy πS by interacting with an environment in a
standard RL setting within an MDP. For each of its actions aS ∈ A, the environment returns a new

5

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Figure 2: Reinforced Imitation Learning (RILe). The framework consists of three key components:
a student agent, a trainer agent, and a discriminator. The student agent learns a policy πS by
interacting with an environment, and the trainer agent learns a reward function as a policy πT . (1)
The student receives the environment state sS . (2) The student takes an action aS , forwards it to
the environment which is updated based on aS . (3) The student forwards its state and action to the
trainer, whose state is sT = (sS , aS). (4) Trainer, πT , evaluates the state action pair of the student
agent sT = (sS , aS) and chooses an action aT that then becomes the reward of the student agent
aT = rS . (5) The trainer agent forwards the sT = (sS , aS) to the discriminator. (6) Discriminator
compares student state-action pair with expert demonstrations (sD). (7) Discriminator gives reward
to the trainer, based on the similarity between student- and expert-behavior.

state sS ∈ S. However, instead of using a handcrafted reward function, the student’s reward comes
from the trainer agent’s policy, πT . Therefore, the reward function is represented by the trainer policy.
Thus, the student agent is guided by the actions of the trainer agent, i.e., the action of the trainer is
the reward of the student: rS = πT ((s

S , aS)). The optimization problem of the student agent is then
defined as

min
πS

−E(sS ,aS)∼πS
[πT

(
(sS , aS)

)
]. (5)

Discriminator The discriminator differentiates between expert-generated state-action pairs,
(s, a) ∼ τE , and pairs from the student, (s, a) ∼ πS . In RILe, the discriminator is defined as
a feed-forward deep neural network, parameterized by ϕ. Its objective is:

max
ϕ

E(s,a)∼τE [log(Dϕ(s, a))] + E(s,a)∼πS
[log(1−Dϕ(s, a))]. (6)

To provide effective guidance, the discriminator must accurately identify whether a given state–action
pair originates from the expert distribution (s, a) ∼ τE or not (s, a) /∈ τE . GAIL (Ho & Ermon,
2016) established the feasibility of such a discriminator (see Appendix B for details).

Trainer Agent The trainer agent guides the student toward expert behavior by serving as its reward
mechanism. Since the trainer does not directly observe the student’s policy πS , we model the trainer’s
environment as a Partially Observable MDP (POMDP): POMDPT = (ST , AT ,ΩT , TT , OT , RT , γ).
The state space ST = S × A× πS includes all possible state-action pairs from the standard MDP
and the student’s policy πS , which is hidden from the trainer, introducing partial observability. The
trainer’s action space, AT , consists of scalar values. Formally, AT is defined as a mapping from
ST → R. The observation space ΩT = S × A consists of the observable state-action pairs of
the student. The transition dynamics TT and the observation function OT are defined formally in
Appendix A. The reward function RT (s

T , aT) evaluates the effectiveness of the trainer’s action in
guiding the student, where sT = (sS , aS) is the observation of the trainer. γ is the discount factor.

Within this POMDP, the trainer learns a policy πT that produces helpful reward signals for πS . The
trainer observes only the student’s state–action pair, sT = (sS , aS) ∈ S ×A, not πS itself. It then
outputs a scalar action aT ∈ [−1, 1], which is provided to the student as the reward, rS .

If the trainer’s reward depends only on the discriminator’s output, the trainer receives the same reward
regardless of whether it rewards or penalizes the student, yielding no immediate feedback on its
choices. For instance, if the student behaves like the expert and the discriminator outputs ≈ 1, the

6

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

trainer should ideally reward the student (action, aT , ≈ 1). But if the trainer’s action is not factored
into its own reward, it gains no immediate signal whether rewarding or punishing the student was
effective, since it receives the same reward in either case. This ambiguity forces extensive trial and
error. To address this, we define the trainer reward as:

RT = e−|υ(Dϕ(s
T))−aT | (7)

where υ(x) = 2x− 1 scales the discriminator’s output, making it symmetric around zero. Including
aT in the trainer’s reward ensures the trainer effectively learns from its own actions. Formally, we
define the trainer’s objective as:

max
πT

E(s,a)∼πS

aT∼πT

[e−|υ(Dϕ(s
T))−aT |]. (8)

RILe RILe brings together these three components, student, trainer, and discriminator, to discover a
student policy that imitates expert behaviors in τE . Both πS and πT can be trained via any single-agent
RL method. The overall training algorithm is detailed in Appendix J.

The student agent aims to recover the optimal policy π∗
S :

π∗
S = argmax

πS

E(sS ,aS)∼πS

[∞∑
t=0

γt[πT
(
(sSt , a

S
t)
)
]

]
. (9)

Simultaneously, the trainer aims to recover π∗
T :

π∗
T = argmax

πT

EsT∼πS

aT∼πT

[∞∑
t=0

γt[e−|υ(Dϕ(s
T
t))−aTt |]

]
. (10)

By optimizing these objectives together, RILe efficiently learns both a reward function and a policy
in high-dimensional settings where traditional AIL or IRL methods often struggle. Details on specific
training strategies are provided in Appendix C.

5 EXPERIMENTS

We evaluate the performance of RILe by addressing four key questions:

1. How does RILe’s reward-learning strategy differs from AIL and AIRL?
2. How adaptive is RILe’s learned reward function?
3. How does RILe perform in high-dimensional robotic imitation tasks compared to

AIL/AIRL/IRL?
4. How explicitly using expert-data within RILe’s training affects the context-sensitive reward

learning?

Baselines We compare RILe with seven baseline methods: Behavioral cloning (BC (Bain & Sammut,
1995; Ross & Bagnell, 2010), BCO (Torabi et al., 2018a)), adversarial imitation learning (GAIL (Ho
& Ermon, 2016), GAIfO (Torabi et al., 2018b) and DRAIL (Lai et al., 2024)), adversarial inverse
reinforcement learning (AIRL (Fu et al., 2018)), and inverse reinforcement learning (IQ-Learn (Garg
et al., 2021)). DRAIL (Lai et al., 2024) introduces a diffusion-based discriminator implementation,
which is applied to both GAIL and RILe, and referred as DRAIL-GAIL and DRAIL-RILe. Additional
experimental details are provided in the Appendix D.

5.1 EVOLVING REWARD FUNCTION

To answer the first question about RILe’s reward-learning strategy, we compare RILe’s performance
with AI(R)L baselines in a maze setting. In this environment, the agent must navigate from a fixed
start to a goal while avoiding static obstacles; we use a single expert demonstration.

Figure 3 shows how each method’s learned reward function evolves during training. For RILe, we plot
the trainer’s learned reward function. For GAIL and AIRL, we visualize the discriminator outputs.
The columns represent reward landscapes at 25%, 50%, 75%, and 100% of the total training process,
and each subplot overlays the student’s trajectory from the previous epoch.

7

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

(a) RILe

(b) GAIL

(c) AIRL

Figure 3: Reward Function Comparison. Evolution of reward functions during training for (a)
RILe, (b) GAIL, and (c) AIRL in a continuous maze environment. Columns show reward landscapes
at 25%, 50%, 75%, and 100% of training completion (left to right). The expert’s trajectory is shown
in black, while the student agent’s trajectory from the previous training epoch is in white. Color
gradients represent reward values, with darker colors indicating lower rewards and brighter colors
indicating higher rewards. Black squares represent obstacles. RILe demonstrates a dynamic reward
function that adapts with the student’s progress, while GAIL and AIRL maintain relatively static
reward landscapes throughout training and struggle to adapt.

RILe’s reward function dynamically adapts to the student’s current policy, providing guidance that
encourage suboptimal actions which eventually lead the student closer to the expert trajectory. By
contrast, GAIL and AIRL’s reward functions remain relatively static. Specifically, the first column in
Figure 3 shows RILe’s trainer encouraging exploration toward the bottom-right of the maze, which
is initially suboptimal but helpful in the long run. As the student learns to reach the lower part of
the maze, RILe shifts high-reward regions toward the top-left (second column), again encouraging
incremental progress. The third column illustrates how RILe boosts rewards near the goal while
still maintaining some incentive around top left areas to keep the agent from getting stuck. Overall,
RILe’s evolving reward function serves as a curriculum that promotes gradual improvement toward
expert-like performance. This dynamic reward adaptation gets important in higher-dimensional tasks
as we show in Section 5.3.

5.2 REWARD FUNCTION DYNAMICS

To address the second question on adaptability, we quantify how the reward function evolves and
its relationship to the student’s performance. We compare RILe with GAIL, DRAIL-GAIL, and
DRAIL-RILe in a high-dimensional robotic control scenario (learning to walk with UnitreeH1 robot).

We introduce three metrics (see Appendix D.2 for details): (1) RFDC (Reward Function Distribution
Change): Wasserstein distance between reward distributions over consecutive training intervals,
capturing overall shifts in reward space, (2) FS-RFDC (Fixed-State Reward Function Distribution
Change): Mean absolute deviation of reward values at a fixed set of expert states over time, (3) CPR
(Correlation between Performance and Reward): Pearson correlation between changes in the reward
function and changes in the student’s performance.

8

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

(a) RFDC (b) FS-RFDC (c) CPR

Figure 4: Dynamics of Reward Functions. (a) Reward Function Distribution Change (RFDC):
Wasserstein distance between reward function distributions. (b) Fixed-State Reward Function
Distribution Change (FS-RFDC): Mean absolute deviation of reward values for a fixed set of expert
states. (c) Correlation between Performance and Reward (CPR): Pearson correlation between
changes in the reward function and changes in the student’s performance.

5.2.1 ADAPTABILITY OF THE LEARNED REWARD FUNCTION

We assess how adaptive the reward function learned by RILe is compared to that of AIL. Fig. 4a
presents changes in reward distributions over 10,000 consecutive steps. RILe exhibits the highest
adaptability in its reward function, aligning with our goal of having the reward function adapt based
on the student’s learning stage. The advanced discriminator in DRAIL reduces the need for drastic
reward function changes, yet RILe remains more adaptive than GAIL. Since the changing student
policy indirectly affects RFDC, we also show changes in reward values for the fixed set of states in
Fig. 4b. Again, RILe’s reward function is the most adaptive among all methods.

Higher adaptability of RILe ensures that the reward signal remains aligned with incremental perfor-
mance improvements, enabling the student to receive more timely and effective guidance throughout
training.

5.2.2 CORRELATION BETWEEN THE LEARNED REWARD AND THE STUDENT PERFORMANCE

We evaluate how changes in the reward function correlate with improvements in student performance.
To this end, Fig. 4c presents the Pearson correlation between student’s performance and reward
updates. DRAIL-RILe achieves the highest positive correlation, indicating that it learns the most
effective rewards for improving student performance. RILe ranks second, demonstrating that the
trainer agent effectively helps the student achieve better scores even with the help of a naive-
discriminator. In contrast, GAIL’s correlation starts positive but soon turns negative and remains so
throughout training. We hypothesize that this occurs because the discriminator in GAIL tends to
saturate as training progresses. While the discriminator’s reward signal effectively guides learning
early on, its increasingly static nature at later stages fails to capture subtle performance improvements,
leading to a negative correlation.

5.3 MOTION-CAPTURE DATA IMITATION FOR ROBOTIC CONTINUOUS CONTROL

To answer the third question, we test RILe in high-dimensional robotic locomotion tasks (Al-Hafez
et al., 2023), where the agent must imitate motion-capture data for various robotic bodies. This
benchmark is especially demanding due to its complexity and dimensionality.

Table 1 presents results for seven LocoMujoco tasks across different test seeds (see Appendix D.3
for details). Overall, these results underscore that RILe outperforms the AIL/IL/IRL baselines, and
benefits even more from the enhancements provided by the DRAIL variants, achieving performance
levels close to the expert. The performance variations across tasks indicate that although RILe’s
adaptive reward function is highly effective, task-specific factors also play a role. This overall
performance aligns with our claim that an adaptive reward function is crucial for mastering complex,
high-dimensional behaviors

9

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Table 1: Test results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO DRAIL
GAIL

DRAIL
RILe Expert

W
al

k

Atlas 870.6 792.7 300.5 30.9 21.0 834.2 834.4 899.1 1000
Talos 842.5 442.3 102.1 4.5 11.9 710.0 787.7 896.6 1000
UnitreeH1 966.2 950.2 568.1 8.8 34.8 526.8 940.8 995.8 1000
Humanoid 831.3 181.4 80.1 4.5 3.5 706.5 814.6 527.6 1000

C
ar

ry Atlas 850.8 669.3 256.4 36.8 20.3 810.1 516.6 317.1 1000
Talos 220.1 186.3 134.2 10.5 10.3 212.5 836.7 840.5 1000
UnitreeH1 788.3 634.6 130.5 14.4 21.1 604.5 796.7 909.5 1000

5.4 IMPACT OF EXPERT DATA ON TRAINER-STUDENT DYNAMICS

Figure 5: Explicit Usage of Expert Data.
Red and yellow markers show normalized
scores and steps, respectively. Expert data
usage speeds the training of RILe but reduce
final performance.

To answer the fourth question, we use MuJoCo’s
Humanoid environment (Todorov et al., 2012; Brock-
man et al., 2016) with a single expert trajectory from
(Garg et al., 2021), varying the proportion of expert
data in the replay buffers from 0% to 100% (e.g., 25%
means a quarter expert data and 75% agent data; see
Appendix D.4 for details).

Figure 5 shows that introducing expert data in both
the trainer’s and the student’s replay buffers acceler-
ates RILe’s convergence (i.e., fewer training steps),
but reduces the final performance. In the extreme case
of 100% expert data, the student’s performance drops
substantially. This indicates that too much expert data
hamper the trainer’s ability to adapt to the student’s
real-time needs, disrupting RILe’s context-sensitive
reward customization. We also include IQ-Learn and
BC results, both rely heavily on expert data, and find
that neither matches RILe’s performance, even when
RILe uses a large portion of expert data.

6 DISCUSSION

As our experiments demonstrate, RILe consistently outperforms baseline models across various tasks,
thanks to its adaptive learning approach, where the trainer agent continuously adjusts the reward
based on the student’s current learning stage.

Our maze experiments provide an interpretable example of how the trainer agent tailors its rewards.
By encouraging actions that might seem suboptimal for immediate imitation but advantageous for
long-term learning, RILe establishes a curriculum that ultimately boosts performance. This adaptive
strategy helps RILe to achieve superior results in our continuous control experiments, where reward
shaping becomes especially critical in high-dimensional settings.

Nonetheless, policy stability remains challenging when the reward function is constantly evolving.
Freezing the trainer (see Appendix C) stabilizes learning but halts further adaptation, and the
discriminator itself tends to overfit quickly. Future work could explore fully cooperative multi-
agent RL techniques to allow ongoing adaptation, investigate ways to bound or regulate trainer
updates, and consider discriminator-less formulations for reward learning.

Despite these challenges, RILe shows that cooperatively learning the policy and the reward function
can offer significant advantages over static or iteratively updated methods. By providing dynamic and
tailored rewards, RILe effectively guides the student through complex tasks. We believe this opens up
new possibilities for responsive and adaptive learning frameworks in imitation learning and beyond.

10

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Firas Al-Hafez, Guoping Zhao, Jan Peters, and Davide Tateo. Locomujoco: A comprehensive
imitation learning benchmark for locomotion. In 6th Robot Learning Workshop, NeurIPS, 2023.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, methods
and progress. Artificial Intelligence, 297:103500, 2021.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103–129, 1995.

Michael Bloem and Nicholas Bambos. Infinite time horizon maximum causal entropy inverse
reinforcement learning. 53rd IEEE Conference on Decision and Control, pp. 4911–4916, 2014.
URL https://api.semanticscholar.org/CorpusID:14981371.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Annie S Chen, Suraj Nair, and Chelsea Finn. Learning generalizable robotic reward functions from”
in-the-wild” human videos. In Robotics: Science and Systems, 2021.

Chelsea Finn, Sergey Levine, and Pieter Abbeel. Guided cost learning: Deep inverse optimal control
via policy optimization. In International conference on machine learning, pp. 49–58. PMLR, 2016.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse reinforce-
ment learning. In International Conference on Learning Representations, 2018.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Iq-learn:
Inverse soft-q learning for imitation. Advances in Neural Information Processing Systems, 34:
4028–4039, 2021.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Dan Horgan,
John Quan, Andrew Sendonaris, Ian Osband, et al. Deep q-learning from demonstrations. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 32, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In International Conference on Learning Representations, 2020.

Chun-Mao Lai, Hsiang-Chun Wang, Ping-Chun Hsieh, Yu-Chiang Frank Wang, Min-Hung Chen, and
Shao-Hua Sun. Diffusion-reward adversarial imitation learning. arXiv preprint arXiv:2405.16194,
2024.

Andrew Y Ng and Stuart J Russell. Algorithms for inverse reinforcement learning. In Proceedings of
the Seventeenth International Conference on Machine Learning, pp. 663–670, 2000.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel Van de Panne. Deepmimic: Example-
guided deep reinforcement learning of physics-based character skills. ACM Transactions On
Graphics (TOG), 37(4):1–14, 2018.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proceedings of the
thirteenth international conference on artificial intelligence and statistics, pp. 661–668. JMLR
Workshop and Conference Proceedings, 2010.

11

https://api.semanticscholar.org/CorpusID:14981371

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A reduction of imitation learning and structured
prediction to no-regret online learning. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pp. 627–635. JMLR Workshop and Conference Proceedings,
2011.

Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning from
noisy demonstrations. In International Conference on Artificial Intelligence and Statistics, pp.
298–306. PMLR, 2021.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. In Proceedings
of the 27th International Joint Conference on Artificial Intelligence, pp. 4950–4957, 2018a.

Faraz Torabi, Garrett Warnell, and Peter Stone. Generative adversarial imitation from observation.
arXiv preprint arXiv:1807.06158, 2018b.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imita-
tion learning from imperfect demonstration. In International Conference on Machine Learning, pp.
6818–6827. PMLR, 2019.

Yiqing Xu, Wei Gao, and David Hsu. Receding horizon inverse reinforcement learning. Advances in
Neural Information Processing Systems, 35:27880–27892, 2022.

Kevin Zakka, Andy Zeng, Pete Florence, Jonathan Tompson, Jeannette Bohg, and Debidatta Dwibedi.
Xirl: Cross-embodiment inverse reinforcement learning. In Conference on Robot Learning, pp.
537–546. PMLR, 2022.

Boyuan Zheng, Sunny Verma, Jianlong Zhou, Ivor W Tsang, and Fang Chen. Imitation learning:
Progress, taxonomies and challenges. IEEE Transactions on Neural Networks and Learning
Systems, pp. 1–16, 2022.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 8,
pp. 1433–1438. Chicago, IL, USA, 2008.

12

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

A POMDP OF THE TRAINER

Partially Observable Markov Decision Process (POMDP) of the trainer is defined as POMDPT =
(ST , AT ,ΩT , TT , OT , RT , γ). Here, TT = {P (. | fT , aT)} is the transition dynamics where
P (. | fT , aT) is the state distribution upon taking action a ∈ AT in state f ∈ ST . The transition
function incorporates the student’s policy πS , which evolves in response to the rewards provided,
reflecting the hidden dynamics due to the unobserved πS . The observation function OT = {P (sT |
fT , aT)} defines the probability of observing sT ∈ ΩT given the state (fT , aT). The trainer
deterministically observes the student’s state-action pair, so P (sT = (sS , aS) | fT , aT) = 1, where
fT = (sS , aS , πS).

B JUSTIFICATION OF RILE

Assumptions:

• The discriminator loss curve is complex and the discriminator function, Dϕ(s, a), is suffi-
ciently expressive since it is parameterized by a neural network with adequate capacity.

• For the trainer’s and student’s policy functions (πθT) and (πθS), and the Q-functions
(QθS), each is Lipschitz continuous with respect to its parameters with constants
(LθT), (LθS), and(LQ), respectively. This means for all (s, a) and for any pair of parameter
settings (θ, θ′) : [|πθ(s, a)−πθ′(s, a)| ≤ Lθ|θ−θ′|,][|Qθ(s, a)−Qθ′(s, a)| ≤ LQ|θ−θ′|.]

To prove that the student agent can learn expert-like behavior, we need to show that the trainer agent
learns to give higher rewards to student experiences that match with the expert state-action pair
distribution, as this would enable a student policy to eventually mimic expert behavior.

B.1 LEMMA 1:

Given the discriminator Dϕ, the trainer agent optimizes its policy πθT via policy gradients to provide
rewards that guide the student agent to match expert’s state-action distributions.

Proof for Lemma 1 The student agent, πS(aSt |sSt), interacts with the environment and generates
state-action pairs as (sSt , a

S
t). The trainer agent observes these pairs and provides a reward rSt =

aTt = πT (a
T
t |(sSt , aSt)) to the student, where aTt ∈ [−1, 1] is the trainer’s action. We have Dϕ :

S ×A → [0, 1] as the discriminator, parameterized by ϕ, which outputs the likelihood that a given
state-action pair (s, a) originates from the expert, as opposed to the student.

The trainer’s reward at timestep t is:

rTt = e−|υ(Dϕ(s
T
t))−aTt | (11)

where sTt = (sSt , a
S
t) is the trainer’s observation, Dϕ(s

T
t) is the discrimantor output that estimates

the likelihood that sTt comes from the expert data, and υ(D) = 2D − 1 is a scaling function that
maps discriminator’s output to the range [−1, 1].
The trainer maximizes the expected cumulative reward:

JT (πT) = EπT ,πS

[∞∑
t=0

γtrTt

]
(12)

where γ ∈ [0, 1) is the discount factor. In other words, trainer aims to find the policy that maximizes
JT (πT): π∗T = argmaxπT JT (πT).

From the policy gradient theorem, the gradient of the trainer’s objective with respect to the policy
parameters, θT , is:

∇θT JT (πT) = EπT ,πS

[
∇θT log πT (a

T
t |sTt)QT (s

T
t , a

T
t)

]
(13)

where QT (s
T
t , a

T
t) is the action-value function of the trainer. The action-value function, QT (s

T
t , a

T
t),

and the value function, VT (sTt) is defined by Bellman equation as:
QT (s

T
t , a

T
t) = rTt + γEsTt+1

[
VT (s

T
t+1)

]
(14)

VT (s
T
t+1) = EaTt ∼πT

[
QT (s

T
t , a

T
t))

]
(15)

13

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

The trainer aims to maximize QT (s
T
t , a

T
t) to satisfy Equation 13. Since rTt depends directly on

Dϕ(s
T
t) and aTt , the trainer learns to select aTt that maximizes QT (s

T
t , a

T
t) . Considering that

aTt ∈ [−1, 1], the immediate reward rTt is maximized when aTt matches υ(Dϕ(s
T
t)) . Therefore, the

optimal action a∗Tt is:
α∗T
t = υ(Dϕ(s

T
t)) = 2Dϕ(s

T
t)− 1 (16)

Equation 16 implies the trainer learns to match the discriminator’s scaled output. By this mechanism,
the trainer’s policy optimization relies on the discriminator’s assessment to assign rewards that
encourage expert-like behavior. Over time, this guides the student toward regions of the state-action
space where Dϕ(s

T
t) ≈ 1, i.e., expert-like behavior.

All in all, the derivative of the trainer’s expected reward, Equation 13, with respect to its policy
parameters is rewritten as:

∇θT JT (πT) = EπT ,πS

[
∇θT log πT (a

T
t |sTt)

(
e−|υ(Dϕ(s

T
t))−aTt | + γQT (s

T
t+1, a

T
t+1)

)]
(17)

The trainer adjusts πT to output high rewards when Dϕ(s
T
t) is high. Therefore the trainer learns to

assign higher rewards to student behaviors that are more similar to expert behaviors, according to the
discriminator.

B.2 LEMMA 2:

The discriminator Dϕ, parameterized by ϕ will converge to a function that estimates the probability
of a state-action pair being generated by the expert policy, when trained on samples generated by
both a student policy πθS and an expert policy πE .

Proof for Lemma 2: The discriminator’s objective is to distinguish between state-action pairs
generated by the expert and those generated by the student. The training objective for the discriminator
is framed as a binary classification problem over expert demonstrations and student-generated
trajectories. The discriminator’s loss function LD(ϕ) is the binary cross-entropy loss, which is
defined as:

LD(ϕ) = −E(s,a)∼pE [log(Dϕ(s, a))]− E(s,a)∼pπS
[log(1−Dϕ(s, a))]. (18)

where pE(s, a) is the state-action distribution of the expert policy, and pπS
(s, a) is the state-action

distribution of the student agent. Considering that x = (s, a), this loss can be rewritten as:

LD(ϕ) = −
∫
[pE(s, a) logDϕ(s, a) + pπS

(s, a) log(1−Dϕ(s, a))] ds da (19)

LD(ϕ) = −
∫
[pE(x) logDϕ(x) + pπS

(x) log(1−Dϕ(x))] dx . (20)

As presented in Goodfellow et al. (2014), the optimal discriminator that minimizes this loss, D∗
ϕ, is:

D∗
ϕ(x) =

pE(x)

pE(x) + pπS
(x)

, (21)

D∗
ϕ(s, a) =

pE(s, a)

pE(s, a) + pπS
(s, a)

. (22)

This shows that the optimal discriminator estimates the probability that a state-action pair comes
from the expert policy, normalized by the total probability from both expert and student policies.

C TRAINING STRATEGIES

The introduction of the trainer agent into the AIL framework introduces instabilities that can hinder
the learning process. To address these challenges, we employ three strategies.

Freezing the Trainer Agent Midway: Continuing to train the trainer agent throughout the entire
process can lead to overfitting on minor fluctuations in the student’s behavior. This overfitting causes

14

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

the trainer to assign inappropriate negative rewards, which diverts the student away from expert
behavior—especially since the student agent may fail to interpret these subtle nuances correctly in
the later stages of training. To prevent this, we freeze the trainer agent once its critic network within
the actor-critic framework converges during the training process.

We consider the trainer’s critic network to have converged when the change in the exponential moving
average (with a smoothing factor of 0.99) of the critic output and its variance over a window of
50000 training iterations fall below a certain threshold. In all our experiments, this threshold is set to
0.1, which we found empirically after our hyperparameter search (see Appendix H). This threshold
works for all settings where the reward is bounded between −1 and 1, which is the case for all our
experiments.

Reducing the Trainer Update Frequency: We decrease the update frequency of the trainer agent
to one forth of the student agent. We empirically found that updating at one fourth of the student
agent’s frequency works best. This adjustment aims to prevent overestimation bias in the trainer’s
value function and to slow down its learning pace. By updating less frequently, the trainer provides
more consistent and reliable reward signals. This steadier guidance helps the student agent better
understand and adapt to the trainer’s rewards, facilitating more stable learning.

Increasing the Student Agent’s Exploration: We increase the exploration rate of the student agent
compared to standard AIL methods. We implement an epsilon-greedy strategy within the actor-critic
framework, allowing the student to occasionally take random actions. This increased exploration
enables the student to visit a wider range of state-action pairs. Consequently, the trainer agent receives
diverse input, helping it learn a more effective reward function. This diversity is crucial for the trainer
to observe the outcomes of various actions and to guide the student more effectively toward expert
behavior.

D EXPERIMENTAL SETTINGS

D.1 EVOLVING REWARD FUNCTION

We use single expert demonstration in this experiment. For RILe, we plot the reward function learned
by the trainer. For GAIL, we visualize the discriminator output, and for AIRL, the reward term under
the discriminator.

D.2 REWARD FUNCTION DYNAMICS

In this experiment, we select the student agent’s hyperparameters to be identical to those used
in GAIL, ensuring that the only difference between the agents is the reward function. Therefore,
we use the best hyperparameters identified for GAIL, applied to both GAIL and RILe, from our
hyperparameter sweeps presented in Appendix H.

RFDC: We calculate the Wasserstein distance between reward distributions over consecutive 10,000-
step training intervals, denoted as times t and t + 10, 000. This metric quantifies how much the
overall reward distribution shifts over time. Changes in reward distributions depend both on the
reward function and the student policy updates. Since we use the same student agent with the
same hyperparameters, higher RFDC values still indicate that the reward function is adapting more
dynamically in response to the student’s learning progress.

FS-RFDC: We compute the mean absolute deviation of rewards between consecutive 10,000-step
training intervals for a fixed set of states derived from expert data. As the fixed set, we use all the
states in the expert data. Since the states used for calculating rewards are fixed, changes in this value
purely depend on the reward function updates. This metric assesses how the reward values for specific
states change over time.

CPR: We evaluate how changes in the reward function correlate with improvements in student
performance. We store rewards from both the learned reward function and the environment-defined
rewards in separate buffers. In other words, we collect samples from two reward functions: the
learned reward function and the environment-defined reward function. The environment rewards
consider the agent’s velocity and stability. Every 10,000 steps, we calculate the Pearson correlation

15

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

between these rewards and empty the buffers. This metric evaluates whether increases in the learned
rewards relate to performance enhancements.

D.3 MOTION-CAPTURE DATA IMITATION FOR ROBOTIC CONTINUOUS CONTROL

During training, we use 8 different random seeds and 8 distinct initial positions for the robot. The
validation setting mirrors the training conditions: we sample initial positions from the same set
of 8 possibilities and use the same random seeds. In this setting, the student agent selects actions
deterministically, allowing us to assess its performance under familiar conditions.

For the test setting, we evaluate the policy’s ability to generalize to new, unseen scenarios. We modify
the initial positions of the robot by randomly initializing it in stable configurations not included in the
fixed set used during training. Additionally, we use different random seeds from those in training,
introducing new random variations that affect the environment’s dynamics during state transitions.
This setup enables us to assess how well the learned policy performs when faced with novel initial
conditions.

D.4 IMPACT OF EXPERT DATA ON TRAINER-STUDENT DYNAMICS

In this experiment, both seeds and initial positions in the test setting are different from the training
one, and we report values from the test setting.

For every percentage of the expert-data in buffers, we continue trainings of both the trainer agent
and the student agent of RILe. For instance, in 100% expert data in the trainer’s buffer case, both the
student and the discriminator are trained normally using samples from the student agent. However,
we didn’t include student’s state-action pairs to the trainer’s buffer, instead, we filled that buffer with
a batch of expert data, and updated the trainer regularly using this modified buffer. Similarly, in
100% expert data in the student’s buffer case , we trained the trainer agent and the discriminator
normally, using samples from the student. However, student’s state-actions pairs are not included in
the student’s buffer, and student agent is updated just by using expert state-action pairs, using rewards
coming from the trainer agent for these expert pairs.

Regarding the normalizations, we trained Behavioral Cloning (BC) and RILe across various data
leakage levels, selecting the highest-scoring run (0% leakage RILe) as the baseline. Other scores and
convergence steps are normalized by dividing by the score and convergence steps of the baseline (0%
leakage RILe). For IQLearn, we used their reported numbers in their paper, as we couldn’t replicate
their results with their code and hyperparameters.

E ADDITIONAL EXPERIMENTS

E.1 ROBUSTNESS TO NOISE IN THE EXPERT DATA

To evaluate the robustness of RILe and baseline methods to noise in the expert data, we conducted
experiments in the MuJoCo Humanoid-v2 environment. Artificial noise sampled from a zero-mean
Gaussian distribution with varying standard deviations (Σ) was added to a single expert trajectory,
affecting either the actions or the states. The baselines used for comparison were GAIL (Ho & Ermon,
2016), AIRL (Fu et al., 2018), RIL-Co (Tangkaratt et al., 2021), IC-GAIL (Wu et al., 2019), and
IQ-Learn (Garg et al., 2021).

As shown in Table 2, RILe consistently outperforms the baselines across different noise levels,
demonstrating superior robustness even when a high amount of noise is present in the expert data (Σ =
0.5). These results indicate that RILe is less sensitive to imperfections in the expert demonstrations
compared to existing methods.

E.2 ROBUSTNESS OF THE LEARNED REWARD FUNCTION

We evaluated the robustness of the reward functions learned by RILe and AIRL (Fu et al., 2018)
through an experiment similar to that conducted by Xu et al. (2022). Initially, both methods were
trained to learn reward functions in a noise-free MuJoCo Humanoid-v2 environment. After training,
these reward functions were frozen. Subsequently, new student agents were trained using these

16

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Table 2: Test results in MuJoCo Humanoid-v2 environment, where artificial noise sampled from a
zero-mean Gaussian distribution is added to a single expert trajectory. Results are aggregated over 20
different-seed environments. IQ-Learn* is trained using the official code and hyperparameters of the
IQ-Learn algorithm.

Noise-Free Action Noise State Noise
Σ = 0 Σ = 0.2 Σ = 0.5 Σ = 0.2 Σ = 0.5

RILe 5681 5280 5154 5350 5205
GAIL 5430 5275 902 5147 917
AIRL 5276 4869 4589 4898 4780
RIL-Co 576 491 493 505 501
IC-GAIL 610 601 568 590 591
IQ-Learn* 312 192 153 243 277

fixed reward functions in environments where Gaussian noise was added to the agents’ actions, with
varying noise levels.

Table 3 presents the results of this evaluation. The reward function learned by RILe demonstrates
superior robustness to noise, maintaining high performance even under increased noise levels. In
contrast, the performance of agents using the reward function learned by AIRL decreases more
significantly as noise increases. These findings indicate that the reward function learned by RILe is
more resilient to environmental noise, contributing to better agent performance in noisy conditions.

Table 3: We test the robustness of learned reward functions. After training reward
functions in a noise-free setting, reward functions are frozen, and used to train
a new agent in a noisy environment, where Gaussian noise is added to agent’s
actions in every step.

No Noise Mild Noise High Noise
Σ = 0 Σ = 0.2 Σ = 0.5

RILe 5748 5201 5196
AIRL 5334 5005 4967

F EXTENDED MUJOCO RESULTS

We present MuJoCo results for the test setting, with standard errors, in Table 4.

Table 4: Test results on four MuJoCo tasks with standard errors.

RILe GAIL AIRL IQLearn DRAIL
Humanoid-v2 5928 ± 188 5709 ± 63 5623 ± 252 327 ± 105 5755 ± 34
Walker2d-v2 4435 ± 206 4906 ± 159 4823 ± 221 270 ± 43 4016 ± 127
Hopper-v2 3417 ± 155 3361 ± 51 3014 ± 190 310 ± 47 1230 ± 73
HalfCheetah-v2 5205 ± 31 4173 ± 94 3991 ± 126 755 ± 211 4133 ± 41

17

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

G EXTENDED LOCOMUJOCO RESULTS

We present LocoMujoco results for the validation setting and test setting, with standard errors, in
Table 5 and 6, respectively.

Table 5: Validation results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO DRAIL
GAIL

DRAIL
RILe Expert

W
al

k

Atlas 895.4
±25

918.6
±133

356.0
±68

32.1
±4

28.7
±4

831.6
±41

741.3
±46

773.9
±13 1000

Talos 884.7
±8

675.5
±105

103.4
±22

7.2
±2

19.9
±4

718.8
±16

963.7
±48

949.4
±54 1000

UnitreeH1 980.7
±15

965.1
±20

716.2
±124

12.5
±6

43.7
±8.4

586.6
±102

954.7
±20

973.5
±8 1000

Humanoid 970.3
±101

216.2
±18

78.2
±6

6.8
±1

8.3
±1

345.7
±34

550.8
±148

595.3
±73 1000

C
ar

ry

Atlas 889.7
±44

974.2
±80

271.9
±30

39.5
±8

42.7
±9

306.2
±9

654.1
±109

344.1
±28 1000

Talos 503.3
±72

338.5
±48

74.1
±8

11.7
±3

8.1
±1

444.5
±96

889.8
±163

874.3
±174 1000

UnitreeH1 850.6
±80

637.4
±90

140.9
±21

12.3
±2

30.2
±5

503.6
±55

620.8
±60

878.1
±46 1000

Table 6: Test results on seven LocoMujoco tasks.

RILe GAIL AIRL IQ BCO GAIfO DRAIL
GAIL

DRAIL
RILe Expert

W
al

k

Atlas 870.6
±13

792.7
±105

300.5
±74

30.9
±10

21.0
±3

803.1
±68

834.4
±23

899.1
±17 1000

Talos 842.5
±24

442.3
±76

102.1
±17

4.5
±3

11.9
±1

687.2
±44

787.7
±11

896.6
±12 1000

UnitreeH1 966.2
±14

950.2
±13

568.1
±156

8.8
±3

34.8
±10

526.8
±72

940.8
±20

995.8
±6 1000

Humanoid 831.3
±98

181.4
±24

80.1
±9

4.5
±2

3.5
±2

292.1
±25

814.6
±80

527.6
±39 1000

C
ar

ry

Atlas 850.8
±62

669.3
±55

256.4
±47

36.8
±14

20.3
±1

402.9
±39

516.6
±60

317.1
±19 1000

Talos 220.1
±88

186.3
±28

134.2
±18

10.5
±3

10.3
±2

212.5
±32

836.7
±160

840.5
±133 1000

UnitreeH1 788.3
±71

634.6
±45

130.5
±22

14.4
±2

21.1
±6

504.5
±30

796.7
±131

909.5
±9 1000

18

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

H HYPERPARAMETERS

We present hyperparameters in Table 7. For DRAIL, we replaced the discriminators with the
implementation provided by DRAIL and adopted their hyperparameters for the HandRotate task.

Our experiments revealed that RILe’s performance is particularly sensitive to certain hyperparameters.
We highlight three key observations:

• RILe is more sensitive to the hyperparameters of the discriminator compared to other
methods. Specifically, increasing the discriminator’s capacity or training speed, by using
a larger network architecture or increasing the number of updates per iteration, adversely
affects RILe’s performance. A powerful discriminator tends to overfit quickly to the expert
data, resulting in high confidence when distinguishing between expert and student behaviors.
This poses challenges for the trainer agent, as the discriminator’s feedback becomes less
informative.

• The update frequency of the trainer agent’s target network influences the stability of the
RILe framework. Lower update frequencies lead to improved stability. A slower-updating
trainer provides more consistent reward signals, allowing the student agent to better adapt
to the rewards. However, a lower update frequency slows down the learning process, as
the trainer adapts more slowly to changes in the student’s behavior. Therefore, there is a
trade-off between stability and learning speed that needs to be balanced.

• Enhancing the exploration rate of the student agent benefits RILe more than it does baseline
methods. By encouraging the student to explore more, through strategies like higher entropy
regularization or implementing an epsilon-greedy policy, the student visits a broader range of
state-action pairs. This increased diversity provides the trainer agent with more varied data,
enabling it to learn a more effective and robust reward function. The additional exploration
helps the trainer to better capture the effects of different actions.

I COMPUTE RESOURCES

For the training of RILe and baselines, following computational sources are employed:

• AMD EPYC 7742 64-Core Processor
• 1 x Nvidia A100 GPU
• 32GB Memory

19

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Ta
bl

e
7:

H
yp

er
pa

ra
m

et
er

Sw
ee

ps
an

d
B

es
tH

yp
er

pa
ra

m
et

er
s

fo
rL

oc
oM

uj
oc

o
an

d
H

um
an

oi
d

E
xp

er
im

en
ts

H
yp

er
pa

ra
m

et
er

s
R

IL
e

G
A

IL
A

IR
L

IQ
-L

ea
rn

Discriminator

U
pd

at
es

pe
rR

ou
nd

1,
2,

8
1,

2,
8

1,
2,

8
-

B
at

ch
Si

ze
32

,6
4,

12
8

32
,6

4,
12

8
32

,6
4,

12
8

-
B

uf
fe

rS
iz

e
81

92
,1

63
84

,1
e5

81
92

,1
63

84
,1

e5
81

92
,1

63
84

,1
e5

-

N
et

w
or

k
[5

12
FC

,5
12

FC
]

[2
56

FC
,2

56
FC

]
[6

4F
C

,6
4F

C
]

[5
12

FC
,5

12
FC

]
[2

56
FC

,2
56

FC
]

[6
4F

C
,6

4F
C

]

[5
12

FC
,5

12
FC

]
[2

56
FC

,2
56

FC
]

[6
4F

C
,6

4F
C

]
-

G
ra

di
en

tP
en

al
ty

0.
5,

1
0.

5,
1

0.
5,

1
-

L
ea

rn
in

g
R

at
e

3e
-4

,1
e-

4,
3e

-5
,1

e-
5

3e
-4

,1
e-

4,
3e

-5
,1

e-
5

3e
-4

,1
e-

4,
3e

-5
,1

e-
5

-

Student

B
uf

fe
rS

iz
e

1e
5,

1e
6

1e
5,

1e
6

1e
5,

1e
6

1e
5,

1e
6

B
at

ch
Si

ze
32

,2
56

32
,2

56
32

,2
56

32
,2

56
N

et
w

or
k

[2
56

FC
,2

56
FC

]
[2

56
FC

,2
56

FC
]

[2
56

FC
,2

56
FC

]
[2

56
FC

,2
56

FC
]

A
ct

iv
at

io
n

Fu
nc

tio
n

R
eL

U
,T

an
h

R
eL

U
,T

an
h

R
eL

U
,T

an
h

R
eL

U
,T

an
h

D
is

co
un

tF
ac

to
r(
γ

)
0.

99
,0

.9
7,

0.
95

0.
99

,0
.9

7,
0.

95
0.

99
,0

.9
7,

0.
95

0.
99

,0
.9

7,
0.

95
L

ea
rn

in
g

R
at

e
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
Ta

u
(τ

)
0.

05
,0

.0
1,

0.
00

5
0.

05
,0

.0
1,

0.
00

5
0.

05
,0

.0
1,

0.
00

5
0.

05
,0

.0
1,

0.
00

5
E

ps
ilo

n-
gr

ee
dy

0,
0.

1,
0.

2
0,

0.
1,

0.
2

0,
0.

1,
0.

2
0,

0.
1,

0.
2

E
nt

ro
py

0.
2,

0.
5,

1
0.

2,
0.

5,
1

0.
2,

0.
5,

1
0.

05
,0

.1
,0

.2
,0

.5
,1

Trainer

B
uf

fe
rS

iz
e

81
92

,1
63

84
,1

e5
,1

e6
-

-
-

B
at

ch
Si

ze
32

,2
56

-
-

-

N
et

w
or

k
[2

56
FC

,2
56

FC
]

[6
4F

C
,6

4F
C

]
-

-
-

A
ct

iv
at

io
n

Fu
nc

tio
n

R
eL

U
,T

an
h

-
-

-
D

is
co

un
tF

ac
to

r(
γ

)
0.

99
,0

.9
7,

0.
95

-
-

-
L

ea
rn

in
g

R
at

e
3e

-4
,1

e-
4,

3e
-5

,1
e-

5
-

-
-

Ta
u

(τ
)

0.
05

,0
.0

1,
0.

00
5

-
-

-
E

nt
ro

py
0.

2,
0.

5,
1

-
-

-
Fr

ee
ze

T
hr

es
ho

ld
1,

0.
5,

0.
1,

0.
01

,0
.0

01
-

-
-

20

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

J ALGORITHM

Algorithm 1 RILe Training Process

1: Initialize student policy πS and trainer policy πT with random weights, and the discriminator D
with random weights.

2: Initialize an empty replay buffer B
3: for each iteration do
4: Sample trajectory τS using current student policy πS
5: Store τS in replay buffer B
6: for each transition (s, a) in τS do
7: Calculate student reward RS using trainer policy:

RS ← πT (23)

8: Update πS using policy gradient with reward RS

9: end for
10: Sample a batch of transitions from B
11: Train discriminator D to classify student and expert transitions

max
D

EπS
[log(D(s, a))] + EπE

[log(1−D(s, a))] (24)

12: for each transition (s, a) in τS do
13: Calculate trainer reward RT using discriminator:

RT ← υ(D(s, a))aT (25)

14: Update πT using policy gradient with reward RT

15: end for
16: end for

21

Accepted as a workshop paper to the 7th Robot Learning Workshop at ICLR 2025

Algorithm 2 RILe Training Process with Off-policy RL

1: Initialize student policy πS , trainer policy πT , and the discriminator D with random weights.
2: Initialize an empty replay buffers BD, BS , BT with different sizes
3: for each iteration do
4: Sample trajectory τS using current student policy πS
5: Store τS in replay buffers BD, BS , BT
6: Sample a batch of transitions, bS from BS
7: for each transition (s, a) in bS do
8: Calculate student reward RS using trainer policy:

RS ← πT (26)

9: Update πS using calculated rewards
10: end for
11: Sample a batch of transitions bD from BD
12: Train discriminator D to classify student and expert transitions

max
D

EπS
[log(D(s, a))] + EπE

[log(1−D(s, a))] (27)

13: Sample a batch of transitions, bT from BT
14: for each transition (s, a) in bT do
15: Calculate trainer reward RT using discriminator:

RT ← υ(D(s, a))aT (28)

16: Update πT using calculated rewards
17: end for
18: end for

22

	Introduction
	Related Work
	Background
	Markov Decision Process
	Reinforcement Learning (RL)
	Inverse Reinforcement Learning (IRL)
	Adversarial Imitation Learning (AIL) and Adversarial Inverse Reinforcement Learning (AIRL)

	RILe: Reinforced Imitation Learning
	Experiments
	Evolving Reward Function
	Reward Function Dynamics
	Adaptability of the Learned Reward Function
	Correlation between the Learned Reward and the Student Performance

	Motion-Capture Data Imitation for Robotic Continuous Control
	Impact of Expert Data on Trainer-Student Dynamics

	Discussion
	POMDP of the Trainer
	Justification of RILe
	Lemma 1:
	Lemma 2:

	Training Strategies
	Experimental Settings
	Evolving Reward Function
	Reward Function Dynamics
	Motion-Capture Data Imitation for Robotic Continuous Control
	Impact of Expert Data on Trainer-Student Dynamics

	Additional Experiments
	Robustness to Noise in the Expert Data
	Robustness of the Learned Reward Function

	Extended MuJoCo Results
	Extended LocoMujoco Results
	Hyperparameters
	Compute Resources
	Algorithm

