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Abstract

Meta-learning provides a popular and effective family of methods for data-efficient
learning of new tasks. However, several important issues in meta-learning have
proven hard to study thus far. For example, performance degrades in real-world
settings where meta-learners must learn from a wide and potentially multi-modal
distribution of training tasks; and when distribution shift exists between meta-train
and meta-test task distributions. These issues are typically hard to study since
the shape of task distributions, and shift between them are not straightforward to
measure or control in standard benchmarks. We propose the channel coding prob-
lem as a benchmark for meta-learning. Channel coding is an important practical
application where task distributions naturally arise, and fast adaptation to new tasks
is practically valuable. We use our MetaCC benchmark to study several aspects of
meta-learning, including the impact of task distribution breadth and shift, which
can be controlled in the coding problem. Going forward, MetaCC provides a tool
for the community to study the capabilities and limitations of meta-learning, and to
drive research on practically robust and effective meta-learners.

1 Introduction

Meta-learning, or learning-to-learn, aims to provide data-efficient learning of new tasks by training
improved learning algorithms using a distribution over tasks. The promise of such data efficient
learning has long inspired research [32}135], and recently grown into a thriving research area in which
rapid progress is being made [8} 41} 9} [13]]. While performance has improved steadily, particularly
on standard image recognition benchmarks, several fundamental outstanding challenges have been
identified [13]. Notably, state of the art meta-learners have been shown to suffer in realistic settings
[40, 37] when required to generalize across a diverse rather than artificially narrow range of tasks
—1.e. the task distribution is broad and multi-modal; and when there is distribution shift between
the (meta)training and (meta)testing tasks. These conditions are almost inevitable in real-world
applications where, for example, robots should generalize across the range of manipulation tasks
of interest to humans [40]], and image recognition systems should cover a realistically wide range
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of image types [37]]. However, systematic study of these issues is hampered because conventional
benchmarks do not provide a way to quantitatively measure or control the complexity or similarity
of task distributions: Does an image recognition benchmark covering birds and airplanes provide a
more or less complex task distribution to meta-learn than one covering flowers and vehicles? Is there
greater task-shift if a robot trained to pick up objects must adapt to opening a drawer or throwing
a ball? In this paper, we contribute to the future study of these issues by introducing a channel
coding meta-learning benchmark termed MetaCC, which enables finer control and measurement of
task-distribution complexity and shift.

Channel coding is a classic problem in communications theory of how to encode/decode data to
be transmitted over a capacity limited noisy channel so as to maximize the fidelity of the received
transmission. While there is extensive theory on optimal codes for analytically tractable (e.g., Gaus-
sian) channels, recent work has shown that codecs obtained by deep learning provide clearly superior
performance on more complex challenging channels [17,16]. In this paper, we focus on learning the
decoder for a fixed encodey’} Best deep channel coding however is achieved by training codecs tuned
to the noise properties of a given channel. Thus, a highly practical meta-learning problem arises:
Meta-learning a channel code learner on a distribution of training channels, which can rapidly adapt
to the characteristics of a newly encountered channel. By way of example, the role of meta-learning
is now to enable the codec of a user’s wireless mobile device to rapidly adapt for best reception as
she traverses different environments or switches on/off other sources of interference.

We introduce channel coding problems [[16,|17] as tasks  »(™)
to study the performance of meta-learners, defining the
MetaCC benchmark to complement existing ones [40, 37].
Our benchmark spans five channel families, including a
real-world measurement of channel based on software
defined radio (SDR). We show how the channel coding
problem uniquely leads to natural model-agnostic ways to
measure the breadth of a task distribution, as well as the
shift between two task distributions (Fig. [T) — quantities
that are not straightforward to measure in vision bench-
marks. Building on these metrics, we use MetaCC to
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Figure 1: Schematic illustration of

answer the following questions, among others:

Q1: How vulnerable are existing meta-learners to under-
fitting when trained on complex task distributions? EX-
isting studies [40, [39] have identified this as a challenge
but have not been able to study it systematically without
task complexity measures. Q2: How robust are existing
meta-learners to task-distribution shift between meta-train
and meta-test task distributions? This challenge has been
widely observed in both robotics [40] and computer vision

meta-learning scenarios. Top: The typ-
ical assumption of py,-(T) = pie(T) is
rarely met in practice. Bottom: (i) Given
a complex distribution of training tasks,
meta-learners may under-fit by failing to
provide fast adaptation to all modes in
the distribution. (ii): Realistic scenarios
pose distribution shift between training
per(T) and deployment pye (7).

[37,112] but has not been able to be measured without task-

distribution distance measures. Q3: How much can meta-learning benefit in terms of transmission
error-rate on a real radio channel? Deep learning powered codecs specifically trained with canonical
channels have shown improved performance over traditional codecs [[17, 29], and there are applica-
tions of meta-learning to simpler tasks than channel decoding in comms e.g. demodulation [28] 5]
However, it is yet to be determined how well can meta-learners perform in a transition from simulation
to real world communication channels.

2 Background
2.1 Channel Coding Background

Channel coding is a key element in a communication system. Its role is to introduce controlled
redundancy so that the receiver can reliably and efficiently recover the message from a corrupted
received signal. A typical channel coding system consists of an encoder and a decoder, as illustrated
in Fig. |Z In this example a rate 1/2 channel encoder maps K message bits b € {0,1}¥ to a
length-2K transmitted signal ¢ € {—1,1}?X. In a more general setting a rate 1/r encoder maps

IThis is the practically relevant setting as communication standards defining the encoding protocol are not
easy to change, but decoders can be upgraded without changing the standard.



b € {0,1}X to c € {£1}"K. The signal c is then transmitted with the noise effect experienced by
the signal in the communication medium described by conditional distribution p(y|c), and channel
outputs a noisy signal y ~ p(y|c),y € R*%. A canonical example is Additive White Gaussian Noise
(AWGN) channels, where y = ¢ + z for Gaussian z ~ A (0, 0?1 ). The decoder in turn takes the
noisy signal as input and estimates the original message, i.e. b = fs(y) € {0, 1}¥. The reliability of
an encoder/decoder pair is measured by the probability of error, such as Bit Error Rate (BER) defined
as Zle P(by, # by). We treat the decoding problem as a K -dimensional binary classification task
for each of the ground-truth message bits by.

Neural Decoder for Convolutional Codes We focus on learning a decoder for a fixed rate 1/2
convolutional encoder which maps b € {0, 1}% to ¢ € {—1,1}*K according to ca, = 2(by. + b—1+
br—2)—1, capy1 = 2(bp+br—2) — 1 for k € [1 : K] assuming by = b_; = 0 (also illustrated in
Appendix [A). The sequential nature of convolutional encoding naturally aligns with convolutional
neural networks. Practically, reliable and efficient decoders form an essential part of almost all
kinds of communication systems, from wireline to wireless communications including both Wi-Fi
and cellular. Thus there has been significant interest in applying deep learning to improve channel
decoding (and coding itself) [26].
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Figure 2: An illustration of the channel coding problem. We learn a channel decoder for a fixed
encoder under various channel models.

Adaptive Neural Decoder The channel p(y|c) can vary over time, and is unknown to the decoder.
To help the decoder estimate the channel, pilot signals that are known messages by, 0w are sent to the
decoder before the transmission begins, so that the decoder can extract channel information from y
and bgy,own. When modeling the decoder as a neural network instead of an analytical algorithm, one
trains the decoder for a specific channel using pairs (y, bxnown) With pilot signals as ground-truths
and their corresponding noisy received values as inputs. The optimization goal is to minimize a loss
L, which is typically in form of binary cross-entropy, with respect to decoder fy as

0" = argmine ]Ebknown,y'c(bknowna f9 (y>) (1)

To ensure good performance as channel characteristics p(y|c) change due to e.g. weather or moving
users, which always happen in realistic communications, the neural decoder fy should adapt to
evolving channel. Meta-learning is therefore a promising tool to enable rapid decoder adaptation
with few pilot codes, as confirmed by early evidence [15]. Conversely, channel coding provides a
lightweight benchmark for contemporary meta-learners, allowing control of the task complexity and
distribution-shift, thanks to the mathematical representability and tractability of channel models.

Connection to Standard Benchmarks To clarify the connection to common vision benchmarks:
Unique messages b correspond to image categories, with noisy signals y corresponding to individual
images to recognize. The channel model p(y|c(b)) corresponds to the generative process for images
conditional on a category; and our learned decoder fy(y) corresponds to an image recognition model.
Uniquely, we can control the generation process for data p(y|c(b)) which is not feasible for images.

2.2 Meta-Learning

Meta-learning usually considers distributions over tasks for training and testing p¢,(7) and py. (7).

Each task 7; is associated with a dataset D; = {x],y7} 3’:1, which we splitinto D; = DI"UD?%. We
are interested in learning models fy of the form y = fp(x) using some algorithm .4 that minimizes a
loss function £(6, D) on data D with respect to parameters 6. The algorithm itself is paramaterized
by meta-parameter ¢, i.e., 0* = A(D, L, ¢). The goal of meta-learning is to find the parameters ¢ of

algorithm A that lead to strong validation performance after learning.

¢* =argminE 7.,y L(ADT,L,¢), D) @)
(D', D**"eT



When datasets D" are small, this leads to meta-optimization for a data-efficient learner, as pioneered
by MAML [8], which chooses meta-parameter ¢ as the initial condition of the optimization for 6 by
A. Once meta-learning is complete, we can draw a new task 7’ ~ p;.(T), and solve it efficiently as

6* = A(D', L, ¢"). 3)

3 MetaCC: A Coding Benchmark for Meta-Learning

Constructing Task Distributions We consider five families of channel models and corresponding
decoding tasks. These include synthetic Additive White Gaussian Noise (AWGN), Bursty, Memory
noise, and Multipath interference channel used by 3GPP and ITU to decide which codecs to use in
4G LTE and 5G communication standards. Furthermore, we consider a final family consisting of
data recorded from a real software-defined radio testbed. See Appendix [B|for details. Each family is
analogous to a dataset in common multi-dataset vision benchmarks [37]. All four synthetic channel
families are used for meta-training, and the real wireless channel is held out for meta-testing.

To define task distributions, we consider uni-modal and multi-modal settings. In the single-family,
uni-modal case, a task distribution p corresponds to a specific channel class as discussed above,
paramaterized by continuous channel parameters w (e.g., the variance of additive noise or multipath
strength). The distribution of tasks in this family then depends on the prior over channel parameter
w, p(T) = [, p(T|w)p(w). We can control the width of a task distribution by varying the width of
the, e.g. uniform distributed, prior p(w). In the multi-family, multi-modal case we can define a more
complex task distribution as a mixture over multiple channel types ps, each with its own distribution
over channel parameters w, p(T) = >, [ mpr(T|w)pr(w).

Quantifying Task Distribution Shift and Breadth We quantify the train-test task shift distance
(DeﬁnitionE]) and diversity of each task (Definition E]), based on information theoretic measures. In a
coding benchmark, we can control these scores by choosing appropriate set of channel models, which
allows us to evaluate the variability of meta-learning with the task distribution breadth and shift as
illustrated in Fig. [T} We demonstrate this in Section ] (Fig. @] [5).

Definition 1 (Train-Test Task-Shift S(p,(7),py(7))) Simply measuring the shift between train-
ing and testing task distributions has previously been an open problem in meta-learning. However
this becomes feasible to define for the channel coding problem. We quantify the distance between
a test distribution p,(7) and a training distribution p,(7") using the Kullback-Leibler divergence
(KLD) a.k.a. the relative entropy [19]. The KLD-based shift distance score is defined as:

S(pa(T);p6(T)) := Ee[Dr.(pa(yale)llps(yplc))] + Ee[Dr (06 (yolc)|lpa(yale))],  4)

where p,(y.|c) and p,(ys|c) denote the channels associated with 7, and 7y, respectively. The
distance is large if a testing distribution p, introduces a very different distribution over received
messages y for a given code c compared to training py, and zero if they induce the same distribution.
One can also consider asymmetric KLD, i.e., Ec[D g1 (pa(yalc)||ps(ys|c))] (See Appendix [E).

Definition 2 (Diversity Score D(7)) The diversity score of a task distribution p(7) is defined as
mutual information between the channel parameter w and the received signal y:

D(T) = Ec[I(w; ylc)],

where w denotes the channel parameter (latent variable) for the task distribution, i.e., p(y|c) =
|, p(ylc, w)py,(w). We will see that this metric will quantify amenability to meta-learning. Intuitively,
decoding benefits more from meta-learning when the channel distribution p(y|c,w) differs more
across tasks (channel parameter w). L.e., knowing the task conveys more information about y.

Estimation of Scores In order to estimate shift-distance and diversity scores, we generate samples
according to the corresponding task distributions and estimate each of these scores via Kraskov-
Stogbauer-Grassberger (KSG) estimator [[18}134].

Discussion While we denote each channel to learn as a ‘fask’, we note that in our application
each task shares the same label-space of messages to recognize. As such our goal could also be
understood as few-shot supervised adaptation to new domains by meta-learning. Thus our evaluation
will compare to the simple domain generalization baseline of conventionally learning a decoder on
all data from py,.(-) and applying it directly to tasks in p.(-) without adaptation.



4 Experiments

We first evaluate the impact of training distribution diversity on meta-learning performance, followed
by that of train-test task distribution shift.

Dataset and Task Design We consider a wide range of channel scenarios that are described in
Appendix D, To facilitate evaluation, we create a dataset of (received noisy) codewords and multiple
transmitted messages under each channel model. For each of the benchmark scenarios, we created a
dataset with 100 randomly sampled noise setups w, from the noise family specific to the scenario.
Each noise setup has 1000 randomly generated true codes (‘classes’) with 20 examples (noisy received
messages) for each type. When generating a meta-training task, we randomly sample a noise set-up
and then sample N = 5 codes with K = 5 support examples and L = 15 target or query examples.
Note that the support and target messages are independently sampled, hence unlikely to overlap. This
makes the tasks similar to the standard N-way K -shot problems, but instead of a class-adaptation
problem, we solve a fast domain-adaptation problem. For meta-testing, we have another dataset with
50 manually specified noise setups. For each noise setup we randomly generate 100 messages and
with 50 examples each. The meta-testing dataset is shared across various scenarios. Meta-testing
tasks are generated in the same way as meta-training tasks. All of the datasets are small enough to
easily fit into the GPU memory, allowing fast experimentation.

Meta-Learning Algorithms We have evaluated a variety of meta-learning approache These
include gradient-based learners MAML [8]], its first order approximation MAML FO, Reptile [24],
ANIL [30], MetaSGD [23], KFO [3]], MetaCurvature [27] CAVIA [41] BOIL [25]; and feed-
forward learners ProtoNets [33], and MetaBaseline [4]. See Appendix [E]for details. These adaptive
methods are compared to the standard non-adaptive approach of empirical minimization (ERM),
which trains a conventional neural decoder on the union of meta-training tasks, and has been shown
to be a strong baseline [21,[11]. We further include a non-meta-few-shot baseline SUR [7]] in both
its original form that builds on ProtoNet, i.e. SUR PROTO, and a novel version SUR ERM that
instead builds on ERM. All these neural approaches are compared to the classic non-neural Viterbi
decoder [10]. This maximum likelihood based algorithm, which is known to achieve close-to-optimal
block error rate under the simplest AWGN channel. We have extended the implementations provided
by learn2learn library [2] under the MIT License. Note that channel decoding is a multi-label
problem that requires predicting a vector of bits for each input example, rather than a single multi-
class classification. While this is straightforward for gradient-based meta-learners, we extended the
implementation of the feed-forward meta-learners to support this.

Hyperparameters and Architecture All neural approaches used the same hyperparameters and
CNN architecture for consistency. We used Adam optimizer with a meta-learning rate of 0.001 for
the outer-loop, SGD with fine-tuning learning rate of 0.1 for the inner-loop consisting of 2 adaptation
steps, 10 tasks in a meta-batch and 80000 meta-training iterations. Each task consisted of 5 different
adaptation types (‘classes’), with 5 support and 15 target examples. The ground truth messages are
10 bits long, encoded by the 1/2 rate convolutional encoder. Hence the message input to the decoder
has shape 1 x 10 x 2. We fix the decoder architecture as a CNN with 4 layers, 64 filters, kernel size
3, and stride (1, 2). The CNN is followed by a linear fully-connected layer of size 64 x 1.

4.1 Impact of Training Distribution Diversity on Meta-Learning Performance

In this first section we investigate how meta-learners cope with task distributions of varying breadth
and complexity, since previous studies have suggested that capacity could be a limiting factor of
existing meta-learners [40, 131} [39]. We would like meta-learners to be capable of learning from
a broad range of auxiliary tasks, without requiring the auxiliary task distribution to be carefully
constructed in advance for similarity to each given target task (cf, Fig. [I).

Setup In these experiments, we fix the meta-testing task distribution p;.(7") to ensure comparability,
and then evaluate performance when the training distribution p,,.(7") is focused around the testing
condition ‘focused’ vs when it is spread more broadly around the testing distribution ‘expanded’.

To expand the training distribution in the single-family/uni-modal case, we use a wider prior on the
expand

channel parameter p;, (w) = Unif(a — 6,b + §) vs pte(w) = Unif(a, b) when constructing task
distributions as discussed in Section[3] In the multi-modal case, we use a single channel family for

2Our code repository is publicly available at https://github.com/ruihuili/MetaCC.
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Figure 3: Meta-testing on Bursty, Memory and Multipath task families (subplots). Y-axis is Bit
Error Rate (BER, lower is better). Bars indicate meta-test standard-errors. ‘Focused’ and ‘Expanded’:
Within-family — uni-modal training distributions focused or widely distributed around the testing
distribution. ‘Mixed’ column: Across-family setting where the training distribution is a mixture of all
four task families including the testing distribution. Performance is impacted by increased diversity
in the training distribution (compare focused—mixed).

Dte and a multi-modal mixture (‘mixed’) of families for p;, composed of all the synthetic channel
models (Appendix [B)) including the testing distribution py.

Results Fig. [3|summarizes the results for meta-learning on training distributions of varying widths
for both uni-modal (marked as ‘focused’ and ‘expanded’) and multi-modal (marked as ‘mixed”)
conditions, and for different target channels (four subplots). N.B. we plot for each learner the aggre-
gated performance over a range of noise settings for each target family type, while the disaggregated
version can be found in Fig[T0/in Appendix. From the results, we can see that: (i) Most neural
models outperform the industry standard neural decoder on realistic complex channel models (bursty,
memory, multipath). (ii) The best meta-learners surpass the non-adaptive ERM baseline especially
on the challenging multi-path dataset. (iii) In the within-family case (left groups), focusing the
meta-training distribution on the meta-testing condition (x-axis: focused) vs a diverse meta-training
regime (x-axis: expanded) does not visibly affect meta-testing performance on our log-performance
scale. In the across-family case (right, x-axis: mixed), transferring from a multi-modal training
distribution to a specific testing distribution incurs a visible difference to performance for bursty and
multi-path target channels. This confirms that meta-learner capacity for fitting a multi-modal training
distribution does impact performance [39,31]. (iv) Where applicable (mixed), the original SUR
PROTO is out-performed by peer learners, while our modified version SUR ERM exceeds the rest.

To further understand these re-

sults we compute the breadth MetaCurvature
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learners and the vanilla non- Figure 4: Correlation between task distribution diversity score and
adaptive baseline against the benefit of meta-learning. Left: Example fitting for MetaCurvature.
diversity score of the chan- X-axis: Diversity score of the channel; Y-axis: Accuracy gain over
nel. We can see that, while ERM. Symbols indicate different target channels from Fig. [3 (o:
more diverse training regimes AWGN, x: Bursty, *: Memory, +: Multipath). Right: Fitted lines for
reduce absolute performance ~all meta-learners. Meta-learning can provide greater benefit on more
(Fig.[3), the benefit provided ~diverse task distributions. Plots for all meta-learners are available in
by meta-learning over vanilla Appendix [G.

ERM can increase with more

diverse training regimes (Fig.[). Intuitively, the more the channel configuration parameters determine



the output message distribution, the more potential benefit there is from meta-learning how to adapt
to a given channel.

4.2 TImpact of Train-Test Distribution Shift on Meta-Learning Performance

Within-Family Setup We first illustrate the uni-modal within task family case, where we create
distribution shift by setting p;,-(w) # pre (w). Specifically, we define two training task distributions
using two different non-overlapping uniform priors on w corresponding to different channel SNR-Bs
(denoted ‘high’ and ‘low’) in the Bursty channel. We then train meta-learners on each, and evaluate
them on a range of task parameters w that are both in- and out-of-domain with respect to the training
distribution. In this section, we study how each of the baseline learners’ performance depends on
distribution shift between training p,.(7) and testing p. (7 ) task distributions.

Results  Fig.[5|(left) shows the results of generalizing across a range of meta-testing tasks (x-axis),
for models learned within each of the two specified training domains. Note that the ‘difficulty’ of
the shown testing tasks is non-uniform i.e. higher SNR-B tasks are easier. This means that other
things being equal we expect worse performance toward the left of the graphs; and that the models
trained on the ‘Low’ SNR range (blue) and models trained on the ‘High’ SNR-B range (orange)
have been exposed to the hardest/easiest training regime respectively. Concretely, the meta-learner’s
performance is clearly better when operating within-domain than when operating with train-test
distribution shift, indicated by the crossing of the lines corresponding to the two training conditions.

Across-Family Setup We next consider the more challenging across-family setting. In this case
we create task distributions defined by each channel type and use them for meta-training. We then
consider several channel types for meta-testing and evaluate pairs of matched and mis-matched
train/test regimes. The four synthetic families are used for meta-training, and all five including our
real-world channel dataset (See Appendix [C]for implementation details) are used for meta-testing.
This setup aligns with the sim-to-real paradigm that is widely applied in other machine learning
applications such as robotics and vision [36, [14] since it is easier to conduct large scale training
on simulated data, and evaluate efficient-adaptation on sparser real-world data. We are the first to
consider and benchmark meta-adaptation as a solution for sim-to-real transfer in channel coding.

Results  From the results in Fig.|6| we can see that: (i) All learned models generally perform best in
the within-family conditions; IE: when source channel on the x-axis matches the target channel of the
sub-plot, as indicated by the dashed box. (ii) Some across-channel family conditions also perform
quite well, such as Multipath — AWGN; but not others, such as Bursty — AWGN. However, some
specific channel families such as Bursty cannot be successfully addressed when transferring from any
other cross-family training distribution. Overall the results show that robustness to distribution-shift
is an issue for both non-adaptive and meta-learned adaptive decoders.

Meta-Learned Decoders on a Real Wireless Channel Notably, the results in Fig. 6| (bottom right)
confirm confirm that while the neural but non-adaptive ERM decoder fails to reliably outperform
Viterbi, the best adaptive neural codes clearly outperform Viterbi. In particular the best meta-learners
provide a 58% and 30% reduction in error rate compared to the standard neural decoder (ERM) and
classic Viterbi decoder respectively. This shows the potential of meta-learning for improving the
performance of future real-world comms systems. It also shows benchmark’s value, as advancements
in meta-learning driven by the benchmark can translate directly to real-world impact.

Summary We have seen in the previous two experiments that meta-learning performance is best
when pe = py,, with performance degrading smoothly when there is small deviation between them
(Fig.[5 (left)), and sometimes dropping significantly when they are entirely different task families
(Fig.[0). A key feature of channel coding as a meta-learning benchmark is the ability to measure the
distance between task distributions in a systematic manner, as explained in Section[3. We can thus
aggregate our results across experiments and plot normalized accuracy against meta-train meta-test
task distribution distance as illustrated for MetaCurvature in Fig. [5/(middle) (and in Appendix [H).
Here, each dot on the scatter plot is an experiment. In Fig.[5](right), we compare the fitted performance
curves for each meta-learner. We can see that they all have a positive relative accuracy slope: providing
more benefit over vanilla ERM by adapting to increasing train-test distribution shift. Going forward,
the evaluation shown in Fig.[5 (mid., right) can provide a metric to benchmark the performance of
meta-learners under train-test distribution shift.
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Figure 5: Left: Impact of train-test distribution shift on decoding performance, within-family
condition. X-axis: Meta-testing distribution parameter. Curves: Meta-training regime. ‘Low’ training
regime corresponds to lower SNR sampled from range (-2.5,3.5) and SNR-B from (-23, -17) for
Bursty channel, and ‘High’ training regime corresponds to SNR and SNR-B sampled from (8.5,13.5)
and (-11, -5), respectively. Performance of meta-learners degrades relatively smoothly as decoders
are evaluated in increasingly out-of-domain conditions (crossing high/low lines). Mid.: Impact of
train-test task distribution distance on decoding accuracy. X-axis: The KL distance score between
train and test distributions (Eq.[d). Meta-learners provide greater improvement with distance. Y-axis:
accuracy gain over ERM. Adaptive decoding with MetaCurvature, where red (o), green (x), blue (),
black (+), and purple (A) color corresponds to AWGN, Bursty, Memory, Multipath, and Real target
channels, respectively. Right: Fitted curves for performance gain over ERM as a function of distance
score. Scatter plots for all meta learners and the fitted curves are available in Appendix E

4.3 Comparison of Meta-Learners

Table 1: Aggregate comparison of all meta-learners across all experiments. Top: Percentage
of runs where each algorithm significantly outperform ERM (p-values < 0.05, higher is better).
Mid.: Percentage of times when an algorithm significantly outperform Viterbi. Bottom: Average
rank of each meta-learner across all runs (Lower is better). R: Sim-to-real and S: Sim-to-sim.

‘R/S‘ Viterbi ERM MAML FOML Reptile KFO ANIL
vsERM 1 | R 87.6 N/A 94.1 954 46.4 68.0 37.9
vsERM 1 | S 47.7 N/A 26.1 31.4 2.6 36.9 27.1
vs Viterbi 17| R | N/A 4.2 46.4 34.3 0.0 10.5 4.6
vs Viterbi 1| S N/A 38.2 42.8 42.5 8.5 43.8 43.5
Rank | R [53+0.2 11.64+0.1 4.1+0.1 5.6+0.1 11.4+0.1 10.1£+0.1 11.6=0.1
Rank | S [54+0.2 7.7£0.1 5.84+0.1 5.24+0.1 10.7+£0.0 4.44+0.2 5.3%+0.1
|R/S| BOIL CAVIA MetaSGD MetaCu. ProtoNe. MetaBa.
vsERM 1 | R | 954 73.5 95.1 96.1 83.7 87.9
vsERM 1 | S 30.1 6.2 49.0 47.4 1.3 1.0
vs Viterbi 1| R | 47.4 19.0 41.5 55.6 28.4 31.0
vs Viterbi 1| S 42.8 12.1 45.1 47.1 1.3 0.0
Rank | R [3.7+£0.1 8.14+0.1 5.2+0.1 2.7£0.1 6.2+0.1 5.3£+0.2
Rank | S |4.8+0.1 9.6+0.1 3.8+0.1 3.440.1 12.3£0.0 12.6+0.0

Given the experiments so far, we can answer the question of which meta-learners are best (and
worst) for adaptive channel coding. Aggregating across all the previous experiments, we evaluate two
metrics: (1) The percentage of wins vs the natural baseline of non-adaptive neural ERM. Where a win
is computed by a statistically significant (p < 0.05) improvement of each competitor vs ERM with
respect to one experiment (train and test channel condition). (ii) The average rank of each competitor
when ranking their accuracy in each experiment.

The results in Tab [T show that: (i) MetaSGD and MetaCurvature provide the best performance
overall. (ii) ANIL and KFO are the least competitive meta-learners in sim-to-real, and ProtoNets
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Figure 6: Impact of train-test distribution shift on decoding performance. Each sub-plot shows
results of meta-testing on one of the AWGN, Bursty, Memory, Multipath task families, after learning
on different meta-training channels (line groups, x-axis). Lines correspond to meta-test standard
errors of each algorithm. Boxes indicate when meta-training and meta-testing task families align, i.e.,
the within-family condition. Overall meta-learning works well within task distribution (boxes), and
sometimes across task distribution.

and MetaBaseline under-perform the most in sim-to-sim. Reptile is among the weakest overall. (iii)
The feed-forward learners are not particularly strong compared to the best gradient-based learners.
(iv) With regard to the debate [30, 4] about whether adaptation is necessary for meta-learning in
vision, the comparatively unreliable performance of ANIL and the feed-forward learners suggests
that feature adaptation is indeed important to achieve high performance in adaptive channel coding.

4.4 Impact of Number of Tasks on Meta-Learning Performance

Few studies have investigated how meta-learner performance depends on the number of meta-training
tasks. This is partly because it is not straightforward in standard vision benchmarks to generate
enough tasks (objects to recognize) to saturate performance with respect to task number. For our
coding benchmark, we can sample an unlimited number of tasks (unique channels) to investigate
this. We consider both within- and across-family scenarios where models are trained on AWGN
with expanded range (SNR € [-5, 5]), and tested on all 4 family types. For each learner we evaluate
n € {100, 50,20} unique tasks (domains/channel parameters) while keeping the total number of
messages (categories to recognise), and total number of unique samples fixed.

Fig.[7 shows performance as a function of the number of unique training channels, averaged over
all four families of testing channels.Overall, most of the learners except for Reptile, which has
relatively high BER in all settings, experience degradation in accuracy as the number of unique
domains decreases. The ranking of absolute BER values remain constant as the number of domains
changes, While the normalized BER curves suggest some meta-learners, e.g. BOIL, MetaSGD, and
MetaCurvature, experience more degradation in the sparse task regime than others e.g. CAVIA and
MAML FO.



*
¢ 0.3 ¥
o
w =
3x 107! @ _'
. 30.2
w .:* N o .
m X i * ©
x ] e &
s 0.1 =
L. > = ™.
2x1071 g " .
* x‘
0.0 |eame
100 50 20 100 50 20
# Noise Settings / Unique Domains
§ ERM ¥ MAMLFO § KFO BOIL MetaSGD & ProtoNets
MAML X Reptile I ANIL ¥ CAVIA I MetaCur. MetaBa.

Figure 7: Dependence of error rate on number of unique domains (channel conditions). Left:
Absolute values. Right: Normalized by BER of the corresponding learner when there are 100
domains.

5 Discussion

Summary We presented a new meta-learning benchmark based on channel coding, a real-world
and practically important problem that lends itself to meta-learning. We summarize by answering the
questions we posed in the introduction. Q1: How vulnerable are existing meta-learners to under-
fitting when trained on complex task distributions? Building on our task-distribution breadth metric,
we quantified this relationship in (Fig.[3] ). Our results show a clear degradation in performance with
breadth, mirroring results in robotics [40]]. However, compared to zero-shot transfer of vanilla ERM,
the benefit provided by meta-learning can increase with distribution complexity. Q2: How robust are
existing meta-learners to task-distribution shift between meta-train and meta-test task distributions?
While absolute performance does decrease under distribution shift (Fig.[6), by comparing our task
distribution shift metric with relative improvement over ERM in Fig. [5|(Mid., Right), we showed that
performance margin of adaptive neural decoders actually tends to improve with distribution-shift. Q3:
How much can meta-learning benefit in terms of transmission error-rate on a real radio channel?
Our results show that a few pilot codes are sufficient for a meta-learned adaptive decoder to provide
a substantial 58% and 30% reduction in error rate compared to the standard neural decoder and
classic Viterbi decoder respectively in real-world channel. This confirms the practical value of this
benchmark, as advances can translate to substantial improvements in comms performance.

Benchmark Our MetaCC benchmark provides a number of benefits to the community going
forward: (i) It provides a systematic framework to evaluate future meta-learner performance with
regards to under-fitting complex task distributions [40,39] and robustness to train-test task distribution
shift [[12, 37, 140] that is ubiquitous in real use cases such as sim-to-real. Both of these are crucial
challenges which must be addressed for meta-learners to be of practical value in real applications.
(i) MetaCC has the further advantage of being independently elastic in every dimension. Future
studies can thus use it to study impact of number of tasks, instances or categories; dimension of
inputs; difficulty of tasks, width of task distributions and train-test distribution shift. Unlike existing
saturated small toy benchmarks [20]], or large unwieldy benchmarks [37]], these properties make it
suitable for the full spectrum of research from fast prototyping to investigating the peak scalability of
meta-learners. (iii) By addressing rapid adaptation to new domains, MetaCC complements existing
multi-task focused meta-learning benchmarks. This means that meta-learners are challenged to
beat strong baselines including ERM and classic Viterbi algorithms. With regard to robustness,
this will allow meta-learners to ultimately be compared directly against methods that improve the
ERM baseline through improving robustness to domain-shift [[11]. (iv) Finally, MetaCC directly
instantiates a task of significant real-world importance, where advances will immediately impact
future communications systems [6} [1]].
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