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Abstract
We study contextual bandits with low-rank struc-
ture where, in each round, if the (context, arm)
pair (i, j) ∈ [m] × [n] is selected, the learner
observes a noisy sample of the (i, j)-th entry of
an unknown low-rank reward matrix. Successive
contexts are generated randomly in an i.i.d. man-
ner and are revealed to the learner. For such ban-
dits, we present efficient algorithms for policy
evaluation, best policy identification and regret
minimization. For policy evaluation and best pol-
icy identification, we show that our algorithms are
nearly minimax optimal. For instance, the number
of samples required to return an ε-optimal policy
with probability at least 1 − δ typically1 scales
as m+n

ε2 log(1/δ). Our regret minimization algo-
rithm enjoys minimax guarantees typically1 scal-
ing as r5/4(m+ n)3/4

√
T , which improves over

existing algorithms. All the proposed algorithms
consist of two phases: they first leverage spectral
methods to estimate the left and right singular sub-
spaces of the low-rank reward matrix. We show
that these estimates enjoy tight error guarantees in
the two-to-infinity norm. This in turn allows us to
reformulate our problems as a misspecified linear
bandit problem with dimension roughly r(m+n)
and misspecification controlled by the subspace
recovery error, as well as to design the second
phase of our algorithms efficiently.

1. Introduction
Stochastic Multi-Armed Bandits (MABs) (Lai & Robbins,
1985) provide an efficient and natural framework for the
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1By ”typically” here, we mean when the matrix M and the
(context, arm) distribution are homogeneous (refer to Definition
3.1 for details). Note that under homogeneity of M , m = Θ(n).

analysis of the exploration-exploitation trade-off in sequen-
tial decision making and have been used in a variety of
applications ranging from recommendation systems to clin-
ical trials. When designing bandit algorithms, it is crucial
to leverage as much as possible all information initially
available to the learner. This information often comes as
structural properties satisfied by the mapping of the arms
to their rewards, see e.g. linear (Dani et al., 2008), convex
(Agarwal et al., 2011), or unimodal (Combes & Proutiere,
2014). In this paper, we investigate bandit problems where
the arm-to-reward mapping exhibits a low-rank structure.
Such a structure has received a lot of attention recently (Kve-
ton et al., 2017; Jun et al., 2019; Jang et al., 2021; Bayati
et al., 2022; Kang et al., 2022; Pal & Jain, 2022; Lee et al.,
2023). Despite these efforts, it remains unclear how one
may optimally exploit low-rank structures and how much
gains in terms of performance they bring. We make progress
towards answering these questions.

We consider the following contextual low-rank bandit model,
similar to that studied in (Bayati et al., 2022; Pal & Jain,
2022; Lee et al., 2023). In each round, the learner first
observes a random context i ∈ [m], and then selects an arm
j ∈ [n]. When the pair (i, j) is selected, the learner observes
a noisy sample of the (i, j)-th entry of a rank-r matrix M ,
where r is typically assumed to be much smaller than m
and n. For this low-rank bandit model, we address three
learning tasks: policy evaluation, best policy identification,
and regret minimization. Our contributions are as follows:

(a) We propose a generic method to design two-phase al-
gorithms for low-rank bandit problems. In the first phase,
we estimate the singular subspaces of the reward matrix M
using simple spectral methods. We establish tight upper
bounds on the subspace recovery error in the two-to-infinity
norm. In turn, these new error bounds allow us to reformu-
late our low-rank bandits as a misspecified contextual linear
bandit problem with dimension r(m+n)−r2 and controlled
misspecification. In the second phase, the algorithm solves
the resulting misspecified contextual linear bandit problem.
The main contribution of this paper is to demonstrate that
the above method, based on tight subspace recovery guar-
antees in the two-to-infinity norm, yields computationally
efficient algorithms that either are nearly minimax optimal
or outperform existing algorithms for the three considered
learning tasks.
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(b) Policy Evaluation (PE). For this task, the objective is to
estimate the average reward of a given target policy based
on data generated from a fixed behavior policy. We derive
instance-specific and minimax lower bounds on the sample
complexity satisfied by any (ε, δ)-PAC algorithms2. The
latter typically1 scales as m+n

ε2 log(1/δ). We leverage our
method to devise SIPS (Spectral Importance Propensity
Score) and RS-PE (Recover Subspace for Policy Evalu-
ation), two PE algorithms with nearly minimax optimal
sample complexity. The second phase of RS-PE refines
the estimate of the reward matrix, using a regularized least-
square-estimator applied to the misspecified linear bandit
model obtained in the first phase.

(c) Best Policy Identification (BPI). Here, the goal is to
return an approximately optimal policy based on data gath-
ered using a fixed or adaptive sampling strategy. Using the
same estimates of the reward matrix as those used in the PE
algorithms, we devise SBPI (Spectral Best Policy Identifica-
tion) and RS-BPI (RS for Best Policy Identification), two
(ε, δ)-PAC algorithms with nearly minimax optimal sample
complexity, again typically scaling as m+n

ε2 log(1/δ). This
significantly improves over existing algorithms whose sam-
ple complexity scales as m+n

ε2+r log(1/δ) (Lee et al., 2023).

(d) Regret minimization. The two-phase design method
yields RS-RMIN (RS for Regret MINimization), an algo-
rithm with minimax regret guarantees typically scaling as
(m+ n)3/4

√
T over T rounds. Surprisingly and to the best

of our knowledge, RS-RMIN is the first algorithm enjoy-
ing minimax guarantees that are always strictly tighter than
those achieved in unstructured bandits (in this case, the best
guarantees scale as

√
mnT ). In its second phase, RS-RMIN

uses an extension of SUPLIN-UCB (Chu et al., 2011) to
solve the misspecified linear bandit problem derived at the
end of the first phase.

Notation. For a given matrix M ∈ Rm×n, we denote
its i-th row by Mi,:, its j-th column by M:,j , and its
(i, j)-th entry by Mi,j . We denote by ∥M∥op its Eu-
clidean operator norm, by ∥M∥F its Frobenius norm, by
∥M∥2→∞ = maxi∈[m] ∥Mi,:∥2 its two-to-infinity norm,
by ∥M∥max = max(i,j)∈[m]×[n] |Mi,j | its max-norm, by
λmax (M) (resp. λmin (M)) its maximal (resp. minimal)
eigenvalue. For a given vector x, we denote its Euclidean
norm by ∥x∥2, and by ∥x∥Λ =

√
x⊤Λx its Euclidean norm

weighted by some positive definite matrix Λ. The notation
f(x) ≲ g(x) (resp. f(x) ≳ g(x)) means that there ex-
ists a universal constant C > 0 such that f(x) ≤ Cg(x)
(resp. f(x) ≥ Cg(x)) for all x. We write f(x) = Θ (g(x))
when f(x) ≲ g(x) and f(x) ≳ g(x). We write poly (x)
to denote a quantity that is upper bounded by a polyno-

2These algorithms return an ε-accurate estimate of the value of
the policy with certainty level 1− δ.

mial function of x. We also use a ∧ b = min(a, b) and
a ∨ b = max(a, b). Finally, for any p, q ∈ (0, 1), we define
kl(p, q) = p log(p/q) + (1 − p) log((1 − p)/(1 − q)) as
the KL-divergence between two Bernoulli distributions with
mean p and q, respectively.

2. Related Work
In this section, we discuss existing results for the three
investigated learning tasks in contextual low-rank bandits, as
well as for singular subspace recovery for low-rank matrices.
Additional related work can be found in Appendix A (there,
we discuss misspecified linear bandits and other models
related to low-rank bandits).

Contextual low-rank bandits. There has been some inter-
est in settings similar to ours (Gentile et al., 2014; Gopalan
et al., 2016; Pal & Jain, 2022; Lee et al., 2023; Pal et al.,
2023), although mostly in the context of regret minimiza-
tion. Nonetheless, progress on minimax guarantees has
remained surprisingly limited. For example, (Pal & Jain,
2022) proposed OCTAL, an algorithm that achieves a re-
gret of order O(polylog(m + n)

√
T ) for rank-1 bandits,

and a simple ETC-based algorithm achieving a regret of
O(polylog(m + n)T 3/4) for general rank r. However,
their results assume that the learner observes m entries
per round, while in our setting, only one entry is observed.
Recently, (Lee et al., 2023) considered a setting closely re-
lated to ours, and referred to as context-lumpable bandits.
There, the rows of the reward matrix can be clustered into r
groups, within which the rows are identical. They establish
minimax regret upper bounds of order Õ(

√
r3(m+ n)T ).

They further extend their results to contextual low-rank
bandits, but for these bandits, prove a regret upper bound
of order Õ((m + n)

1
3r+2T

3r+1
3r+2 ) (see Theorem 26 in (Lee

et al., 2023)). A cluster-like structure comparable to that
of (Lee et al., 2023) was also considered in (Pal et al.,
2023), where the authors proposed an algorithm that attains
a regret of order Õ(

√
poly(r)(m+ n)T ). These works

leave the existence of an algorithm with minimax regret
of order Õ(

√
poly(r)(m+ n)T ) in contextual low-rank

bandit as an open question. We do not fully answer this
question, but propose an algorithm with regret scaling as
Õ(r5/4(m + n)3/4

√
T ), which improves over existing al-

gorithms.

For the BPI task, (Lee et al., 2023) exhibits sample com-
plexity guarantees of order Õ(r (m+ n) /ε2) in the context-
lumpable case. For contextual low-rank bandits, the authors
present an algorithm with sample complexity guarantees of
order Õ

(
(m+ n) /ε2+r

)
(see their Theorem 25 and the dis-

cussion thereafter). We get guarantees similar to those they
obtain for context-lumpable bandits, but for more general
low-rank bandits. We finally mention the work of (Xi et al.,
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2022) addressing the PE task in low-rank MDPs. When
applied to contextual low-rank bandits (see their Subsection
4.3.2), the authors obtain a sharp estimation error term with
an additional bias that does not vanish unless the behavior
and target policy are identical; an assumption that we do not
require.

Singular subspace recovery in the two-to-infinity norm.
It is not surprising that estimating the singular subspaces of
M is useful in the context of bandit problems with low-rank
structure as it has been showcased in (Jun et al., 2019; Lale
et al., 2019; Lu et al., 2021; Kang et al., 2022). However, to
the best of our knowledge, only Frobenius norm guarantees
have been used, and guarantees in the two-to-infinity norm
have remained largely unexplored. The latter guarantees
are often harder to obtain and progress towards obtaining
them have only emerged recently (Eldridge et al., 2018; Fan
et al., 2018; Cape et al., 2019; Abbe et al., 2020). Typically,
under standard assumptions, such as bounded incoherence
(Candès & Tao, 2010; Recht, 2011), these guarantees state
that, for a matrix of size m × n, the subspace estimation
error in the two-to-infinity norm is smaller by a factor of√
m+ n than the achievable bounds on the estimation error

in the Frobenius norm. For this reason, we say that the sub-
space recovery error exhibits a delocalization phenomenon
(Rudelson & Vershynin, 2015), i.e., the estimation error
is spread out across m+ n directions (see also the survey
(Chen et al., 2021) and references therein).

The major difficulty towards using two-to-infinity norm
guarantees is that their derivation requires stringent indepen-
dence assumptions. Recently, (Stojanovic et al., 2024) pro-
vided tools to relax such assumptions and to accommodate
scenarios that are suitable for sequential decision making
problems such as Markov decision processes and bandits.
We make use of these tools to obtain tight guarantees on
the singular subspace recovery in the two-to-infinity norm
for low-rank bandits. These guarantees enable an effective
reduction of the contextual low-rank bandit problem to the
misspecified contextual linear bandit problem.

3. Model and Learning Objectives
We consider a stochastic bandit problem with low-rank struc-
ture. Specifically, we assume that the expected rewards
are parametrized by a matrix M ∈ Rm×n which has low
rank r ≪ min(m,n). Its SVD is M = UΣV ⊤, where
U ∈ Rm×r (resp. V ∈ Rn×r) contains the left (resp.
right) singular vectors, and where Σ = diag(σ1, . . . , σr)
with σ1 ≥ σ2 ≥ . . . ≥ σr. The incoherence parame-
ters of M are defined as µ(U) =

√
m/r∥U∥2→∞ and

µ(V ) =
√
n/r∥V ∥2→∞. We define µ = µ(U) ∨ µ(V ),

and denote by κ = σ1/σr the condition number of M .

Contextual low-rank bandits. In each round t ≥ 1, the

learner first observes a context it, selected in an i.i.d. manner
and with distribution ρ over [m]. She then selects an arm
jt ∈ [n] potentially based on previous observations, and
receives a reward rt = Mit,jt + ξt. The reward matrix
M is a priori unknown, and (ξt)t≥1 is a sequence of i.i.d.
zero-mean and σ-subgaussian random variables. We denote
the (context, arm) distribution by ω.

For a given randomized policy π, we define its policy value
as vπ :=

∑
i,j ω

π
i,jMi,j with ωπi,j := ρiπ (j|i) (π(j|i) is the

probability to select arm j when observing context i). We
further define the optimal policy π⋆ := argmaxπ v

π and
denote its value by v⋆. We consider three learning tasks:

(i) Policy evaluation. Given a target policy π, and as-
suming data is gathered under a policy3 πb, we aim
at designing an efficient estimator of its policy value
vπ. We say that a PE estimator v̂π is (ε, δ)-PAC if
PM (|vπ − v̂π| ≤ ε) ≥ 1− δ for every rank-r matrix
M ∈ Rm×n.

(ii) Best policy identification. We aim to design an efficient
algorithm to identify an ε-optimal policy. We say that
a BPI algorithm is (ε, δ)-PAC if it outputs a policy
π̂ : [m] → [n] such that PM

(
v⋆ − vπ̂ ≤ ε

)
≥ 1 − δ

for every rank-r matrix M ∈ Rm×n.

We define the sample complexity of a PE estimator or a BPI
algorithm as the number of samples required to achieve an
(ε, δ)-PAC guarantee.

(iii) Regret minimization. Here, the objective is to min-
imize the regret. The regret up to round T of a se-
quential decision algorithm π is defined as Rπ(T ) =∑T
t=1 E[Mit,π⋆(it) −Mit,jπt

] where jπt is the arm se-
lected under algorithm π in round t.

Throughout the paper, we make the assumption that the
learner is aware of upper bounds on κ, µ, ∥M∥max and
1/(mmini∈[m] ρi) > 0. Our results exhibit precise de-
pendencies on all these parameters. Sometimes, to simplify
the exposition of our results, we consider that the reward
matrix M , the context distribution ρ or the (context, arm)
distribution ω are homogeneous in the following sense:
Definition 3.1 (Homogeneity). The reward matrix M is
homogeneous when m = Θ(n), r = Θ(1), κ = Θ(1),
µ = Θ(1). A distribution p on a finite set I is homogeneous
when pmin = Θ(pmax) for pmin = mini∈I pi, pmax =
maxi∈I pi

4 .

The notion of homogeneity allows us to have meaningful
discussions but also constitutes a reasonable assumption.

3The arm j is selected with probability πb(j|i) when the con-
text i is observed.

4This implies pmin = Θ(1/|I|), pmax = Θ(1/|I|).
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In particular, assuming that the matrix M has bounded in-
coherence entails that the matrix M can be recovered us-
ing fewer samples than mn (Candes & Recht, 2012). The
bounded incoherence property is also related to the notion
of spikiness of a matrix, which has to do with assuming
that ∥M∥max/σ1 = Θ(1/

√
mn) (Negahban & Wainwright,

2012; Mackey et al., 2015)). Indeed, we can verify (see
Lemma B.8) that 1√

mn
≤ ∥M∥max

σ1
≤ µ2r√

mn
. Note that

this inequality does not mean that ∥M∥max = Θ(1/
√
mn)

when µ = Θ(1), because for most interesting settings σ1
would scale as

√
mn. A naive example would be to take a

matrix M that has all entries equal to 1. Observe then that
rank(M) = 1, ∥M∥max = 1, σ1 =

√
mn, and M satisfies

the bounded incoherence assumption.

4. Singular Subspace Recovery
In the first phase of our algorithms for low-rank bandits,
the singular subspaces of M are estimated. In this section,
we study the performance of this estimation procedure. We
assume that the learner observes T samples of noisy entries
of M chosen in an i.i.d. manner according to some distri-
bution ω over [m]× [n], and that from these observations,
she builds estimates of the singular subspaces of M . For
simplicity, we assume that ω is known to the learner. This is
without loss of generality in our settings5. We also assume
that ωmin = min(i,j)∈[m]×[n] ωi,j > 0.

4.1. Subspace Estimation

To estimate the singular subspaces of M , we construct M̃
as: for all (i, j) ∈ [m]× [n],

M̃i,j =
1

Tωi,j

T∑
t=1

(Mit,jt + ξt)1{(it,jt)=(i,j)}. (1)

Then, we let M̂ be the best r-rank approximation of M̃ .
More precisely, we write from the SVD of M̃ :

M̂ = Û Σ̂V̂ ⊤, (2)

where Σ̂ is the diagonal matrix containing the r largest sin-
gular values of M̃ . Û ∈ Rm×r contains their corresponding
r left singular vectors, and V̂ ∈ Rn×r their corresponding r
right singular vectors. By Eckart-Young-Mirsky’s theorem,
the matrix M̂ is the best r-rank approximation of M̃ . We
use Û and V̂ as our estimates of the singular subspaces
spanned by U and V , respectively.

In what follows, we denote by Û⊥ ∈ Rm×(m−r) a matrix
made of orthonormal vectors completing Û so as to obtain

5Indeed, we can estimate the context distribution ρ using only
Õ(1/ρmin) samples, and select j uniformly at random (refer to
Appendix I.1)

an orthonormal basis of Rm. V̂⊥ ∈ Rn×(n−r) is constructed
similarly.

4.2. Guarantees in the Two-to-Infinity Norm

We wish to examine the performance of our subspace recov-
ery method in the two-to-infinity norm. More precisely, we
denote the left and right singular subspace recovery errors
in this norm by

d2→∞(U, Û) = ∥UU⊤ − Û Û⊤∥2→∞,

d2→∞(V, V̂ ) = ∥V V ⊤ − V̂ V̂ ⊤∥2→∞.

Now, we present the main guarantee on these errors, which
is adapted from (Stojanovic et al., 2024).

Theorem 4.1 (Subspace recovery in ∥ · ∥2→∞). Let us
define ϵSub-Rec := max(d2→∞(U, Û), d2→∞(V, V̂ )) and
L := ∥M∥max ∨ σ. For any δ ∈ (0, 1), the following
event:

ϵSub-Rec ≲

√
L2µ2κ2r(m+ n)

σ2
rTωmin(m ∧ n)

log3
(
(m+ n)T

δ

)
(3)

holds with probability at least 1− δ, provided that

T ≳
L2(m+ n)

σ2
rωmin

log3
(
(m+ n)T

δ

)
. (4)

The proof of Theorem 4.1 is sketched in Appendix B. The
analysis is technically involved and relies on combining the
so-called leave-one-out argument (see (Chen et al., 2021)
and references therein) together with a Poisson approxima-
tion technique (Stojanovic et al., 2024).

From Theorem 4.1, we can immediately verify that if the
matrixM and the sampling distribution ω are homogeneous,
then the subspace recovery error bound in the two-to-infinity
norm is smaller by a factor of

√
m+ n than any achievable

subspace recovery error bound in the Frobenius norm with
our estimates of the singular subspaces. Indeed, assume
additionally and only for simplicity that σ ≲ ∥M∥max,
then after only Ω̃(m+ n) observations, we can recover the
singular subspaces with an error rate in the ∥ · ∥2→∞ norm
that scales as Õ(1/

√
T ) with high probability. To see that,

note that when σ ≲ ∥M∥max, then according to Lemma
B.8, we have L/σr = Θ(1/

√
mn). The recovery error

in ∥ · ∥F would typically scale as Õ(
√

(m+ n)/T ) (see
Lemma B.7 which follows from classical arguments as in
(Jun et al., 2019)). This suggests that the subspace recovery
error (seen as a matrix) is delocalized, i.e., spread out along
m+ n directions. Thus, the provided two-to-infinity norm
guarantees offer a finer and more precise control over the
subspace recovery error than the Frobenius norm guarantees.
We take advantage of this when devising algorithms for
contextual low-rank bandits.
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It is worth mentioning that the obtained error rate (3) in
Theorem 4.1 exhibits a dependence on L = ∥M∥max ∨ σ
instead of only σ. This means that the proposed guarantees
do not suggest exact subspace recovery when σ → 0. This
is to be expected because we rely on a spectral method
that consists in truncating the SVD of M̃ . Indeed, such a
method typically suffers from a bias that comes from setting
unobserved entries to zero, as can be remarked in (1) (see
also (Chen et al., 2021)). As we shall see in the coming
sections, this affects the final bounds we obtain in all three
learning tasks. Nonetheless, we provide a discussion in
Appendix I.4 on how we may improve this dependence,
which may be of independent interest. Indeed, one may
resort to ideas based on nuclear norm penalization which
have been shown recently to enjoy tight entry-wise matrix
estimation guarantees (Chen et al., 2020). However, one has
to take further care to ensure that the results based on such
ideas would extend to our dependent noise setting. Finally,
let us also mention that the dependence on σ, through L, in
the sample complexity (4) provided in Theorem 4.1 is to be
expected and cannot be further improved.

5. Reduction to Misspecified Linear Bandits
In this section, we assume that we use T1 reward observa-
tions to estimate the singular subspaces U and V of M as
described in the previous section. These T1 first observa-
tions will constitute the first phase of our low-rank bandit
algorithms. Based on the estimates of U and V , one could,
as in (Jun et al., 2019; Kang et al., 2022), reduce the prob-
lem faced by the learner in the remaining (T − T1) rounds
to an almost low-dimensional linear bandit; see Appendix
H for a detailed discussion. The second phase of low-rank
bandit algorithms would then just consist in applying an
algorithm for such linear bandits. We explain in Appendix
H that for regret minimization, this approach would however
not lead to the tightest regret guarantees possible. Instead,
we establish that the second phase of low-rank bandit al-
gorithms can be reduced to solving a misspecified linear
bandit with misspecification controlled using our subspace
recovery error guarantees in the two-to-infinity norm. This
new approach yields improved regret upper bounds, but also
allows us to devise efficient algorithms for PE and BPI. In
what follows, we make the reduction to a misspecified linear
bandit precise.

First observe that, following a similar transformation of the
so-called left and right features as in (Jun et al., 2019), we
may express any entry of the matrix M as:

Mij = e⊤i Û(Û⊤MV̂ )V̂ ⊤ej + e⊤i Û(Û⊤MV̂⊥)V̂
⊤
⊥ ej

+ e⊤i Û⊥(Û
⊤
⊥MV̂ )V̂ ⊤ej + e⊤i Û⊥(Û

⊤
⊥MV̂⊥)V̂

⊤
⊥ ej . (5)

From (5), we can write that for any (i, j) ∈ [m]× [n],

Mi,j = ϕ⊤i,jθ + ϵi,j , (6)

where ϵi,j = e⊤i Û⊥(Û
⊤
⊥MV̂⊥)V̂

⊤
⊥ ej , and

ϕi,j =

 vec(Û⊤eie
⊤
j V̂ )

vec(Û⊤eie
⊤
j V̂⊥)

vec(Û⊤
⊥ eie

⊤
j V̂ )

, θ =
 vec(Û⊤MV̂ )

vec(Û⊤MV̂⊥)

vec(Û⊤
⊥MV̂ )

. (7)

With this interpretation, we obtain a misspecified linear
bandit of dimension d := r(m+n)−r2. The benefit of this
reduction is that we can characterize the misspecification
ϵmax := max(i,j)∈[m]×[n] |ϵi,j | using our subspace recovery
guarantees in the two-to-infinity norm. Indeed, we establish:

Corollary 5.1 (Misspecification error). Let δ ∈ (0, 1),
T1 > 0 be the number of samples observed by the sam-
pling distribution ω. Then, the event

ϵmax ≲
L2µ2κ3r(m+ n)

σrT1ωmin(m ∧ n)
log3

(
(m+ n)T1

δ

)
holds with probability at least 1− δ, provided that

T1 ≳
L2(m+ n)

σ2
rωmin

log3
(
(m+ n)T1

δ

)
.

Corollary 5.1 follows immediately from Theorem 4.1. To
see that, observe that we have, for all (i, j) ∈ [m]× [n],

|ϵi,j | = |e⊤i Û⊥(Û
⊤
⊥MV̂⊥)V̂

⊤
⊥ ej |

(a)
= |e⊤i (UU⊤ − Û Û⊤)M(V V ⊤ − V̂ V̂ ⊤)ej |
(b)

≤ d2→∞(U, Û)d2→∞(V, V̂ )∥M∥op

(c)

≤ ϵ2Sub-Recκσr(M) (8)

where equality (a) follows from the fact that Û⊥Û
⊤
⊥M =

(I − Û Û⊤)M since Û Û⊤ + Û⊥Û
⊤
⊥ = I , and similarly

for MV̂⊥V̂
⊤
⊥ , inequality (b) follows from |x⊤My| ≤

∥x∥2∥y∥2∥M∥op for any vectors x ∈ Rm, y ∈ Rn, and
inequality (c) follows from the definition of the condition
number κ.

We remark that when M and ω are homogeneous, we have
ϵmax = Õ((m + n)/T1) due to the quadratic dependence
on ϵSub-Rec appearing in (8).

6. Policy Evaluation
In this section, we present algorithms for PE and analyze
their performance. The first algorithm, referred to as SIPS
(Spectral Importance Propensity Score), consists of a single
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phase and exploits all samples to construct a rank-r estimate
of M . The value of the target policy is directly obtained
using this estimate. We show that, when M and ω are
homogeneous, SIPS exhibits a minimax optimal sample
complexity w.r.t. the matrix size (m,n) and the accuracy
level ε, but not w.r.t. the confidence level δ. The design
of the second algorithm, RS-PE (Recover Subspace for
Policy Evaluation), leverages our two-phase approach. In
its second phase, RS-PE refines the estimate of M via a
regularized least squares estimator applied to the misspec-
ified linear bandit model obtained at the end of the first
phase. Applying this two-phase approach has significant
benefits: (i) RS-PE enjoys instance-dependent sample com-
plexity guarantees; (ii) When M and ω are homogeneous,
it is nearly minimax optimal w.r.t. the parameters m,n, ε
and δ; (iii) as shown in Appendix J.1, it outperforms SIPS
in numerical experiments. We conclude this section by de-
riving instance-dependent and minimax sample complexity
lower bounds.

Throughout this section, we assume that the observations
are gathered in an i.i.d. manner using a behavior policy πb,
and we wish to estimate the value vπ of a target policy π.
To simplify the notation, we abbreviate the (context, arm)
distribution ωπ

b

by ω.

6.1. Spectral Importance Propensity Score

A natural approach to PE consists in directly constructing
M̂ , a rank-r estimate of M obtained via the spectral method
described in (2), using all of the T available samples gath-
ered under the (context, arm) distribution ω. We estimate
the value of the target policy π by:

v̂πSIPS :=
∑

(i,j)∈[m]×[n]

ωπi,jM̂i,j . (9)

The estimator v̂πSIPS can be interpreted as an Importance
Propensity Score (IPS) estimator that takes into account
the low-rank structure of M . Indeed, in the absence of
such low-rank structure, i.e., r = m ∧ n, we see that our
policy value estimator reduces to the classical IPS estimator
(Wang et al., 2017).

Theorem 6.1. Let ε ∈ (0, ∥M∥max) and δ ∈ (0, 1). For
any target policy π, |vπ− v̂πSIPS| ≤ ε with probability larger
than 1− δ as soon as

T ≳
L2µ6κ4r3(m+ n)

ωmin(m ∧ n)2ε2
log3

(
(m+ n)T

δ

)
.

The proof of this theorem, presented in Appendix D.1, re-
lies on deriving entry-wise guarantees for the estimate M̂ .
These guarantees follow from the two-to-infinity guaran-
tees provided in Theorem 4.1. Observe that when both M
and ω are homogeneous, the sample complexity guarantees

derived in Theorem 6.1 scale as L2(m+n)
ε2 log3(1/δ). The

dependence in L is a consequence of the bias induced by
setting the unobserved entries of M to 0 in the definition (1)
of M̃ , as explained in Section 4.2.

Note that a naive control by the Frobenius norm would
not be sufficient to obtain an error guarantee that scales
with

√
m+ n. Indeed, by the Cauchy-Schwartz inequality,

|vπ − v̂πSIPS| ≤ ∥ωπ∥F ∥M − M̂∥F . If ω is homogeneous,
∥M − M̂∥F typically scales with

√
mn (m+ n) /T , and

∥ωπ∥F = Θ(1/
√
m) when π is deterministic. We conse-

quently obtain |vπ− v̂πSIPS| ≲
√
n (m+ n) /T , which does

not improve over existing PE error bounds for contextual
bandits with no structure (Yin & Wang, 2020).

6.2. Algorithm via the Two-Phase Approach

Next, we present RS-PE (Recover Subspace for Policy
Evaluation), a two-phase algorithm that proceeds as follows.
(i) In the first phase, we recover the subspaces by using
the first T1 samples to construct the estimates Û and V̂ as
described in (5). (ii) In the second phase, using Û and V̂ ,
we reduce the problem to a misspecified linear bandit as
described in (6), and then run least squares estimation with
the remaining T − T1 samples to construct

θ̂ =

(
T∑
t=t1

ϕit,jtϕ
⊤
it,jt + τId

)−1( T∑
t=t1

rtϕit,jt

)
, (10)

where τ > 0 is a regularization parameter, t1 = T1 + 1,
and d = r(m+ n)− r2. Finally, the estimated value of the
target policy π is:

v̂πRS-PE :=
∑

(i,j)∈[m]×[n]

wπi,jϕ
⊤
i,j θ̂. (11)

To analyze RS-PE, we introduce the following instance-
dependent quantities. Define, for all (i, j) ∈ [m]× [n],

ψi,j =

 vec(U⊤eie
⊤
j V )

vec(U⊤eie
⊤
j V⊥)

vec(U⊤
⊥ eie

⊤
j V )

 ,
and ψπ =

∑
(i,j)∈[m]×[n] ω

π
i,jψi,j .

Theorem 6.2. Let ε ∈ (0, ∥M∥max) and δ ∈ (0, 1).
With the choices T1 = ⌊T/2⌋ and τ ≤ r(m ∧
n)−1(ωmin/ωmax) log(16d/δ), for any target policy π,
|vπ − v̂πRS-PE| ≤ ε with probability larger than 1 − δ as
soon as

T ≳
σ2∥ψπ∥22
ωmin ε2

log
(e
δ

)
+

K

ε4/3
log3

(
(m+ n)T

δ

)
,

where K depends polynomially on the model parameters6

∥M∥max, σ, µ, κ, r,m, n, (ωminmn)
−1.

6Refer to (34) in Appendix D.2 for a complete expression.
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We present in Appendix D.2 a stronger version of Theorem
6.2 and its proof. The latter relies on intermediate results
pertaining to the PE task in contextual linear bandits, for
which we present in Appendix C a complete analysis: we de-
rive an instance-dependent sample complexity lower bound
and an algorithm matching this limit.

Note that the guarantees for RS-PE are instance-dependent
through ψπ. By slightly altering the proof of Theorem 6.2
and leveraging the upper bound ∥ψπ∥22 ≤ µ2rm+n

mn (see
Appendix D.3 for a proof), we can also derive minimax
guarantees with a remainder term that scales with 1/ε in-
stead of 1/ε4/3. We refer to Theorem D.9 for the precise
statement.

Asymptotically, when ε tends to 0, these guarantees exhibit
a better dependence in µ, κ, r, ∥M∥max and δ (and even
in (m,n) for non-homogeneous matrices M ) compared
to those of SIPS: for ε small enough7, the sample com-
plexity guarantees of RS-PE scale as σ2µ2r(m+n)

ωminmnε2
log(1/δ).

When, in addition, M and ω are homogeneous, they scale
as σ2(m+n)

ε2 log(1/δ).

For large ε, the sample complexity guarantees of SIPS pre-
sented in Theorem 6.1 may be better than those of RS-PE
(we believe however that the analysis of RS-PE can be im-
proved for such ε). Yet, as our experiments (see Appendix
J.1) suggest, RS-PE outperforms SIPS numerically even
in the large ε regime.

Observe further that in any case, the first term in the sample
complexity guarantees of RS-PE scales with σ2. In contrast,
the guarantees of SIPS scale with L2 = (∥M∥max ∨ σ)2
(see Theorem 6.1). The remainder term, however, still de-
pends on L through the factor K.

We finally note that without accounting for the low-rank
structure, the minimax sample complexity of any PE al-
gorithm would scale as mn

ε2 log(1/δ) (Yin & Wang, 2020).
Exploiting the low-rank structure allows us to replace the
factor mn by (m+ n).

6.3. Sample Complexity Lower Bounds

We first derive an instance-dependent lower bound on the
sample complexity. Consider the following factorization
of M : M = PQ⊤ with P ∈ Rm×r and Q ∈ Rn×r (this
factorization is not unique). Let us define for every i ∈ [m],

ΛiQ =

n∑
j=1

ωi,jQjQ
⊤
j and Qiπ =

n∑
j=1

ωπi,jQj .

Similarly, for every j ∈ [n], let

ΛjP =

m∑
i=1

ωi,jPiP
⊤
i and P jπ =

m∑
i=1

ωπi,jPi.

7Refer to (38) in Appendix D.2 for a precise condition.

In the above definitions, Qj (resp. Pi) denotes the j-th row
vector of Q (resp. i-th row vector of P ).
Theorem 6.3. Let ε > 0, δ ∈ (0, 1/2) and assume that
ξt ∼ N

(
0, σ2

)
. The sample complexity of any (ϵ, δ)-PAC

estimator of vπ must satisfy

T ≥ σ2LM,π

2ε2
kl (δ, 1− δ)

for LM,π := max
(∑

i ∥Qiπ∥2(ΛiQ)−1 ,
∑
j ∥P jπ∥2(ΛjP )−1

)
.

Furthermore, LM,π is independent of the choice of rank
factorization M = PQ⊤.

From Theorem 6.3, we can deduce a minimax lower bound.
For some constants c = (c1, c2) and c′, we introduce the set
of matricesM(c, c′) = {M ∈ Rm×n : rank(M) = r ≤
c′, c1m ≤ n ≤ c2m}.
Proposition 6.4. Let ε > 0, δ ∈ (0, 1/2) and assume that
ξt ∼ N

(
0, σ2

)
. There exists a target policy π and a ho-

mogeneous matrix M ∈ M(c, c′) such that the sample
complexity of any (ε, δ)−PAC estimator of vπ must satisfy

T ≳
σ2 (m+ n)

ωmaxmnε2
kl (δ, 1− δ) .

Note that when ω is homogeneous, the sample complexity
lower bound reduces to T ≳ σ2(m+n)

ε2 kl (δ, 1− δ). Since
kl (δ, 1− δ) ≥ log (1/ (2.4δ)) (Kaufmann et al., 2016), this
lower bound nearly matches the sample complexity guar-
antees of RS-PE when M and ω are homogeneous. If in
addition, σ ≳ ∥M∥max, it also matches the sample com-
plexity guarantees of SIPS.

7. Best Policy Identification
In this section, following the same approach as that used
to address the PE task, we devise two BPI algorithms with
nearly minmax optimal sample complexity. In what follows,
we assume that the context distribution ρ is homogeneous.
We explain how this condition can be dropped at the reason-
able cost of additional logarithmic factors in our bounds in
Appendix F.2.

As for the PE learning task, our first algorithm is directly
based on the estimate M̂ , and the second follows our two-
phase approach. These algorithms, referred to as SBPI and
RS-BPI, output the policy π̂SBPI and π̂RS-BPI respectively,
defined by, for all i ∈ [m],

π̂SBPI(i) := argmax
1≤j≤n

M̂i,j ,

π̂RS-BPI(i) := argmax
1≤j≤n

ϕTi,j θ̂,

where M̂ , ϕ and θ̂ are defined in (2), (7) and (10), respec-
tively. The pseudo-code of RS-BPI is presented in Algo-
rithm 1.
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Algorithm 1 RECOVER SUBSPACE FOR BEST POLICY
IDENTIFICATION (RS-BPI)

Input: Budgets of rounds T and T1, context distribution
ρ, regularization parameter τ , confidence level δ,
Phase 1: Subspace recovery
Collect T samples according to the uniform policy
Use the first T1 samples to construct Û , V̂ as in (2)
Phase 2: Solving a misspecified linear bandit
Construct {ϕi,j : (i, j) ∈ [m]× [n]} as in (7)
Use the remaining T − T1 samples to construct the least
square estimator θ̂ as in (10)
Set π̂RS-BPI (i) = arg max

1≤j≤n
ϕ⊤i,j θ̂ for all i ∈ [m]

Output: π̂RS-BPI

Theorem 7.1. Let ε ∈ (0, ∥M∥max), δ ∈ (0, 1) and assume
that ρ is homogeneous.
(i) v⋆ − vπ̂SBPI ≤ ε with probability larger than 1 − δ as
soon as

T ≳
L2µ6κ4r3(m+ n)3

(m ∧ n)2ε2
log3

(
(m+ n)T

δ

)
.

(ii) Choosing τ ≤ r(m∧n)−1(ρmin/ρmax) log(16d/δ) and
T1 = ⌊T/2⌋, v⋆ − vπ̂RS-BPI ≤ ε with probability larger than
1− δ as soon as

T ≳
σ2µ2r(m+ n)

ε2
log

(
m+ n

δ

)
+
K

ε
log3

(
(m+ n)T

δ

)
,

where K depends polynomially on the model parameters 8

∥M∥max, σ, µ, κ, r,m, n.

Note that under our homogeneity assumption on ρ,
the sample complexity guarantees of RS-BPI scale as
σ2µ2r(m+n)

ε2 log (1/δ) when ε is sufficiently small. In this
case, it exhibits a better dependence on the model parame-
ters than the sample complexity guarantees of SBPI when
M is not homogeneous. For large ε, the guarantees of SBPI
can be better than those of RS-BPI. Nonetheless, our ex-
periments (see Appendix J.2) suggest that RS-BPI still
outperforms SBPI in the large ε regime.

A known minimax sample complexity lower bound for BPI
in contextual low-rank bandits scales as r(m+n)

ε2 log(1/δ)
(this is essentially proved by (Lee et al., 2023) for context-
lumpable bandits, a subclass of contextual low-rank bandits).
Hence, in view of Theorem 7.1, both SBPI and RS-BPI
are nearly minimax optimal when the reward matrix and
context distribution are homogeneous; the sample complex-
ity of SBPI has an additional log2(1/δ) term, and RS-BPI
is minimax optimal when ε is sufficiently small.

Finally, it is worth noting that for the two proposed algo-
rithms, data is simply gathered using the uniform sampling

8Refer to (44) in Appendix F for a complete expression.

policy (there is no need to be adaptive to achieve a minimax
optimal sample complexity when M and ρ are homoge-
neous).

8. Regret Minimization
In this section, we introduce RS-RMIN, our algorithm de-
signed for regret minimization in contextual low-rank ban-
dits. Presented as Algorithm 2, RS-RMIN runs in two
phases. In the first phase, we collect T1 samples by simply
selecting arms uniformly at random. Based on the cor-
responding reward observations, we estimate the singular
subspaces of M using the procedure outlined in Subsection
4.1. The problem is then reformulated as a misspecified
contextual linear bandit, as described in Section 5.

In the second phase, to solve the misspecified linear bandit
for the remaining T − T1 rounds, RS-RMIN uses a variant
of SUPLINUCB (Takemura et al., 2021), outlined in Algo-
rithm 5 in Appendix G.1. In each round t, the set of feature
vectors Xt = {ϕit,j , j ∈ [n]} is constructed using the esti-
mated singular subspaces as defined in (7), with features of
dimension d = r(m+ n)− r2.

The choice of T1 will be specified later. Let T2 = T − T1.
We define the threshold β(δ) used in SUPLINUCB as:

β(δ) = σ(1 +

√
2 log

(
T2mn

δ

⌈
1

2
log

(
T2
d

)⌉)
). (12)

Theorem 8.1. Suppose9 T1 = Θ̃(f(T,M, ρ)), where

f(T,M, ρ) := Lµ2κ2r5/4
(m+ n)3/4(mn)1/4
√
mρmin(m ∧ n)1/2

√
T .

Then, the regret of π = RS-RMIN satisfies:
Rπ(T ) = Õ(f(T,M, ρ)), for all T ≥ 1.

Here, Θ̃(·), Õ(·) may hide logarithmic factors in T , m, n
and L/σ. Theorem 8.1 is proved in Appendix G. When
the reward matrix M and context distribution ρ are homo-
geneous, the regret upper bound of RS-RMIN simplifies
to:

Rπ(T ) = Õ
(
Lr5/4n3/4

√
T
)
.

Observe that if we were to use an algorithm meant for con-
textual bandits with no structure, then the best regret guar-
antee we can obtain is Õ(

√
mnT ) (Lattimore & Szepesvári,

2020). In contrast, our regret upper bound scales as
Õ(n3/4

√
T ), and clearly n3/4

√
T ≪ n

√
T = Θ(

√
mnT )

for all T ≥ 1 whenever m = Θ(n). In other words,
our algorithm truly takes advantage of the low-rank struc-
ture. We finally remark that Lee et al. (2023) also pro-
vides non-trivial regret bounds for general low-rank reward

9Refer to (51) in Appendix G for an explicit expression.
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Algorithm 2 RECOVER SUBSPACE FOR REGRET
MINIMIZATION (RS-RMIN)

Input: Budget of rounds T , T1, context distribution ρ
Phase 1: Subspace recovery
Collect T1 samples according to the uniform policy
Construct Û , V̂ as described in (2)
Phase 2: Solving a misspecified linear bandit
Construct {ϕi,j : (i, j) ∈ [m]× [n]} as in (7)
Set T2 ← T − T1, δ ← 1/T , β(δ) as in (12),

Λ← σ2/(∥M∥2maxmn)Id
Run SUPLINUCB for the remaining rounds with inputs
T2, β(δ) and Λ.

matrices, as discussed in the introduction, but only when
T = Õ((m+ n)2(1+(3r)−1)).

We also explain in Appendix H why reducing the problem
to almost-low-dimensional linear bandits, a framework em-
ployed for regret minimization in previous works such as
(Jun et al., 2019; Lu et al., 2021; Kang et al., 2022), gives
suboptimal regret guarantees compared to our reduction to
misspecified linear bandits. Additionally, we present an al-
gorithm based on the reduction to almost-low-dimensional
linear bandits that leverages our entrywise guarantees, with
regret Rπ(T ) = Õ((m+ n)

√
T ) in the homogeneous case.

Our results complement observations made in (Kang et al.,
2024), where reducing to misspecified linear bandits yields
Θ(r1/4(m+ n)1/4) higher regret than reducing to almost-
low-dimensional linear bandits.

As mentioned in Section 4.2, using spectral methods intro-
duces in the subspace recovery error bound a dependence
on L = ∥M∥max∨σ instead of σ (see also (Keshavan et al.,
2009)). This may affect the regret bounds one may obtain in
settings where σ ≪ ∥M∥max. Indeed, should this improve-
ment be possible, one may expect a regret upper bound of
order Õ(σ(n + m)3/4

√
T + ∥M∥max(n + m)) when M

and ω are homogeneous (see Appendix I.4 for more details)
which is better than ours for σ ≪ ∥M∥max. We believe
that the dependence on σ can be improved using either the
method proposed in Appendix I.3 or methods based on nu-
clear norm regularization (Chen et al., 2020) as discussed in
Appendix I.4.

Proof sketch of Theorem 8.1. For the sake of simplicity, we
assume that µ, κ = Θ(1) and m = Θ(n) in the proof
sketch. The regret accumulated during the exploration
phase (Phase 1) is upper bounded by 2T1∥M∥max. To up-
per bound the regret of the second phase, we observe that
we face a misspecified linear bandit with misspecification
ϵmax = Õ

(
(L2r)/(T1σrωmin)

)
for T1 sufficiently large ac-

cording to Corollary 5.1, and we apply the regret bound for
misspecified linear bandits from Theorem 1 in (Takemura
et al., 2021) (see Theorem G.1). Putting all of this together,

we get:

Rπ(T ) = Õ

(
T1∥M∥max +

L2

T1

r3/2
√
nT

σrωmin
+ L
√
rnT

)
.

Choosing T1 that minimizes this expression while using
that ∥M∥max/σr ≲ r/

√
mn (see Lemma B.8) yields the

claimed regret.

9. Conclusion
We devised new algorithms achieving state-of-the-art guar-
antees in several learning tasks for contextual low-rank ban-
dits. A key observation behind our results is that subspace
recovery guarantees in the two-to-infinity norm can be lever-
aged to perform a succinct reduction from a low-rank bandit
to a misspecified linear bandit problem. This motivates a
two-stage approach as an algorithm design principle, and
constitutes a core message of our work.

For PE and BPI, we followed such a two-stage approach
and proposed RS-PE and RS-BPI whose minimax sample
complexity typically scales as Õ(r(m + n)/ε2). We also
considered a single-stage approach to propose SIPS and
SBPI with a similar minimax sample complexity. However,
experimentally, RS-PE and RS-BPI exhibit far superior
performance in comparison with SIPS and SBPI. Shed-
ding some light on this discrepancy is of future interest.

For regret minimization, the benefits of the two-stage ap-
proach are even more pronounced. Indeed, the proposed
RS-RMIN achieves a non-trivial regret upper bound typ-
ically scaling as Õ(r5/4(m + n)3/4

√
T ). It is unclear if

achieving Õ(
√
poly(r)(m+ n)T ) is possible for general

low-rank reward matrices, but we believe this to be an excit-
ing research question.
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A. Additional Related Work
In this appendix, we provide additional related work. Most specifically, we survey some of the recent algorithms for
misspecified contextual linear bandits. Next, we also discuss bilinear bandits from which the idea of reducing a low-rank
bandit problem to an almost low-dimensional linear bandit originated.

Misspecified contextual linear bandits. Misspecified contextual linear bandits have recently received a lot of attention
(Gopalan et al., 2016; Ghosh et al., 2017; Lattimore et al., 2020; Foster et al., 2020; Zanette et al., 2020; Takemura et al.,
2021). The best achievable minimax regret bounds for this setting are Õ(d

√
T + ϵ

√
dT ) where d is the ambient dimension,

ϵ is the misspecification, and T is the time horizon. This guarantee is achievable even if ϵ is not known as proven by (Foster
et al., 2020). Interestingly, (Lattimore et al., 2020) show that one cannot hope to improve the dependence on d in the
term ϵ

√
d due to misspecification for most interesting regimes. However, the first term, that is of order d

√
T , is due to

the assumption that the set of arms per context is continuous or infinite. In fact, (Lattimore et al., 2020) also shows that a
minimax regret of order Õ(

√
d log(K)T + ϵ

√
dT ) is achievable when the misspecified linear bandit has a finite number of

arms K. Furthermore, in the case of misspecified contextual linear bandits with a finite number of arms per context, say K,
(Takemura et al., 2021) show that SUPLIN-UCB, initially proposed by (Chu et al., 2011), achieves a regret guarantee of
order Õ(

√
d log2(K)T + ϵ

√
d log(K)T ) without knowledge of ϵ. They further propose a variant of SUPLIN-UCB that

has an improved regret upper bound of order Õ(
√
d log(K)T + ϵ

√
dT ).

Bilinear bandits with low-rank structure. In this setting, originally introduced by (Jun et al., 2019), in each round, the
learner selects a pair of features (x, y) in X × Y ⊆ Rm × Rn, and then observes a reward with expected value x⊤My,
where M is assumed to be of rank r ≪ m+ n. This setting is closely related to ours, because if one assumes that X and Y
correspond to the canonical basis in Rm and Rn, respectively, then one recovers our reward model. To solve this problem,
(Jun et al., 2019) proposed ESTR, a two-stage algorithm that first estimates the singular subspaces of M using spectral
methods, and then solves an almost low-dimensional linear bandit problem, using an adaptation of OFUL (Abbasi-Yadkori
et al., 2011) referred to as LOWOFUL. The key insight is that subspace recovery enables a reformulation of bilinear bandit
problems as low-dimensional linear bandits. This lead to the first regret guarantees of order Õ((m + n)3/2

√
T ). Since

then, there has been many subsequent work with new algorithms, improvements, and various generalizations (Jang et al.,
2021; Lu et al., 2021; Kang et al., 2022; Cai et al., 2023). Notably, (Kang et al., 2022) proposes an algorithm, G-ESTT, to
solve generalized bilinear bandit problems. Their algorithm also achieves a regret guarantee of order Õ((m+ n)3/2

√
T ),

and relies on the same two-stage algorithm design idea as (Jun et al., 2019), but uses instead a novel subspace estimator
that is based on Stein’s method. A major limitation of existing state-of-the-art algorithms for bilinear bandits is that when
|X × Y| = Õ(mn), as is the case in our setting, the obtained regret guarantees are no better than the ones achievable by
minimax optimal algorithms for unstructured bandits. Indeed, an algorithm such as UCB that does not use the low-rank
structure achieves a regret rate of order Õ(

√
mnT ) (Lattimore & Szepesvári, 2020)).

It is worth noting that in a concurrent work, (Jang et al., 2024) derive a regret bound that scales with Õ((m+ n)1/4
√
BT )

where B is a constant that depends on the action set geometry. This constant appears in their bounds because they use an
experimental design approach. It is unclear how this constant would scale with our action set, but for the case of the unit
sphere, which would also include our action set, they obtain a regret bound of order Õ((m+ n)5/4

√
T ). This still does not

attain a sub-linear dependence on m+ n as we do in our work.
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B. Singular Subspace Recovery
In this appendix, we give the proofs of our results on the singular subspace recovery in the two-to-infinity norm. In Appendix
B.1, we provide the proof of Theorem 4.1 which in fact follows from Theorem B.1. The latter theorem is also a guarantee
on the two-to-infinity norm but where the estimation error is evaluated in an alternative way. The proof of Theorem B.1 is
provided in Appendix B.2 and features two key ideas, namely the leave-one-out analysis (Abbe et al., 2020; Chen et al.,
2021) and the Poisson approximation argument (Stojanovic et al., 2024).

B.1. Proof of Theorem 4.1 – Recovery in ∥ · ∥2→∞

We now present the two key results from which Theorem 4.1 follows. We defer the proofs of these two claims to Appendices
B.2 and B.3, respectively.

Theorem B.1. Let δ ∈ (0, 1). Then, the following event

max
(
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

)
≤ C L

σr(M)

√
µ2κ2r(m+ n)

Tωmin(m ∧ n)
log3

(
(m+ n)T

δ

)
,

holds with probability at least 1− δ as long as

T ≥ c L
2(m+ n)

σ2
r(M)ωmin

log3
(
(m+ n)T

δ

)
for some universal constants C, c > 0.

Lemma B.2. Under the event ∥M̃ −M∥op ≤ σr(M)/2, we have

d2→∞(U, Û) = ∥UU⊤ − Û Û⊤∥2→∞ ≤ 2∥U − Û Û⊤U∥2→∞ +
4∥U∥2→∞∥M̃ −M∥op

σr(M)
,

d2→∞(V, V̂ ) = ∥V V ⊤ − V̂ V̂ ⊤∥2→∞ ≤ 2∥V − V̂ V̂ ⊤V ∥2→∞ +
4∥V ∥2→∞∥M̃ −M∥op

σr(M)
.

Now the proof of Theorem 4.1 follows straightforwardly. First, we note that under the event that ∥M̃ −M∥op ≤ σr(M)/2,
by Lemma B.2 we only need to upper bound the terms ∥U− Û Û⊤U∥2→∞, ∥V − V̂ V̂ ⊤V ∥2→∞, ∥M̃−M∥op. Now, observe
that we may use Theorem B.1 to upper bound ∥U − Û Û⊤U∥2→∞ and ∥V − V̂ V̂ ⊤V ∥2→∞ with high probability, and use
Proposition B.5 to upper bound the term ∥M̃ −M∥op with high probability. The obtained upper bounds combined with the
fact that ∥U∥2→∞ ∨ ∥V ∥2→∞ ≤ µ

√
r/(m ∧ n) yield the final result.

B.2. Proof of Theorem B.1

The proof of Theorem B.1 is rather involved but follows the same steps as the proof of Lemma 30 in (Stojanovic et al.,
2024), with the slight difference that in (Stojanovic et al., 2024), it is assumed that ωi,j = 1/(mn) for all i, j. For the sake
of completeness, we highlight the key steps of the proof next.

Step 1: Poisson approximation. For the sake of the analysis, it is rather convenient to describe the estimate M̃
given in (1) with an alternative random matrix which has the same distribution. For all (i, j) ∈ [m] × [n], define
Zi,j =

∑T
t=1 1{(it,jt)=(i,j)} and let (ξ′i,j,t) be a sequence of i.i.d. random variables that have the same distribution as ξ1.

Now, observe that our matrix M̃ has the same distribution as the random matrix M̃ ′ defined as:

∀(i, j) ∈ [m]× [n], M̃ ′
i,j =

1

Tωi,j

Zi,j∑
t=1

(Mi,j + ξ′i,j,t). (13)

Let P denote the joint probability distribution of (Zi,j)(i,j)∈[m]×[n] and (ξ′i,j,t)(i,j)∈[m]×[n],t≥1.

Next, we describe a compound Poisson random matrix model that will serve as an approximation of the random model (13).
Let Y ∈ Rm×n be a random matrix with independent entries, such that Yi,j ∼ Poisson(Tωi,j), for all (i, j) ∈ [m]× [n].
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Let us further define the random matrix X taking values Rm×n as follows:

∀(i, j) ∈ [m]× [n], Xi,j =
1

Tωi,j

Yi,j∑
t=1

(Mi,j + ξ′i,j,t). (14)

We observe that the entries of the matrix X are independent and distributed according to compound Poisson distributions.

Let P′ denote the joint probability distribution of (Yi,j)(i,j)∈[m]×[n] and (ξ′i,j,t)(i,j)∈[m]×[n],t≥1. The Poisson approximation
argument is formalized in the next lemma.
Lemma B.3 (Poisson Approximation). Let (Ω,F ,P) (resp. (Ω,F ,P′)) be the probability space under the random matrix
model (13) (resp. (14)). Then for any event E ∈ F , we have

P (E) ≤ e
√
T P′ (E) .

The proof of Lemma B.3 follows from Lemma B.4 and is similar to the proof of Lemma 20 in (Stojanovic et al., 2024).

Proof. Let E ∈ F be an event and for convenience, introduce the notation X = (ξi,j,t)(i,j)∈[m]×[n],t≥1. First, we note that
(Yi,j)(i,j)∈[m]×[n] ∼ Multinomial(T, (ωi,j)(i,j)∈m×n). Let f(Y,X) = 1{E}. Then, by Lemma B.4, we have

E[f(X,Y )|X] ≤ e
√
TE′[f(X,Z)|X].

By taking the expectation with respect to X , we get E[f(X,Y )] ≤ E[f(X,Z)], which means that P(E) ≤ e
√
TP′(E).

We borrow the following Lemma from (Stojanovic et al., 2024) (see their Lemma 14) which itself is a mild generalization of
Theorem 5.7 in (Mitzenmacher & Upfal, 2017)

Lemma B.4. Let Y (t)
i ∼ Poisson(tpi), i = 1, . . . , n, be independent random variables with

∑n
i=1 pi = 1. Moreover, let

(Z
(t)
1 , Z

(t)
2 , . . . , Z

(t)
n ) ∼ Multinomial(t, (p1, . . . , pn)). Let f : Rp → R+ be any non-negative function. Then

E[f(Z(t)
1 , . . . , Z(t)

p )] ≤ e
√
tE[f(Y (t)

1 , . . . , Y (t)
p )].

Step 2: Key concentration inequalities. The following propositions are direct consequences of a truncated matrix
Bernstein inequality (see e.g., Proposition A.7 in (Hopkins et al., 2016)).
Proposition B.5. Under the random matrix model (14) with compound Poisson entries, for all δ ∈ (0, 1), for all T ≥
13/(ωmin(m ∧ n)) log3 ((m+ n)/δ), we have:

P

(
∥M̃ −M∥op ≤ 36

√
2L

√
1

Tωmin

(√
(m+ n) log

(
m+ n

δ

)
+ log3/2

(
m+ n

δ

)))
≥ 1− δ

with L = ∥M∥max ∨ σ.
Proposition B.6. Let A be a m× 2r deterministic matrix, and B be a n× 2r deterministic matrix. Then, under the random
matrix model (14) with compound Poisson entries, and denoting L = ∥M∥max ∨ σ, we have:

(i) for all ℓ ∈ [m], for all δ ∈ (0, 1), for all T ≥ (1/(nωmin)) log
3(en/δ), the event

∥(M̃ℓ,: −Mℓ,:)A∥2 ≤ 73
√
2L∥A∥2→∞

√
1

Tωmin

(√
n log

(en
δ

)
+ log3/2

(en
δ

))
(15)

holds with probability at least 1− δ;

(ii) for all k ∈ [n], for all δ ∈ (0, 1), for all T ≥ (1/(mωmin)) log
3(em/δ), the event

∥(M̃:,k −M:,k)
⊤B∥2 ≤ 73

√
2L∥B∥2→∞

√
1

Tωmin

(√
m log

(em
δ

)
+ log3/2

(em
δ

))
(16)

holds with probability at least 1− δ.
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The proofs of Proposition B.5 and Proposition B.6 are essentially the same as those of Proposition 26 and Proposition 27 in
(Stojanovic et al., 2024), and are omitted. Note that both Propositions in (Stojanovic et al., 2024) were derived under an i.i.d.
sub-gaussian noise assumption.

Step 3: Leave-one-out analysis. This part of the analysis follows the steps of the proof of Lemma 30 in (Stojanovic et al.,
2024), but we repeat the main results for the sake of completeness.

(i) First, a dilation trick is needed to reduce the analysis to that of symmetric matrices. We introduce:

S =

[
0 M
M⊤ 0

]
and recalling the SVD of M , M = UΣV ⊤, we can express the SVD of S as follows:

S =
1√
2

[
U U
V −V

] [
Σ 0
0 −Σ

]
1√
2

[
U U
V −V

]⊤
:= QDQ⊤.

We can define S̃ in a similar way, and denote Q̂ ∈ R(m+n)×2r, the matrix containing the 2r eigenvectors of the best 2r-rank
approximation of S̃. Here, we observe that:

∥Q− Q̂(Q̂⊤Q)∥2→∞ = max
{
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

}
. (17)

Additionally, we note that σ2r(S) = σr(M). To simplify the notation, we denote E = S̃ − S and note that ∥E∥op =

∥M̃ −M∥op.

(ii) Second, it can be shown, under the event

E1 = {∥E∥op ≤ C1σr(M)}

where C1 is a universal and sufficiently small positive constant, that:

∥Q− Q̂(Q̂⊤Q)∥2→∞ ≤
1

σ2r(S)

(
5∥SQ∥2→∞∥E∥op

σ2r(S)
+ 3∥EQ∥2→∞ + 2∥E(Q− Q̂(Q̂⊤Q)∥2→∞

)
. (18)

We can easily control ∥E∥op using Proposition B.5 and ∥EQ∥2→∞ using Proposition B.6. On the other hand, the term
∥E(Q− Q̂(Q̂⊤Q))∥2→∞ is the bottleneck of the analysis because E and (Q− Q̂(Q̂⊤Q)) are dependent on each other in a
non-trivial way. The leave-one-out analysis is used to deal with this term.

(iii) We make the leave-one-out analysis more precise. We introduce for all ℓ ∈ [m + n], the matrix S̃(ℓ): for all
(i, j) ∈ [m+ n]× [m+ n],

S̃
(ℓ)
i,j =

{
S̃i,j , if i ̸= ℓ or j ̸= ℓ,

Si,j , otherwise.

We further define Q̂(ℓ) ∈ R(m+n)×2r as the matrix that contains the 2r eigenvector of the best 2r-rank approximation of
S̃(ℓ). It can be shown that, again under E1 where C1 is sufficiently small, that

∥E(Q− Q̂WQ̂)∥2→∞ ≤ max
ℓ∈[m+n]

∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥2 + ∥E∥op∥Q̂WQ̂ − Q̂
(ℓ)WQ̂(ℓ)∥F , (19)

∥Q̂WQ̂ − Q̂
(ℓ)WQ̂(ℓ)∥F ≤

16

σr(M)
(∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥2 + ∥Eℓ,:Q∥2 + ∥E∥op∥Q− Q̂WQ̂∥2→∞ + ∥E∥op∥Q∥2→∞),

(20)

where we denote WQ̂ = Q̂⊤Q and WQ̂(ℓ) = Q̂(ℓ)⊤Q.

Now, the key observation that underpins the leave-one-out analysis is that Eℓ,: and Q− Q̂(ℓ)WQ̂(ℓ) are independent provided
that the entries of the error matrix E are independent. This will be ensured thanks to the Poisson approximation (using
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Lemma B.3) by controlling the quantities of interest under the random matrix model (14). Define

B(δ) =

√
m+ n

Tωmin
log3

(
m+ n

δ

)
and the events

E2 = {∥E∥op ≤ C2LB(δ)}

∀ℓ ∈ [m+ n], E(ℓ)3 =
{
∥Eℓ,:(Q− Q̂(ℓ)WQ̂(ℓ))∥2 ≤ C3L∥Q− Q̂(ℓ)WQ̂(ℓ)∥2→∞B(δ)

}
where C2 and C3 are sufficiently large positive constants. Then, applying Proposition B.5 and Proposition B.6, we have that
P(E2) ≥ 1− δ and P(E(ℓ)3 ) ≥ 1− δ for all ℓ ∈ [m+ n], provided that

T ≥ c

ωmin(m ∧ n)
log3

(
m+ n

δ

)
for c > 0 a sufficiently large universal constant. Additionally, using the fact that L/σr(M) ≥ 1/

√
mn from Lemma B.8,

we can deduce that E1 ⊇ E2 and P(E2) ≥ 1− δ as well as P(E(ℓ)3 ) ≥ 1− δ for all ℓ ∈ [m+ n] when

T ≥ c′L2(m+ n)

σ2
r(M)ωmin

log3
(
m+ n

δ

)
(21)

for a positive universal constant c′ sufficiently large. At this point, what remains to be done is to deal with the inequalities
(18), (19) and (20) under the intersection of the events E2, E(1)3 , . . . , E(m+n)

3 . We spare the readers the details of this tedious
task and write directly the resulting bound

∥Q− Q̂(Q̂⊤Q)∥2→∞ ≤ C ′ L

σr(M)

µκr1/2B(δ)√
m ∧ n

for some universal constantC ′ > 0. Thus, by a union bound, the above bound holds with probability at least 1−(1+m+n)δ,
provided that condition (21) holds, under the random matrix model (14). Using Lemma B.3, we conclude that the same
event holds with probability 1− (1 +m+ n)e

√
Tδ, provided that condition (21) holds, under the random matrix model

(13). Re-parametrizing by δ′ = e(m+ n+ 1)
√
Tδ concludes the proof.

B.3. Proof of Lemma B.2

We start with the first inequality. Let W ∈ Rr×r be an arbitrary orthogonal matrix and note that

∥UU⊤ − Û Û⊤∥2→∞ ≤ ∥UU⊤ − U(ÛW )⊤∥2→∞ + ∥U(ÛW )⊤ − ÛW (ÛW )⊤∥2→∞

≤ ∥U∥2→∞∥U − ÛW∥op + ∥U − ÛW∥2→∞ (22)

where the first inequality follows from the triangular inequality and the fact that WW⊤ = Ir, and the second inequality
follows by the inequality ∥AB∥2→∞ ≤ ∥A∥2→∞∥B∥op and the fact that ∥(ÛW )⊤∥op = 1.

Next, we choose W = sgn(Û⊤U) where sgn(A) denotes the sign matrix of A (see (Chen et al., 2021)). First, according to
Lemma 4.15 in (Chen et al., 2021) and Davis-Kahan inequality, we know that

∥Û⊤U − sgn(Û⊤U)∥op = ∥ sin(Û , U)∥2op ≤
2∥M̃ −M∥2op

σr(M)2
≤
∥M̃ −M∥op

σr(M)
≤ 1

2

where the last two inequalities hold under the event ∥M̃ −M∥op ≤ σr(M)/2. Thus, under this event, we have

∥U − ÛW∥2→∞ ≤ ∥U − Û Û⊤U∥2→∞ + ∥Û∥2→∞∥Û⊤U − sgn(Û⊤U)∥op

≤ ∥U − Û Û⊤U∥2→∞ + (∥U − ÛW∥2→∞ + ∥U∥2→∞)∥Û⊤U − sgn(Û⊤U)∥op

≤ ∥U − Û Û⊤U∥2→∞ +
∥U − ÛW∥2→∞

2
+
∥U∥2→∞∥M̃ −M∥op

σr(M)
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which implies

∥U − ÛW∥2→∞ ≤ 2∥U − Û Û⊤U∥2→∞ +
2∥U∥2→∞∥M̃ −M∥op

σr(M)
. (23)

We also have by Davis-Kahan inequality and relations between the subspace distances (see Lemma 2.5 and Lemma 2.6 in
(Chen et al., 2021))

∥U − ÛW∥op ≤
√
2∥UU⊤ − Û Û⊤∥op =

√
2∥ sin(Û , U)∥op ≤

√
2∥M̃ −M∥op

σr(M)
. (24)

Finally, combining the inequalities (22), (23) and (24), we conclude that under the event ∥M̃ −M∥op ≤ σr(M)/2, we have

∥UU⊤ − Û Û⊤∥2→∞ ≤ 2∥U − Û Û⊤U∥2→∞ +
4∥U∥2→∞∥M̃ −M∥op

σr(M)
.

This concludes the proof of the first inequality. The second one follows similarly.

B.4. Subspace recovery in Frobenius norm

Deriving such guarantees is by now well understood under general noise assumptions (see e.g., (Keshavan et al., 2009; Chen
et al., 2021)). Indeed, the classical proof follows by first deriving upper bounds on ∥M̃ −M∥op with high probability, then
using Davis-Kahan’s or Wedin’s theorem to obtain upper bounds on the subspace recovery error in the Frobenius norm. The
following lemma provides such upper bounds:
Lemma B.7 (Subspace recovery in ∥ · ∥F). Let δ ∈ (0, 1) and consider the setting of Theorem 4.1. Then, with probability at
least 1− δ, it holds that

max
(
∥UU⊤ − Û Û⊤∥F, ∥V V ⊤ − V̂ V̂ ⊤∥F

)
≲

L
√
r

σr(M)

√
m+ n

Tωmin
log3

(
(m+ n)T

δ

)
,

provided that T ≳ 1
ωmin(m∧n) log

3
(

(m+n)T
δ

)
.

We remark that after Ω̃(m+n) observations, when m+n = O(m∧n), we can recover the singular subspaces with an error
in ∥ · ∥F of order Õ(

√
(m+ n)/T ). This contrasts with the error obtained from Theorem 4.1 that is of order Õ(

√
1/T ) (in

the homogeneous case) with the same amount of observations. This suggests that the subspace recovery error (seen as a
matrix) is delocalized, i.e., spread out along m+ n directions.

Proof of Lemma B.7. Define sinΘ(U, Û) as a diagonal matrix with entries {sin θi}ri=1 where θi = arccosσi(Û
⊤U).

Applying first Lemma 1 in (Cai & Zhang, 2018), and then Davis-Kahan’s theorem (Corollary 2.8 in (Chen et al., 2021)), we
obtain:

∥UU⊤ − Û Û⊤∥F ≤
√
2r∥UU⊤ − Û Û⊤∥op ≤ 2

√
r∥ sinΘ(U, Û)∥op ≤

2
√
2r∥M − M̃∥op

σr(M)
.

An analogous bound holds for ∥V V ⊤ − V̂ V̂ ⊤∥F . Lastly, using Proposition B.5 to bound ∥M − M̃∥op and Lemma B.8 to
bound ∥M∥max/σr(M) concludes the proof.

B.5. Additional Lemmas

The following result is immediate (see Lemma 17 in (Stojanovic et al., 2024)).
Lemma B.8. Let M be an m× n matrix, with rank r, incoherence parameter µ > 0, and condition number κ > 0. Then,

1√
mn
≤ ∥M∥max

σ1(M)
≤ µ2r√

mn
,

Consequently, we also have

1√
mn
≤ ∥M∥max

σr(M)
≤ µ2κr√

mn
.
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C. Policy Evaluation for Contextual Linear Bandits
In this appendix, we study the PE task for the simpler contextual linear bandit problem, whose error bound analysis will be
useful to handle the PE task for the contextual low-rank bandit problem. We also demonstrate that the linear bandit error
bound is instance-optimal by deriving a sample complexity lower bound of independent interest.

We observe T i.i.d. samples of the form (it, jt, rt)1≤t≤T where the context it ∈ [m] is drawn independently from a known
distribution ρ and the arm jt ∈ [n] is sampled from πb(.|it) for a known behavioral policy πb. The reward distribution is
assumed to have a linear structure with respect to a known feature map ψ : [m] × [n] → Rd : there exists an unknown
parameter θ in Rd such that rt = ψ⊤

it,jt
θ + ξt where (ξt)t≤1 is an i.i.d. sequence of σ-subgaussian noise, independent from

all the other random variables. The overall bandit model described above will be denoted asMθ. For a given target policy
π, we use the previously defined notations ωi,j = ρ(x)πb(j|i), ωπi,j = ρ(x)π(j|i) and we define

Λ =
∑

(i,j)∈[m]×[n]

ωi,jψi,jψ
⊤
i,j and vπθ =

∑
i,j

ωπi,jψ
⊤
i,jθ.

For any δ ∈ (0, 1) and any ε > 0, we say that v̂π is (ε, δ)-PAC10 if Pθ (|vπθ − v̂π| ≤ ε) ≥ 1− δ for every θ ∈ Rd. We will
write vπ for vπθ when there is no ambiguity about the underlying parameter. We also write N ⪰M (resp. N ⪯M ) when
N −M (resp. M −N ) is positive semi-definite, and denote the Moore-Penrose pseudoinverse (Barata & Hussein, 2011) of
N by N†.

C.1. Instance-dependent sample complexity lower bound

In this section only, we assume that the noise follows a centered Gaussian distribution: ξt ∼ N
(
0, σ2

)
.

Lemma C.1. Denote by qθ(.|i, j) the distribution of the reward when choosing action j under context i, and by Ni,j the
number of times (i, j) has been observed in the sample set. Let LT = LT (i1, j1, r1, . . . , iT , jT , rT ) be the log-likelihood
ratio between two modelsMθ andMθ′ . Then,

Eθ[LT ] =
∑

(i,j)∈[m]×[n]

Eθ [Ni,j ] KL(qθ(.|i, j), qθ′(.|i, j)).

Proof of Lemma C.1. We can write

LT =

T∑
t=1

∑
i,j

1it=i,jt=j log

(
qθ(rt|i, j)
qθ′(rt|i, j)

)

=
∑
i,j

Ni,j∑
t=1

log

(
qθ(r

i,j
t |i, j)

qθ′(r
i,j
t |i, j)

)

where ri,jt is the reward observed after the t-th time that arm j has been selected under context i. Since the ri,jt are i.i.d. of
distribution qθ(|i, j) (resp. qθ′(|i, j)) underMθ (resp.Mθ′ ), Wald’s Lemma yields the result.

Proposition C.2. Let Altε (θ) =
{
θ′ ∈ Rd, |vπθ′ − vπθ | ≥ 2ε

}
. If v̂ is (ε, δ)-PAC with δ ∈ (0, 1/2], then for every θ ∈ Rd,

T ≥ kl (δ, 1− δ)

inf
θ′∈Altε(θ)

1

2σ2
∥θ′ − θ∥2Λ

.

Proof of Proposition C.2. The information-theoretic arguments used in the proof of Lemma 19 from (Kaufmann et al.,
2016) ensure that for any θ and θ′ and any measurable set E with respect to σ(i1, j1, r1, . . . , iT , jT , rT ),

Eθ[LT ] ≥ kl(Pθ (E) ,Pθ′ (E)).

10We will often omit the superscript π to ease the notations.
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The choices E = {|vπθ − v̂| ≥ ε} and θ′ ∈ Altε (θ) directly yield Pθ(E) ≤ δ. Furthermore, by the triangular inequality,
|vπθ − v̂| ≥ |vπθ − vπθ′ | − |vπθ′ − v̂|. Hence, Pθ′(E) ≥ Pθ′(|vπθ′ − v̂| ≥ ε) ≥ 1 − δ. Since 0 < δ ≤ 1/2, we have in
particular δ ≤ 1− δ and Pθ(E) ≤ Pθ′(E). When x ≤ y, x 7→ kl(x, y) is decreasing and y 7→ kl(x, y) is increasing. Thus,
kl(Pθ (E) ,Pθ′ (E)) ≥ kl (δ, 1− δ) , so that

Eθ[LT ] ≥ kl (δ, 1− δ) .
Since the reward follows a Gaussian distribution, Lemma C.1 yields

Eθ[LT ] =
T

2σ2

∑
(i,j)∈[m]×[n]

ωi,j((θ − θ′)⊤ψi,j)2,

where we have used that in our setting, Eθ [Ni,j ] = Tωi,j . Combining this result with the inequality above gives

T ≥ kl (δ, 1− δ)
1

2σ2 (θ′ − θ)⊤Λ(θ′ − θ)
,

and taking the infimum over every θ′ ∈ Altε (θ) completes the proof.

This infimum can be computed explicitly with the use of Lemma C.8. It yields the following result.
Theorem C.3. Let δ ∈ (0, 1/2] and assume that ψπ :=

∑
i,j ω

π
i,jψi,j ∈ Im(Λ). The sample complexity of any (ϵ, δ)-PAC

estimator of vπ must satisfy

T ≥ σ2 kl (δ, 1− δ)
2ε2

∥ψπ∥2Λ† .

Proof of Theorem C.3. From Proposition C.2, we know that

T ≥ σ2 kl (δ, 1− δ)

inf
θ′∈Altε(θ)

1

2
∥θ′ − θ∥2Λ

.

Let us show that the infimum can be rewritten as the infimum in Lemma C.8 for n = 1, Λ1 = Λ and ν1 = ψπ. First, note
that since vπθ = θ⊤

(∑
i,j ω

π
i,jψi,j

)
, the constraint θ′ ∈ Altε (θ) can be rewritten as |(θ′ − θ)⊤ψπ| ≥ 2ε. Since replacing

θ′ − θ by θ − θ′ yields the same objective, the absolute value can be removed. Moreover, the inequality constraint can
be simplified to an equality constraint: if we had (θ′ − θ)⊤ψπ > 2ε, we could normalize θ′ − θ to make the objective
strictly smaller. Finally, note that the constrained problem only depends on θ′ through µ := θ′ − θ. Computing the infimum
consequently amounts to solving the quadratic program

inf
µ∈Rd

1

2
∥µ∥2Λ (25)

s.t. µ⊤ψπ = 2ε. (26)

Since ψπ ∈ Im(Λ), either ∥ψπ∥Λ† = 0 and the bound is trivial, or ∥ψπ∥Λ† ̸= 0 and Lemma C.8 yields the bound.

Remark C.4. The proof shows that interestingly, the bound of Proposition C.2 does not depend on θ.
Remark C.5. If ψπ /∈ Im(Λ), Lemma C.8 entails T ≥ ∞, and there is no (ϵ, δ)-PAC estimator of vπ .

This sample complexity lower bound can be rewritten as a bound on the optimal estimation accuracy for T samples. When
ψπ ∈ Im(Λ) and v̂ is an (ϵ, δ)-PAC estimator of vπ , then

ε ≥ ∥ψπ∥Λ†
σ
√

kl (δ, 1− δ)√
2T

.

In other words, for any δ ∈ (0, 1/2], there is no (ε, δ)−PAC estimator with

ε < ∥ψπ∥Λ†
σ
√

kl (δ, 1− δ)√
2T

.
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Remark C.6. Contrary to the lower bound of Theorem 5 in (Duan et al., 2020) for linear Markov decision processes, our
lower bound does not require additional assumptions on the set of contexts.

C.2. Matching finite-sample error bound

We assume in this section that Λ is invertible, and the noise is now only assumed σ-subgaussian. Recall that vπ = θ⊤ψπ for
ψπ =

∑
i,j ω

π
i,jψi,j . Let τ > 0. Since ψπ is known, a natural estimator of vπ is v̂ = θ̂⊤ψπ where

θ̂ =

(
T∑
t=1

ψit,jtψ
⊤
it,jt + τId

)−1( T∑
t=1

rtψit,jt

)

is a regularized least squares estimator of θ. Note that
∑T
t=1 ψit,jtψ

⊤
it,jt

+ τId is invertible for any τ > 0 since∑T
t=1 ψit,jtψ

⊤
it,jt

is a positive semi-definite matrix with nonnegative eigenvalues. Let Λ̂τ := 1
T

(∑T
t=1 ψit,jtψ

⊤
it,jt

+ τId

)
,

Lψ := maxi,j ψ
⊤
i,jΛ

−1ψi,j and Lθ := maxi,j |ψ⊤
i,jθ|.

Theorem C.7. Assume that T ≥ 18Lψ log (8d/δ) and τ ≤ Lψ log(8d/δ)λmin (Λ) . With probability at least 1− δ,

|vπ − v̂| ≤ 1√
T
E1 +

1

T
E2 +

1

T 3/2
E3 +

1

T 2
E4

with E1 := ∥ψπ∥Λ−1

√
2σ2 log(8/δ), E2 := ∥ψπ∥Λ−1

(
LψLθ + σ(1 + 4

√
2d)
√
Lψ

)
log (16(d+ 1)/δ), E3 :=

∥ψπ∥Λ−1

(
σ
√
2

3 + 4σ
√
d+ 4

√
LψLθ

)
Lψ log3/2 (16(d+ 1)/δ), E4 := ∥ψπ∥Λ−1

4σ
√
2

3

√
dL

3/2
ψ log2 (16(d+ 1)/δ) . In

particular,

|vπ − v̂| ≤ ∥ψπ∥Λ−1

√
2σ2 log(8/δ)

T
+O (1/T )

with probability at least 1− δ.

This error bound matches the sampling lower bound of Theorem C.3 up to an universal constant. This result is similar to the
error bound from (Duan et al., 2020), but it requires the use of variants of the classical Freedman’s inequality adapted to
subgaussian random variables, which are stated in Appendix C.3. This is due to the fact that we assume in our work that the
noise is subgaussian instead of bounded.

Proof of Theorem C.7. Note that

θ̂ − θ =

(
T∑
t=1

ψit,jtψ
⊤
it,jt + τId

)−1( T∑
t=1

(rt − ψ⊤
it,jtθ)ψit,jt − τθ

)

=
1

T
Λ̂−1
τ

(
T∑
t=1

ξtψit,jt − τθ

)
.

Thus, we have
v̂ − vπ = ψ⊤

π

(
θ̂ − θ

)
=

1

T
ψ⊤
π Λ̂

−1
τ

(
T∑
t=1

ξtψit,jt − τθ

)
= L1 + L2

for L1 := 1
T

∑T
t=1 ξtψ

⊤
π Λ

−1ψit,jt and L2 := 1
T

∑T
t=1 ξtψ

⊤
π (Λ

−1 − Λ̂−1
τ )ψit,jt +

τ
T ψ

⊤
π Λ̂

−1
τ θ.

Control of L1. To control this term, which turns out to be the dominant term in the bound, we will use Proposition C.9.
Let Ft−1 = σ(i1, j1, r1, . . . , it−1, jt−1, rt−1, it, jt), Ut = ψ⊤

π Λ
−1ψit,jt , et = ξtUt and Vt = Var (et|Ft−1) . We first note
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that for any choice of γ > 0,

P (|L1| ≥ ε) ≤ P

(∣∣∣∣∣
T∑
t=1

et

∣∣∣∣∣ ≥ Tε and
T∑
t=1

Vt ≤ γ2
)

+ P

(
T∑
t=1

Vt ≥ γ2
)
.

Since ξt is independent of Ft−1, we have
E [et|Ft−1] = UtE [ξt] = 0,

so that (et) is a martingale difference sequence with respect to (Ft). Consequently,

Vt = E
[
e2t |Ft−1

]
= U2

t E
[
ξ2t
]

= σ2U2
t ,

and
E [ecet |Ft−1] = E

[
ecξtUt |Ft−1

]
= E

[
ecξtUt |Ut

]
≤ ec

2Vt/2,

where the second to last inequality follows from the Ft−1-measurability of Ut and the independence of ξt from Ft−1, and
the last inequality follows from the fact that ξt is σ-subgaussian and independent of Ut, and from U2

t = Vt. Hence, by
Proposition C.9,

P

(∣∣∣∣∣
T∑
t=1

et

∣∣∣∣∣ ≥ Tε and
T∑
t=1

Vt ≤ γ2
)
≤ 2 exp

(
−T

2ε2

2γ2

)
for any ε, γ > 0. Furthermore,

∑T
t=1 Vt = σ2Tψ⊤

π Λ
−1Λ̂0Λ

−1ψπ ≤ σ2T∥ψπ∥2Λ−1∥Λ−1/2Λ̂0Λ
−1/2∥op. Indeed,

since Λ−1/2Λ̂0Λ
−1/2 is a symmetric positive semi-definite matrix, the min-max theorem entails ∥Λ−1/2Λ̂0Λ

−1/2∥op =

λmax

(
Λ−1/2Λ̂0Λ

−1/2
)
≥ z⊤Λ−1/2Λ̂0Λ

−1/2z
z⊤z

for z = Λ−1/2ψπ. Lemma B.5 from (Duan et al., 2020) consequently ensures

that
∑T
t=1 Vt ≤ γ2 with probability larger than 1− δ/4 when γ is chosen such that

γ2 = σ2T∥ψπ∥2Λ−1(1 +Kδ/4)

where Kδ/4 :=

√
2 log(8d/δ)Lψ

T +
2 log(8d/δ)Lψ

3T .

Finally, we choose ε adequately with ε := γ
T

√
2 log (8/δ) = ∥ψπ∥Λ−1

√
2σ2 log(8d/δ)

T

√
1 +Kδ/4 so that

P (|L1| ≥ ε) ≤ δ/4 + δ/4 = δ/2.

Finally,
√
1 + x ≤ 1 + x/2 for all x ≥ 0 implies that |L1| ≤ ∥ψπ∥Λ−1

√
2σ2 log(8d/δ)

T

(
1 +

Kδ/4
2

)
with probability larger

than 1− δ/2.

Control of L2. Let us see that L2 = O(1/T ) with probability larger than 1− δ/2 by adapting the proof of Lemma B.6 from
(Duan et al., 2020). Let ∆ = Λ−1−Λ̂−1

τ andW = 1
T

∑T
t=1 ξtψit,jt , so that 1

T

∑T
t=1 ξtψ

⊤
π (Λ

−1−Λ̂−1
τ )ψit,jt = ψ⊤

π∆W =(
ψ⊤
π Λ

−1/2
) (

Λ1/2∆Λ1/2
) (

Λ−1/2W
)
. Note also that τ

T ψ
⊤
π Λ̂

−1
τ θ = τ

T

(
ψ⊤
π Λ

−1/2
) (

Λ1/2Λ̂−1
τ B1/2Λ−1

) (
Λ1/2θ

)
. By

the Cauchy-Schwartz inequality and the definition of the operator norm,

|L2| ≤ ∥ψ⊤
π Λ

−1/2∥2∥Λ1/2∆Λ1/2Λ−1/2W∥2 +
τ

T
∥ψ⊤

π Λ
−1/2∥2∥Λ1/2Λ̂−1

τ Λ1/2∥op∥Λ−1∥op∥Λ1/2θ∥2

≤ ∥ψπ∥Λ−1∥Λ1/2∆Λ1/2∥op∥Λ−1/2W∥2 +
τ

λmin (Λ)T
∥ψπ∥Λ−1∥Λ1/2Λ̂−1

τ Λ1/2∥op∥Λ1/2θ∥2

≤ ∥ψπ∥Λ−1

(
∥Λ1/2∆Λ1/2∥op∥Λ−1/2W∥2 +

τLθ
λmin (Λ)T

(
1 + ∥Λ1/2∆Λ1/2∥op

))
,
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where we have used ∥Λ1/2θ∥22 = θ⊤Λθ =
∑
i,j ωi,j

(
ψ⊤
i,jθ
)2 ≤ L2

θ for the last inequality.

The proof of Lemma B.6. from (Duan et al., 2020) ensures that as long as T ≥ 18Lψ log (8d/δ) and τ ≤

Lψ log(8d/δ)λmin (Λ), we have ∥Λ1/2∆Λ1/2∥op ≤ 4

√
log(8d/δ)Lψ

T with probability larger than 1 − δ/4. To control

∥Λ−1/2W∥2, we first write Λ−1/2W = 1
T

∑T
t=1Wt where Wt := Λ−1/2ξtψit,jt defines a martingale difference sequence

in Rd with respect to the filtration (Ft)t≥0 that was defined earlier. We will use the concentration inequality of Proposition
C.11 to perform the analysis.

Let Pt := Λ−1/2ψit,jt . Note that Pt is Ft−1-measurable, which implies that Wt = ξtPt defines a conditionally symmetric
martingale difference sequence with respect to (Ft). In our case, we have V1,t = E

[
WtW

⊤
t |Ft−1

]
= σ2PtP

⊤
t ∈ Rd×d

and V2,t = E
[
W⊤
t Wt|Ft−1

]
= σ2P⊤

t Pt ∈ R. Let us choose Z1,t := ξt
√
PtP⊤

t and Z2,t := ξt
√
P⊤
t Pt. By Lemma 4.3

of (Tropp, 2011b),

E
[
ecZ1,t |Ft−1

]
= E

[
ecξt
√
PtP⊤

t |Pt
]
⪯ ec

2V1,t/2

and
E
[
ecZ2,t |Ft−1

]
= E

[
ecξt
√
P⊤
t Pt |Pt

]
⪯ ec

2V2,t/2.

Since PtP⊤
t and P⊤

t Pt have the same non-zero eigenvalues,∥∥∥∥∥
T∑
t=1

PtP
⊤
t

∥∥∥∥∥
op

≤
T∑
t=1

∥PtP⊤
t ∥op =

T∑
t=1

P⊤
t Pt,

so that

max

∥∥∥∥∥
T∑
t=1

V1,t

∥∥∥∥∥
op

,

∥∥∥∥∥
T∑
t=1

V2,t

∥∥∥∥∥
op

 = σ2
T∑
t=1

P⊤
t Pt.

Applying Corollary C.11 yields

P
(
∥Λ−1/2W∥2 ≥ ε

)
≤ P

(∥∥∥∥∥
T∑
t=1

Wt

∥∥∥∥∥
2

≥ Tε and
T∑
t=1

P⊤
t Pt ≤ γ2

)
+ P

(
σ2

T∑
t=1

P⊤
t Pt ≥ γ2

)

≤ 2(d+ 1) exp

(
−T

2ε2

2γ2

)
+ P

(
σ2

T∑
t=1

P⊤
t Pt ≥ γ2

)

for any ε, γ > 0. We can control
∑T
t=1 P

⊤
t Pt by adapting the proof of Lemma B.9 from (Duan et al., 2020). We have

T∑
t=1

P⊤
t Pt =

T∑
t=1

ψit,jtΛ
−1ψit,jt

= Td+ T Tr
(
Λ−1/2Λ̂τΛ

−1/2 − Id
)

≤ Td
(
1 + ∥Λ−1/2Λ̂τΛ

−1/2 − Id∥op

)
.

By Lemma B.5. of (Duan et al., 2020), σ2
∑T
t=1 P

⊤
t Pt ≤ γ2 with probability larger than 1− δ/8 when γ is such that

γ2 = σ2Td(1 +Kδ/8).

Then, we let ε := γ
T

√
2 log (16(d+ 1)/δ) so that P

(
∥Λ−1/2W∥2 ≥ ε

)
≤ δ/8 + δ/8 = δ/4. In particular, ∥Λ−1/2W∥2 ≥√

2dσ2 log(16(d+1)/δ)
T

(
1 +

Kδ/8
2

)
with probability smaller than δ/4. To ease the notation, let C1 := log(8d/δ) and

C2 := log(16(d + 1)/δ). Combining the previous result with the bound on ∥Λ1/2∆Λ1/2∥op yields that with probability
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larger than 1− δ/2,

|L2| ≤ ∥ψπ∥Λ−1

(
∥Λ1/2∆Λ1/2∥op∥Λ−1/2W∥2 +

τLθ
λmin (Λ)T

(
1 + ∥Λ1/2∆Λ1/2∥op

))
≤ ∥ψπ∥Λ

−1

T

(
4
√
2dσ2C2C1Lψ

(
1 +

Kδ/8

2

)
+

τLθ
λmin (Λ)

(
1 + 4

√
C1Lψ
T

))

≤ ∥ψπ∥Λ
−1

T

(
4
√
2dσ2C2C1Lψ

(
1 +

Kδ/8

2

)
+ LψLθC1

(
1 + 4

√
C1Lψ
T

))
,

where we used τ ≤ LψC1λmin (Λ) for the last inequality. In the end,

|vπ − v̂| ≤ |L1|+ |L2|

≤ ∥ψπ∥Λ−1

√
2σ2C1

T

(
1 +

Kδ/4

2

)
+
∥ψπ∥Λ−1

T
4
√
2dσ2LψC2

(
1 +

Kδ/8

2

)
+
∥ψπ∥Λ−1LψLθC1

T

(
1 + 4

√
C1Lψ
T

)

≤ ∥ψπ∥Λ−1

(√
2σ2C1

T
+

4
√

2dσ2Lψ

T
C2

)(
1 +

√
C2Lψ
2T

+
C2Lψ
3T

)

+
∥ψπ∥Λ−1LψLθC1

T

(
1 + 4

√
C1Lψ
T

)

≤ 1√
T
E1 + ∥ψπ∥Λ−1

4
√
2dσ2Lψ

T
C2 +

LψLθC1

T
∥ψπ∥Λ−1

(
1 + 4

√
C1Lψ
T

)

+ ∥ψπ∥Λ−1

(√
2σ2C2

T
+

4
√

2dσ2Lψ

T
C2

)(√
C2Lψ
2T

+
C2Lψ
3T

)

≤ 1√
T
E1 +

1

T
E2 +

1

T 3/2
E3 +

1

T 2
E4

with probability larger than 1− δ.

C.3. Additional Lemmas

The following result is an extension of Lemma 9 from (Taupin et al., 2023) to positive semi-definite matrices.
Lemma C.8. For any ν1, . . . , νn ∈ Rd and any symmetric positive semi-definite matrices Λ1, . . . ,Λn ∈ Rd×d, we have

inf
µ∈Rn×d,∑n
i=1 µ

⊤
i νi=2ε

1

2

n∑
i=1

∥µi∥2Λi =


2ε2∑n

i=1 ∥νi∥2

Λ
†
i

if ∀i ∈ [n], νi ∈ Im (Λi) and
∑n
i=1 ∥νi∥2Λ†

i

̸= 0

0 if ∃j ∈ [n], νj /∈ Im (Λj) .
.

Proof of Lemma C.8. Let L(µ, λ) := 1
2

∑n
i=1 µ

⊤
i Λµi−λ

(∑n
i=1 µ

⊤
i νi − 2ε

)
be the Lagrangian associated to the quadratic

program. The KKT conditions yield Λiµi = λνi and
∑n
i=1 µ

⊤
i νi = 2ε.

• If νi ∈ Im (Λi) for every i ∈ [n], λΛ†
iνi is a solution of Λiµi = λνi for any λ. Thus, for λ∗ = 2ε∑n

i=1 ν
⊤
i Λ†

iνi
and

µ∗
i = λ∗Λ

†
iνi, we have Λiµ

∗
i = λ∗νi and

n∑
i=1

µ∗
i
⊤νi =

2ε∑n
i=1 ν

⊤
i Λ

†
iνi

n∑
i=1

(
Λ†
iνi

)⊤
νi

= 2ε,
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where the last equality follows from the fact that Λ†
i is symmetric (since Λi is symmetric). It follows that µ∗ is optimal,

and the infimum equals 1
2

∑n
i=1 µ

∗
i
⊤Λiµ

∗
i =

1
2λ

∗∑n
i=1 µ

∗
i
⊤νi =

2ε2∑n
i=1 ν

⊤
i Λ†

iνi
. Note that Λ†

i is positive semi-definite

since Λi is, so we have ν⊤i Λ
†
iνi = ∥νi∥2Λ†

i

.

• If νj /∈ Im (Λj) for some j ∈ [n], Λjµj = λνj implies λ = 0. Thus, any optimal point µ∗ must verify Λiµ
∗
i = 0 for

every i ∈ [n] which implies that 1
2

∑n
i=1 µ

∗
i
⊤Λiµ

∗
i = 0.

The following concentration inequalities are useful in the analysis of the PE error bounds.

Proposition C.9 (Corollary of Theorem 2.6 from (Fan et al., 2015)). Let (et)t=1,...,T be a martingale difference sequence
with respect to a filtration (Ft)t=0,...,T−1 (i.e., E [et|Ft−1] = 0 for every t), and let Vt = Var (et|Ft−1). If for all c ≥ 0

and all t = 1, . . . , T , we have E [ecet |Ft−1] ≤ ec
2Vt/2, then for all ε, γ > 0,

P

(∣∣∣∣∣
T∑
t=1

et

∣∣∣∣∣ ≥ ε and
T∑
t=1

Vt ≤ γ2
)
≤ 2 exp

(
− ε2

2γ2

)
.

Proof of Proposition C.9. Applying Theorem 2.6 from (Fan et al., 2015) with Vt = Var (et|Ft−1), f(c) = c2/2 yields,
after optimizing the bound in c,

P

(
T∑
t=1

et ≥ ε and
T∑
t=1

Vt ≤ γ2
)
≤ exp

(
− ε2

2γ2

)
.

The same bound applies to the martingale difference sequence (−et), and a union bound concludes the proof.

The following concentration inequality is an extension of Proposition C.9 to martingale difference sequences of Rd×d′ for
any d′ ≥ 1. It can be obtained as a corollary of Theorem 2.3 in (Tropp, 2011a).

Proposition C.10. Let (Wt)t=1,...,T be a conditionally symmetric11 martingale difference sequence of Rd×d′ with respect
to a filtration (Ft)t=0,...,T−1, and let V1,t ∈ Rd×d, V2,t ∈ Rd′×d′ be Ft−1-measurable symmetric matrices. Denote by
Z1,t ∈ Rd×d and Z2,t ∈ Rd′×d′ any symmetric matrices such that Z2

1,t = WtW
⊤
t and Z2

2,t = W⊤
t Wt. If for some

nonnegative function g, for all c ∈ R and all t = 1, . . . , T , E
[
ecZ1,t |Ft−1

]
⪯ eg(c)V1,t12 and E

[
ecZ2,t |Ft−1

]
⪯ eg(c)V2,t ,

then for all ε, γ > 0,

P

(
λmax

(
T∑
t=1

Wt

)
≥ ε and max

(
λmax

(
T∑
t=1

V1,t

)
, λmax

(
T∑
t=1

V2,t

))
≤ γ2

)
≤ (d+ d′) inf

c∈R
exp

(
−cε+ g(c)γ2

)
.

Proof of Proposition C.10. Let Yt :=
(

0 Wt

W⊤
t 0

)
and Vt :=

(
V1,t 0
0 V2,t

)
. We will use Theorem 2.3 of (Tropp, 2011a)

on the martingale difference sequence (Yt)t≥0 of R(d+d′)2 . To do so, we must prove that for all c ∈ R , E
[
ecYt |Ft−1

]
⪯

eg(c)Vt . It is straightforward to check that for all k ≥ 1,

Y 2k
t =

((
WtW

⊤
t

)k
0

0
(
W⊤
t Wt

)k
)

and

Y 2k+1
t =

(
0

(
WtW

⊤
t

)k
Wt(

WtW
⊤
t

)k
W⊤
t 0

)
.

11This means that Wt and −Wt have the same conditional distribution with respect to Ft−1 for every t.
12Recall that N ⪯ M means that M −N is positive semi-definite.
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Note also that the conditional symmetry of Wt implies that E
[
Y 2k+1
t |Ft−1

]
= 0. Consequently,

E
[
ecYt |Ft−1

]
= E

[
+∞∑
k=0

c2k

(2k)!
Y 2k
t +

+∞∑
k=0

c2k+1

(2k + 1)!
Y 2k+1
t |Ft−1

]

= E

[
+∞∑
k=0

c2k

(2k)!

((
WtW

⊤
t

)k
0

0
(
W⊤
t Wt

)k
)
|Ft−1

]

= E
[(

cosh (cZ1,t) 0
0 cosh (cZ2,t)

)
|Ft−1

]
.

From the assumptions of Proposition C.10, we have

E [cosh (cZ1,t) |Ft−1] =
1

2
(E [exp (cZ1,t) |Ft−1] + E [exp (−cZ1,t) |Ft−1])

⪯ eg(c)V1,t

and similarly,
E [cosh (cZ1,t) |Ft−1] ⪯ eg(c)V2,t .

This finally guarantees that

E
[
ecYt |Ft−1

]
⪯
(
eg(c)V1,t 0

0 eg(c)V2,t

)
= eg(c)Vt .

We can now apply Theorem 2.3 of (Tropp, 2011a). It ensures that

P

(
λmax

(
T∑
t=1

Yt

)
≥ ε and λmax

(
T∑
t=1

Vt

)
≤ γ2

)
≤ (d+ d′) inf

c∈R
exp

(
−cε+ g(c)γ2

)
.

Note that

λmax

(
T∑
t=1

Yt

)
= λmax

(
T∑
t=1

Wt

)
and λmax

(
T∑
t=1

Vt

)
= max

(
λmax

(
T∑
t=1

V1,t

)
, λmax

(
T∑
t=1

V2,t

))
,

which concludes the proof.

The previous general result directly implies the following concentration inequality.

Corollary C.11. Let (Wt)t=1,...,T be a conditionally symmetric martingale difference sequence of Rd×d′ with respect
to a filtration (Ft)t=0,...,T−1, and let V1,t := E

[
WtW

⊤
t |Ft−1

]
, V2,t := E

[
W⊤
t Wt|Ft−1

]
. Denote by Z1,t ∈ Rd×d and

Z2,t ∈ Rd′×d′ any symmetric matrices such that Z2
1,t =WtW

⊤
t and Z2

2,t =W⊤
t Wt. If for all c ∈ R and all t = 1, . . . , T ,

E
[
ecZ1,t |Ft−1

]
⪯ ec2V1,t/2 and E

[
ecZ2,t |Ft−1

]
⪯ ec2V2,t/2, then for all ε, γ > 0,

P

∥∥∥∥∥
T∑
t=1

Wt

∥∥∥∥∥
op

≥ ε and max

∥∥∥∥∥
T∑
t=1

V1,t

∥∥∥∥∥
op

,

∥∥∥∥∥
T∑
t=1

V2,t

∥∥∥∥∥
op

 ≤ γ2
 ≤ 2(d+ d′) exp

(
− ε2

2γ2

)
.

Proof of Corollary C.11. We choose g(c) = c2/2 in the statement of Proposition C.10. Note that

inf
c∈R

exp
(
−cε+ g(c)γ2

)
= exp

(
− ε2

2γ2

)
, and that V1,t and V2,t are positive semi-definite matrices, which implies

that λmax

(∑T
t=1 V1,t

)
= ∥

∑T
t=1 V1,t∥op and λmax

(∑T
t=1 V2,t

)
= ∥

∑T
t=1 V2,t∥op. The same bound applies to the

conditionally symmetric martingale difference sequence (−Wt), and a union bound concludes the proof.
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D. Proofs of results from Section 6.1 and 6.2 : Policy Evaluation Upper Bounds
D.1. Proof of Theorem 6.1

We first note that the max-norm guarantee13 of Theorem 1 of (Stojanovic et al., 2024) can be generalized to the case where
the samples are not necessarily selected uniformly at random by leveraging the two-to-infinity norm guarantees of Theorem
4.1. We state the general result below, where we recall that L = ∥M∥max ∨ σ (note that the dependency in µ is also
improved compared to Theorem 1 of (Stojanovic et al., 2024)).

Proposition D.1. Let δ ∈ (0, 1). If T ≥ cL2κ2(m+n)
σ2
rωmin

log3
(

(m+n)T
δ

)
for some universal constant c > 0, then with

probability larger than 1− δ,

∥M − M̂∥max ≲

√
L2µ6κ4r3(m+ n)

Tωmin(m ∧ n)2
log3

(
(m+ n)T

δ

)
.

Proof of Proposition D.1. The proof is divided in two steps: first, we leverage the bound on ϵSub-Rec of Theorem 4.1 to
bound ∥M − M̂∥2→∞, and then we bound ∥M − M̂∥max by relating it to ϵSub-Rec and ∥M − M̂∥2→∞.

Bounding ∥M − M̂∥2→∞. Let E :=M − M̃ . From (45) in (Stojanovic et al., 2024),

∥M − M̂∥2→∞ ≤ ϵSub-Rec (∥E∥op + ∥M∥op) + ∥U∥2→∞∥E∥op.

Hence14, with probability larger than 1− δ, from Proposition B.5, and Theorem 4.1,

∥M − M̂∥2→∞ ≲ σ1ϵSub-Rec + µ

√
r

m
∥E∥op

≲ κ

√
L2µ2κ2r(m+ n)

Tωmin(m ∧ n)
log3

(
(m+ n)T

δ

)

+ µ

√
r

m
L

√
m+ n

Tωmin
log3

(
(m+ n)T

δ

)

≲

√
L2µ2κ4r(m+ n)

Tωmin(m ∧ n)
log3

(
(m+ n)T

δ

)

under T ≳ L2(m+n)
σ2
rωmin

log3
(

(m+n)T
δ

)
(note that by Lemma B.8, this condition is stronger than the condition of Proposition

B.5).

Bounding ∥M − M̂∥max. We similarly write (see (Stojanovic et al., 2024)),

∥M − M̂∥max ≤ ϵSub-Rec(∥M − M̂∥2→∞ + ∥M∥2→∞) + ∥V ∥2→∞∥M − M̂∥2→∞.

Note that by Lemma B.8, ∥M∥2→∞ ≤
√
m∥M∥max ≤ σ1 µ

2r√
n

. Furthermore, under

T ≳
L2κ2(m+ n)

σ2
rωmin

log3
(
(m+ n)T

δ

)
, (27)

we know that by Theorem 4.1, ϵSub-Rec ≲
µ
√
r√

m∧n with probability larger than 1− δ. Thus, with probability larger than 1− δ,
under (27),

13The max-norm is denoted by ∥.∥∞ in (Stojanovic et al., 2024).
14Union bounds are performed throughout the proof. Since the relevant inequalities are stated up to a constant, they are not impacted.
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∥M̂ −M∥max ≲

(
ϵSub-Rec + µ

√
r

n

)
∥M − M̂∥2→∞ + σ1ϵSub-Rec

µ2r√
n

≲ µ

√
r

m ∧ n

√
L2µ2κ4r(m+ n)

Tωmin(m ∧ n)
log3

(
(m+ n)T

δ

)

+
σ1
σr

µ2r√
n

√
L2µ2κ2r(m+ n)

Tωmin(m ∧ n)
log3

(
(m+ n)T

δ

)

≲

√
L2µ6κ4r3(m+ n)

Tωmin(m ∧ n)2
log3

(
(m+ n)T

δ

)
.

Proof of Theorem 6.1. Since
∑
i,j ω

π
i,j = 1, we have |vπ − v̂SIPS| =

∣∣∣∑
i,j

ωπi,j

(
Mi,j − M̂i,j

) ∣∣∣ ≤ ∥M − M̂∥max. Propo-

sition D.1 entails that |vπ − v̂SIPS| ≤ ε with probability larger than 1− δ as soon as

T ≳
L2µ6κ4r3(m+ n)

ωmin(m ∧ n)2ε2
log3

(
(m+ n)T

δ

)
and

T ≳
L2κ2(m+ n)

σ2
rωmin

log3
(
(m+ n)T

δ

)
.

By Lemma B.8, κ
2

σ2
r
≤ µ4κ2r2

mn∥M∥2
max
≤ µ6κ4r3

(m∧n)2∥M∥2
max

. Since ε ≤ ∥M∥max, the second condition is weaker and can be
dropped.

D.2. Proof of Theorem 6.2

Recall that Mi,j = ϕ⊤i,jθ + ϵi,j . In this appendix, the following additional notations will be used:

Λ =
∑
i,j

ωi,jψi,jψ
⊤
i,j ,Λϕ =

∑
i,j

ωi,jϕi,jϕ
⊤
i,j , Λ̂τ =

1

T − T1

(
T∑

t=T1+1

ϕit,jtϕ
⊤
it,jt + τId

)
and ϕπ =

∑
i,j

ωπi,jϕi,j .

We also recall that
ϵmax = max

i∈[m],j∈[n]
|ϵi,j |

is the misspecification of the misspecified linear bandit, and that the latter is of dimension d = r(m+ n)− r2. Finally, to
ease the notation, we do not write the dependency in π of the estimator v̂πRS-PE. We summarize RS-PE in Algorithm 3.

Algorithm 3 RECOVER SUBSPACE FOR POLICY EVALUATION (RS-PE)

Input: Samples (it, jt, rt)t∈[T ], context distribution ρ, behavior policy πb, target policy π, sample size T1, regularization
parameter τ , confidence level δ;
Phase 1: Subspace recovery
Use the first T1 samples to construct Û , V̂ as in (2)
Phase 2: Solving a misspecified linear bandit
Use Û , V̂ to construct {ϕi,j : (i, j) ∈ [m]× [n]} as in (7)
Use the remaining T − T1 samples to construct the least squares estimator θ̂ as in (10)
Output: v̂πRS-PE =

∑
i,j w

π
i,jϕ

T
i,j θ̂.

The general idea of the proof of Theorem 6.2 is to decompose the PE error of RS-PE as a sum of a term that depends
on the misspecification error and a term incurred by the error between θ̂ and θ. The analysis of the latter term, which is
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in fact the largest contributor to the overall error, is heavily inspired by the analysis in Appendix C.2. We first derive a
high probability guarantee with the lower-order term that one would expect from the contextual linear bandit analysis, i.e.,

roughly ∥ϕπ∥Λ−1
ϕ

√
log(1/δ)

T . This bound is however not satisfactory in itself since it is a function of the randomness of the
first phase of the algorithm. This issue can be resolved by leveraging the subspace recovery guarantees of Theorem 4.1 to
show that ∥ϕπ∥2 converges towards ∥ψπ∥2.

The majority of this section is thus devoted to proving the following intermediary result.

Proposition D.2. Assume that T1 = ⌊αT ⌋ for some α ∈ (0, 1) and that the regularization parameter of Λ̂τ verifies τ ≤
r

(m∧n)
ωmin

ωmax
log (16d/δ). There exists a universal constant C > 0 such that as long as T ≥ CL2κ2(m+n)

σ2
rωmin

log3
(

(m+n)T
δ

)
and T ≥ C

ωmin
log (16d/δ), then with probability larger than 1− δ,

|vπ − v̂RS-PE| ≤ ∥ϕπ∥Λ−1
ϕ

√
2σ2 log(16/δ)

(1− α)T
+K0

log3 ((m+ n)T/δ)

T

where

K0 ≲
L2

∥M∥max

µ6κ4r3 (m+ n)
2√

mn

(ωminmn)
2
(m ∧ n)

. (28)

Proof of Proposition D.2. Note that vπ =
∑
i,j

ωπi,j
(
ϕ⊤i,jθ + ϵi,j

)
= ϕ⊤π θ +

∑
i,j

ωπi,jϵi,j . One can further remark that

θ̂ − θ = 1

T2
Λ̂−1
τ

(
T∑

t=T1+1

(ξt + ϵit,jt)ϕit,jt − τθ

)

for T2 := T − T1. Consequently,

|vπ − v̂RS-PE| ≤
∣∣∣ϕ⊤π (θ̂ − θ)∣∣∣+∑

i,j

∣∣ωπi,jϵi,j∣∣
≤

∣∣∣∣∣ 1T2
T∑

t=T1+1

ϕ⊤π (ξt + ϵit,jt) Λ̂
−1
τ ϕit,jt

∣∣∣∣∣+ τ

T2
ϕ⊤π Λ̂

−1
τ θ + ϵmax

≤

∣∣∣∣∣ 1T2
T∑

t=T1+1

ξtϕ
⊤
π Λ̂

−1
τ ϕit,jt

∣∣∣∣∣+ τ

T2
ϕ⊤π Λ̂

−1
τ θ (29)

+ ϵmax

(
1 +

∣∣∣∣∣ 1T2
T∑

t=T1+1

ϕ⊤π Λ̂
−1
τ ϕit,jt

∣∣∣∣∣
)
.

(30)

Error decomposition. Let ∆ := Λ−1
ϕ − Λ̂−1

τ . We consider the following decomposition of the error:

|vπ − v̂RS-PE| ≤ L1 + L2 + L3

where

L1 =
1

T2

T2∑
t=T1+1

ξtϕ
⊤
πΛ

−1
ϕ ϕit,jt ,

L2 =
1

T2

T2∑
t=T1+1

ξtϕ
⊤
π∆ϕit,jt +

τ

T2
ϕ⊤π Λ̂

−1
τ θ
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and

L3 = ϵmax

(
1 +

∣∣∣∣∣ 1T2
T∑

t=T1+1

ϕ⊤π Λ̂
−1
τ ϕit,jt

∣∣∣∣∣
)
.

As discussed before, we first perform the analysis conditionally on the first phase of the algorithm. We will then control the
misspecification error induced by the first phase with Corollary 5.1. Let Lϕ := maxi,j ϕ

⊤
i,jΛ

−1
ϕ ϕi,j , Lθ := maxi,j |ϕ⊤i,jθ|.

Adapting the proof of Theorem C.7 yields the following lemma.

Lemma D.3. As long as T2 ≥ 18
ωmin

log (16d/δ) and τ ≤ r
(m∧n)

ωmin

ωmax
log (16d/δ), then with probability at least 1− δ/2,

|L1|+ |L2| ≤
E1√
T2

+
E2

T2
+

E3

T
3/2
2

+
E4

T 2
2

and

|L3| ≤ ϵmax

1 +
√
Lϕ∥ϕπ∥Λ−1

ϕ

1 + 4

√
log (16d/δ)

T2


with E1 := ∥ϕπ∥Λ−1

ϕ

√
2σ2 log(16/δ), E2 := ∥ϕπ∥Λ−1

ϕ

(
LϕLθ + σ(1 + 4

√
2d)
√
Lϕ

)
log (32(d+ 1)/δ) , E3 :=

∥ϕπ∥Λ−1
ϕ

(
σ
√
2

3 + 4σ
√
d+ 4

√
LϕLθ

)
Lϕ log

3/2 (32(d+ 1)/δ) , E4 := ∥ϕπ∥Λ−1
ϕ

4σ
√
2

3

√
dL

3/2
ϕ log2 (32(d+ 1)/δ) .

Remark D.4. To see why we must split the data for the two phases in the analysis, let Ft =
σ (i1, j1, r1, . . . , iT1

, jT1
, rT1

, . . . , it, jt, rt, it+1, jt+1) for t = T1, . . . , T − 1. Because Λ−1
ϕ is FT1

-measurable, et :=

ϕ⊤π ξtΛ
−1
ϕ ϕit,jt defines a martingale difference sequence with respect to (Ft)t=T1,...,T−1 and the contextual linear bandit

analysis applies. If all the samples were used to build ϕ, et would not define a martingale difference sequence, which means
that we could not use our concentration results.

Proof of Lemma D.3. The control of these terms closely follows the proof of theorem C.7; in particular, we have

|L2| ≤ ∥ϕπ∥Λ−1
ϕ

(
∥Λ1/2

ϕ ∆Λ
1/2
ϕ ∥op∥Λ−1/2

ϕ W∥2 +
τLθ

λmin (Λϕ)T2

(
1 + ∥Λ1/2∆Λ

1/2
ϕ ∥op

))
.

for W = 1
T2

∑T2

t=T1+1 ξtϕit,jt . The only difference is the additional term L3, which can be controlled similarly to L2.
Indeed, by Cauchy-Schwartz and the definition of the operator norm,

1

T2

T∑
t=T1+1

ϕ⊤π Λ̂
−1
τ ϕit,jt =

1

T2

T∑
t=T1+1

ϕ⊤πΛ
−1
ϕ ϕit,jt +

1

T2

T∑
t=T1+1

ϕ⊤π

(
Λ̂−1
τ − Λ−1

ϕ

)
ϕit,jt

≤ 1

T2

T∑
t=T1+1

∥ϕπ∥Λ−1
ϕ

√
ϕ⊤it,jtΛ

−1
ϕ ϕit,jt

+
1

T2

T∑
t=T1+1

∥Λ−1/2
ϕ ϕπ∥2∥Λ1/2

ϕ ∆Λ
1/2
ϕ ∥op∥Λ−1/2

ϕ ϕit,jt∥2

≤
√
Lϕ∥ϕπ∥Λ−1

ϕ

(
1 + ∥Λ1/2

ϕ ∆Λ
1/2
ϕ ∥op

)
.

Thus, L3 ≤ ϵmax

(
1 +

√
Lϕ∥ϕπ∥Λ−1

ϕ

(
1 + ∥Λ1/2

ϕ ∆Λ
1/2
ϕ ∥op

))
.

By the same arguments as in the proof of Lemma B.6. from (Duan et al., 2020), if T2 ≥ 18Lϕ log (16d/δ) and τ ≤
Lϕ log(16d/δ)λmin (Λϕ), then ∥Λ1/2

ϕ ∆Λ
1/2
ϕ ∥op ≤ 4

√
log(16d/δ)Lϕ

T2
with probability larger than 1− δ/8.

We can now derive high probability bounds on L1, L2 and L3 by adapting the contextual linear bandit analysis. The main
difference is that here, the analysis is performed conditionally on the randomness of the first phase of the algorithm. One
subtlety to note is that we need to use a version of Proposition C.9 that is conditional on the first T1 samples because the
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choices of γ and ε in the analysis depend on ϕ, which depends on the estimator M̂ built with the first T1 samples. It is not
an issue as it directly implies an unconditional high probability bound by taking the expectation.

Following the proof of Theorem C.7 thus yields the high probability bound in the statement as soon as
T2 ≥ 18Lϕ log (16d/δ) and τ ≤ Lϕ log(16d/δ)λmin (Λϕ). All that remains to be checked is that these inequali-
ties are true as soon as T2 ≥ 18

ωmin
log (16d/δ) and τ ≤ r

(m∧n)
ωmin

ωmax
log (16d/δ). By Lemma D.11 and the fact that

max
i,j
∥ϕi,j∥22 ≥ max

(
∥U∥22→∞, ∥V ∥22→∞

)
,

r

(m ∧ n)ωmax
≤ max

i,j

∥ϕi,j∥22
λmax (Λϕ)

≤ Lϕ ≤ max
i,j

∥ϕi,j∥22
λmin (Λϕ)

≤ 1

ωmin
,

which entails the desired result.

Note that in addition to Lϕ ≤ 1
ωmin

, we also have Lθ ≤ maxi,j ∥ϕi,j∥2∥θ∥2 ≤
√
mn∥M∥max. This shows that the terms

that depend on E2, E3 and E4 are of lower order compared to the term that depends on E1, and that they have a polynomial
dependency in the model parameters (note that ∥ϕπ∥Λ−1

ϕ
≤
√
Lϕ). We will now see that we can obtain a sharper control of

the dependency in the model parameters by leveraging high probability bounds on Lϕ and Lθ instead of deterministic ones.
These high probability bounds come freely with the control of the misspecification error.

Lemma D.5. Let δ > 0. There exists an universal constant c > 0 such that T1 ≥ cL2κ2(m+n)
σ2
rωmin

log3
(

(m+n)T1

δ

)
ensures that

with probability larger than 1− δ, the following inequalities happen at the same time :

• ϵmax ≲ L2

σr

µ2κ3r(m+n)
T1ωmin(m∧n) log

3
(

(m+n)T1

δ

)
• Lθ ≲ σ1µ

2r
m∧n

• Lϕ ≲ µ2r(m+n)
ωminmn

.

Proof of Lemma D.5. Since T1 ≳ L2(m+n)
σ2
rωmin

log3
(

(m+n)T1

δ

)
, by Theorem 4.1, there is a universal constant C such that the

event

Aδ =

{
ϵSub-Rec ≤

CL

σr

√
µ2κ2r(m+ n)

T1ωmin(m ∧ n)
log3

(
(m+ n)T1

δ

)}
holds with probability at least 1− δ. Under Aδ , from (8),

ϵmax ≤ σ1ϵ2Sub-Rec ≲
L2

σr

µ2κ3r(m+ n)

T1ωmin(m ∧ n)
log3

(
(m+ n)T1

δ

)
.

Let us now prove that both of the remaining inequalities are true under Aδ. Specifically, we will see that Lθ (resp. Lϕ) can
be deterministically bounded by a function of ϵmax (resp. ϵSub-Rec).

Control of Lθ. Recall that Mi,j = ϕ⊤i,jθ + ϵi,j . Consequently, Lθ = max
i,j

∣∣ϕ⊤i,jθ∣∣ ≤ ∥M∥max + ϵmax. Since T1 ≳

L2κ2(m+n)
σ2
rωmin

log3
(

(m+n)T1

δ

)
, under Aδ we have ϵmax ≲ σ1

µ2r
m∧n , so that by Lemma B.8,

Lθ ≤ ∥M∥max + ϵmax

≲ σ1
µ2r√
mn

+ σ1
µ2r

m ∧ n

≲
σ1µ

2r

m ∧ n
.
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Control of Lϕ. Recall that Lϕ ≤ max
i,j

∥ϕi,j∥22
λmin (Λϕ)

≤ max
i,j

∥ϕi,j∥22
ωmin

. Note that by Lemma D.12,

max
i,j
∥ϕi,j∥22 ≤ µ2r

m+ n− µ2r

mn
+ 3ϵSub-Rec. Consequently, Lϕ ≤ 1

ωmin

(
µ2rm+n−µ2r

mn + 3ϵSub-Rec

)
. Since T1 ≳

L2κ2(m+n)
σ2
rωmin

log3
(

(m+n)T1

δ

)
, under Aδ , we have ϵSub-Rec ≲

µ
√
r√

m∧n , so

Lϕ ≲
1

ωmin

(
µ2r

m+ n− µ2r

mn
+

µ
√
r√

m ∧ n

)
≲
µ2r (m+ n)

ωminmn
.

Choice of T1. Note that the high probability bounds of Lemma D.3 and D.5 together suggest that as long as T1 = O
(
T β
)

for 1/2 < β ≤ 1, the OPE error that originates from the misspecification will be of higher order than the error induced
by the least squares estimation of θ with high probability. Furthermore, to ensure that the least squares error term and
the misspecification error term both have the best achievable scaling in T , we should have T1 = Θ(T ) and T2 = Θ(T ).
Specifically, for some α ∈ (0, 1) , we can choose T1 = ⌊αT ⌋ and T2 = ⌈(1− α)T ⌉.

We can now finish the proof of Proposition D.2 by combining the error bounds of Lemma D.3 and D.5 with a union bound.

Note that the high probability bounds of Lemma D.12 and D.5 hold as soon as

αT ≥ 1 +
cL2κ2(m+ n)

σ2
rωmin

log3
(
(m+ n)αT

δ

)
,

(1− α)T ≥ 18

ωmin
log (16d/δ)

and τ ≤ r

m ∧ n
ωmin

ωmax
log (16d/δ)

for some universal constant c > 0. Recall that we denoted by Aδ the event under which the bounds of Lemma D.5 holds. By
Lemma D.3, under Aδ , with probability larger than 1− δ/2, we have

|L1|+ |L2| ≤ ∥ϕπ∥Λ−1
ϕ

√
2σ2 log(16/δ)

(1− α)T
+K0

log2 (e/δ)

T
,

|L3| ≤ K0
log3 ((m+ n)T/δ)

T

for K0 = poly
(
∥M∥max, σ, µ, κ, r,m, n, (ωminmn)

−1
)

(we have used that 1√
T2
≤ 1√

(1−α)T
). A union bound concludes

the proof of the first part of Proposition D.2.

Let us now upper bound the polynomial term K0. Direct computations ensure that when the high probability
bounds of Lemma D.3 and D.5 hold,

|L3| ≲ ϵmaxLϕ ≲
L2

σr

µ4κ3r2 (m+ n)
2
log3 ((m+ n)T/δ)

Tω2
minmn (m ∧ n)

≲
L2

∥M∥max

µ6κ4r3 (m+ n)
2√

mn log3 ((m+ n)T/δ)

T (ωminmn)
2
(m ∧ n)

,

E2

T
≲

√
Lϕ
(
LϕLθ + σ

√
dLϕ

)
log(d/δ)

T
≲

(∥M∥max + σ)µ5r5/2 (m+ n)
3/2√

mn log (d/δ)

T (ωminmn)
3/2

(m ∧ n)
,

E3

T 3/2
≲
Lϕ

(
σ
√
d+

√
LϕLθ

)
log(d/δ)

T
≲

(∥M∥max + σ)µ5r5/2 (m+ n)
3/2√

mn log (d/δ)

T (ωminmn)
3/2

(m ∧ n)
,
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and
E4

T 2
≲
σ
√
dLϕ log (d/δ)

T
≲
σµ2r3/2 (m+ n)

3/2
log (d/δ)

Tωminmn

where we have used Lemma B.8 to bound σ1 and σr, and T ≳ Lϕ log(d/δ) (see the end of the proof of Lemma D.3) in the
last inequalities. Since 4L2

∥M∥max
≥ (∥M∥max+σ)

2

∥M∥max
≥ ∥M∥max + σ ≥ σ, the first error term dominates all the others, and we

can take

K0 := C ′ L2

∥M∥max

µ6κ4r3 (m+ n)
2√

mn

(ωminmn)
2
(m ∧ n)

for some universal constant C ′ > 0.

Remark D.6. To derive an instance-dependent upper bound from Proposition D.2, one may be tempted to prove that with
high probability,

∥ϕπ∥Λ−1
ϕ

= ∥ψπ∥Λ−1 + o (1) .

This would yield an error bound whose dominant term scales with ∥ψπ∥−1
Λ

√
log(1/δ)

T and would echo the linear bandit
upper bound of Theorem C.7, that we have demonstrated is instance-optimal. Although numerical experiments suggest this
result holds, we were unsuccessful in our proof attempts. Notably, one could write ∥ϕπ∥2Λ−1

ϕ

= ∥ψπ∥2Λ−1 + (∥ϕπ∥2Λ−1
ϕ

−

∥ϕπ∥2Λ−1) + (∥ϕπ∥2Λ−1 − ∥ψπ∥2Λ−1) and attempt to prove that the two rightmost terms converge to 0 with high probability.
However, numerical experiments suggest that these terms do not both vanish in general, but rather cancel out, and thus a
more careful analysis is required.

By leveraging Lemma D.12, we can however obtain the following instance-dependent bound, with a dependency on ωmin

instead of the entire behavior policy. Theorem 6.2 will follow from this result.

Theorem D.7. Under the assumptions of Proposition D.2, with probability larger than 1− δ,

|vπ − v̂RS-PE| ≤
∥ψπ∥2√
ωmin

√
2σ2 log(16/δ)

(1− α)T
+K0

(
log3 ((m+ n)T/δ)

T
+

log5/4 ((m+ n)T/δ)

T 3/4

)
,

where

K0 ≲
L2

∥M∥max

µ6κ4r3 (m+ n)
2√

mn

(ωminmn)
2
(m ∧ n)

.

Proof of Theorem D.7. Note that by Lemmas D.11 and D.12,

∥ϕπ∥2Λ−1
ϕ

≤ ∥ϕπ∥
2
2

ωmin
≤ 1

ωmin

(
∥ψπ∥22 + 3ϵSub-Rec

)
.

Under the event Aδ defined in the proof of Lemma D.5, we consequently also have (using 1
σr
≤ µ2κr√

mn∥M∥max
)

∥ψπ∥2Λ−1
ϕ

≤ 1

ωmin

(
∥ψπ∥22 +

C√
T

L

∥M∥max
µ3κ2r3/2

√
(m+ n)

ωminmn (m ∧ n)
log3/2

(
(m+ n)T

δ

))
(31)

for some universal constant C > 0. Since
√
x+ y ≤

√
x+
√
y for every x, y ≥ 0, this implies

∥ϕπ∥Λ−1
ϕ
≤ ∥ψπ∥2√

ωmin
+ C1/2

√
L

∥M∥max
µ3/2κr3/4ω

−3/4
min

(
m+ n

mn (m ∧ n)

)1/4
log3/4 ((m+ n)T/δ)

T 1/4
. (32)

Combining this result with Proposition D.215 and noting that σ
√

L
∥M∥max

≤ σL
∥M∥max

≤ L2

∥M∥max
:= A, we get that with

15Note that there is no need for a union bound as the high probability bound (32) is true under Aδ .
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probability larger than 1− δ,

|vπ − v̂RS-PE| ≤
∥ψπ∥2√
ωmin

√
2σ2 log(16/δ)

(1− α)T
+ C1A

√
log(e/δ)µ3/2κr3/4ω

−3/4
min

(
m+ n

mn (m ∧ n)

)1/4
log3/4 ((m+ n)T/δ)

T 3/4

+ C2Aµ
6κ4r3

(m+ n)
2√

mn

(ωminmn)
2
(m ∧ n)

log3 ((m+ n)T/δ)

T

for some universal constants C1, C2 > 0. Since
√
log(e/δ)µ3/2κr3/4ω

−3/4
min

(
m+n

mn(m∧n)

)1/4
log3/4 ((m+ n)T/δ) ≲

µ6κ4r3 (m+n)2
√
mn

(ωminmn)
2(m∧n) log

5/4 ((m+ n)T/δ), this concludes the proof.

Remark D.8. When M and ω are homogeneous, K0 ≲ (∥M∥max∨σ)2
∥M∥max

mn, and if we additionally have ∥M∥max = Θ(σ),

K0 ≲ σmn.

When both the context distribution and the behavior policy are uniform, the upper bound of Theorem D.7 corresponds to
the conjectured instance-dependent upper bound mentioned in Remark D.6. Indeed, Lemma D.11 ensures that in this case,
Λ = 1

mnId, and thus ∥ψπ∥Λ−1 =
√
mn∥ψπ∥2 = ∥ψπ∥2√

ωmin
.

We now explain how to reformulate the statement of Theorem D.7 as a sample complexity result and retrieve the statement
of Theorem 6.2.

Proof of Theorem 6.2. Let us assume that we are under the assumptions of Proposition D.2. By Theorem D.7,

|vπ − v̂RS-PE| ≤
∥ψπ∥2√
ωmin

√
2σ2 log(16/δ)

(1− α)T
+K0

log3 ((m+ n)T/δ)

T
+K0

log5/4 ((m+ n)T/δ)

T 3/4

with probability larger than 1− δ. In particular, |vπ − v̂RS-PE| ≤ ε with probability larger than 1− δ as soon as

ε

3
≥ ∥ψπ∥2√

ωmin

√
2σ2 log(16/δ)

(1− α)T
,

ε

3
≥ K0

log3 ((m+ n)T/δ)

T
, and

ε

3
≥ K0

log5/4 ((m+ n)T/δ)

T 3/4
.

It is straightforward to check that

T ≳
σ2∥ψπ∥22
ωmin ε2

log
(e
δ

)
+
K

4/3
0

ε4/3
log3

(
(m+ n)T

δ

)
(33)

is enough to satisfy all three inequalities, where we recall that K0 has been defined in (28).

Furthermore, the conditions on the number of samples of Theorem D.7, namely T ≳ L2κ2(m+n)
σ2
rωmin

log3
(

(m+n)T
δ

)
and T ≳

1
ωmin

log (16d/δ), are both implied by (33) when ε ≤ ∥M∥max because this choice implies T ≳ K0

∥M∥max
log3

(
(m+n)T

δ

)
(to see that the second condition is verified, note that K0

∥M∥max
≳ (m+n)2

ωmin
√
mn(m∧n) ≳

1
ωmin

).

The statement of the theorem thus holds with the multiplicative factor

K1 := K
4/3
0 ≲

(
L2

∥M∥max

µ6κ4r3 (m+ n)
2√

mn

(ωminmn)
2
(m ∧ n)

)4/3

. (34)

We finally note that by Remark D.8, when M and ω are homogeneous and ∥M∥max = Θ(σ), K1 ≲ (σmn)
4/3

.

Minimax sample complexity guarantee. Let us note that by (40), ∥ψπ∥22 ≤ µ2rm+n−µ2r
mn , which implies that |vπ −

v̂πRS-PE| ≤ ε with probability larger than 1− δ as soon as

T ≳
σ2µ2r

(
m+ n− µ2r

)
ωminmnε2

log
(e
δ

)
+

K1

ε4/3
log3

(
(m+ n)T

δ

)
.

34



Low-Rank Bandits via Tight Two-to-Infinity Singular Subspace Recovery

By adapting the previous analysis with a more refined argument, the dependency in ε and the model parameters of the
second term can be improved. This is what we demonstrate now.

Theorem D.9. Let ε, δ ∈ (0, 1). With the choices T1 = ⌊αT ⌋ and τ ≤ r(m ∧ n)−1(ωmin/ωmax) log(16d/δ), |vπ −
v̂πRS-PE| ≤ ε with probability larger than 1− δ as soon as

T ≳
σ2µ2r (m+ n)

ωminmnε2
log
(e
δ

)
+
K0

ε
log3

(
(m+ n)T

δ

)

where

K0 ≲
L2

∥M∥max

µ6κ4r3 (m+ n)
2√

mn

(ωminmn)
2
(m ∧ n)

. (35)

Remark D.10. When M and ω are homogeneous and ∥M∥max = Θ(σ), K0 ≲ σmn.

Proof of Theorem D.9. Combining (31) with the bound on ∥ψπ∥22 entails

∥ψπ∥2Λ−1
ϕ

≤ 1

ωmin

(
µ2r (m+ n)

mn
+

C√
T

L

∥M∥max
µ3κ2r3/2

√
m+ n

mn (m ∧ n)ωmin
log3/2

(
(m+ n)T

δ

))
=
µ2r (m+ n)

ωminmn

(
1 +

C√
T

L

∥M∥max
µκ2r1/2

√
mn

(m+ n) (m ∧ n)ωmin
log3/2

(
(m+ n)T

δ

))
(36)

for some universal constant C > 0. Now, using the inequality
√
1 + x ≤ 1 + x

2 (instead of
√
x+ y ≤

√
x+
√
y which was

used previously), (36) implies

∥ψπ∥Λ−1
ϕ
≤ µ

√
r (m+ n)

ωminmn

(
1 +

C

2
√
T

L

∥M∥max
µκ2r1/2

√
mn

(m+ n) (m ∧ n)ωmin
log3/2

(
(m+ n)T

δ

))

Combining this result with Proposition D.2 and noting that σL
∥M∥max

≤ L2

∥M∥max
= A, we get that with probability larger

than 1− δ,

|vπ − v̂RS-PE| ≤ µ

√
r (m+ n)

ωminmn

√
2σ2 log(16/δ)

(1− α)T
+ C1A

√
log(e/δ)µ2κ2rω−1

min (m ∧ n)
−1/2 log3/2 ((m+ n)T/δ)

T

+ C2Aµ
6κ4r3

(m+ n)
2√

mn

(ωminmn)
2
(m ∧ n)

log3 ((m+ n)T/δ)

T

for some universal constants C1, C2 > 0. Since
√
log(e/δ)µ2κ2rω−1

min (m ∧ n)
−1/2

log3/2 ((m+ n)T/δ) ≲

µ6κ4r3 (m+n)2
√
mn

(ωminmn)
2(m∧n) log

3 ((m+ n)T/δ), we obtain that under the assumptions of Proposition D.2,

|vπ − v̂RS-PE| ≤ µ

√
r (m+ n)

ωminmn

√
2σ2 log(16/δ)

(1− α)T
+K0

log3 ((m+ n)T/δ)

T
(37)

with probability larger than 1− δ, and transforming this result into a sample complexity guarantee as in the proof of Theorem
6.2 yields that |vπ − v̂πRS-PE| ≤ ε with probability larger than 1− δ as soon as

T ≳
σ2µ2r (m+ n)

ωminmnε2
log
(e
δ

)
+
K0

ε
log3

(
(m+ n)T

δ

)
.
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The above sample complexity guarantee can be reformulated as

T ≳
σ2µ2r (m+ n)

ωminmnε2
log
(e
δ

)
when σ2µ2r(m+n)

ωminmnε2
log
(
e
δ

)
≳ K0

ε log3
(

(m+n)T
δ

)
, i.e.,

ε ≲
σ2∥M∥max

L2

ωminmn (m ∧ n)
µ4κ2r2 (m+ n)

√
mn

log (e/δ)

log3 ((m+ n)T/δ)
. (38)

When M and ω are homogeneous and σ ≳ ∥M∥max, this simplifies to

T ≳
σ2 (m+ n)

ε2
log
(e
δ

)
when

ε ≲
∥M∥max

m+ n

log (e/δ)

log3 ((m+ n)T/δ)
. (39)

D.3. Additional Lemmas

The following lemma entails that Λ and Λϕ are always invertible under our assumption ωmin > 0.

Lemma D.11.
∑
i,j ψi,jψ

⊤
i,j =

∑
i,j ϕi,jϕ

⊤
i,j = Id. Consequently,

ωmax ≥ λmax (Λ) ≥ λmin (Λ) ≥ ωmin

and
ωmax ≥ λmax (Λϕ) ≥ λmin (Λϕ) ≥ ωmin.

Proof of Lemma D.11. A direct computation shows that the diagonal entries of
∑
i,j ψi,jψ

⊤
i,j can all be written as∑

i,j U
2
i,kV

2
j,l,
∑
i,j U

2
⊥,i,kV

2
j,l or

∑
i,j U

2
i,kV

2
⊥,j,l for some k and l. All of these terms are equal to 1 by the orthogonality of[

U U⊥
]

and
[
V V⊥

]
. The entries outside of the diagonal can all be factorized by a scalar product between two columns

of
[
U U⊥

]
or two columns of

[
V V⊥

]
, which is equal to 0 by the same orthogonality argument. The same reasoning

holds for
∑
i,j ϕi,jϕ

⊤
i,j , as

[
Û Û⊥

]
and

[
V̂ V̂⊥

]
are also orthogonal. The other part of the statement directly follows

from the identities ωmax

∑
i,j ψi,jψ

⊤
i,j ⪰ Λ ⪰ ωmin

∑
i,j ψi,jψ

⊤
i,j and ωmax

∑
i,j ϕi,jϕ

⊤
i,j ⪰ Λϕ ⪰ ωmin

∑
i,j ϕi,jϕ

⊤
i,j .

Lemma D.12. Let ν be a distribution on [m]× [n] so that
∑
i,j νi,j = 1, and let ψν =

∑
i,j νi,jψi,j , ϕν =

∑
i,j νi,jϕi,j .

Then

•
∣∣∥ϕν∥22 − ∥ψν∥22∣∣ ≤ 3ϵSub-Rec

• max
i,j
∥ψi,j∥22 ≤ µ2r

m+ n− µ2r

mn
.

Proof of Lemma D.12. We have ∥ϕν∥22 =
∑

(i,j),(i′,j′)

νi,jνi′,j′ϕ
⊤
i,jϕi′,j′ , so it is enough to show that ϕ⊤i,jϕi′,j′ approaches

ψ⊤
i,jψi′,j′ for every (i, j), (i′, j′). A direct computation yields

ϕ⊤i,jϕi′,j′ =
(
Û⊤
i Ûi′

)(
V̂ ⊤
j V̂j′

)
+
(
Û⊤
⊥,iÛ⊥,i′

)(
V̂ ⊤
j V̂j′

)
+
(
Û⊤
i Ûi′

)(
V̂ ⊤
⊥,j V̂⊥,j′

)
and

ψ⊤
i,jψi′,j′ =

(
U⊤
i Ui′

) (
V ⊤
j Vj′

)
+
(
U⊤
⊥,iU⊥,i′

) (
V ⊤
j Vj′

)
+
(
U⊤
i Ui′

) (
V ⊤
⊥,jV⊥,j′

)
.
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By orthogonality arguments, Û⊤
i Ûi′ + Û⊤

⊥,iÛ⊥,i′ = U⊤
i Ui′ + U⊤

⊥,iU⊥,i′ = 0 when i ̸= i′, and V̂ ⊤
j V̂j′ + V̂ ⊤

⊥,j V̂⊥,j′ =

V ⊤
j Vj′ + V ⊤

⊥,jV⊥,j′ = 0 when j ̸= j′. Thus, two out of the three terms in the equalities above cancel out when
(i, j) ̸= (i′, j′). When (i, j) = (i′, j′), we can combine two terms by using the fact that ∥Ui∥22 + ∥U⊥,i∥22 = 1 to write
ψ⊤
i,jψi,j = ∥Vj∥22 + ∥Ui∥22∥V⊥,j∥22. In any case, each term in the difference can be controlled by the subspace recovery

error. For example,(
Û⊤
i Ûi′

)(
V̂ ⊤
⊥,j V̂⊥,j′

)
−
(
U⊤
i U

′
i

) (
V ⊤
⊥,jV⊥,j′

)
=
(
V̂ ⊤
⊥,j V̂⊥,j′

)(
Û⊤
i Ûi′ − U⊤

i U
′
i

)
+
(
U⊤
i U

′
i

) (
V̂ ⊤
⊥,j V̂⊥,j′ − V ⊤

⊥,jV⊥,j′
)

≤ ∥V̂⊥,j∥2∥V̂⊥,j′∥2∥Û Û⊤ − UU⊤∥2→∞

+ ∥Ui∥2∥Ui′∥2∥V̂⊥V̂ ⊤
⊥ − V⊥V ⊤

⊥ ∥2→∞

≤ 2ϵSub-Rec.

Consequently,
ϕ⊤i,jϕi′,j′ − ψ⊤

i,jψi′,j′ ≤
(
2 + 1(i,j)=(i′,j′)

)
ϵSub-Rec.

In the end, ∣∣∥ϕν∥22 − ∥ψν∥22∣∣ =
∣∣∣∣∣∣
∑

(i,j),(i′,j′)

νi,jνi′,j′
(
ϕ⊤i,jϕi′,j′ − ψ⊤

i,jψi′,j′
)∣∣∣∣∣∣

≤

 ∑
(i,j),(i′,j′)

νi,jνi′,j′
(
2 + 1(i,j)=(i′,j′)

) ϵSub-Rec

=

2 +
∑
i,j

ν2i,j

 ϵSub-Rec,

which is slightly sharper than the desired result.

For the second bullet point, note that for any (context, arm) pair (i, j),

∥ψi,j∥22 = ∥Ui∥22∥Vj∥22 + ∥U⊥,i∥22∥Vj∥22 + ∥Ui∥22∥V⊥,j∥22
= ∥Vj∥22 + ∥Ui∥22

(
1− ∥Vj∥22

)
≤ ∥Vj∥22 + ∥U∥22→∞

(
1− ∥Vj∥22

)
= ∥U∥22→∞ + ∥Vj∥22

(
1− ∥U∥22→∞

)
≤ ∥U∥22→∞ + ∥V ∥22→∞

(
1− ∥U∥22→∞

)
≤ µ2 r

n
+ µ2 r

m

(
1− µ2 r

n

)
= µ2r

m+ n− µ2r

mn
,

where the last inequality is obtained by distinguishing the cases µ2 = m
r ∥U∥

2
2→∞ and µ2 = n

r ∥V ∥
2
2→∞.

There are two interesting things to mention about the second inequality of Lemma D.12. First, it is tight in the sense
that it is attained for r = m ∧ n. Indeed, assume then that m ∧ n = n without loss of generality. On the one hand,
∥ψi,j∥22 = ∥Vj∥22 + ∥Ui∥22

(
1− ∥Vj∥22

)
= 1 since Vj is a row of the orthogonal matrix V . On the other hand, by

orthogonality of U , µ = ∥U∥2→∞ = 1 so that
µ2r(m+n−µ2r)

mn = 1. Second, it directly entails an upper bound on the norm
of ψπ. Indeed,

∥ψπ∥2 = ∥
∑
i,j

wπi,jψi,j∥2 ≤
∑
i,j

wπi,j∥ψi,j∥2 ≤ max
i,j
∥ψi,j∥2,

where we have used
∑
i,j w

π
i,j = 1 in the last inequality. This ensures that

∥ψπ∥22 ≤ µ2r
m+ n− µ2r

mn
. (40)
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E. Proofs of Section 6.3 : Policy Evaluation Lower Bounds
E.1. Proof of Theorem 6.3

In this appendix, we assume that ξt ∼ N (0, σ2) and we choose the rank factorization M = UΣV ⊤ = PQ⊤ with
P = U

√
Σ and Q = V

√
Σ. Furthermore, we denote by Ni the i-th row vector of a matrix N . As noted in (Jun et al.,

2019), the bilinear nature of the reward in low-rank bandit problems makes the derivation of sampling lower bounds more
challenging than for linear bandits. We overcome this challenge by considering a subset of perturbations of the reward
matrix that behave linearly, yielding a relaxed sampling lower bound.

The quantities associated with a perturbation M ′ of the reward matrix will be denoted by P ′, Q′ and so on. We will use the
following straightforward characterization of matrices of rank at most r.

Lemma E.1. M ∈ Rm×n is of rank at most r if and only if there exists P ∈ Rm×r and Q ∈ Rn×r such that M = PQ⊤.

Note that M = PQ⊤ yields Mi,j = P⊤
i Qj for every (i, j). By using the same arguments as in the proof of the sampling

lower bound for linear bandits (see Proposition C.2) and the characterization of Lemma E.1, we obtain the following result.

Lemma E.2. The sample complexity of any (ε, δ)-PAC estimator of vπ must satisfy

T ≥ kl (δ, 1− δ)
I

for

I = inf
P ′∈Rm×r,Q′∈Rn×r,

|vπ−v
′π|≥2ε

1

2σ2

∑
i,j

ωi,j(P
⊤
i Qj − P

′⊤
i Q′

j)
2.

Proof of Lemma E.2. Adapting the proof of Proposition C.2 yields T ≥ kl(δ,1−δ)
J for

J := inf
M ′,rank(M ′)=r,

|vπ−v
′π|≥2ε

1

2σ2

∑
i,j

ωi,j(Mi,j −M ′
i,j)

2.

Since the set of rank r matrices is dense in the set of matrices of rank smaller than r, a continuity argument ensures that

J = inf
M ′,rank(M ′)≤r,
|vπ−v

′π|≥2ε

1

2σ2

∑
i,j

ωi,j(Mi,j −M ′
i,j)

2.

The characterization of Lemma E.1 concludes the proof.

Optimizing in P ′ and Q′ at the same time is delicate, so it is difficult to compute I directly. To alleviate this problem, we
provide an upper bound on I by optimizing in P ′ and Q′ separately. We denote by J1 (resp. J2) the infimum obtained
when adding the constraint Q′ = Q (resp. P ′ = P ). We naturally have I ≤ min(J1, J2), and we will see that J1
and J2 can both be computed explicitly. We recall the definitions ΛiQ =

∑n
j=1 ωi,jQjQ

⊤
j , Q

i
π =

∑n
j=1 ω

π
i,jQj ,Λ

j
P =∑m

i=1 ωi,jPiP
⊤
i , P

j
π =

∑m
i=1 ω

π
i,jPi. These quantities will allow us to simplify the objective and the constraints of the

optimization problems.

Lemma E.3. For every (i, j), ΛiQ and ΛjP are invertible. In addition,

J1 =
2ε2

σ2
∑
i ∥Qiπ∥2(ΛiQ)−1

and J2 =
2ε2

σ2
∑
j ∥P

j
π∥2

(ΛjP )
−1

.

Proof of Lemma E.3. Since P = U
√
Σ and Q = V

√
Σ, the (k, l)-th entry of

∑
i PiP

⊤
i (resp.

∑
j QjQ

⊤
j ) is√

σkσl
∑
i Ui,kUi,l (resp.

√
σkσl

∑
j Vj,kVj,l). By the semi-orthogonality of U and V , these entries are equal to σk

when k = l and 0 otherwise: ∑
i

PiP
⊤
i =

∑
j

QjQ
⊤
j = Σ.
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Consequently, ωminΣ ⪯ ΛiQ ⪯ ωmaxΣ and ωminΣ ⪯ ΛjP ⪯ ωmaxΣ. In particular, since ωmin > 0, ΛiQ and ΛjP are
invertible.

Now, notice that when Q′ = Q, we have vπ − v′π =
∑
iD

⊤
i Q

i
π and

∑
i,j ωi,j(P

⊤
i Qj − P

′⊤
i Q′

j)
2 =

∑
iD

⊤
i Λ

i
QDi for

Di = Pi − P ′
i . By the same arguments as in the proof of Theorem C.3, this observation allows us to write

J1 = inf
D∈Rm×r,∑
iD

⊤
i Q

i
π=2ε

1

2σ2

∑
i

∥Di∥2ΛiQ ,

and similarly,

J2 = inf
D∈Rn×r,∑
j D

⊤
j P

j
π=2ε

1

2σ2

∑
j

∥Dj∥2ΛjP .

An application of Lemma C.8 concludes the proof.

Proof of Theorem 6.3. By combining Lemmas E.2 and E.3, we directly get the main statement of Theorem 6.3. Finally, let
us show that the lower bound is independent of the choice of rank factorization M = PQ⊤. Let M = P ′Q′⊤ be another
rank factorization of M . Then, there exists an invertible matrix R ∈ Rr×r such that Q′ = QR and P ′ = PR−⊤ (Piziak &
Odell, 1999). This implies that for every (i, j), Q′

j =
(
Q⊤
j R
)⊤

= R⊤Qj , and P ′
i =

(
P⊤
i R

−⊤)⊤ = R−1Pi, which in turn
ensures that ΛiQ′ = R⊤ΛiQR and ΛjP ′ = R⊤ΛjPR are invertible. Furthermore,

∥Q
′i
π∥2(Λi

Q′ )
−1 =

(
R⊤Qiπ

)⊤ (
R⊤ΛiQR

)−1 (
R⊤Qiπ

)
=
(
Qiπ
)⊤
RR−1

(
ΛiQ
)−1

R−⊤R⊤Qiπ

= ∥Qiπ∥2(ΛiQ)−1 ,

and similarly,
∥P

′j
π ∥2(Λj

P ′ )
−1 = ∥P jπ∥2(ΛjP )−1 .

E.2. Proof of Proposition 6.4

We first provide a relaxed sampling lower bound as a corollary of Theorem 6.3.

Corollary E.4. The policy and model-dependent quantity LM,π in the sampling lower bound of Theorem 6.3 can be
controlled as

1

σrωmin
max

∑
i

∥Qiπ∥22,
∑
j

∥P jπ∥22

 ≥ max

∑
i

∥Qiπ∥2(ΛiQ)−1 ,
∑
j

∥P jπ∥2(ΛjP )−1


≥ 1

σ1ωmax
max

∑
i

∥Qiπ∥22,
∑
j

∥P jπ∥22

 .

In particular, the sample complexity of any (ε, δ)-PAC estimator of vπ must satisfy

T ≥ σ2 kl (δ, 1− δ)
2σ1ωmaxε2

max

∑
i

∥Qiπ∥22,
∑
j

∥P jπ∥22

 .

Proof of Corollary E.4. By the proof of Lemma E.3, ωminΣ ⪯ ΛiQ ⪯ ωmaxΣ and ωminΣ ⪯ ΛjP ⪯ ωmaxΣ. In particular,
σrωmin ≤ λmin

(
ΛiQ
)
≤ λmax

(
ΛiQ
)
≤ σ1ωmax, and the same results hold for ΛjP . Now, note that for any x ∈ Rr and any
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invertible matrix B ∈ Rr×r, λmin (B)
−1 ∥x∥22 ≥ ∥x∥2B−1 ≥ λmax (B)

−1 ∥x∥22. Consequently, for any (i, j),

∥Qiπ∥22
σrωmin

≥ ∥Qiπ∥2(ΛiQ)−1 ≥
∥Qiπ∥22
σ1ωmax

and
∥P jπ∥22
σrωmin

≥ ∥P jπ∥2(ΛjP )−1 ≥
∥P jπ∥22
σ1ωmax

,

and the first result follows. The sampling lower bound can then be directly deduced from Theorem 6.3.

The control of the lower bound identified above is tight when ω is homogeneous and κ = Θ(1), since in this case, the two
sides of the inequality only differ by a constant factor. In particular, the relaxed lower bound then scales as the lower bound
of Theorem 6.3.
Remark E.5. We could also upper bound the maximal eigenvalues of the covariance matrices by noticing that their positive
semi-definiteness entails λmax

(
ΛiQ
)
≤ Tr

(
ΛiQ
)
=
∑
j ωi,j∥Qj∥2 and λmax

(
ΛjP

)
≤ Tr

(
ΛjP

)
=
∑
i ωi,j∥Pi∥2. When

r = 1, this would yield a bound that coincides with the bound of Theorem 6.3. However, when r > 1, these eigenvalue
upper bounds would scale with

∑r
i=1 σi instead of σ1.

We are now ready to derive the worst-case lower bound of Proposition 6.4. To that end, we will show that

KM,π :=
1

σ1ωmax
max

∑
i

∥Qiπ∥22,
∑
j

∥P jπ∥22


is of order m+n

ωmaxmn
in the worst case (i.e., for a choice of homogeneous reward matrix and target policy that maximizes the

lower bound). We use the notation πj :=
∑m
i=1 ρiπ (j|i). We note that the third bullet point of the following proposition

corresponds to the statement of Proposition 6.4.

Proposition E.6. Denote byH the set of homogeneous matrices ofM (c, c′) for some fixed c, c′.

• For any M ∈ Rm×n of rank r, KM,π ≤ µ2r
(m∧n)ωmax

max
(∑

i ρ
2
i ,
∑
j π

2
j

)

• When m = Θ(n) and r = Θ(1) , sup
M∈H

KM,π = Θ

max
(∑

i ρ
2
i ,
∑
j π

2
j

)
(m ∨ n)ωmax


• When m = Θ(n) and r = Θ(1) , there is a target policy π and a homogeneous reward matrix M ∈ H such that any
(ε, δ)-PAC estimator of vπ must satisfy

T ≳
σ2 (m+ n)

ωmaxmnε2
kl (δ, 1− δ) .

Remark E.7. The upper bound of Theorem 6.2 matches the scaling in µ and r suggested by the first bullet point of Proposition
E.6.

Proof of Proposition E.6. To prove the first bullet point, notice that

KM,π =
1

σ1ωmax
max

∑
i

∥
∑
j

ωπi,jQj∥22,
∑
j

∥
∑
i

ωπi,jPi∥22


≤ 1

σ1ωmax
max

∑
i

∑
j

ωπi,j∥Qj∥2

2

,
∑
j

(∑
i

ωπi,j∥Pi∥2

)2


≤ 1

σ1ωmax
max

max
j
∥Qj∥22

(∑
i

ρ2i

)
,max

i
∥Pi∥22

∑
j

π2
j

 .
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Since P = U
√
Σ and Q = V

√
Σ, we have maxi ∥Pi∥22 = maxi

∑r
j=1 σjU

2
x,j ≤ σ1∥U∥22→∞ and similarly,

maxj ∥Qj∥22 ≤ σ1∥V ∥22→∞. This finally ensures that

KM,π ≤
1

ωmax
max(∥U∥22→∞, ∥V ∥22→∞)max

(∑
x

ρ2i ,
∑
a

π2
j

)

≤ µ2rmax(1/m, 1/n)

ωmax
max

(∑
x

ρ2i ,
∑
a

π2
j

)

=
µ2r

(m ∧ n)ωmax
max

(∑
x

ρ2i ,
∑
a

π2
j

)
.

For the second bullet point, let M ∈ H. The first bullet point and the homogeneity properties of M entail KM,π ≲
max(

∑
i ρ

2
i ,
∑
j π

2
j )

(m∧n)ωmax
≲

max(
∑
i ρ

2
i ,
∑
j π

2
j )

(m∨n)ωmax
, where we have used m = Θ(n) in the last inequality. To achieve this upper bound,

we choose a homogeneous matrix of rank r such that U can be chosen with a first column equal to (1/
√
m, . . . , 1/

√
m)

⊤,
and V can be chosen with a first column equal to (1/

√
n, . . . , 1/

√
n)

⊤. An explicit example for r = 1 is the matrix that has
each entry equal to 1. For such a choice, we have

∑
j

∥P jπ∥22 =
∑
j

∥∥∥∥∥∑
i

ρiπ (j|i)Pi

∥∥∥∥∥
2

2

≥
∑
j

(∑
i

ρiπ (j|i)
√
σ1Ux,1

)2

=
σ1
m

∑
j

π2
j

 ,

,

and ∑
i

∥Qiπ∥22 =
∑
i

∥∥∥∥∥∥
∑
j

ρiπ (j|i)Qj

∥∥∥∥∥∥
2

2

≥
∑
i

∑
j

ρiπ (j|i)
√
σ1Vj,1

2

=
σ1
n

(∑
i

ρ2i

)
.

,

In particular,

KM,π ≥
max

(∑
i ρ

2
i ,
∑
j π

2
j

)
(m ∨ n)ωmax

.

Lastly, notice that the supremum is largest when π always selects the same arm, independently of the context16.
In this case, there is a reward matrix M ∈ H such that we have the sampling lower bound

T ≥ σ2 kl (δ, 1− δ)
2 (m ∨ n)ωmaxε2

.

Finally, notice that m = Θ(n) entails m ∨ n = Θ
(
mn
m+n

)
.

16Intuitively, when the behavior policy is uniform, the distribution shift is maximized when the target policy is constant.
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F. Proofs of results from Section 7: Best Policy Identification
F.1. Proof of Theorem 7.1

In this appendix, we denote by Π the set of deterministic policies (in other words, the set of functions from [m] to [n]). To
ease the notation, we also denote by v̂πRS the RS-PE estimator of vπ for a given policy π, and by π̂RS the policy learned by
RS-BPI.

We first derive an upper bound on the max-norm error of the reward matrix estimator ĎM utilized in our PE and BPI
algorithms, which is defined by

ĎMi,j := ϕTi,j θ̂. (41)

Proposition F.1. Assume that the regularization parameter of Λ̂τ verifies τ ≤ r
(m∧n)

ωmin

ωmax
log (16d/δ). With probability

larger than 1− δ,
∥M − ĎM∥max ≲ ε

as soon as

T ≳
σ2µ2r (m+ n)

ωminmnε2
log

(
m+ n

δ

)
+
K0

ε
log3

(
(m+ n)T

δ

)
where K0 has been defined in (28).

Proof of Proposition F.1. By replacing ϕπ by ϕi,j in the error analysis performed in Appendix D, we directly obtain that
for every (context, arm) pair (i, j), with probability larger than 1− δ

mn ,

|Mi,j − ϕTi,j θ̂| ≤ ε

as soon as

T ≳
σ2µ2r (m+ n)

ωminmnε2
log
(emn

δ

)
+
K0

ε
log3

(
mn(m+ n)T

δ

)
.

Note that log
(
emn
δ

)
≲ log

(
m+n
δ

)
and log3

(
mn(m+n)T

δ

)
≲ log3

(
(m+n)T

δ

)
. A union bound ensures that with probability

larger than 1− δ,

∥M − ĎM∥max = max
i,j
|Mi,j − ϕTi,j θ̂| ≤ ε

under the stated condition on the sample complexity.

We also wish to note that, although this will not be used in the proof of Theorem 7.1, the same argument can be utilized to
derive a max-norm version of the PE error bound (37). Namely, under the assumptions of Proposition D.2,

∥M − ĎM∥max ≤ µ

√
r (m+ n)

ωminmn

√
2σ2 log(16mn/δ)

(1− α)T
+K0

log3 (mn (m+ n)T/δ)

T
(42)

with probability larger than 1− δ, where K0 has been defined in (28).

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. We provide a detailed proof of the second statement of the theorem first. Let us recall that

max
π∈Π
|vπ − v̂πRS-PE| ≤ max

π∈Π
max
i,j
|Mi,j − ĎMi,j |

∑
i,j

wπi,j ≤ ∥M − ĎM∥max. (43)

Note that for a homogeneous context distribution, we have ωmin = Θ
(

1
mn

)
since the learner samples the arms uniformly.

Consequently, when T ≳ σ2µ2r(m+n)
ε2 log

(
m+n
δ

)
+ K0

ε log3
(

(m+n)T
δ

)
, Proposition F.1 yields v∗ − vπ̂RS-PE ≤ ε with
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probability larger than 1− δ. Indeed, v∗ − vπ̂RS ≤ |vπ̂RS − v̂π̂RSRS |+ |v̂π̂RSRS − v∗|. Under the event ∥M − ĎM∥max ≤ ε/2, The
first term can be directly controlled by ε/2 with (43). For the second term, note that π̂RS = argmaxπ v̂

π
RS. Consequently,

under the same event, v̂π̂RSRS ≥ v̂π
⋆

RS ≥ v∗ − ε/2, and v∗ ≥ vπ̂RS ≥ v̂π̂RSRS − ε/2. By Proposition F.1, with probability larger
than 1− δ, we have

v∗ − vπ̂RS ≤ ε for T ≳
σ2µ2r (m+ n)

ε2
log

(
m+ n

δ

)
+
K0

ε
log3

(
(m+ n)T

δ

)
for

K0 ≲
L2µ6κ4r3 (m+ n)

2√
mn

∥M∥max (m ∧ n)
. (44)

We finally recall that from Remark D.8, K0 ≲ σmn when M is also homogeneous and ∥M∥max = Θ(σ).

We can of course derive the corresponding result for SBPI in the same way. More specifically, we obtain that v⋆−vπ̂SBPI ≤ ε
with probability larger than 1− δ as soon as

T ≳
L2µ6κ4r3(m+ n)mn

(m ∧ n)2ε2
log3

(
(m+ n)T

δ

)
by combining the max-norm guarantee on M̂ of Proposition D.1 with the previous arguments17.

F.2. General context distribution case

We now explain how to drop the homogeneous context assumption in Theorem 7.1 while retaining the optimal scaling up to
logarithmic factors with the technique highlighted in (Lee et al., 2023). The idea is to split the set of contexts into subsets on
which the context distribution is homogeneous and to apply RS-BPI or SBPI on each subset. Let

L = ⌈log2 (m/ε)⌉ (45)

and define CL =
{
i ∈ [m], 2−l−1 < ρi ≤ 2−l

}
for 0 ≤ l ≤ L − 1, and CL =

{
i ∈ [m], ρi ≤ 2−L}. On each Cl for

0 ≤ l ≤ L− 1, the distribution defined by the normalized context weights is homogeneous. On CL, the context weights are
small enough to not meaningfully contribute to the BPI error. We summarize below the algorithm structure for RS-BPI,
and we recall that α is the proportion of samples used in the first phase of the algorithm. Of course, a SBPI version of this
algorithm can be constructed in the same way.

Algorithm 4 GENERALIZED RS-BPI (G-RS-BPI)
Input: Budget of rounds T , data splitting parameter α, context distribution ρ, regularization parameter τ , confidence
level δ
for t = 1 to T do

Observe a context it according to ρ
Select an arm jt uniformly at random

end for
Split [m] into the subsets Cl defined above
for l = 0, . . . ,L − 1 do

Execute Algorithm 1 on Cl to learn π̂lRS
end for
Output: π̂RS such that π̂RS = π̂lRS on Cl for 0 ≤ l ≤ L− 1 and arbitrary on CL.

To clarify, all samples are gathered at the start. Then, for each l, we set Tl as the number of samples of the form (it, jt, rt)
for it ∈ Cl, and we construct a reward estimator ĎM l from the Tl samples with the definition (41). We then select π̂lRS with
π̂lRS(i) = argmax1≤j≤n ĎM l

i,j . This generalized version of RS-BPI satisfies the following guarantee.

17to get the exact statement of the theorem, note that (m+ n)mn < (m+ n)3.
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Theorem F.2. Let ε > 0, δ ∈ (0, 1), and define ρ (Cl) :=
∑
i∈Cl ρi. Assume that ε <

(
min

0≤l≤L−1
ρ (Cl)

)
∥M∥max. With

the choices T1 = ⌊αT ⌋ and τ ≤ r(m ∧ n)−1(ρmin/ρmax) log(16d/δ), v⋆ − vπ̂RS ≤ ε′ with probability larger than 1− δ
as soon as

T ≳
σ2µ2r (m+ n)

ε2
log

(
L (m+ n)

δ

)
+
K0

ε
log3

(
L(m+ n)T

δ

)
,

where K0 has been defined in (44), L has been defined in (45) and ε′ = ε (L+ 2∥M∥max).

Proof of Theorem F.2. Let 0 ≤ l ≤ L − 1 and δl = δ/L. From Lemma 9 in (Lee et al., 2023), we know that with high
probability, at least

Tρ (Cl)
2

≳
σ2µ2r (m+ n)

ε2l
log

(
m+ n

δl

)
+
K0

εl
log3

(
(m+ n)T

δl

)
out of the T samples correspond to a context in Cl for εl := ε/ρ (Cl) . Since εl ≤ ∥M∥max, by Theorem 7.1, Algorithm 1
on Cl yields a policy π̂lRS such that ∑

i∈Cl

ρi
ρ (Cl)

(
Mi,π̂lRS(i)

−Mi,π⋆(i)

)
≤ ε

ρ (Cl)

with probability larger than 1− δl. A union bound ensures that with probability larger than 1− δ, the overall BPI error is
bounded as follows:

m∑
i=1

ρi
(
Mi,π̂RS(i) −Mi,π⋆(i)

)
=

L−1∑
l=0

∑
i∈Cl

ρi

(
Mi,π̂lRS(i)

−Mi,π⋆(i)

)
+
∑
i∈CL

ρi

(
Mi,π̂lRS(i)

−Mi,π⋆(i)

)
≤ εL+ 2m2−L∥M∥max

≤ εL+ 2ε∥M∥max

= ε′.
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G. Proof of results from Section 8: Regret Minimization
In this appendix, we present the regret analysis of Algorithm 2. We postpone the proof of Theorem 8.1 to Section G.2, and
first repeat the analysis of SupLinUCB algorithm given in (Takemura et al., 2021), culminating in Theorem G.1, which we
then use to prove our upper bound on the regret of RS-RMIN in Section G.2.

G.1. Misspecified linear bandits

We assume that in each round t, the learner is provided with a context set ofK actionsXt = {xt,1, . . . , xt,K}with xt,a ∈ Rd
and ∥xt,a∥2 ≤ 1 for a ∈ [K]. The context sets are drawn according to some distribution ρ and are independent across
rounds.

The reward of action a in round t is expressed as rt,a = x⊤t,aθ + ϵt,a + ξt. We assume that the misspecification is bounded,
i.e., supt,a |ϵt,a| ≤ ϵmax and that maxt,a |rt,a| = rmax. The noise process {ξt}t≥1 is i.i.d. with σ-subgaussian distribution.
The regret up to round T of an algorithm π selecting aπt in round t is defined by:

Rπ(T ) =
T∑
t=1

(
rt,a⋆t − rt,aπt

)
,

where a⋆t = argmaxa∈[A] E[rt,a]. To solve the misspecified linear bandit problem, we apply Algorithm 1 in (Takemura
et al., 2021), a variant of SUPLINUCB (Chu et al., 2011). The pseudo-code is presented in Algorithm 5.

Algorithm 5 SUPLINUCB (Algorithm 1 in (Takemura et al., 2021))
Input: number of rounds T , threshold β and regularization matrix Λ
J = ⌈log2(T/d)/2⌉+ 1
Ψj1 = ∅, ∀j ∈ [J ]
for t = 1 to T do
j = 1, A1 = [K]
repeat
Vt = Λ+

∑
τ∈Ψjt

xτ,aτx
⊤
τ,aτ

θ̂t = V −1
t

∑
τ∈Ψjt

xτ,aτ rτ,aτ
for a ∈ Aj do
r̂jt,a = ⟨θ̂t, xt,a⟩
wjt,a = ∥xt,a∥V −1

t
β

end for
if wjt,a ≤ β

√
d/T for all a ∈ Aj then

at = argmaxa∈Aj (r̂
j
t,a + wjt,a)

Ψj
′

t+1 ← Ψj
′

t for all j′ ∈ [J ]

else if wjt,a ≤ β2−j for all a ∈ Aj then
Aj+1 ← {a ∈ Aj : (r̂jt,a + wjt,a) ≥ maxa′∈Aj (r̂

j
t,a′ + wjt,a′)− 21−jβ}

j ← j + 1
else

Choose at ∈ Aj s.t. wjt,at > β2−j

Ψj
′

t+1 ←

{
Ψj

′

t ∪ {t}, if j′ = j

Ψj
′

t , else
end if

until an action at is found.
end for

Theorem G.1 (Simplified version of Theorem 1 in (Takemura et al., 2021)). Let B > 0 be such that ∥θ∥2 ≤ B, and let
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Λ = (σ2/B2)Id. Moreover, let δ ∈ (0, 1), T > 0 and define the threshold

β(δ) = σ(1 +

√
2 log

(
TK

δ

⌈
1

2
log

T

d

⌉)
). (46)

Then, there exists a universal constant C > 0 such that the regret of the algorithm π = SUPLINUCB satisfies:

Rπ(T ) ≤ C
(
σ
√
dT logK+ ϵmax

√
dT + drmax

)
log(T + 1) log

(
1 +

TB2

dσ2

)
,

with probability at least 1− δ.

The result of Theorem G.1 entails that Algorithm 5 has an expected regret18 of order Õ(
√
dT log(K) + ϵmax

√
dT ), where

Õ hides polylogarithmic factors in d and T . Therefore, SUPLINUCB enjoys tight dependence in the dimension in both the
term Õ(ϵmax

√
dT ) that is due to the misspecification (Lattimore et al., 2020) and in the term

√
dT log(K) that corresponds

to the minimal regret without misspecification (Auer, 2002; Chu et al., 2011).

G.2. Proof of Theorem 8.1

Let us denote by j⋆t the optimal arm given context it, i.e., let j⋆t = π⋆(it) for all t ∈ [T ]. We split the regret into the sum of
two terms corresponding to the uniform exploration phase and a second phase where we apply Algorithm 2:

Rπ(T ) =

T1∑
t=1

E[Mit,j⋆t
−Mit,jπt

]︸ ︷︷ ︸
Rπ1

(Regret of phase 1)

+

T∑
t=T1+1

E[Mit,j⋆t
−Mit,jπt

]︸ ︷︷ ︸
Rπ2

(Regret of phase 2)

.

Step 1: (Regret of phase 1). Since |Mi,j | ≤ ∥M∥max for all (i, j) ∈ [m] × [n], the first phase lasting for T1 rounds
accumulate a regret of at most:

Rπ1 ≤ 2T1∥M∥max. (47)

Step 2: (Regret of phase 2). In the second phase, which lasts for T2 = T − T1 rounds, we can identify our observations
Mit,jt + ξt = ϕ⊤it,jtθ + ϵit,jt + ξt with rewards rt,jt from the previous section, where we define the set of arms for the
context it by setting (xt,a)a∈[K] = (ϕ(it, j))j∈[n] with K = n, xa⋆t = ϕ(it, j

⋆
t ) and d = r(m+ n)− r2. Thus, the regret

Rπ2 generated during this phase can be equivalently written as:

Rπ2 =

T∑
t=T1+1

E[rt,a⋆t − rt,aπt ] = E[Rπ(T2)].

Thus, we can apply Theorem G.1 to show that there exists a universal constant C2 such that with probability at least 1− δ:

Rπ(T2) ≤ C2

√
r(m+ n)

(
σ

√
T log

(
Tmn

δ

)
+ ϵmaxT + ∥M∥max

√
r(m+ n)

)
log2

(
T (m+ n)

L2

σ2

)
(48)

where we used that T2 ≤ T . To bound the second term in the parenthesis, we use the upper bound on the misspecification
ϵmax of Corollary 5.1. Indeed, we have that with probability at least 1− δ:

ϵmax ≤
CL2κ3µ2r(m+ n)

σrT1ωmin(m ∧ n)
log3

(
(m+ n)T1

δ

)
, (49)

18The regret guarantee of Theorem G.1 is stated with high probability, but the result can be immediately used to bound the regret in
expectation by choosing for example δ = 1/T .
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provided that T1 ≥ cL
2(m+n)
σ2
rωmin

log3
(

(m+n)T
δ

)
, for some universal constants C, c > 0. Define E as the event under which

(49) holds. Next, we decompose Rπ2 as follows:

Rπ2 =

T∑
t=T1+1

E
[
rt,a⋆t − rt,aπt

]
≤ 2∥M∥maxP(Ec)T +

T∑
t=T1+1

E
[(
rt,a⋆t − rt,aπt

)
1{E}

]
≤ 2∥M∥maxδT +

T∑
t=T1+1

E
[(
rt,a⋆t − rt,aπt

)
1{E}

]
.

Define LmnT = log(1 +mnT ). Substituting ϵmax with its upper bound in (49) and selecting δ = 1/T in (48) gives:

Rπ2 ≤ C3

√
r(m+ n)

(
σ
√
TLmnT + T

L2κ3µ2r(m+ n)

σrT1ωmin(m ∧ n)
L3
mnT + ∥M∥max

√
r(m+ n)

)
log2

(
T (m+ n)

L2

σ2

)
(50)

provided that T1 ≥ cL
2(m+n)
σ2
rωmin

log3
(
(m+ n)T 2

)
, for some universal constant C3, c > 0 and T1 ≤ T .

Step 3: (Optimizing T1). Observe that the upper bound of Rπ1 scales as T1 (see (47)) while the second term in the upper
bound of Rπ2 scales as 1/T1 (see (50)). Therefore, to obtain a tight regret bound on Rπ(T ), we need to balance these two
terms that depend on T1 with a proper choice of T1. We can easily verify that an optimal choice is:

T ⋆1 =

√
C3

2

µκ3/2L√
∥M∥max

r3/4(m+ n)3/4√
σrωmin(m ∧ n)

√
T log3/2 (1 +mnT ) log

(
T (m+ n)

L2

σ2

)
.

Next, note that we can use that ∥M∥max/σr(M) ≤ µ2κr/
√
mn from Lemma B.8 and the fact that ωmin = ρmin/n to

simplify further the last quantity and define:

T1 =

√
C3

2

µ2κ2L

∥M∥max

r5/4(m+ n)3/4(mn)1/4√
mρmin(m ∧ n)

√
T log3/2 (1 +mnT ) log

(
T (m+ n)

L2

σ2

)
. (51)

This choice of T1 entails that the regret can be upper bounded as follows:

Rπ(T ) = Õ

(
µ2κ2r5/4L

(m+ n)3/4(mn)1/4√
mρmin(m ∧ n)

√
T

)
.

Step 4: (Checking conditions on T1). It remains to check whether our choice of T1 verifies T1 ≥ cL
2(m+n)
σ2
rωmin

log3
(

(m+n)T
δ

)
and T1 ≤ T . These conditions are satisfied if

T = Ω̃

(
µ4κ4r5/2L2 (m+ n)3/2

√
mn

∥M∥2maxmρmin(m ∧ n)

)
.

Now, note that when the above condition does not hold, i.e.,

T = Õ

(
µ4κ4r5/2L2 (m+ n)3/2

√
mn

∥M∥2maxmρmin(m ∧ n)

)
,

then the trivial bound Rπ(T ) ≤ 2T∥M∥max, gives us after a few simple computations the upper bound

Rπ(T ) ≤ 2∥M∥maxT = Õ

(
µ2κ2r5/4L

(m+ n)3/4(mn)1/4√
mρmin(m ∧ n)

√
T

)
.

If, furthermore, M and ρ are homogeneous, we obtain, for any T ≥ 1:

Rπ(T ) = Õ
(
L(m+ n)3/4

√
T
)
.
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H. Reduction to almost low-dimensional linear bandits and its limitations
We start by observing that our low-rank bandit settings can be viewed as an instance of the bilinear bandit problem (Jun
et al., 2019), where for any i, j ∈ [m]× [n], Mi,j = e⊤i Mej , and we may think of ei and ej as the left and right feature
respectively. Similarly to Section 5, we define extended vectors ϕext

i,j , θ
ext ∈ Rmn as follows:

ϕext
i,j =


vec(Û⊤eie

⊤
j V̂ )

vec(Û⊤eie
⊤
j V̂⊥)

vec(Û⊤
⊥ eie

⊤
j V̂ )

vec(Û⊤
⊥ eie

⊤
j V̂⊥)

 , θext =


vec(Û⊤MV̂ )

vec(Û⊤MV̂⊥)

vec(Û⊤
⊥MV̂ )

vec(Û⊤
⊥MV̂⊥)

.
We note that according to (5), Mi,j = ⟨ϕext

i,j , θ
ext⟩. Moreover, one can readily show that, for any (i, j) ∈ [m]× [n].

∥ϕext
i,j∥2 ≤ 1, ∥θext∥2 = ∥M∥F ≤

√
nm∥M∥max. (52)

We can also write θext =
[
θ⊤ θ⊤ℓ

]⊤
, where we denote θℓ = vec(Û⊤

⊥MV̂⊥) ∈ R(m−r)×(n−r). Observe that

∥θℓ∥2 = ∥Û⊤
⊥MV̂⊥∥F ≤ ∥Û⊤

⊥U∥F ∥M∥op∥V̂ ⊤
⊥ V ∥F ≤ ∥UU⊤ − Û Û⊤∥F ∥V V ⊤ − V̂ V̂ ⊤∥F

√
nm∥M∥max. (53)

Thus, one may use guarantees on the subspace recovery in the Frobenius norm such as Lemma B.7 to show that the impact
of θℓ in the reward is much smaller than that of θ. We have with probability at least 1− δ:

∥θℓ∥2 ≲
L2κr(m+ n)

T1ωminσr
log3

(
(m+ n)T1

δ

)
provided that T1 ≳ 1

ωmin(m∧n) log
3
(

(m+n)T1

δ

)
.

From these observations, together with the reformulation Mi,j = ⟨ϕext
i,j , θ

ext⟩, one can claim a reduction from a low-rank
bandit model to an almost low-dimensional linear bandit (Valko et al., 2014; Jun et al., 2019; Kocák et al., 2020; Kang et al.,
2022). More precisely, the sub-vector corresponding to the last (m− r)(n− r) components of θ (i.e., those corresponding
to θℓ) do not have a significant impact on the rewards, hence reducing the effective dimension of this linear bandit to
d = r(m+ n)− r2.

We can derive an analogue of Theorem 8.1 with a similar regret analysis:

Proposition H.1. Let B2 be an upper bound of ∥θext∥2 and let Bℓ be an upper bound of ∥θℓ∥2. Define T1 =

Θ̃(µ2κr3/2
√

m+n
ωmin

√
mn

)
√
T ), and let λ = B−2

2 , λ⊥ = T
d log(1+T

λ )
and:

Λ = diag(

d︷ ︸︸ ︷
λ, . . . , λ,

mn−d︷ ︸︸ ︷
λ⊥, . . . , λ⊥), β = σ

√
2 log

(
10Tmn

δ
log(1 + T )

)
+B2

√
λ+Bℓ

√
λ⊥.

Then, Algorithm 2 with SUPLINUCB parameters T − T1, β(δ),Λ has an expected regret that satisfies RπT =

Õ
(
Lµκr

√
m+n(mn)1/4√

mρmin

√
T
)

.

The proof of the proposition only differs slightly from the proof of Theorem 8.1. Instead of Theorem G.1, we combine the
analysis of SUPLINUCB19 from (Chu et al., 2011), Lemma 38 in (Kocák et al., 2020), Lemma 3 (Jun et al., 2019), and
Lemma 11 in (Abbasi-Yadkori et al., 2011) to show that the second phase of this algorithm has regret as follows:

Rπ(T ) ≲
√
dT
(
rmax + σ

√
log (eTK/δ) +B2

√
λ+Bℓ

√
λ⊥

)√
log (1 + T/λ) log T

with probability at least 1− δ. Proposition H.1 follows straightforwardly from this result and our bounds B2, Bℓ derived
above. Note that in the homogeneous setting (see Definition 3.1), the regret above scales as Õ((m+ n)

√
T ).

19Here we used SUPLINUCB as given in (Chu et al., 2011) for the analysis.
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The reduction presented above has the following limitations:

(i) First, it does not take advantage of the delocalization of the subspace recovery error, i.e., of the fact that this error spreads
out along m+ n dimensions. This delocalization property is quantified through our subspace recovery error guarantees in
the two-to-infinity norm, and it has subtle but important implications. Indeed, it can be leveraged to perform a reduction to
an almost low-dimensional linear bandit that is also almost sparse, in the sense that ∥θℓ∥∞ ≲ ∥θℓ∥2/

√
mn. A reduction to

a misspecified linear bandit leverages this structure and allows us to devise algorithms with tighter regret guarantees.

(ii) Then, since the problem can be reduced to an almost-sparse linear bandit, using algorithms such as LOWDIM-OFUL
(Jun et al., 2019; Kang et al., 2022) does not give tight regret guarantees in our setting. Indeed, LOWDIM-OFUL relies on
least squares estimators obtained with a weighted Euclidean norm regularization. This type of regularization accounts for
the low-dimensionality of the problem, but fails at exploiting the sparsity of the problem. To this aim, one should use an
ℓ1-norm regularization instead. In fact, even adapting algorithms for linear bandits such as SUPLINUCB (Chu et al., 2011)
that have typically tighter dimension dependencies than OFUL does not yield tighter bounds. As we state in Proposition H.1,
the corresponding regret upper bound scales as Õ((m+ n)

√
T ) in the homogeneous case, compared to Õ((m+ n)3/4

√
T )

achieved using Algorithm 2 in Section 8.

(iii) Finally, a reduction to misspecified linear bandit is more appealing computationally because the resulting feature
vectors are of dimension r(m + n) − r2. In the case of a reduction to an almost low-dimensional linear bandit, these
vectors are of dimension mn. This means that instead of having to invert20 mn×mn matrices, we will only have to invert
(r(m+ n)− r2)× (r(m+ n)− r2) matrices.

20Indeed, almost all existing algorithms for linear and contextual linear bandits require inverting the features matrix during a regression
step that involves least squares estimation (Lattimore & Szepesvári, 2020).
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I. Additional discussions
I.1. Knowledge of the context distribution

We decided to assume knowledge of ρ to simplify the exposition of our work, as dealing with unknown ρ does not add any
insight to our work nor does it harm any of our guarantees, as we show in this section. After T observations, a natural
estimator ρ̂T of ρ is:

∀i ∈ [m], ρ̂i,T =
1

T

T∑
t=1

1{it = 1}.

Next, an immediate application of Bernstein’s inequality gives

P(|ρ̂i,T − ρi| > ερi) ≤ 2 exp

(
− Tρ2i ε

2

2σ2
i + 2ερi/3

)
≤ 2 exp

(
− Tρ2i ε

2

2ρi + 2ρiε/3

)
≤ 2 exp

(
−Tρi

(
ε2

2 + 2ε/3

))
where we used σ2

i := E[(1{it = i} − ρi)2] = ρi − ρ2i ≤ ρi. Using a union bound and choosing for instance ε = 1/2, we
obtain that

P(∃i ∈ [m], |ρ̂i,t − ρi| > ρi/2) ≤ 2

m∑
i=1

exp

(
−3Tρi

16

)
≤ 2m exp

(
−3Tρmin

16

)
.

Thus, for all δ ∈ (0, 1),
P(∀i ∈ [m], |ρ̂i,t − ρi| ≤ ρi/2) ≥ 1− δ

provided that

T ≥ 16

3ρmin
log

(
2m

δ

)
.

In view of the above result, estimating ρ always requires fewer samples than required in Theorem 4.1. To see that, observe
that by Lemma B.8 and the inequality ωmin ≤ ρmin/n,

L2(m+ n)

σ2
rωmin

log3
(
(m+ n)T

δ

)
≳

m+ n

ωminmn
log

(
2m

δ

)
≳

1

ρmin
log

(
2m

δ

)
.

Consequently, ρ can be assumed to be known without loss of generality.

I.2. Low-rank matrix bandits

Our framework can be applied to address a related and simpler problem known as low-rank matrix bandits. In this scenario,
the learner must choose two arms, it ∈ [m] and jt ∈ [n], at each time step t ∈ T . In contrast, in the contextual low-rank
bandit setting, the row it is sampled according to a distribution ρ that is not chosen by the learner.

Our algorithms can be straightforwardly adapted to this setting. For instance, for regret minimization, we could utilize
a two-phase algorithm. In the first phase, for t ≤ T1, the arm pair (it, jt) is chosen uniformly at random from [m]× [n].
In the second phase, for t = T1 + 1, . . . , T , (it, jt) is selected by SUPLINUCB with a fixed set of feature vectors
X = {ϕ(i, j), i ∈ [m], j ∈ [n]} where ϕ(i, j) is constructed from the estimated singular subspaces according to (7). The
parameters used in SUPLINUCB are the same as for contextual low-rank bandits, except that we set ωmin = 1/(mn).

Similarly to Theorem 8.1, it can be proven that such an algorithm would achieve a regret of at most Õ(Lµ2κ2r5/4(m +
n)3/4(mn)1/4

√
T/(m ∧ n)) under an appropriate condition on T (see Theorem 8.1). When M is homogeneous, the regret

scales as Õ(L(m+ n)3/4
√
T ).

Most existing work on low-rank bandits lacks minimax regret guarantees. (Katariya et al., 2017) introduced RANK1ELIM,
achieving regret Õ((m+n) log(T )/∆̃min)

21 for a rank-1 reward matrix. (Kveton et al., 2017) extended this result to rank r,
with additional strong assumptions on the reward matrix in their LOWRANKELIM algorithm. (Trinh et al., 2020) provided
the first algorithm with asymptotically optimal instance-dependent regret for rank-1 bandits. (Bayati et al., 2022) proposed
an algorithm enjoying a minimax regret guarantee, but their upper bounds scale at least with mn through the constant C2 in
the worst case (see Theorem 2 in (Bayati et al., 2022)), and requires tuning a filtering resolution h, making their guarantees

21Here ∆̃min corresponds to a notion of minimum gap different from the standard one - see (Katariya et al., 2017).
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hard to evaluate. (Stojanovic et al., 2024) presented SME-AE algorithm, leveraging the entry-wise matrix estimation
guarantees to obtain a regret upper bound of order Õ((m+ n)(∆̄/∆2

min) log
3(T )) where ∆̄ is the average reward gap, and

∆min is the minimum reward gap.

While these gap-dependent bounds require strong assumptions, e.g., (Stojanovic et al., 2024) assume that ∆max/∆min ≤ ζ
where ∆max is the maximum reward gap, we provide the first algorithm with a minimax regret of order Õ((m+ n)3/4

√
T )

without such assumptions.

I.3. Improved max-norm guarantees

Our two-phase algorithm structure also yields a generic method to estimate a low-rank matrix in more general settings. The
low-rank matrix estimator ĎM defined by ĎMi,j = ϕTi,j θ̂ (see (7) and (10) for a definition of these terms) enjoys a sharper
max-norm guarantee than the standard estimator M̂ defined in (2). Indeed, recall that from Proposition D.1,

∥M − M̂∥max ≲ L

√
µ6κ4r3(m+ n)

Tωmin(m ∧ n)2
log3

(
(m+ n)T

δ

)
with probability larger than 1− δ when T ≳ L2κ2(m+n)

σ2
rωmin

log3
(

(m+n)T
δ

)
.

Additionally, from (42),

∥M − ĎM∥max ≲ σµ

√
r (m+ n)

Tωminmn
log

(
m+ n

δ

)
+ Õ

(
K

T

)
with probability larger than 1− δ under the assumptions of Proposition D.2, where K depends polynomially on the model
parameters. When T is large enough to ensure that the first term in the error bound is larger than the second, the scaling in µ
and r of the max-norm error bound is improved from µ3r3/2 to µr1/2. Furthermore, the dependency in κ and ∥M∥max

is removed in the first term (recall that L = ∥M∥max ∨ σ). This may appear suprising, but note that the term Õ
(
K
T

)
still

depends on κ and ∥M∥max through K: more samples are required to achieve the stated scaling when κ and ∥M∥max are
large.

I.4. Removing the dependence in ∥M∥max in the regret upper bound

We assume that m = Θ(n) for simplicity as in (Chen et al., 2020). Let M̂ := Zcvx,r from Theorem 2 in (Chen et al., 2020)
and let M̂ = Û Σ̂V̂ ⊤. Then, we have:

Lemma I.1. Under the condition ∥M − M̂∥op ≤ σr(M)/4, it holds that:

max
(
∥U − Û(Û⊤U)∥2→∞, ∥V − V̂ (V̂ ⊤V )∥2→∞

)
≲

1

σr(M)

(√
n∥M − M̂∥max + µ

√
r

n
∥M − M̂∥op

)

Proof. Using repeatedly that ∥AB∥2→∞ ≤ ∥A∥2→∞∥B∥op for appropriate A,B, we obtain:

∥U − Û Û⊤U∥2→∞ = ∥MV Σ−1 − Û Û⊤U∥2→∞ ≤
1

σr(M)
∥MV − Û Û⊤UΣ∥2→∞

≤ 1

σr(M)
∥MV − M̂V ∥2→∞ +

1

σr(M)
∥M̂V − Û Û⊤UΣ∥2→∞

Note that the first term is bounded by
√
n∥M − M̂∥max since ∥MV − M̂V ∥2→∞ ≤ ∥M − M̂∥2→∞∥V ∥op ≤

√
n∥M −

M̂∥max. Before we bound the second term, note that:

Û Û⊤UΣ = Û Û⊤MV = Û Û⊤(M − M̂)V + Û Û⊤M̂V

and Û Û⊤M̂V = Û Σ̂V̂ ⊤V = M̂V . Thus:

∥M̂V − Û Û⊤UΣ∥2→∞ = ∥Û Û⊤(M − M̂)V ∥2→∞ ≤ ∥Û∥2→∞∥M − M̂∥op.
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Lastly, we bound ∥Û∥2→∞ as follows:

∥Û∥2→∞ ≤ ∥Û Û⊤U∥2→∞∥(Û⊤U)−1∥op ≤ (∥U∥2→∞ + ∥U − Û Û⊤U∥2→∞)∥(Û⊤U)−1∥op

and similarly to the equation between (49) and (50) in (Stojanovic et al., 2024) we have:

∥(Û⊤U)−1∥op =
1

σr(Û⊤U)
≤ 1

1− ∥Û⊤U − sgn(Û⊤U)∥op
≤ 1

1− 2∥M−M̂∥2
op

σ2
r(M)

Under the condition ∥M − M̂∥op ≤ σr(M)/4 we consequently have:

∥U − Û Û⊤U∥2→∞ ≲
1

σr(M)

(
∥M − M̂∥2→∞ + ∥U∥2→∞∥M − M̂∥op

)

Then, as a consequence of Lemma I.1 and Theorem 2 from (Chen et al., 2020), we obtain analogously to Theorem 4.1:

Corollary I.2. Let us denote ϵSub-Rec := max(d2→∞(U, Û), d2→∞(V, V̂ )). For any δ ∈ (0, 1), the following event:

ϵSub-Rec = Õ

(
nσ

σr

1√
T
µ3κ5/2r3/2

)
holds with probability ≥ 1−O(n−3), provided that T ≳ κ4µ2rn log n

(
µ2r log2 n+ σ2n2

σ2
r

)
.

Considering the setting of Corollary I.2, the bound from Theorem 4.1 scales with Õ
(
nL
σr

1√
T
µκr1/2

)
. Note that even though

the dependence on L = ∥M∥max ∨ σ is reduced to σ in Corollary I.2, the scaling in µ, κ and r is worse than in Theorem 4.1.

To derive the corresponding regret bound, we can rewrite the requirement on the number of samples from Corollary I.2 as
T1 ≳ n

(
1 + σ2

∥M∥2
max

)
poly(κ, µ, r, log n). Next, similarly to (51) in the proof of Theorem 8.1 we obtain that the regret is

minimized for:

T ⋆1 ≳
σ

∥M∥max

√
Tn3/4poly(κ, µ, r, log n)

Combining this with the requirement on T1, we set:

T1 := max

{
σ

∥M∥max

√
Tn3/4, n

(
1 +

σ2

∥M∥2max

)}
poly(κ, µ, r, log n)

Next, following the arguments from the proof of Theorem 8.1 in Appendix G.2 we obtain that combining our analysis with
the guarantee from Corollary I.2 achieves:

Rπ(T ) ≲ max

{
σ
√
Tn3/4, n

(
∥M∥max + σ

σ

∥M∥max

)}
poly(κ, µ, r, log n),

Comparing this result to the regret upper bound from Theorem 8.1, namely

Rπ(T ) = Õ
(
(∥M∥max ∨ σ)µ2κ2r5/4n3/4

√
T
)
,

we see that in the regime σ ≲ ∥M∥max, the regret upper bound of Theorem 8.1 scales with ∥M∥maxn
3/4
√
T , whereas the

regret upper bound obtained by using Corollary I.2 scales with σn3/4
√
T + ∥M∥maxn up to poly(κ, µ, r, log n) terms.

Finally, we note that we could also use the improved max-norm bound recalled in Section I.3 to estimate the subspace
recovery error related to ĎM and that, for T large enough, it would have a milder dependence in µ, κ and r compared to
Corollary I.2.
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J. Numerical experiments
Notation. In this appendix, we denote by ĎM the reward matrix estimator that RS-PE and RS-BPI leverage. It is defined by

ĎMi,j = ϕTi,j θ̂

for (i, j) ∈ [m] × [n]. We also denote by SBPI the algorithm that outputs the policy π̂SBPI defined by π̂SBPI (i) =

argmax1≤j≤n M̂i,j . We finally note that SIPS (resp. SBPI) is denoted by DSM-PE (resp. DSM-BPI) on the graphs.

We perform numerical experiments on synthetic data with a uniform context distribution. Unless specified otherwise, the
behavior policy is uniform, the target policy is chosen as the best policy: π(i) = argmaxjMi,j (ties are broken arbitrarily),
and we generate noisy entries Mit,jt + ξt where ξt ∼ N (0, 1) is standard Gaussian, and where M = PDQ for two
invertible matrices P ∈ Rm×m, Q ∈ Rn×n, and D ∈ Rm×n defined by Di,j = 1i=j1i≤r (note that M is consequently of
rank r). P and Q are initially generated at random with uniform entries in [0, 1] and their diagonal elements are replaced by
the sum of the corresponding row to ensure invertibility. All experiments are performed 50 times and the shaded regions are
the corresponding [5%, 95%] confidence intervals22.

J.1. Policy Evaluation

J.1.1. CHOICE OF HYPERPARAMETERS

Experiment 1: Impact of data splitting. For a regularization parameter of τ = 10−4, we compare the performance of
RS-PE for α ∈ {1/5, 1/2, 4/5}, where α is the proportion of samples used in the first phase of the algorithm. We also plot
the error of RS-PE when no data splitting is performed, that is to say when all of the samples are used in both phases of the

algorithm. Finally, we plot the dominant term ∥ψπ∥2√
ωmin

√
2 log(16/δ)
(1−α)T in the instance-dependent upper bound on the PE error of

RS-PE for α = 4/5 and δ = 10−2 (see Theorem D.7), which approaches its true error bound when T grows large. Note
that consequently, the error of RS-PE can be below this dominant term. Additionally, the scaling in 1/

√
1− α of this term

suggests that using more samples in the second phase should yield better asymptotic performance. The results are presented
in Figure 1.

Figure 1. Impact of data splitting (m = n = 50, r = 2).

Empirically, using more samples in the first phase appears to yield faster initial performance, but this advantage is negated
when the number of samples grows large. Finally, although this is not justified theoretically, not splitting the data (i.e., using
the entire dataset for both phases) appears empirically more efficient.

Experiment 2: Impact of the regularization parameter τ . We compare the performance of RS-PE without data splitting
for different values of the regularization parameter of Λ̂τ , namely τ ∈

{
10−4, 10−2, 10−1

}
. The results are presented in

Figure 2.

22The code used in the experiments can be accessed at https://github.com/wilrev/LowRankBanditsTwoToInfinity.
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Figure 2. Impact of regularization (m = n = 50, r = 2)

We note that the regularization parameter does not appear to impact the error significantly as long as it is chosen small
enough.

Given the previous results, in all future experiments, we do not perform data splitting: all samples are used in both phases of
the algorithms. Furthermore the regularization parameter of Λ̂τ will be chosen small: τ = 10−4.

J.1.2. COMPARISON OF RS-PE WITH BENCHMARK ESTIMATORS.

Experiment 3: Scaling of the PE error with the sample size. We compare the RS-PE estimator v̂RS-PE =
∑
i,j w

π
i,j

ĎMi,j

with the SIPS estimator v̂SIPS =
∑
i,j w

π
i,jM̂i,j and the IPS estimator (Wang et al., 2017) which can also be defined as

v̂IPS =
∑
i,j w

π
i,jM̃i,j . Similarly to RS-PE and SIPS, IPS can be interpreted as a plug-in estimator, i.e., it only relies

on an estimator of the reward matrix. It is thus a suitable benchmark to demonstrate the efficiency of the reward matrix

estimator ĎM for the PE task. We also plot the asymptotic upper bound ∥ψπ∥2√
ωmin

√
2 log(16/δ)

T of RS-PE suggested by Theorem
D.7 for δ = 10−2. More specifically, this is the value of the dominant term in the upper bound for α = 0, which one
would expect to match the asymptotic behavior of the error of RS-PE when no data splitting is performed. The results are
presented in Figure 3.

Figure 3. Sample size scaling of the PE error (m = n = 50, r = 2)
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We note that the RS-PE estimator outperforms the SIPS and IPS estimators by a significant margin. The SIPS estimator
appears to perform comparably to the IPS estimator, which is surprising since the latter does not leverage the low-rank
structure. Furthermore, despite the restrictive theoretical condition on the number of samples to ensure that the higher-order
term in the bound of Theorem D.7 is negligible, the asymptotic upper bound appears to closely match the behavior of the
RS-PE error when the number of samples is reasonably large. We finally note that the confidence intervals for RS-PE only
appear larger because of the logarithmic scale on the y-axis.

Experiment 4: Scaling of the PE error with the matrix size. Note that when m = n, Theorems 6.1 and 6.2 suggest that
the PE error of RS-PE and SIPS scale with

√
m, while the error bounds of estimators that do not leverage the low-rank

structure would typically scale with m (Yin & Wang, 2020). We perform an experiment to determine if the matrix size
scaling of the error is also improved experimentally. To isolate the dependency in the size of the matrix, we do not generate
a random reward matrix for each m. Rather, we ensure that the reward matrix retains the same incoherence parameter,
condition number and max-norm for each m by choosing M ∈ Rm×m defined by Mi,j = 1 for all i, j ∈ [m]. Furthermore,
for this choice of M and our policy choices, it can be checked that the instance-dependent term in the RS-PE guarantee of
Theorem 6.2 is simply ∥ψπ∥√

ωmin
=
√
m, which further suggests that we should expect the RS-PE error to scale with

√
m for

this particular instance. The PE error of RS-PE, SIPS and IPS are plotted as a function of m ∈ {1, . . . , 300} on a log-log
scale for T = 10 000. The results are presented in Figure 4.

Figure 4. Matrix size scaling of the PE error (T = 10 000, r = 1)

Surprisingly, all PE estimators appear to have a comparable scaling in m. Nonetheless, RS-PE outperforms the two other
estimators for every m, even though we have chosen a reward matrix for which ∥M∥max = µ = κ = r = 1, so that the
error guarantee of SIPS matches the RS-PE one up to logarithmic factors.

Experiment 5: Scaling of the max-norm error with the matrix size. Similarly to the PE error, when m = n, the
max-norm error bounds of M̂ and ĎM summarized in Section I.3 scale with

√
m. In contrast, the error bounds of matrix

estimators that do not leverage the low-rank structure would typically scale with m. To determine if the scaling in the size of
the matrix is also improved experimentally, we retain the same setting as Experiment 4, but we instead plot ∥M − ĎM∥max,
∥M − M̂∥max and ∥M − M̃∥max as a function of m. The results are presented in Figure 5.
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Figure 5. Matrix size scaling of the max-norm error (T = 10 000, r = 1)

We note that M̂ and ĎM , the reward estimators that leverage the low-rank structure, have a max-norm error that scales
noticeably better than M̃ . Furthermore, ĎM consistently outperforms M̂ , even though their max-norm error bounds match up
to logarithmic factors for our reward matrix choice (see Appendix I.3 for a discussion on this matter).

J.2. Best Policy Identification

Experiment 6 : Comparison of RS-BPI with benchmark algorithms. We compare the value of the policy learned by
RS-BPI, SBPI, and a benchmark algorithm that corresponds to SBPI without taking the rank-r approximation of the
estimated matrix. Specifically, this benchmark outputs the policy π̂ defined by π̂ (i) = argmax1≤j≤m M̃i,j for all i ∈ [n].
The results are presented in Figure 6.

Figure 6. Value of the learned policy against the maximal policy value (m = n = 50, r = 2)

Both low-rank algorithms display improved performance compared to the benchmark, yet the value of the policy learned by
RS-BPI appears to converge much quicker towards the value of the best policy than the ones of SBPI and the benchmark
algorithm.
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