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ABSTRACT

We propose the first experimental study to causally measure bias in social percep-
tion in the latent space of multi-modal models. Previous studies compute corre-

lations between a model’s social judgments and protected attributes, such as race,
age, and gender, using observational wild-collected human-annotated datasets,
such as FairFace. In order to establish causal links between protected attributes
and algorithmic bias, we use a synthetic dataset of face images instead, Causal-
Face, where both legally protected attributes and potential confound attributes,
such as facial expression, lighting, and pose, are controlled independently and sys-
tematically, and thus allow an experimental exploration, which lets us reach causal
conclusions. Our analysis is based on measuring cosine similarities between im-
ages and word prompts, including valence words drawn from the two leading
social psychology theories elucidating human stereotypes: The ABC Model and
the Stereotype Content Model. We find that non-protected attributes are power-
ful confounds and profoundly influence social perception, injecting variability in
measurements whose size is comparable to that induced by legally protected at-
tributes. Clear intersecting biases of race, gender, and age only emerge when these
unprotected attributes are controlled for, which is only possible using CausalFace.
Real-world datasets do not permit a similar level of insight due to spurious corre-
lations introduced by uncontrolled attributes and a lack of specific annotations.

1 INTRODUCTION

Automated intelligent systems are increasingly being applied in manufacturing, entertainment, trans-
portation, health, security, safety, and education. Such “artificial intelligence” (AI) systems can
analyze and synthesize images, sounds, speech, and language and are trained on large corpora of
data and through interaction with humans, using machine learning. Whenever automated systems
interact with humans or make decisions that can affect the health and welfare of humans, it is impor-
tant to ensure that the dignity and welfare of users and stakeholders is preserved. An even-handed
treatment of every person is one crucial concern. The starting point towards this goal is detecting
and measuring potential performance biases vis-a-vis protected attributes such as age, gender, and
race (Kearns & Roth, 2019).

A crucial aspect of measuring bias is identifying the cause of it. This is for two reasons. First, social
justice demands that if the cause of bias is a protected attribute, e.g., being female causes a higher
rejection rate in loan applications, the bias is addressed as soon as possible. Second, only by knowing
the cause of bias can engineers address and fix it. It is important to remember that correlation does

not imply causation, and establishing causes is more difficult than finding correlations. Experiments,
i.e., the systematic modification of one variable at a time, were developed precisely for this purpose.

We focus on the question of how to measure large multimodal model bias in the social judgments
of human faces. We chose CLIP (Radford et al., 2021) as the representative to be tested in our
experiments, it is the state-of-the-art vision-language model widely used for zero-shot classification
(Radford et al., 2021), image retrieval (Agarwal et al., 2021), or for guiding generative text-to-image
models (Rombach et al., 2022; Ramesh et al., 2022; Saharia et al., 2022; Balaji et al., 2022). CLIP
models are trained on large text-image-pair datasets (e.g., Schuhmann et al. (2021)) gathered from
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various internet sources. Naturally, image captions may contain human social biases, some of which
may trickle into the model (Steed & Caliskan, 2021).

To quantify social judgment, we make use of two established theories from social psychology—the
Stereotype Content Model (Fiske et al., 2007) and the ABC-Model (Koch et al., 2016)—which
provide well-established frameworks for measuring stereotypes held by humans.

Current literature is mostly correlative. Bias is measured using test datasets that are collected in
natural settings and annotated for legally protected attributes like race and gender. Algorithmic
performance is measured as a function of such annotations. Unfortunately, the distribution of non-
protected attributes—such as (in the case of face images) lighting, pose, and facial expression or
simply image color statistics (Meister et al., 2023)—across these groups is inevitably correlated with
the protected attributes. Thus, when bias is found, it is unclear whether bias belongs to the algo-
rithm, test data, or both. Additionally, it is difficult to obtain sufficiently diverse samples across all
intersectional groups. Thus, the prevalent approach only allows for correlational conclusions and
often does not achieve statistical significance across all intersectional groups in the dataset.

To address these issues, we propose to adopt an experimental approach by employing a synthetic
dataset of face images that are generated using generative adversarial networks (GANs) (Liang et al.,
2023), where a number of protected attributes (race, gender, age) and additional non-protected at-
tributes (pose, expression, and lighting) are manipulated systematically and independently of each
other. This dataset allows us to directly examine the impact of each attribute, rather than relying on
correlations, and thus arrive at causal imputations of bias.

It is imperative to emphasize that using discrete categories such as race, gender, or age is a method-
ological approximation for evaluating biases within models. Recognizing the richness and complex-
ity of human identities, we advise against using such categories to pigeonhole or label individuals in
real-world contexts. We adopt a simplified race categorization, limiting ourselves to Asian, Black,
and White. As will be clear later, when we refer to “race,” we refer to social constructs, as in the
perception of human observers, rather than biological realities.

2 RELATED WORK

2.1 RESEARCHING BIAS IN CLIP

Fairness in CLIP has been explored by a number of authors, some reporting racial bias in classifica-
tion (Agarwal et al., 2021), gender bias in neutral text (Dehouche, 2021), language-specific biases
(Wang et al., 2021), and learned stereotypes (Wolfe et al., 2022). Such biases can significantly
impact image retrieval, potentially leading to unequal treatment (Geyik et al., 2019).

Bias of CLIP-guided generative text-to-image models has also been studied (Orgad et al., 2023;
Zhang et al., 2023; Cho et al., 2022) by systematically prompting the model and analyzing the
generated image output (Luccioni et al., 2023)—for instance, associating the image of a CEO more
frequently with males than females (OpenAi, 2022; Bianchi et al., 2023). The prompting strategy in
these studies is not anchored by a specific theoretical framework.

We follow another approach, namely estimating CLIP bias via image retrieval. More in detail, we
start from an image dataset, annotated by attributes of interest and a set of text prompts. We itera-
tively consider one image and a text prompt, infer their CLIP embeddings, and compute their cosine
similarity within their shared latent space (Radford et al., 2021). Investigating CLIP embeddings
directly provides distinct advantages over solely analyzing the output of specific prompts, particu-
larly when exploring intersectionality. Intersectionality recognizes that an individual’s identity and
experiences are not singular but are informed by multiple, interconnected layers of discrimination
and disadvantage, including racism, sexism, and classism.

Social categorization and stereotyping are fundamental social-cognitive processes (Fiske & Neu-
berg, 1990). Social Psychology has systematized those processes along the dimensions of Warmth
and Competence (Fiske et al., 2007) . A more recent model has subdivided and renamed those di-
mensions (Koch et al., 2016). We draw from this theoretical foundation to construct text prompts
in our experiments. A few authors in the representation learning literature have seen value in this
approach (Cao & Kosinski, 2023; Ungless et al., 2022; Fraser et al., 2023). Otterbacher et al. (2017)
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found that biases somewhat align with social perceptions of warmth and competence. Unlike Cao
& Kosinski (2023); Ungless et al. (2022), our study shifts the lens from unimodal (language) to
multimodal (text+image) models. Furthermore, unlike Fraser et al. (2023), we directly work with
embedding space rather than analyzing generation outputs.

Finally, and crucially, CLIP bias research relies on observational data, while only a few have ex-
plored utilizing synthetic images: Wolfe et al. (2022) use a GAN to “morph” face photographs to
measure CLIP’s association of multiracial people to minority classes. This method provides limited
control over image attributes and is, therefore, not suitable for our analysis.

2.2 STEREOTYPE MODELS IN SOCIAL PSYCHOLOGY

Given the reflection of human-like biases in Generative AI, our study employs two leading theoreti-
cal frameworks from social psychology that have long been recognized for delineating the primary
dimensions of beliefs about stereotypes.

The Stereotype Content Model (Fiske et al., 2007) (SCM) measures social perceptions in a two-
dimensional space of warmth (W) and competence (C) based on extensive evidence that the two-
variable warmth-competence reduction robustly explains a surprising amount of variation across
perceptions and behavioral reactions to social categories. “Warmth” quantifies the perception of how
good or bad another person’s intentions are. “Competence” refers to the perception of a person’s
capability of acting on their intentions (Fiske et al., 2007). Both categories are described by six
adjectives (Table A.2) each.

A more recent framework, the ABC Model (Koch et al., 2016), proposes beliefs as an alternative
central dimension and subdivides the Warmth and Competence dimensions differently into two cat-
egories, specifically: “Agency” or socio-economic success, conservative-progressive “Beliefs”, and
a group’s “Communion” or warmth. These dimensions are divided into positive and negative va-
lence dimensions containing four to six adjectives each (Table A.2). We denote these dimensions as
A+, A-, B+, B-, C+, and C-.

3 METHODS

3.1 MEASURING BIAS

We assess bias in multimodal models by computing the cosine similarities between text embeddings
and image embeddings, following CLIP’s image retrieval metric (Radford et al., 2021). In our case,
we calculate the similarity between a set of images I (e.g., all face images of a demographic group)
with a dimension D (see Section 2.2) as

cos(I,D) = meani2I,d2D (meant2T cos(i, t(d))) , (1)

where T is a set of contextualized prompt templates (e.g., “a photo of a <adjective> person”, see
Table A.1 for all templates). Averaging similarities over a set of templates is a common practice to
make results more robust (Berg et al., 2022).

The Word Embedding Association Test (WEAT) was designed to measure the differential associa-
tion between two sets of two target dimensions and two sets of polar attributes in text embeddings
(Caliskan et al., 2017). The WEAT has been adapted to discern bias within image embeddings (Steed
& Caliskan, 2021) (where image embeddings represent attributes) and was validated through human
evaluations (Wolfe et al., 2022). We utilize the Single-Category Word Embedding Association Test
(SC-WEAT, Appendix A.2).

Bias can also be quantified through Markedness. Given that CLIP deciphers unstructured visuals via
linguistic patterns, categorizations could be community-specific. Linguistic structures may harbor
biases from dominant groups, leading to “unmarked” (default) or “marked” (non-default) catego-
rizations. Sociologically, markedness amplifies the disparities between marginalized and dominant
entities. We aim to discern if CLIP mirrors such linguistic biases in its visual interpretations (Wolfe
& Caliskan, 2022). Markedness as a metric describes the fraction of images containing a specific
attribute, where the similarity with a neutral text prompt is higher than that with a text prompt con-
taining the said attributes (Appendix A.3).
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3.2 IMAGE DATASETS

The FairFace dataset (Karkkainen & Joo, 2021) is a real-world image dataset commonly used in
studies on AI fairness and bias. It comprises 108,501 face images labeled with information about
race, gender, and age. It offers a balanced representation across seven racial categories. We use
only the overlapping racial categories of all three datasets, which are Asian, White, and Black, and
images that are annotated with an age of 20 years and older. Therefore, we generate a subset of
38,744 images from the Fairface training subset (Figure D.1).

Similar to FairFace, the UTKFace dataset (Zhang et al., 2017) face images, each annotated with
demographic details such as race, gender, and age. From its 23,708 face images, we sampled 14,630
images using the same criteria as for Fairface (Figure D.2).

CausalFace1 is a synthetic face dataset introduced by Liang et al. (2023). Utilizing Generative Ad-
versarial Networks (GANs), the authors create numerous “pseudo-identities” defined by a seed. An
identity can be represented by three different races (Asian, Black, and White) and as male or female.
Importantly, all these prototypes are forced to be as similar as possible in all other attributes except
their race and gender (e.g., facial proportions, clothing, background). In addition, each prototype
image was systematically modified along four semantic attributes (pose, age, expression, and light-
ing). Example images of the data set can be found in Appendix D.2. In this work, we use images
from 100 different seeds, each containing six race-gender combinations. In addition, we sample
variations for age (9), smiling (9), pose (4), and lighting (7). In total, there are 18,000 unique im-
ages included. The unique property of this dataset is that it changes image attributes in an isolated
manner, allowing for causal interpretation. To support this, Liang et al. (2023) visually inspected
whether manipulating one attribute does not induce unwanted changes in other attributes. Addi-
tionally, human annotators confirmed that facial attribute manipulations are equally effective across
demographic groups (Liang et al., 2023, Fig. 3). A nuanced view on the causal interpretation of the
dataset can be found in the Section 5.

3.3 COMPARING INTRODUCED VARIATION

CausalFace uniquely enables comparison of variations due to legally protected attributes (e.g., age,
race, gender) against those from confounds (e.g., smiling, lighting, pose). Given the varying number
of levels within each category (for instance, “smiling” has ten levels, whereas “gender” is binary,
consisting of only male and female), the standard deviation is not universally applicable. To address
this, we use a sampling strategy. We sample two values for x1, x2 ⇠ X for one specific CausalFace
dimension and select two image embeddings i1(x = x1), i2(x = x2) where the value for all other
dimensions are equal. Then the difference in cosine similarities between the two selected images and
a text embedding t is defined by: �(t, i1, i2) = |cos(i1, t) � cos(i2, t)|. This process is repeated
1,000 times, leading us to analyze the distribution of these � values. For ordinal attributes such as
age and smiling, we introduce additional constraints. To ensure a perceptually significant change in
image appearance, we mandate that two samples must differ by at least a threshold: set at 0.7 for age
and 1.1 for smiling2. These thresholds ensure that the images being compared are visually distinct
in the context of the attribute under consideration.

4 RESULTS

4.1 CAUSALFACE AND REAL-WORLD DATASETS SHOW SIMILAR BIAS METRICS

Since CausalFace contains artificially generated images, one could question the dataset’s represen-
tativeness, as these faces might have different properties w.r.t. bias compared to real photos. To
address the representativeness of our synthetic data, we first treat CausalFace as a statistical dataset,
omitting the additional information about non-sensitive attributes and possibly within-seed anal-
yses. In the following, we investigate three metrics—mean cosine similarities, markedness, and
the WEAT, to find out whether CausalFace behaves similarly in comparison to two observational
datasets: FairFace and UTKFace.

1The term “CausalFace” was introduced by us, as the authors do not name their dataset.
2The impact of the thresholds can be better understood by studying the scale of smiling and age, depicted

in Figure D.3 and Figure D.4.
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Table 1: CausalFace, FairFace, and UTKFace have similar overall statistics in CLIP latent
space. Markedness indicates the preference (in %) for a neutral prompt over a race or gender-
specific one. White is mostly unmarked while all other categories are marked. The mean cosine
similarities (in %) represent averages of cosine similarities from both the SCM and the positive
dimensions of the ABC models.

Image Markedness Mean Cosine Similarity

Category CausalFace FairFace UTKFace CausalFace FairFace UTKFace

White 46.00 54.12 32.58 23.29 23.07 22.25
Black 0.73 3.92 2.89 22.94 22.61 21.93
Asian 0.05 3.88 4.07 23.78 23.42 22.68
male 3.06 0.00 20.84 23.22 23.07 22.03
female 6.58 0.00 11.59 23.45 23.17 22.45

Figure 1: WEAT scores in CausalFace are comparable to those in FairFace and UTKFace. The
dots represent the mean difference per dimensions (e.g., A+). The grey horizontal line marks the zero
value. The different colors indicate whether data comes from CausalFace, FairFace or UTKFace.
Shapes indicate whether the permutation test indicated a p-value < .05 or not.

Mean cosine similarities are calculated as the mean of cosine similarities between an image cate-
gory and all positive items of the social perception dimensions ( Equation (1)). The mean cosine
similarities exhibit uniform trends across both datasets. Specifically, Asians consistently display the
higher cosine similarities than Whites, who exhibit higher similarities than Blacks (Table 1).

Markedness is the relative preference frequency for a neutral prompt over a race or gender-specific
one (Wolfe & Caliskan, 2022) (Section 3.1). In all three datasets, CLIP shows a preference for
an unspecified prompt over one that specifies the race as ”White.” The percentages vary, ranging
from 32.58%, 46.00%, to 54.12%. CausalFace falls in the middle, exhibiting neither the highest nor
the lowest preference for an unspecified term. CausalFace and FairFace both display a significant
decrease in preferring an unmarked prompt for the remaining four race or gender categories. This
decline is more pronounced in FairFace than in CausalFace. In contrast, UTKFace shows a less
marked decrease. (Table 1).

The visualizations of WEAT scores further underscore the alignment between CausalFace and the
two observational datasets (Figure 1). Dotted lines, each in a unique color, indicate the average
scores across various social perception dimensions for each dataset. The most striking similarities
in means are observed when comparing Asians to Blacks and Whites to Blacks. In the cases of
Asian versus White and Male versus Female comparisons, CausalFace and FairFace demonstrate
closely matched scores, while UTKFace records lower WEAT values in both scenarios. Notably,
across all five comparisons, the variance in mean scores within a single panel is less pronounced
than the differences observed between panels.

By evaluating mean cosine similarities, markedness, and WEAT scores, we observe that CausalFace
displays trends that closely mirror those in FairFace and UTKFace. Following Geyik et al. (2019)
, we have also examined additional metrics such as Skew@k, MaxSkew@k which present a con-
sistent narrative (Appendix B.1). Consequently, we deduce that the synthetic image dataset offers a
valuable foundation for examining biases present in real-world images.
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Figure 2: Intersectional groups cluster in CausalFace. Not so in FairFace and UTKFace. Com-
parison of social perceptions by intersectional group: Markers depict the means of social perceptions
for different intersectional groups. The x-axis represents positive, and the y-axis negative valence.
One can observe similar cluster locations w.r.t. race and gender in all data sets. However, the effect
of age is more clearly visible in CausalFace due to successful noise reduction.

4.2 CAUSALFACE REVEALS CLEAR INTERSECTIONAL PATTERNS

Having examined bias at an aggregate level, focusing primarily on the commonly studied legally
protected attributes of race and gender, we now turn our attention to a more detailed investigation of
the intersecting dimensions of gender, age, and race.

Comparing positive and negative valence items, highlights differences between CausalFace and the
observational datasets of FairFace and UTKFace (Figure 2). While CausalFace showcases distinct
clusters for combinations of race, gender, and age, neither FairFace nor UTKFace display distinct
clusters. The clarity in the CausalFace representation can most likely be attributed to the controlled
environment where variables like lighting and pose are held constant. FairFace and UTKFace, on
the other hand, do not offer this level of control, making their representation more susceptible to
external factors. As a result, the synthetic nature of CausalFace offers a unique lens, illuminating
intersecting biases that might remain obscured within a purely correlational dataset.

A striking observation in all subplots is the notable positive correlation. This suggests that if a
group registers high scores on the positive dimension, it simultaneously reflects high scores on the
negative dimension. This is counterintuitive, as one would expect these opposing dimensions to
correlate negatively. This observation can be explained as text embeddings of related dimensions
with opposing valence are grouped closer in CLIP’s embedding space than unrelated dimensions (see
Appendix C for a detailed analysis on this topic). In the context of our bias analysis, it is important
to highlight the pivotal distinction between valence and intensity: We use “valence” as the direction
of change in cosine similarity (increasing or decreasing) and “intensity” as the magnitude or absolute
difference in change. While differences in valence are negligible, variations in intensity for various
intersecting groups are salient. Intriguingly, across all three dimensions, Asians exhibit the highest
intensity. Blacks, in contrast, register the lowest, with Whites occupying an intermediate position.
This is true for all three datasets and aligns results of mean cosine similarities (Table 1).
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(a) Smiling and pose systematically influence social perception. The three panels depict the variations in
smiling, lighting, and pose on the x-axis. The cosine similarity of a neutral text prompt is depicted by the grey
dashed line, serving as a reference. Deviations from this reference, caused by adding a social perception item
to text prompts, are represented as dots connected by thin grey lines. While both lighting and pose exhibit
structured patterns, the effects of lighting appear more stochastic in nature. Illustration showing actual cosine
similarities on the y-scale is shown in Figure B.2.

(b) Facial expression has a differential impact by intersecting groups. Smiling causes a more pronounced
change in social perceptions of women than men. Black males show a strikingly different pattern for Belief.

Figure 3: Non-protected attributes structurally impact social perception.

The age-related effects observed in CausalFace across the belief dimension are especially notewor-
thy. Here, the line formed by the cross (Black) and square (White) markers is more extended than
the one outlined by the round markers (Asian). This suggests a more pronounced age effect for
Black and White groups than Asians within the belief dimension. “Agency” presents a contrasting
age effect for male and female Asians: as Asian males age, intensity decreases. Conversely, older
Asian females demonstrate heightened positive scores on the agency dimension, while the negative
agency dimension remains neutral.

FairFace and UTKFace, by contrast, are considerably more variable. Although, on average, Asians
might score the highest in intensity, the data is muddled, with factors like age playing a significant
role. For instance, some younger Asians register as low in intensity as certain older black individuals.

4.3 FACIAL EXPRESSION AND POSE SIGNIFICANTLY CONFOUND SOCIAL PERCEPTION

Unlike traditional correlational datasets such as FairFace and UTKFace, CausalFace enables the
exploration of the influence of commonly thought of as confounding factors like lighting, pose, and
facial expression.

Figure 3a illustrates the impact of these three variables on cosine similarities for various dimensions
derived from the ABC and SCM models. The cosine similarity of a neutral text prompt is depicted
by the grey dashed line, serving as a reference. Deviations from this reference, caused by adding
a social perception item to text prompts, are represented as dots connected by thin grey lines. To
support our interpretation of the visual insights drawn from Figure 3a, we employed linear regres-
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sion models, accounting for a constant, to quantify the effects of confounding variables on social
perception (Table B.1). As a face transitions from a grumpy expression to a smile, it is perceived in
a more positive light and less negatively. In the leftmost panel of Figure 3a (Smiling), the slope is
positive for positive-valence items (�+ = 1.03 ⇥ 10�3, p < 0.001) and negative for their negative
counterparts (�� = 1.03⇥10�3�3.3⇥10�4, p < 0.001). Lighting’s influence on perception is less
evident. The trajectories appear predominantly flat (� = �1.1⇥ 10�8, p < 0.001), suggesting that
lighting might not significantly impact social perception. Regarding pose, a value of zero denotes a
frontal stance, and negative/positive values correspond to left/right tilts. All dimension curves first
slope negatively (�<0 = �1.9⇥ 10�3, p < 0.001) up to the midpoint, then symmetrically increase
(�<0 = 2.0 ⇥ 10�3, p < 0.001). To interpret this effect, we need to consider that the actual cosine
similarities are the highest for frontal poses given a neutral prompt and comparably low (< 0.23) for
the most left and most right side poses (Figure B.2). In other words, for side-pose photos, the image
embedding is more distant from the “person” mode in the embedding space. This makes the inter-
pretation of changes induced by adding social adjectives to the text prompt challenging. However,
we induce from this observation that pose variations are a significant source of noise that overlay
other effects and could explain a significant share of the noise present in real-world datasets. Future
research could address this observation in more detail.

As the effect of facial expression on social perception is most salient, we show an intersecting plot
of race and gender and additionally vary facial expression (Figure 3b). Consistency is evident in the
agency dimension’s slope across intersecting groups, with women showcasing a more pronounced
change as their smile varies. For “belief”, only black males deviate from the pattern consistently
observed for the remaining subgroups. As their smiles intensify, negative associations decrease.
Notably, they are the only subgroup showing amplified positive associations with intensified smiles.
The communion dimension’s interpretation remains ambiguous.

4.4 VARIABILITY FROM PROTECTED ATTRIBUTES IS NOT GREATER THAN THAT FROM
NON-PROTECTED ONES

Figure 4: Variation from protected attributes
(orange) and non-protected ones (purple) are
comparable in size. Notably, age-induced varia-
tion is less pronounced than that from pose. See
Figure B.3 for a more detailed analysis of single
attributes in social perception models and for se-
lected control attributes.

CausalFace uniquely enables an analysis con-
trasting variations from legally protected at-
tributes (e.g., age, race, and gender) with those
typically seen as confounds. Figure 4 high-
lights the variation in cosine similarities (pro-
cedure described in Section 3.3) across these
attributes, with the legally protected attributes
showcased in orange and the non-protected at-
tributes delineated in purple. While one might
expect protected variables to induce stronger
changes, tour analysis contradicts this intuition.
To validate the inferences drawn from the vi-
sual representation, we conducted t-tests for all
combinations of protected and non-protected
variables (Table B.2).

In sum, race causes the most pronounced dif-
ferences throughout, while gender is overshad-
owed by pose and smiling (p�value = 0.16).
Moreover, when focusing on negative valence,
the variance attributed to age is comparable to that of lighting (p�value = 0.25) and produces the
smallest variations among all examined variables.

Our observations suggest that non-protected attributes are important and should be taken into con-
sideration to obtain a clear measurement of the socially relevant age- and gender-induced variations.

5 DISCUSSION

We causally investigated social perception bias in CLIP, anchoring our exploration in social psy-
chology theories. We used three datasets: the real-image-based FairFace and UTKFace, and the
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synthetically constructed CausalFace. FairFace and UTKFace are observational and allow comput-
ing correlations between protected attributes and social perception while not controlling for other
attributes. By contrast, CausalFace allowed us to examine both legally protected characteristics and
non-protected attributes, usually not studied by the bias research community, and to reach causal
conclusions since attributes are controlled systematically and independently.

When investigating intersecting groups of age, race, and gender while controlling for other variables,
CausalFace reveals distinct clusters, which suggest the presence of algorithmic bias. In contrast,
these biases are not visible in FairFace or UTKFace, presumably because pose, lighting, and facial
expression are not controlled there and introduce noise that obfuscates the signal.

Furthermore, we find that image-related confounding variables (i.e., lighting) have a comparably
small stochastic impact on social perception. In contrast, subject-related non-protected variables,
such as pose and facial expression, can have as strong of an impact on social perception as protected
variables (age, gender, race). In particular, a shift from a grumpy to a neutral expression notably
amplified positive associations while diminishing negative ones. Moreover, experiments altering
the pose of a face show strong changes in CLIP’s association of the image to a person in general.
This effect potentially hinders the interpretation of social attribution and underlines the confounding
effect of pose changes.

Our experiments reveal strong racial bias in CLIP, the variations attributed to gender are compara-
ble to those of other non-protected attributes. Age introduces the least variations, in contrast with
existing literature (Agarwal et al., 2021; Fraser et al., 2023), where it is considered a strong factor.

As a result, the discovery that biases related to legally protected attributes are not inherently more
pronounced than those related to non-protected attributes conveys a crucial insight: For accurate
measurement and protection of these attributes, it is essential that analyses rigorously account for all
relevant confounding factors.

Generative models, in particular GANs and Diffusion Models, can now generate face images that
look realistic to human observers, and one can effectively control some of the facial attributes.
There are three caveats. First, manipulating one attribute may induce unwanted changes in other
attributes; (Balakrishnan et al., 2021) show how to address this issue systematically, and it should
be checked by visual inspection, as was done for the dataset we use (Liang et al., 2023). Second,
it is possible that some physiognomies are generated more frequently than others. E.g., within the
European group, it is possible that more Mediterranean-looking and fewer Scandinavian-looking
physiognomies are generated. If this were a concern for a study, one would have to come up with
a fine-grained definition of race and control this attribute directly, as our dataset does for the main
racial groups. Third, it is possible that facial attribute manipulations are more or less effective
for some or the other demographic groups. For the dataset we use, this was excluded by direct
verification with human annotators (Liang et al., 2023, Fig. 3). Fourth, Meister et al. (2023) identify
two primary confounding factors in gender research: pose and color. CausalFace directly addresses
the pose, while it indirectly deals with color. Although CausalFace controls for image background,
clothing, and hair color, thereby presumably minimizing color confounds, it does not explicitly
eliminate them. Future research may directly tackle this aspect. Generative methods and techniques
to validate their output are progressing fast. Thus, the experimental method we advocate, based on
carefully controlled synthetic data, will become an increasingly attractive option for researchers.

Future research should extend our approach to a broader spectrum of vision-language models. Our
study uses social perception as the primary outcome metric, revealing that smiling and pose signifi-
cantly affect this measure. Research in human contexts shows that smiling, in particular, influences
not only social but also job-related perceptions. Subsequent studies might explore practical metrics
like occupation, examining how different levels of smiling and pose influence these factors in gen-
erative AI models. Additionally, synthetic datasets like CausalFace could enhance current debiasing
methods (e.g., Berg et al., 2022) since they produce more precise measurements of bias. Future work
could also address the design of synthetic datasets specifically for debiasing efforts, circumventing
the cumbersome and costly annotation required for real-image datasets. These datasets should give
researchers direct control over an increasing number of relevant variables, allowing a nuanced ex-
ploration of biases without additional costs.
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