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Figure 1: Our Nabla-R2D3 can efficiently and robustly finetune 3D-native diffusion models with differentiable
reward models learned from human preferences on appearance, geometry and many other attributes.

Abstract

Generating high-quality and photorealistic 3D assets remains a longstanding chal-
lenge in 3D vision and computer graphics. Although state-of-the-art generative
models, such as diffusion models, have made significant progress in 3D generation,
they often fall short of human-designed content due to limited ability to follow
instructions, align with human preferences, or produce realistic textures, geome-
tries, and physical attributes. In this paper, we introduce Nabla-R2D3, a highly
effective and sample-efficient reinforcement learning alignment framework for
3D-native diffusion models using 2D rewards. Built upon the recently proposed
Nabla-GFlowNet method, which matches the score function to reward gradients
in a principled manner for reward finetuning, our Nabla-R2D3 enables effective
adaptation of 3D diffusion models using only 2D reward signals. Extensive ex-
periments show that, unlike vanilla finetuning baselines which either struggle to
converge or suffer from reward hacking, Nabla-R2D3 consistently achieves higher
rewards and reduced prior forgetting within a few finetuning steps.
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1 Introduction

Recent advances in 3D generative models have enabled non-experts to produce batches of 3D digital
assets at low cost for downstream tasks such as gaming, film, and robotics simulation. However,
these assets are rarely production-ready and often require post-processing due to low visual fidelity,
suboptimal geometry, ethical biases, and poor instruction following (in text-to-3D setups). These
issues largely stem from training datasets that diverge from human preferences and 3D constraints.

A common solution is to first obtain a reward model that reflects human preferences and later perform
reward finetuning on the generative model—a process commonly known as reinforcement learning
from human feedback (RLHF). Originally developed for aligning autoregressive language models,
reward finetuning has also been successfully applied to diffusion models, which are among the most
popular generative models in the vision domain. It is therefore natural to consider applying similar
techniques to 3D diffusion models.

However, extending RLHF to 3D diffusion models is non-trivial due to the lack of high-quality 3D
reward models. In 2D settings, reward finetuning typically relies on 2D reward models; by analogy,
3D finetuning would require 3D reward models. Yet collecting diverse and high-quality 3D data
remains a longstanding challenge, making it difficult to build reward models that reflect human
preferences on attributes such as aesthetics, geometry, instruction following, and physical plausibility.

Inspired by the success of the "lifting from 2D" approach for 3D generation, where one optimizes a 3D
shape such that each view is of high likelihood under a pretrained 2D generative model, we propose to
similarly finetune 3D-native diffusion models [46, 61, 38, 23, 24, 44] with 2D reward models. Using
a 3D-native model, we can sample different camera views and perform the lifting operation in an
amortized fashion across training instances, rather than optimizing each object individually. However,
sampling from 2D views yields high variance during optimization and can lead to instability and
overfitting of 3D-native diffusion models. In light of a state-of-the-art reward finetuning method
called Nabla-GFlowNet [25], which proves to be highly robust, efficient and effective on 2D diffusion
models, we propose Nabla-R2D3 (short for Reward from 2D for Diffusion Alignment in 3D via
Nabla-GFlowNet), which adapts this method to finetune 3D-native diffusion models with 2D rewards.
We empirically show that our method produces 3D-native models that are better aligned with human
preferences and avoid major artifacts, such as unexpected floaters, commonly produced by prior
methods. Furthermore, we demonstrate the effectiveness of different 2D reward models for aligning
3D-native diffusion models for different preferences.

We summarize our major contributions in this paper below:

• To the best of our knowledge, Nabla-R2D3 is the first method to effectively and robustly
align 3D-native diffusion models with human preferences using only 2D reward models.

• We demonstrate several examples of 2D reward models, including appearance-based and
geometry-based ones, for aligning 3D-native generative models on different attributes.

• Our extensive experiments show that, compared to the proposed vanilla reward finetuning
baselines, our Nabla-R2D3 can effectively, efficiently and robustly finetune 3D-native
generative models from 2D reward models with better preference alignment, better text-
object alignment and fewer geometric artifacts.

2 Related Work

Reward Finetuning of Diffusion Models. The earliest attempt at reward finetuning for diffusion
models, named DDPO [2], views the denoising process of diffusion models as trajectory sampling in a
Markov decision process (MDP), in which each state is a tuple of a noisy image and the corresponding
time step; a sampled trajectory starts from a random Gaussian noise at time T and, through the iterative
stochastic denoising process, reaches a sample image at time 0. With this MDP defined, DDPO
leverages the classical policy gradient method in reinforcement learning (RL) to finetune diffusion
models. As reward models are typically learned with neural nets and thus differentiable, DDPO does
not effectively leverage the available first-order information in the reward model. To address this
issue, methods like ReFL [48] and DRaFT [4] treat each sample trajectory as a deep computational
graph and, by assigning reward values to the states, use back-propagation to directly optimize model
parameters with respect to reward signals in an end-to-end fashion. While efficient in practice, these
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methods lack probabilistic grounding—their training objectives are not designed to approximate the
reward-weighted distribution—and thus tend to overfit to the reward model. A parallel path is to
adopt stochastic optimal control (SOC) that frames the alignment objective as an optimal control
problem. The SOC approach in theory may achieve ideal results, but the proposed methods [42] so
far are either ineffective or computationally expensive. Recently, new RL-based diffusion finetuning
methods are proposed in the framework of generative flow networks [1, 58, 55, 27, 30, 57, 56, 59, 52]
(or GFlowNets in short) that builds generative models on a directed acyclic graph to generate
samples according to a reward distribution. The resulting finetuning methods, albeit derived in
GFlowNet language, are also deeply rooted in (and in many cases equivalent to) soft Q-learning [9]
in reinforcement learning. These new RL methods are constructed from first principles and are shown
to be effective and efficient in creating finetuned diffusion models that generate diverse samples.

3D Generation via “Lifting from 2D”. Due to the scarcity of 3D data, several works propose
generating 3D shapes with only 2D signals. One early work in this direction is Dream Field [14],
which initializes a 3D shape and optimizes the shape with CLIP scores on images rendered from
randomly sampled camera views of the shape. Since the CLIP model is not a generative model,
it is hard, if not impossible, to yield detailed appearance and geometry in generated 3D shapes.
Following Dream Field, DreamFusion [31] was proposed to use score distillation sampling (SDS)
that replaces CLIP scores with diffusion losses on rendered views. Such an approach is used not
only for 3D object synthesis from scratch with 2D models, but also for texture generation on known
geometry [36], 3D object synthesis with video generative models [15] and so on. However, the lifting
approach is highly unstable and requires extensive hyperparameter tuning [31]. Another issue is the
famous Janus problem that implausible 3D objects may be generated even if most of the 2D views
are reasonable—demonstrating the issue of the lack of 3D priors. In addition, these lifting-based
3D generation methods take a long time to sample only one single object and are less suitable for
downstream tasks due to high computational cost. Our proposed method is free from these issues
because it directly works on and infers from 3D-native diffusion models.

Alignment in 3D Generation. Apart from the per-sample alignment with SDS-based “lifting from
2D” approaches [51, 63, 13], probably the methods most relevant to ours are MVReward [43] and
Carve3D [47], both of which finetune a multi-view diffusion model with a separate multi-view-based
reward model. These methods assume a multi-view representation of 3D objects, a representation that
does not guarantee 3D consistency. Moreover, since this representation does not encode ground-truth
normal or depth maps, external estimators must be employed to improve geometry using geometric
rewards. Another line of 3D alignment is through direct preference optimization (DPO) [35, 63],
where a model is finetuned on a preference dataset and without any explicit reward model. While
DPO is conceptually simple, alignment with a reward model is generally better [29] and applies to
scenarios where we have analytical and/or expert-designed reward models. There is a recent trend
of post-training alignment with test-time scaling [16, 28] to filter undesired samples or dynamically
adjust sampling strategy during inference. Such a strategy is applied to 3D generation [7], but it is
typically costly and do not leverage the gradient information in reward models.

3 Preliminaries
3.1 Diffusion models and RL-based finetuning

Diffusion models are a powerful class of generative models that generate samples through sequential
denoising process. To be specific, it typically starts from time T with a point xT sampled from a
standard Gaussian distribution, and gradually generate cleaner samples through a learned backward
process p(xt−1|xt) until it obtains the final sample x0. The backward process p(xt−1|xt) is trained
to match a forward process q(xt|xt−1), typically set as a simple Gaussian distribution. For instance,
in a popular diffusion model DDPM [11], the corresponding noising process is q(xt+1|xt) =

N (
√
αt+1/αtxt,

√
1− αt+1/αtI) and q(xt|x0) = N (

√
αtxt,

√
1− αtI) with a noise schedule

{αt}t. To train a DDPM model on a dataset D, we use the score matching loss:

Et∼Uniform({1,...,T}),ϵ∼N (0,I),xT∼D w(t)∥ϵθ(
√
αtxT +

√
1− αtϵ, t)− ϵ∥2, (1)

where w(t) is a weighting scalar, and ϵθ(xt, t) is a neural net that predicts the noise vector ϵ from
xt. The stochastic sequential denoising process can be treated as a Markov decision process (MDP)
in which (xt, t) is a state, (xT , T ) is the initial state, (x0, 0) is the final state, p(xt|xt+1) is the
transition function. With such an MDP defined, one can align the underlying diffusion model with
any reinforcement learning algorithm [2] and optimize some terminal reward R(x0).
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3.2 Diffusion alignment via gradient-informed RL finetuning

To preserve prior in the pretrained model pbase(xt|xt+1), a typical finetuning objective is to match
the “tilted” reward distribution pbase(x)R

β(x) where β controls the amount of prior information in
the finetuned model. With the MDP defined in Sec. 3.1, it is shown that we may collect on-policy
trajectories {(xT , ..., x0)k}Kk=1 from the finetuned model pθ(xt|xt+1) (where K is the batch size)
and optimize some RL objective. A recent method called Nabla-GFlowNet shows that we may
efficiently and robustly finetune a diffusion model with “score-matching-like” consistency losses:

Lforward(xt−1:t) =
∥∥∇xt−1

log p̃θ(xt−1|xt)− γtβ /∇
[
∇xt−1

logR(x̂θ(xt−1))
]
− gϕ(xt−1)

∥∥2, (2)

Lreverse(xt−1:t) =
∥∥∇xt log p̃θ(xt−1|xt) + γtβ /∇

[
∇xt logR(x̂θ(xt))

]
+ gϕ(xt)

∥∥2, (3)

and the terminal loss Lterminal(x0) = ∥gϕ(x0)∥2, where log p̃θ = log pθ − log pbase represents the
log-density ratio between the finetuned and base models., x̂θ(xt) = (xt − σtϵθ(xt))/αt is the
expected one-step prediction of x0 (i.e., E[x0 | xt]) under the finetuned model, ϵθ(xt) is the noise
prediction network of the finetuned model (αt and σt denote the signal and noise scales from the
forward process). /∇ is the stop-gradient operation, β controls the relative strength of the reward with
respect to the prior of the pretrained model and γt is the decay factor of the guessed gradient.

The total loss follows (where wB is a non-negative weighting scalar):

Ltotal = ExT∼N (0,I),(xT−1,...,x0)∼pθ(xt|xt+1)

[
Lterminal +

∑
t

(Lforward + wBLreverse)
]
. (4)

This loss is originally derived within the framework of GFlowNet—a generative model with the
MDP defined on a directed acyclic graph in which the terminal states are sampled with probability
proportional to the corresponding rewards. It is shown [25] that this special set of losses is indeed
equivalent to a gradient version of the soft Q-learning loss [9] in the reinforcement learning literature.

4 Method

4.1 Efficient and Robust 3D Diffusion Alignment with 2D Rewards

Suppose that we have a 2D reward model R(x0) that maps some image x0 to the corresponding
reward. We adopt a common assumption in the text-to-3D literature: the 3D reward model can be
derived from a 2D reward model via multi-view rendering.

logR3D(z0) = E
c∼C

logR(h(z0, c)), (5)

where z0 is a clean 3D shape, h(z0, c) is the rendering function that maps z0 to the image with camera
pose c sampled from a set of camera poses C. Notice that if R(·) is approximated with the negative
diffusion loss with a pretrained 2D diffusion model, the 3D reward is basically the score distillation
sampling (SDS) objective in DreamFusion [31] (with slight differences in implementation):

logR3D, SDS(z0) = − E
ϵ∼N (0,I),t∼Uniform({1,2,...,T}),c∼C,xt=αth(z0,c)+σtϵ

wt∥ϵ2D(xt)− ϵ∥2. (6)

where ϵ2D is the ϵ-prediction network of the 2D diffusion model and wt is some weight factor.

Based on the above assumption, we derive the following ∇-DB losses for finetuning 3D diffusion
models on 2D reward models (with the terminal loss staying the same as Lterminal(z0) = ∥gϕ(z0)∥2):

Lforward(zt−1:t) = E
c∼C

∥∥∥∇zt−1 log p̃θ(zt−1|zt)− γtβ /∇
[
∇zt−1 logR(h(ẑθ(zt−1), c))

]
− gϕ(zt−1)

∥∥∥2,
(7)

Lreverse(zt−1:t) = E
c∼C

∥∥∥∇zt log p̃θ(zt−1|zt) + γtβ /∇
[
∇zt logR(h(ẑθ(zt), c))

]
+ gϕ(zt)

∥∥∥2. (8)

Empirically, we find that the following approximate loss alone works well:

Lapprox(zt−1:t) = E
c∼C

∥∥∥∇zt−1
log p̃θ(zt−1|zt)− γtβ /∇

[
∇zt−1

logR(h(ẑθ(zt−1), c)))
]∥∥∥2, (9)

with which we assume that our educated guess of the “reward gradient” is accurate and therefore
there is no need to learn the correction term gϕ with the reverse-direction loss anymore. We use this
simple loss throughout the rest of the paper.
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4.2 Practical 2D Reward Models for 3D Native Diffusion Models

2D rewards from appearance. It has been shown that RGB appearance in 2D views alone can
support high-quality 3D generation, as demonstrated by lifting-from-2D methods [31]. We follow
recent methods in SDS-based reward-guided 3D generation and consider the following reward models
for finetuning 3D-native diffusion models: 1) Aesthetic Score [17], trained on the LAION-Aesthetic
dataset [17] to measure the aesthetics of images, and 2) HPSv2 [45], trained on HPDv2 dataset [45]
to measure general human preferences over image quality and text-image alignment.

2D rewards from geometry. In many cases, multiview RGB information can still fall short in
creating fine-grained and 3D-consistent geometric details due to the lack of sufficient 3D priors
or regularization. Inspired by the recent progress in single-view depth and normal estimation, we
propose to explicitly encourage the consistency between rendered RGB images and the 3D geometric
predictions inferred from those images. In our experiments, we employ state-of-the-art normal map
estimators and take as the reward the inner product between rendered normal maps (with approximate
volumetric rendering for Gaussian splatting and NeRF representations) and the normal maps predicted
from rendered RGB images:

Rnormal(z) = E
c∼C

[〈
hnormal(z, c), fnormal

(
hRGB(z, c)

)〉]
(10)

where hnormal(z, c) and hRGB(z, c) denote the rendered normal map and rendered RGB images,
respectively, from some 3D representation z at camera pose c in some camera pose set C and fnormal is
some pretrained normal map estimator, for which we use the one-step normal map prediction model
in StableNormal [50] in our experiments.

Inspire by [53] which proposes to use depth-normal consistency to improve the geometric quality of
reconstruction, we also propose to use the Depth-Normal Consistency (DNC) reward:

RDNC(z) = E
c∼C

[〈
hnormal(z, c), T

(
hdepth(z, c)

)〉]
(11)

where the pseudo normal map T
(
hdepth(z, c)

)
can be computed by taking finite difference of 3D

coordinates computed from the rendered depth map.

5 Experiments

5.1 Base model, baseline, metrics and prompt dataset

Base models. We consider two state-of-the-art and open-sourced base models: DiffSplat [18],
available in two variants finetuned from PixArt-Σ [3] and StableDiffusion-v1.5 [37] (SD1.5 for short),
and GaussianCube [54]. We use 20-step and 50-step first-order SDE-DPM-Solver [26] for DiffSplat-
Pixart-Σ and GaussianCube, respectively, and 20-step DDIM [39] for DiffSplat-StableDiffusion1.5.
Unless otherwise specified, we use the DiffSplat-PixArt-Σ [3] for experiments.

Baseline methods. With the 3D reward defined as an expectation of 2D rewards, other alignment
methods can be similarly applied once we use stochastic samples to compute 3D rewards. Specifically,
we consider these baseline methods: 1) DDPO [2], which finetunes diffusion models with the
vanilla policy gradient method, 2) ReFL [48], which directly optimizes R(ẑθ(zt)) with a truncated
computational graph zt+1 → zt → ẑθ(zt) and a randomly sampled t, and 3) DRaFT [4] , which
directly optimizes R(z0) with a truncated computational graph zK → zK−1 → ...→ z0. For ReFL,
we sample t from 15 to 19; for DRaFT, we use K = 1.

Evaluation metric. Following alignment studies in 2D domains [25, 60, 6], we consider three
metrics: 1) average reward value, 2) multi-view FID score [10, 8] for measuring prior preservation
and 3) multi-view CLIP similarity score [34] for measuring text-object alignment. The multi-view
metrics for any given text prompt are computed by first computing metrics on each view and then
taking the average over all views. Similarly, we compute metrics for each prompt and average them to
obtain the final multi-view metrics. We use 60 unseen random prompts during the finetuning process
for evaluation. For each prompt, we sample a batch of 3D assets (of size 32) to compute the metrics.

Prompt dataset. We use the prompt sets in G-Objaverse [32], a high-quality subset of the large 3D
object dataset Objaverse [5]. For experiments on geometry rewards, we filter out the prompts for
which the base models yield very low reward values.

5



0 100 200 300 400 500 600
Update Step

4.5

5.0

5.5

6.0

6.5

R
ew

ar
d

0 100 200 300 400 500 600
Update Step

50

100

150

200

250

300

350

400

450

FI
D

0 100 200 300 400 500 600
Update Step

17.5

20.0

22.5

25.0

27.5

30.0

32.5

35.0

C
LI

P 
Si

m
ila

rit
y 

(1
0

²)

Ours ReFL DRaFT DDPO

Figure 2: Convergence curves of metrics for different finetuning methods on Aesthetic Score. Our method
achieves faster finetuning with better prior preservation and text-object alignment than ReFL and DRaFT. In
addition, our method produces results with significantly lower variance in FID and CLIP similarity.
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Figure 3: Trade-offs among reward maximization, prior preservation, and text-object alignment for various
reward finetuning methods on Aesthetic Score experiments. Each data point represents evaluation results of
model checkpoints saved at every 20 finetuning iterations. Models with higher rewards, higher CLIP similarity
scores, and lower FID scores are considered superior. Our Nabla-R2D3 shows better trade-offs between
reward-improvement, and other metrics and consistently outperforms the baselines.

Implementation Details. We follow [25] and regularize the gradient updates: Lreg =

λ ∥ϵθ (xt)− ϵθ† (xt)∥2, where θ† is the diffusion model parameters in the previous update step
and λ is a positive scalar. We set λ to 3e3, 5e3, 1e4 for Aesthetic Score, HPSv2 and Geometry
Reward respectively. During training, we sub-sample 40% of the transitions from each collected
trajectory. For HPSv2 and Aesthetic Score experiments, we set the reward temperature β to 2e6 and
1e7, respectively; for geometry rewards, we set β to 1e6. To sample camera views c, we first sample
four orthogonal views (front, left, back and right) with randomly sampled elevation ±20◦ and then
apply azimuthal perturbations by adding random offsets within a predefined range ±60◦. We use a
learning rate of 10−4 for ReFL, DDPO, DRaFT and Nabla-R2D3. The rest of the implementation
details are elaborated in the appendix.

5.2 Results

General experiments. In Tab. 1, we show the metrics (average over 3 random runs) of models
finetuned on different reward models with different finetuning methods. Our Nabla-R2D3 is shown
to be capable of achieving the best reward value at the fastest speed, and at the same time preserving
the prior from the base model plus text-object alignment. We show in Fig. 2 the evolution of different
metrics (both the mean value and the standard deviation) for different methods. As higher rewards
inevitably lead to worse prior preservation and text-object alignment, we illustrate which method
achieves the best trade-off by presenting the Pareto frontiers of all methods. Specifically, we plot
the results from different checkpoints saved at various fine-tuning iterations of each independent run
(with different random seeds) in Fig. 3. Furthermore, in Fig. 4, 5 and 6, we visualize the generated
assets with the corresponding reward values from different finetuning methods and demonstrate that
our method can qualitatively yield better alignment for various reward models meaningful for 3D
generation. To illustrate that our method leads to more robust finetuning, we show in Fig. 7 the assets
generated using the same random seeds with models finetuned with Nabla-R2D3 and DRaFT. The
shape with the DRaFT-finetuned model exhibits the severe Janus problem, where rendered multi-view
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Figure 4: Qualitative comparison of 3D assets produced by models finetuned with different methods on Aesthetic
Score. We show for each method on the left the average reward of the visualized assets. For fair comparison, we
pick the model checkpoints that generate the highest rewards but without significant overfitting patterns.

images display inconsistent or contradictory characteristics from different viewpoints, while the one
from Nabla-R2D3-finetuned model does not.

Table 1: Quantitative comparison between our method and the baselines on different reward models.
Since it would be possible to trade FID with reward, we further present what the rewards are if FIDs
are similar (with early stopping) in Tab. 5.

Method Aesthetic Score HPSv2 Normal Estimator

Reward↑ FID↓ CLIP-Sim↑(10−2) Reward↑(10−2) FID↓ CLIP-Sim↑(10−2) Reward↑(10−2) FID↓ CLIP-Sim ↑(10−2)

Base Model 4.72 55.26 34.58 22.86 55.26 34.58 89.48 55.26 34.58

ReFL 5.82 352.97 21.89 24.92 274.44 32.40 90.60 112.06 33.99
DDPO 4.54 172.95 32.64 22.23 69.59 34.35 89.45 63.93 34.56
DRaFT 5.51 337.77 22.89 32.65 224.64 33.99 91.11 296.23 28.36

Ours 6.44 217.89 25.86 27.85 131.38 35.35 92.03 104.45 34.18
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Figure 8: Finetuning results on two base models, DiffSplat-SD1.5 [18] and GaussianCube [54]. Our method
generalizes well to models beyond DiffSpliat-PixArt-Σ.

Different 3D-native generative models. We experiment with different base models, including
DiffSplat-SD1.5 [18] and GaussianCube [54], to show that our method is universally applicable. Our
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Figure 5: Quantitative comparison on HPSv2 [45]. For each object we present the front and back views. Prompts
highlighted in red indicate unsuccessful instruction following by the base models. We further show the severe
Janus problem of DRaFT in Fig. 7.
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Figure 6: Quantitative comparison of different finetuning methods on the normal estimator reward (Eqn. 10).
Left: front-view RGB image. Middle: front-view rendered normal map. Right: Zoomed-in details.
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Figure 7: 360◦ visualization of 3D shapes generated by models finetuned with Nabla-R2D3 and DRaFT.
DRaFT-finetuned model is prone to overfitting and suffers from the Janus problem.

Table 2: Comparison of finetuning methods on different base models with the Aesthetic Score reward.

Method DiffSplat-SD1.5 GaussianCube

Reward ↑ FID↓ CLIP-Sim ↑(10−2) Reward ↑ FID ↓ CLIP-Sim ↑ (10−2)

Base Model 4.81 67.76 34.66 4.40 64.22 28.60

ReFL 6.08 396.79 20.66 5.50 296.46 17.31
DDPO 4.80 54.79 34.61 4.06 230.48 18.90
DRaFT 6.40 395.84 19.08 6.04 352.16 15.52

Ours 6.02 154.61 30.95 5.92 234.96 22.57

results (Fig. 8 and Tab. 2) show that our model consistently outperforms other finetuning methods
and delivers desirable 3D assets.

Table 3: Comparison with 3D-SDS.

Method Reward ↑ FID ↓ CLIP-Sim ↑
3D-SDS (η = 3) 5.38 194.98 0.31
3D-SDS (η = 1) 5.27 97.99 0.34
Ours (200 steps) 5.29 114.45 0.32
Ours (600 steps) 6.24 205.16 0.26

Comparison with 2D-SDS-based lifting align-
ment method. We compare in Fig. 10 our
method with DreamReward [51], a method that
incorporates reward gradients into 2D-lifting-
based 3D generation. Our method produces
more visually-desirable shapes not only because
2D-lifting methods are less robust at synthesiz-
ing 3D shapes [31, 44] but also because the 3D-native generative model provides more 3D prior.

Comparison with native 3D prior guided SDS baseline. To underscore the benefit of inference
with a finetuned 3D-native diffusion model compared to the SDS-based sampling approaches, we
experiment with SDS on the DiffSplat base model with 3D diffusion loss plus the multi-view 2D
reward model of Aesthetic Score: ∇L = ϵ3D(zt, t) − ϵ − η∇z0 logR3D(z0) with reward strength
η. We observe (Fig. 9) that the SDS approach indeed yields worse appearance and geometry, even
with better 3D prior from the base 3D-native diffusion model and increasing the strength η does not
improve results (Tab. 3). Moreover, running the 3D-SDS inference takes around 5 minutes, wherear
inference with the finetuned model takes only around 8 seconds.
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Figure 9: Comparison with 3D-SDS baselines on Aesthetic
Score. We show two opposite views of the presented assets.
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Figure 10: Comparison with 2D-SDS-based
alignment method [51].
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Figure 11: Qualitative comparison with pretrained model on DNC reward.

Table 4: Comparison between the base model and the one fine-
tuned with different methods on Depth-Normal Consistency.

Method Reward↑ (10−2) FID↓ CLIP-Sim↑ (10−2)

Base Model 87.81 55.26 34.58

ReFL 89.15 158.19 32.74
DDPO 87.99 69.12 34.48
DRaFT 88.13 74.82 34.52
Ours 89.53 99.01 34.08

Results on DNC reward. We show
the results of finetuning with different
methods on DNC reward in Tab. 4. Our
method achieves the best reward im-
provement without incurring much loss
in FID and Clip-similarity. In Fig. 11,
we visualize the geometry from the pre-
trained model and the model finetuned
on the DNC reward. The results demonstrate that the DNC reward, independent of any priors from
external normal estimators, can improve the sample geometry quality of 3D-native diffusion models.
We further show the error map for the base model and the model finetuned with our method in Fig. 13.

Visualization of the evolution process. We visualize the evolution (every 50 update steps) of our
method in the Aesthetic Score experiments (Fig. 12). We use the same seed, prompt, and initial noise,
and we render the generated assets from the identical camera pose.

5.48

HPSv2 

Comparison-360

0° 360°

Ours

DRaFT

Evolution process

Figure 12: Visual evolution of the generated object with
the same random seed during the finetuning process.
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5.48
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Ours
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TP21
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Figure 13: Results on DNC reward. From left to right:
rendered RGB image, rendered normal map, depth-
induced normal map, and the corresponding error map.

6 Discussions
Reward finetuning vs. test-time scaling. One may incorporate reward signals during inference
using extra computational resources, a strategy known as test-time scaling [52]. Reward finetuning
can be treated as an amortized process such that one does not have to pay the typically high cost of
reward evaluation. Moreover, reward finetuning benefits from implicit regularization during network
training, particularly in the case of LoRA finetuning [12].

Limitations. Our finetuning method suffers from the same issues as the lifting-from-2D approaches:
no supervision for shape inner structures. Our method requires expensive gradient computations
during the forward pass, underscoring the need for improved numerical algorithms and architectural
designs for finetuning [33, 21]. Furthermore, our method focuses solely on parameter-level alignment
and does not explore prompt-based alignment strategies [52].

7 Conclusion
We propose an efficient alignment method, dubbed Nabla-R2D3, for finetuning 3D-native generative
methods with 2D differentiable rewards in a manner that avoids overfitting issues commonly seen in
lifting-from-2D approaches. We demonstrate that Nabla-R2D3 outperforms baseline methods across
both appearance- and geometry-based reward models, as well as across different base architectures.
The development of better alignment methods for diffusion models, including this work, contributes
toward constructing virtual worlds aligned with human values.
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A Overall algorithm

Algorithm 1 3D-Native Diffusion Alignment with 2D Rewards using Nabla-R2D3
1: Inputs: Pretrained diffusion model with sampling probability pbase(xt|xt+1), 2D reward model

R(·)
2: Initialization: Model to finetune with sampling probability pθ(xt|xt+1) where θ = θbase.
3: Sample the initial batch of trajectories Dprev = {(xT , ..., x0)i}i=1...N with the current finetuned

diffusion model pθ.
4: Set θ† ← θ.
5: while not converged do
6: Sample a batch of trajectories Dcurr = {(zT , ..., z0)i}i=1...N with the finetuned

diffusion model.
7: Subsample the time steps to train with: the full set Ti = {0, ..., T − 1} or the

sampled set Ti = Sample-N({0, ..., T − 1}) where Sample-N is some unbiased
sampling algorithm to randomly pick N samples.

8: Append the last timestep t = 0 to the sample trajectory set above.
9: Sample a set of camera poses c1, ..., cM .

10: Compute the loss (f is the output of the diffusion denoising network)
1

M(N+1)

∑M
j=1

∑
t∈Ti∥∥∇zt log p̃θ(zt|zt+1)− wtβ /∇

[
∇zt logR(h(ẑθ(zt), cj)))

]∥∥2
+ λ∥fθ(xt+1)− fθ†(xt+1)∥2.

11: Set θ† ← θ.
12: Gradient update of θ with the loss function.
13: Set Dprev ← Dcurr.
14: end while
15: return finetuned model fθ.
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B Proof of Unbiasedness of Nabla-R2D3

We start with the original Nabla-GFlowNet forward loss (Eqn. 2) for random variable zt but with the
3D reward specified in Eqn. 5:

L =
∥∥∥∇zt−1

log p̃θ(zt−1|zt)− γtβ /∇
[
∇zt−1 E

c∼C
logR(h(ẑθ(zt−1), c))

]
− gϕ(zt−1)

∥∥∥2 (12)

The corresponding gradient is

∇θL = − 2
〈
∇θ∇zt−1

log p̃θ(zt−1|zt), γtβ /∇
[
∇zt−1 E

c∼C
logR(h(ẑθ(zt−1), c))

]
− gϕ(zt−1)

〉
∇θ

∥∥∥∇zt−1 log p̃θ(zt−1|zt)
∥∥∥2

= − 2 E
c∼C

〈
∇θ∇zt−1 log p̃θ(zt−1|zt), γtβ /∇

[
∇zt−1 logR(h(ẑθ(zt−1), c))

]
− gϕ(zt−1)

〉
∇θ

∥∥∥∇zt−1
log p̃θ(zt−1|zt)

∥∥∥2
=∇θLforward(zt−1:t) (13)

which proves the unbiasedness of the proposed loss in Eqn. 7. The proof for the reverse loss is similar.

C Application to Flow Matching Models

As discussed in prior works [6, 25], the popular generative model of flow matching [19] that samples
x1 = x(1) via ẋ = v(x, t), x0 = x(0) ∼ N (0, I) can be turned into an equivalent diffusion model
(but with a non-linear noising process). The sampling (denoising) process of this equivalent diffusion
model is:

dXt =

v(Xt, t) +
σ(t)2

2βt

(
α̇t

αt
βt − β̇t

) (
v(Xt, t)−

α̇t

αt
Xt

) dt+ σ(t) dBt, X0 ∼ N (0, I).

(14)

where σ(t) is an arbitrary diffusion term. We may therefore use Nabla-R2D3 to obtain a finetuned
diffusion model (and therefore the corresponding probability flow ODE [40]) from a pretrained flow
matching model.

For the special case of rectified flows [22] with x0 ∼ N (0, I), the velocity field v(x, t) and the
probability flow p(x, t) are related via the following formula ([62], Lemma 1):

∇ log p(x, t) = −
[1
t
x+

1− t

t
v(x, t)

]
. (15)

The corresponding reverse process of the equivalent diffusion model is therefore [20, 49]:

dx =
[
v(x, t) +

σ2
t

2t

(
x+ (1− t)v(x, t)

)]
+ σtdw (16)
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D Implementation Details

General experiments. We use LoRA [12] parametrization with a rank of 16 on all attention layers
plus the final output layer for DiffSplat-Pixart-Σ [3], and a rank of 8 for DiffSplat-SD1.5 [18] and
GaussianCube [54]. The CFG scales are set to 7.5, 7.5, and 3.5 for DiffSplat-Pixart-Σ, DiffSplat-
SD1.5, and GaussianCube, respectively. All experiments were conducted with either two Nvidia
Tesla V100 GPUs or GeForce GTX 3090 GPUs. It takes no more than one day to finetune models
with our method and all other baselines.

3D SDS. During 3D SDS optimization, we sample timesteps t ∈ [0, 400] and train the object for
1000 steps. For each step, the rewards are evaluated from four randomly sampled views. To compute
test metrics, we sample 32 objects for each of 30 selected prompts, compute the mean per-prompt
metrics and take the metrics averaged over all prompts.

E Comparison with Multi-view Generative Model

To emphasize the importance of 3D native representations for 3D consistency after finetuning, we use
our method to finetune MVDream, a multi-view diffusion model, on Aesthetic score and compare the
results with those with DiffSplat. The generated multi-view images are passed to Large Multi-view
Gaussian Model (LGM) [41] to build reconstructed 3D objects so that they can be directly compared
to 3D objects generated by 3D native models. Qualitative comparisons are presented in Fig. 14.
The results from MVDream exhibit noticeable artifacts (illustrated in the green boxes in the figure),
whereas the objects produced by the finetuned 3D native models do not.
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Figure 14: Qualitative comparison with MVDream. For MVDream, we show the multi-view images directly
generated by the finetuned model in the gray dashed boxes; all other images for MVDream are rendered from
the objects reconstructed by LGM (with the corresponding generated multi-view images).
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F More Ablation Studies and Visualization

Effect of different reward temperatures. We experiment with different temperature values β ∈
{5e5, 1e6, 2e6}, and observe in Fig. 15 that a higher temperature leads faster convergence at the cost
of worse text-object alignment and prior preservation. Since previous experiments (Fig. 2) showed
that the variance of our method’s metric is minimal, the statistics for the standard deviation (std) are
omitted here.
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Figure 15: The relationship between the temperature parameter β and Reward, FID scores, and CLIP-Similarity
scores. Higher values of β result in faster convergence, but at the cost of worse text-object alignment and
diminished prior preservation.

Effect of different learning rates. As illustrated in Fig. 16, higher learning rates lead to faster
convergence, but with compromises in prior preservation and text-object alignment.
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Figure 16: Convergence curves of metrics on different learning rate.

Comparison of metrics given the same FID level on HPSv2 Reward. We show the results on
HPSv2 (with DiffSplat-Pixart-Σ) in Tab. 5, where we select checkpoints with roughly the same FID.
Specifically, we pick checkpoints for models finetuned with ReFL and DRaFT such that their FIDs
are approximately equal to that of our model in Tab. 1. The results clearly show that, given a similar
FID level, our method achieves higher reward and CLIP-Sim scores.

Table 5: Results on HPSv2 (with DiffSplat-Pixart-Σ ).

Method Reward ↑(10−2) CLIP-Sim↑(10−2) FID ↓
ReFL 22.18 34.11 127
DRaFT 25.65 34.41 143
Ours 27.85 35.35 131
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G More Qualitative Results

360◦ videos of the generated objects can be found at our project website: https://nabla-R2D3.github.io.
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Figure 17: More qualitative results on Aesthetic Score.
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H Failure Cases

Similar to alignment for the 2D image domain, our method still suffers from two issues: 1) imperfect
rewards and 2) reward hacking. The first one can easily be observed in our normal-estimator-based
reward model, which inevitably will hallucinate non-existing geometry based on single-view RGB
cues (Fig. 20). If we finetune the target diffusion model for too long, reward hacking becomes
apparent as the generated shapes tend to over-optimize the rewards in the way that the natural
geometry and semantics are gradually forgotten (Fig. 21).
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Figure 20: Failure cases of the normal estimator reward. Left: rendered RGB image, Middle: rendered normal
map, Right: estimated normal map. The estimator produces wrong normal maps and therefore guides the
diffusion model to generate wrong geometry.

6.02

MVDream Comparison 

Comparison-V2

TP07

TP15

TP14

Egyptian cat head

 on a stone base.
TP09

Pretrained Model

Sup0022 Sup31

Sup0

Sup29

Prompt: A green and blue striped toy llama. 

Prompt: A goose statue on a base. 
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cases, the feet of animals become unnatural after finetuning.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Yes. Our main contributions are also detailed in Sec. 1. Also see Sec. 5.2 for
more experimental evidence.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, please see Sec. 6 for limitations.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provide proof to the unbiasedness of the proposed loss that use 2D rewards
in Appendix. All other formula are justified in reference papers.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper fully discloses necessary information required to reproduce the
main experimental results in the Sec. 5 and Appendix. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have released the whole set of code, instructions and data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The paper provides detailed descriptions of all experimental setups in Sec. 5
and Appendix. D, including prompts, base model, and hyperparameter configurations and
evaluation metrics.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Following common practice, we provide standard deviation based on repeated
random seeds.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details of the GPU platform used in Appendix. D
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the positive impacts of this work in the conclusion section (Sec.7).
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Not applicable for our case.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we credited them in appropriate ways.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not include any crowdsourcing activities or research involving
human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not include any crowdsourcing activities or research involving
human participants.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: This paper does not use LLMs as important, original, or non-standard compo-
nents of the core methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

30

https://neurips.cc/Conferences/2025/LLM

