
Future Motion Dynamic Modeling via Hybrid Supervision for
Multi-Person Motion Prediction Uncertainty Reduction
Yan Zhuang

Fudan University
Shanghai, China

zhuangy23@m.fudan.edu.cn

Yanlu Cai
Fudan University
Shanghai, China

ylcai20@fudan.edu.cn

Weizhong Zhang∗
Fudan University
Shanghai, China

weizhongzhang@fudan.edu.cn

Cheng Jin∗
Fudan University
Shanghai, China
jc@fudan.edu.cn

Abstract
Multi-person motion prediction remains a challenging problem due
to the intricate motion dynamics and complex interpersonal inter-
actions, where uncertainty escalates rapidly across the forecasting
horizon. Existing approaches always overlook the motion dynamic
modeling among the prediction frames to reduce the uncertainty,
but leave it entirely up to the deep neural networks, which lacks a
dynamic inductive bias, leading to suboptimal performance. This pa-
per addresses this limitation by proposing an effective multi-person
motion prediction method named Hybrid Supervision Transformer
(HSFormer), which formulates the dynamic modeling within the
prediction horizon as a novel hybrid supervision task. To be precise,
our method performs a rolling predicting process equipped with a
hybrid supervision mechanism, which enforces the model to be able
to predict the pose in the next frames based on the (typically error-
contained) earlier predictions. Addition to the standard supervision
loss, two self and auxiliary supervision mechanisms, which mini-
mize the distance of the predictions with error-contained inputs and
the predictions with error-free inputs (ground truth) and guide the
model to make accurate predictions based on the ground truth, are
introduced to improve the robustness of our model to the input de-
viation in inference and stabilize the training process, respectively.
The optimization techniques, such as stop-gradient, are extended to
our model to improve the training efficiency. Furthermore, we de-
velop a fine-grained spatio-temporal correlation capture module to
assist the feature learning and reduce the uncertainties arising from
the intricate and varying interactions among the individuals. Our
approach achieves state-of-the-art results on multiple multi-person
datasets in both short- and long-term prediction.
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1 Introduction
Human motion prediction is a crucial task, which predicts future
motion trends based on the previous observations, and has wide
applications in the fields of 3D character animation [5, 7, 25, 44, 46],
surveillance systems [6, 22, 52], and autonomous driving [8, 24,
50]. Thanks to the Transformer’s powerful capability in modeling
sequential relationships, recent approaches[33, 42, 45], employing
Transformers for multi-person interaction modeling and implicitly
temporal relationship modeling, achieve promising results.

However, due to the significant motion dynamic uncertainty
within the forecasting horizon, i.e., the steps with motion to be
predicted, multi-person motion prediction remains a challenging
problem. These uncertainties mainly arise from the following two
sources. One is the intricate and varying interactions among the
individuals. Figure 1b (1) shows that the left wrist joint of the
player in red obstructs several joints in the torso area of the player
in blue, while the left wrist joint of the player in blue obstruct the
hip joint joint of the player in red. The other is the perplexing
evolution patterns in human motions. For example, the motion
characteristics of different keypoints differ greatly. As shown in
Figure 1b (2), the movement range of the player’s knee joint is
much smaller than that of the ankle joint. More importantly, the
uncertainties can grow rapidly over the forecasting horizon. In
this work, we argue that explicitly modeling the motion dynamic
within the forecasting horizon should be an indispensable module
to reduce the uncertainty and finally improve the motion prediction
accuracy, which is always overlooked in the previous studies as
they usually leave it entirely up to the decoder neural networks.

To address the above issues, we propose a novel Transformer
based framework Hybrid Supervision Transformer (HSFormer).
Our key idea is to explicitly model the motion dynamics in the
forecasting horizon by constructing the interdependence among
the adjacent frames. We first propose a rolling predicting process,
which predicts the poses in the next frames based on the (typi-
cally error-contained) earlier predictions. Notice that training the
model under this framework is highly nontrivial. For example, with
vanilla optimization algorithms, the model would be susceptible to
the accumulated prediction errors in the previous prediction. There-
fore, addition to the standard supervision loss, which minimizes
the distance between the ground truth and our rolling prediction
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(a) The process of hybrid supervision. (b) Interactions of local joints among players.

Figure 1: Example of hybrid supervision and detailed interactions between individuals.

output, two additional supervision mechanisms, i.e., the self and
auxiliary supervision mechanisms, are introduced to improve the
robustness of our model to the input deviation in inference and
stabilize the training process, respectively. To be precise, the self
supervision mechanism minimizes the distance of the predictions
with error-contained inputs and the predictions with error-free
inputs (ground truth), while the auxiliary supervision mechanism
guides the model to make accurate predictions based on the ground
truth. These standard, self and auxiliary supervision mechanisms
together form our novel hybrid supervised training framework.
Additional optimization techniques, such as stop-gradient and pa-
rameter sharing, are extended to our HSFormer to improve the
training efficiency.

Additionally, in order to reduce the uncertainties arising from
the intricate and varying interactions, HSFormer utilizes a feature
learning component, namely Spatio-Temporal Encoder (STE) block,
for fine grainedmodeling. The STE block consists of the Spatial Joint
Encoder (SJE) module and the Temporal Joint Encoder (TJE) module,
which is responsible for capturing the relationships between body
joints within each individual frame and the dynamic evolution of
the joints, respectively.

We evaluate our method on 5 different datasets with varying
scales and complexities. The results demonstrate the significant
superiority of our HSFormer over the state-of-the-art methods.
Notably, our method outperforms the current state-of-the-art ap-
proaches for both short-and long-term predictions, with 1%∼23%
accuracy improvement for the short-term (0s∼1.0s) and 2%∼8%
accuracy improvement for the long-term prediction (1.0s∼3.0s).

The main contributions of this work can be summarized as fol-
lows: 1) We design a rolling prediction scheme to effectively reduce
the prediction uncertainty, which explicitly models the motion
dynamic within the forecasting horizon by learning the interde-
pendence between the motions in adjacent frames. 2) As training
the model under our rolling prediction scheme is highly nontriv-
ial, we develop a hybrid supervision mechanism to guarantee the
training efficiency and the generalization capability of the learned

model. 3) We introduce the STE block, specifically designed to ad-
dress the uncertainty arising from interaction details. STE enables
a meticulous learning of the body joint relations in each frame and
the global temporal correlation of each joint. 4) The experimen-
tal results on multiple multi-person motion datasets demonstrate
that the proposed model significantly outperforms state-of-the-art
methods.

2 Related work
2.1 Single-Person Pose Prediction
Single-person motion prediction [10, 11, 20, 22, 27, 37, 39, 41] in-
volves the task of predicting the future motion of an individual
based on historical motion. Compared to multi-person motion,
single-person motion prediction has relatively simpler spatiotem-
poral dependencies and can be effectively captured using model
architectures based on Recurrent Neural Networks (RNNs) [12–
15, 17, 19, 26, 29, 32, 36, 49]. RNNs have been proven successful
in sequence-to-sequence prediction tasks [21]. However, due to
frame-by-frame prediction, issues of discontinuity and error ac-
cumulation often arise as the model independently generates pre-
dictions for each frame without considering the continuity with
preceding and subsequent frames. To address the problem of er-
ror accumulation when using RNN-based models for long-term
prediction, some research [4, 23] start exploring the use of fully
connected or convolutional networks to better capture long-term
dependencies and reduce error accumulation. In addition to RNNs,
temporal convolutional networks have also shown promising re-
sults in modeling long-term motion [3, 4, 23, 28]. For instance, [23]
construct a convolutional sequence-to-sequence model for human
motion prediction. Unlike previous chain-based RNN models, the
hierarchical structure of convolutional neural networks enables
them to naturally model and learn spatial dependencies and long-
term temporal dependencies. However, human motion is influenced
by the surrounding environment, making it inherently uncertain,
which becomes more evident in long-term prediction. Recent re-
search begin to address this issue by jointly predicting human pose
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and world coordinate trajectories [6, 43, 47, 48, 51]. For example,
[6] leverage scene context to tackle the challenges of long-term
prediction. Currently, single-person motion prediction has achieved
promising results, while multi-person motion prediction is more
complex due to factors such as crowd interaction. Our work extends
to the simultaneous prediction of multi-person motion, including
3D pose and trajectories.

2.2 Multi-Person Pose Prediction
Multi-person motion prediction aims to predict the movement
amongmultiple individuals in a scene [31, 35, 38]. This task requires
considering interactions between individuals, making it more com-
plex in a multi-person context compared to single-person motion
prediction. The challenges arise because individual movements are
influenced not only by their own dynamics but also by dynamic
interactions with other individuals. To solve above issues, [1] intro-
duce multi-person motion prediction, proposing a novel approach
based on graph attention networks to model the dynamics of tra-
jectories and poses, simulating interactions between individuals
in both input space and output space. [42] introduces local-range
encoders for individual motions and global-range encoders for so-
cial interactions. [16] introduce a cross-interaction attention mech-
anism that utilizes the historical information of two individuals,
learning to predict cross-dependencies between two pose sequences.
[33] introduce TBIFormer, proposing a novel Social Body Interac-
tionMulti-Head Self-Attention (SBI-MSA) that learns dynamic body
part interactions inter and intra individuals, capturing complex in-
teraction dependencies. However, these methods predict all future
frames directly from the input sequence, neglecting the dynamic
changes within the predicted frames, which increases the uncer-
tainty in the prediction process, especially in long-term predictions.
In this paper, we propose a new multi-person motion prediction
model framework based on Transformer to address the aforemen-
tioned issue.

3 Preliminaries
3.1 Problem Formulation
Given the historical motion trajectory of multiple individuals, our
objective is to predict the future motion for these individuals. For-
mally, with𝑁 individuals in the scene, the history motion trajectory
of the 𝑛-th individual with 𝑇 + 1 time steps can be presented as
𝑋𝑛
1:𝑇+1 = [𝑥𝑛1 , 𝑥

𝑛
2 , . . . , 𝑥

𝑛
𝑇+1] with each 𝑥𝑛

𝑖
∈ R𝐽 ×3 being the coordi-

nates of 𝐽 skeleton joints. Following the related work [42], we trans-
form 𝑋𝑛

1:𝑇+1 into 𝑌𝑛
1:𝑇 = [𝑦𝑛1 , . . . , 𝑦

𝑛
𝑇
] by taking the difference be-

tween the adjacent entries to expose the motion trends to the model,
i.e., 𝑦𝑛

𝑖
= 𝑥𝑛

𝑖+1 − 𝑥𝑛
𝑖
, 𝑖 = 1, . . . ,𝑇 . Our goal is to predict the 3D pose

sequence of the next 𝐹 time steps, i.e., 𝑌𝑛
𝑇+1:𝑇+𝐹 = [𝑦𝑛

𝑇+1, . . . , 𝑦
𝑛
𝑇+𝐹 ],

and transform it back to 𝑋𝑛
𝑇+2:𝑇+𝐹+1 with 𝑛 = 1, . . . , 𝑁 .

3.2 Pipeline
Given a 3D pose sequence 𝑌 ∈ R𝑁× 𝐽 ×𝑇×3 with N persons, J joints,
and T frame as input, the vanilla pipeline apply a Discrete Cosine
Transformation (DCT) [2] to encode motion into the frequency
domain, creating a more compact representation. This represen-
tation is then projected into a high-dimensional feature space to

obtain the embedded feature F𝐸𝑚𝑏𝑒𝑑 ∈ R𝑁× 𝐽 ×𝑇×𝐶 , where𝐶 is the
feature dimension. Subsequently, F𝐸𝑚𝑏𝑒𝑑 is fed into an encoder
to learn sequence features followed by a decoder for predicting
future sequences. Finally, the pipeline utilizes a fully connected
(FC) layer and an Inverse Discrete Cosine Transformation (IDCT)
to obtain the future motion 𝑌𝑇+1:𝑇+𝐹 for each individual. In this
work, we reconstruct both the encoder and decoder block to reduce
the prediction uncertainty, which are the main contributions of this
paper. To be precise, we propose

• Fine-grained Correlation Learning (see Section 4):We
propose a Spatio-Temporal Encoder to assist the fine-grained
feature learning to finally reduce the prediction uncertainty
arising from the intricate and varying interactions among
the individuals. It can learn the joint relations in each frame
and the global temporal correlation for each joint in different
frames.

• Dynamic Modeling via Hybrid Supervision (referring
to Section 5): We propose a rolling prediction scheme to
explicitly learn the interdependence among the motions in
adjacent frames. We further design a novel hybrid supervi-
sion mechanism to guarantee both the training efficiency
and the robustness of the learned model to avoid prediction
error accumulation.

4 Fine-grained Correlation Learning
For the convenience of presenting our method HSFormer, we first
introduce our fine-grained correlation learning block STE as it
is integrated into both the encoding and decoding components.
STE block is designed to assist the feature learning to reduce the
uncertainties arising from the intricate and varying interactions
among the individuals. As shown in Figure 2, it consists of a SJE
module and a TJE module, which learn the joint relations in each
frame and the global temporal correlation for each joint in different
frames, respectively.
Spatial Correlation Learning. SJE aims to learn the spatial rela-
tionships across body joints for all individuals via attention mech-
anism. Suppose the SJE module consists of 𝐿1 layers, we embed
F𝐸𝑚𝑏𝑒𝑑 with the learnable position embedding 𝐸𝑠𝑝𝑜𝑠 ∈ R(𝑁× 𝐽 )×𝐶

to obtain the embedded feature F 0
𝑆 𝐽 𝐸

∈ R𝑇×(𝑁× 𝐽 )×𝐶 before the
first layer of SJE module. SJE module takes 𝑁 × 𝐽 tokens of size C
from a certain frame as inputs and models relationship across all
joints. After this, tokens will have knowledge about the joints of
other individuals in the same frame. The output of the final layer
can be represented as F 𝐿1

𝑆 𝐽 𝐸
.

Temporal Correlation Learning. Due to the diversity of joint
movements, it is crucial to learn the independent characteristics
of each joint. The TJE module treats the motion trajectory of each
joint as an independent unit, capable of identifying the unique
motion characteristics of each joint. We first reshape the output
feature F 𝐿1

𝑆 𝐽 𝐸
from SJE into R(𝑁× 𝐽 )×𝑇×𝐶 and then combine it with

the learnable temporal positional encoding 𝐸𝑡𝑝𝑜𝑠 ∈ R(𝑁× 𝐽 )×𝑇×𝐶

to obtain the feature F 0
𝑇 𝐽 𝐸

. It is then fed into TJE module to learn the
contextual dependencies for each joint in parallel. After processed
by our TJE module, F 0

𝑇 𝐽 𝐸
is transformed into the final output F 𝐿2

𝑇 𝐽 𝐸
,

where 𝐿2 is the number of TJE layers.
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Figure 2: (a) Overview of the proposed HSFormer framework. We reconstruct both the encoder and decoder in the conventional
pipeline to reduce the prediction uncertainty. Specifically, we propose the STE block to capture the fine-grained spatio-
temporal correlations among the joints to assist the feature learning. HScoder performs a rolling prediction process to learn
the interdependence among the frames with the forecasting horizon. We further develop a hybrid supervision mechanism
to guarantee the training efficiency and robustness of our model to the accumulated prediction error. (b) The process of
constructing the body query token 𝑄1. (c) The standard Transformer Decoder used in HSFormer.

Figure 3: Our Hybrid-Supervised coder (HScoder) block.

5 Dynamic Modeling via Hybrid Supervision
5.1 Rolling Prediction Scheme
We reconstruct the decoder, referred to as the HScoder block, which
is designed to guide themodel to learn the dynamics of the predicted
frames through a rolling prediction process to reduce uncertainty.
As depicted in Figure 3, this process divides the forecasting horizon
into multiple intervals and predicts the motions sequentially. To be
precise, let 𝑓 be the length of the divided predicton interval, our
rolling process would be comprised of 𝑑 = 𝐹/𝑓 prediction rounds.
In the 𝑙𝑑 -th round with 𝑙𝑑 ∈ {1, . . . , 𝑑}, our HScoder first constructs
a body query token 𝑄𝑙𝑑 ∈ R𝑁× 𝐽 ×𝐶 based on the neighbor motion
dynamics of the recent ℓ frames, denoted asN𝑙𝑑 ∈ R𝑁×ℓ× 𝐽 ×𝐶 , that
is,

𝑄𝑙𝑑 = 𝐶𝑜𝑛𝑣1𝑑 (N𝑙𝑑 ), (1)

where 𝐶𝑜𝑛𝑣1𝑑 (·) is a 1D Convolution layer with kernel size of
ℓ . Then HScoder leverages a Transformer Decoder to predict the
future pose features of 𝑓 frames, denoted as 𝑦𝑙𝑑 ∈ R𝑁×𝑓 × 𝐽 ×𝐶 ,
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based on 𝑄𝑙𝑑 and the guidance of the history contextH 𝑙𝑑 , that is,

𝑦𝑙𝑑 = FC(𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑄𝑙𝑑 ,H 𝑙𝑑 )), (2)

where FC(·) is linear layer to convert the single token into 𝑓 frames.
Our rolling prediction scheme takes F𝐸𝑚𝑏𝑒𝑑 and F 𝐿2

𝑇 𝐽 𝐸
to obtain

the initial neighbor motion dynamics N1 and history context H1,
respectively. And then leverage the previous prediction𝑦𝑙𝑑 together
with previous N𝑙𝑑 andH 𝑙𝑑 to build the new ones, i.e., N𝑙𝑑+1 and
H 𝑙𝑑+1. Specifically,

N𝑙𝑑 =

{
𝑆𝑙𝑖𝑐𝑒 (F𝐸𝑚𝑏𝑒𝑑 ), 𝑙𝑑 = 1

𝑆𝑙𝑖𝑐𝑒 (𝐶𝑜𝑛𝑐𝑎𝑡 (N𝑙𝑑−1, 𝑦𝑙𝑑−1)), 𝑙𝑑 > 1
(3)

where 𝑆𝑙𝑖𝑐𝑒 (·) is to get the last ℓ-frame feature. As for the history
contextH 𝑙𝑑 , we re-encode the prediction 𝑦𝑙𝑑 into the feature space
of the history context by employing a STE module, that is,

𝑧𝑙𝑑 = STE
(
𝑦𝑙𝑑

)
. (4)

A TJE module is adopted after concatenation to extract the tem-
poral relationship between previous history context and the new
prediction. Thus, it can be formulated as

H 𝑙𝑑 =

{
F 𝐿2
𝑇 𝐽 𝐸

, 𝑙𝑑 = 1

TJE(𝐶𝑜𝑛𝑐𝑎𝑡 (H 𝑙𝑑−1, 𝑧𝑙𝑑−1)), 𝑙𝑑 > 1
(5)

whereH 𝑙𝑑 ∈ R𝑁×(𝑇+(𝑙𝑑−1)∗𝑓 )× 𝐽 ×𝐶 .
After 𝑑 rounds rolling prediction, all the prediction feature 𝑦𝑙𝑑 ∈

R𝑁×𝑓 × 𝐽 ×𝐶 will be concatenated and projected to obtained the
predicted pose sequence 𝑌 , that is,

𝑌𝑇+1:𝑇+𝐹 = IDCT
(
FC

(
𝐶𝑜𝑛𝑐𝑎𝑡

(
𝑦1, 𝑦2, . . . , 𝑦𝑙𝑑

)))
, (6)

where the linear layer FC(·) is adopted to project the feature into
the pose sequence, and IDCT(·) stands for Inverse Discrete Cosine
Transformation. Finally,𝑌𝑇+1:𝑇+𝐹 is transformed back to𝑋𝑇+2:𝑇+𝐹+1.

5.2 Hybrid Supervision Mechanism
Note that it is indeed not trivial to train such a network under
rolling prediction framework, since the errors contained in previous
predictions can accumulate over time, thereby adversely affecting
subsequent predictions and potentially leading to the failure of
training. This issue is particularly severe in the early training stage.

To solve the above issue, we propose a gt-augment branch to-
gether with a hybrid supervision mechanism, which provides a
more distinct optimization path unaffected by the accumulation
of errors, thereby enhancing the training stability. The details are
presented as follows.

The gt-augmented branch is designed for training process only
andwill be removed in inference. It shares the same architecture and
weights with the main branch to make the model in two branches
be consistent, while it takes ground truth rather than previous
predictions as inputs to predict the next frames. Specifically, it
replaces the prediction feature 𝑦𝑙𝑑 in Eqn. (3) and (4) with the
feature 𝑦𝑙𝑑𝑔𝑡 embedded from the ground truth with 𝑙𝑑 ∈ {1, . . . , 𝑑}.
The embedding process can be formulated as

[𝑦1𝑔𝑡 , . . . , 𝑦
𝑙𝑑
𝑔𝑡 , . . . , 𝑦

𝑑
𝑔𝑡 ] = FC (DCT (𝑌𝑇+1:𝑇+1+𝐹 )) , (7)

For simplicity, we let 𝑋 , 𝑋 and 𝑋gt be the ground truth, the output
of the main branch and the gt-augmented branch, respectively.

By denoting MSE-loss to be

LMSE (𝑋,𝑋 ) = 1
𝑁 × 𝐹 × 𝐽

𝑁∑︁
𝑛=1

𝑇+𝐹+1∑︁
𝑖=𝑇+2

𝐽∑︁
𝑗=1




𝑋𝑛
𝑖,𝑗 − 𝑋𝑛

𝑖,𝑗




2
2
,

we train our two-branched model with the following hybrid super-
vision mechanism:

• Standard Supervision. It is adopted to enforce the model
to be able to make accurate predictions even with typically
error-contained previous predictions as inputs and the loss
takes the form of L𝑒𝑟𝑟𝑜𝑟 = LMSE (𝑋,𝑋 ).

• Auxiliary Supervision. To avoid the potential failure of
training caused by error accumulation, especially in the early
training stage, we adopt the following auxiliary supervision
loss to guide the model to make accurate predictions taking
the ground truth poses in the previous frames as inputs. That
is L𝑔𝑡 = LMSE (𝑋,𝑋gt).

• Self Supervision. A self-supervised contrastive loss L𝑐𝑜𝑛 is
adopted tominimize the distance of the predictionwith error-
contained inputs and the prediction with error-free inputs,
enhancing the robustness of the model to the prediction
errors in the previous frames, that is,

L𝑐𝑜𝑛 = LMSE (𝑋, 𝑠𝑔(𝑋gt)),

where 𝑠𝑔(·) stands for stop-gradient operation[9].
Thus, the overall loss becomes:

Lℎ𝑦𝑏𝑟𝑖𝑑 = 𝜆L𝑒𝑟𝑟𝑜𝑟 + (1 − 𝜆)L𝑔𝑡 + 𝛾L𝑐𝑜𝑛, (8)

where the parameters 𝜆 ∈ (0, 1] and 𝛾 > 0 are adopted to tune
the weights of the above three losses during training. We observe
that our model is insensitive to 𝛾 and we can achieve good perfor-
mance with a common value 𝛾 = 1 in all our experiments. For 𝜆,
we gradually increase it from 0 to 1 during the training process for
two reasons: 1) In the early training stage, a small 𝜆 is preferred
as the inputs of our first branch, i.e., the previous predictions, al-
ways contain pronounced errors, making the standard supervision
mechanism ill posed; 2) Unlike our second branch does in training,
we cannot make predictions by taking the ground truth as inputs
in inference. Therefore, we require 𝜆 to be close to 1 in the end of
training to gradually discard our second branch to guarantee the
consistency between the training and inference process.

6 Experiments
6.1 Implementation Details
Our experiments use PyTorch framework on two Nvidia GeForce
RTX 3090 GPUs. We train with the batch size of 32 for 150 epochs.
The learning rate is set to 0.0003. The number of stacked encoder
layers, 𝐿1 and 𝐿2, are both set to 2, while the transformer decoder
is stacked with 3 layers. The kernel size of the 1D Convolution
layer ℓ is set to 10. For predictions within 1 second, 𝑑 is set to 5;
for predictions within 1 to 3 seconds, 𝑑 is set to 9. 𝜆1 = 𝑒𝑝𝑜𝑐ℎ𝑖/150,
where "𝑒𝑝𝑜𝑐ℎ𝑖 " represents the current epoch number.
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Table 1: The short-term prediction results of JPE, APE and FDE on the datasets CMU-Mocap, MuPoTS-3D, Mix1, and Mix2. We
compare our method with the previous SOTA methods in 0.2 ∼ 1.0 second. Best results are shown in boldface.

CMU-Mocap
(3 persons)

MuPoTS-3D
(2-3 persons)

Mix1
(6 persons)

Mix2
(10 persons)

Time(s) 0.2 0.6 1.0 Average 0.2 0.6 1.0 Average 0.2 0.6 1.0 Average 0.2 0.6 1.0 Average
MRT [42] 36 115 192 114 78 225 349 217 37 122 212 124 38 126 214 126
TBIFormer [33] 30 109 182 107 66 200 319 195 34 121 209 121 34 118 198 117
SocialTGCN [34] 28 96 163 96 86 214 324 208 46 126 210 127 68 130 199 132
JRFormer [45] 38 118 178 111 124 276 383 261 37 126 222 128 28 104 185 106

JPE

Ours 25 98 161 95 60 165 255 160 26 104 189 106 27 104 182 104
MRT [42] 36 108 159 101 71 166 217 151 36 109 166 104 38 115 178 110
TBIFormer [33] 27 84 118 76 60 132 170 121 28 81 113 74 30 89 124 81
SocialTGCN [34] 26 79 115 73 84 166 242 164 43 103 143 96 63 108 147 106
JRFormer [45] 33 96 131 87 93 173 212 159 30 79 112 74 28 82 124 78

APE

Ours 24 78 114 72 58 133 169 120 23 75 107 68 27 82 117 75
MRT [42] 27 88 157 91 59 187 309 185 29 100 189 106 29 98 185 104
TBIFormer [33] 18 72 133 74 49 163 277 163 23 89 168 93 21 81 151 84
SocialTGCN [34] 17 64 118 66 71 179 289 180 35 76 137 83 34 83 151 89
JRFormer [45] 21 74 123 73 98 237 348 228 25 100 193 106 20 70 134 75

FDE

Ours 14 61 120 65 39 113 195 116 16 74 149 80 16 69 136 74

Table 2: The long-term prediction results of JPE, APE and FDE on the datasets CMU-Mocap, MuPoTS-3D, Mix1, and Mix2. We
compare our method with the previous SOTA methods in 1.0 ∼ 3.0 seconds. Best results are shown in boldface.

CMU-Mocap
(3 persons)

MuPoTS-3D
(2-3 persons)

Mix1
(6 persons)

Mix2
(10 persons)

Time(s) 1.0 2.0 3.0 Average 1.0 2.0 3.0 Average 1.0 2.0 3.0 Average 1.0 2.0 3.0 Average
MRT [42] 148 256 352 252 194 332 436 321 124 254 398 259 139 294 454 296
TBIFormer [33] 118 225 329 224 189 321 432 314 117 242 374 244 116 232 346 231
SocialTGCN [34] 102 205 310 206 229 374 523 375 109 232 376 239 112 226 341 226
JRFormer [45] 122 218 305 215 196 334 430 320 110 248 380 246 106 220 336 221

JPE

Ours 98 198 299 198 175 305 415 298 106 232 372 237 104 215 330 216

Table 3: Performance on MI-Motion dataset for 5 different scenes. Best results are shown in boldface.

Park Street Indoor Special Locations Complex Crowd
Time(s) 0.32 0.56 1.0 0.32 0.56 1.0 0.32 0.56 1.0 0.32 0.56 1.0 0.32 0.56 1.0
MRT [42] 76 107 149 74 113 151 80 119 147 159 225 289 88 140 220
TBIFormer [33] 64 96 141 60 96 131 69 108 154 158 236 312 63 104 158
SocialTGCN [34] 60 95 154 54 81 124 67 108 160 165 246 322 70 113 177
JRFormer [45] 47 81 134 57 92 102 75 95 120 191 278 331 56 98 152

JPE

Ours 43 72 121 38 65 92 50 85 125 151 212 277 54 92 151

6.2 Experimental Setting
Dataset. Following the state-of-the-art method TBIFormer[33],
we conduct our experiments on five widely-used datasests with
varying scales and complexities. CMU-Mocap dataset consists of a
training set with 6,000 sequences and a test set with 800 sequences.
MuPoTS-3D (2 to 3 persons) [30] is a dataset of 3D human poses
collected by a multi-view unmarked motion capture system. Mix1
(6 persons) and Mix2 (10 persons) are composed by blending data
from CMU-Mocap, 3DPW [40], and MuPoTs-3D [30] datasets. On
the above datasets, we follow TBIFormer [33] for fair comparison,
i.e., the model takes 50 frames (2.0s) as inputs to predict 25 frames

(1.0s) for short-term prediction, while the model takes 15 frames as
inputs (1.0s) to predict 45 frames (3.0s) for long-term prediction.

The MI-Motion dataset is a large-scale dataset, which includes
167k frames of multi-person skeleton poses and covers five different
everyday activity scenarios: indoor, park, street, special locations,
and crowded scenes. On MI-Motion dataset, the model takes 25
frames (1.0s) as inputs to predict 25 frames (1.0s), which is consistant
with SocialTGCN [34].
Baseline. We choose the most recent state-of-the-art multi-person
prediction methods as baselines, i.e., MRT [42], TBIFormer [33],
SocialTGCN [34] and JRFormer [45].
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Figure 4: Comparison of training loss and test loss on the CMU-Mocap dataset under three different conditions: hybrid
supervision, i.e., Lℎ𝑦𝑏𝑟𝑖𝑑 , standard supervision only, i.e., L𝑒𝑟𝑟𝑜𝑟 and auxiliary supervision only, i.e., L𝑔𝑡 .

Table 4: Ablation experiments with different rolling numbers
show the results of our model on the CMU-Mocap in JPE
metric.

JPE APE FDE
rounds 1.0s 2.0s 3.0s 1.0s 2.0s 3.0s 1.0s 2.0s 3.0s
d=1 103 205 316 83 129 158 69 158 259
d=3 102 207 310 80 127 149 66 158 255
d=5 101 205 308 79 127 151 65 154 252
d=9 98 198 299 79 123 145 62 149 243
d=15 102 206 308 83 127 150 66 155 251

Metrics. We evaluate our results with following three metrics,
which are consistent with those in TBIFormer [33]. The detailed
definitions of these metrics are given below:

1) JPE.We use the Mean Per Joint Position Error (MPJPE) [18]
metric to measure the poses of all the individuals, including body
trajectory:

JPE(𝑋,𝑋 ) = 1
𝑁 × 𝐹 × 𝐽
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are the ground truth and the prediction of
the 𝑗-th joint for the 𝑛-th individual in the 𝑖-th frame.

2) APE.We remove global movement and use Aligned mean per
joint Position Error (APE) to measure pure pose position error:
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where 𝑋𝑛
𝑖,𝑟

and 𝑋𝑛
𝑖,𝑟

are the ground truth and prediction of the root
joint for the 𝑛-th individual in the 𝑖-th frame.

3) FDE. In order to evaluate the global motion of all individuals,
we introduce the Final Displacement Error (FDE), that is

FDE
(
𝑋
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where 𝑋𝑛
𝑇+𝐹+1,𝑟 and 𝑋

𝑛
𝑇+𝐹+1,𝑟 represent the ground truth and predic-

tion of the root joint at the last frame, i.e., the (𝑇 + 𝐹 + 1)-th frame,
for the 𝑛-th individual.

6.3 Evaluation Results
Quantitative Results. Table 1 presents the results of JPE, APE
and FDE on the datasets CMU-Mocap, MuPoTS-3D, Mix1 and Mix2
(cross-dataset validation) in short term (0.2s∼ 1.0s). Our model

Table 5: Ablation studies on different components of CONS-
Former. Our full method and its variants are evaluated on
the CMU-Mocap in JPE metric.

JPE APE FDE
Method 1.0s 2.0s 3.0s 1.0s 2.0s 3.0s 1.0s 2.0s 3.0s
w/o Rolling Design 103 205 316 83 129 158 69 158 259
w/o Hybrid Supervision 104 208 314 85 129 156 70 159 257
w/o SJE 103 206 306 84 130 154 69 160 255
w/o TJE 104 209 308 82 129 153 67 158 257
Full 98 199 298 79 123 145 62 149 243

provides rolling guidance for the prediction sequence of multiple
frames and establishes long-term temporal dependencies. Com-
pared to the previous best method, our model demonstrates an
improvement in the JPE metric ranging from 1% to 23% in the four
datasets. Furthermore, Table 2 validates the effectiveness of our
model over longer time intervals (1.0s ∼ 3.0s). Compared to the
previous best method, our model exhibits an improvement of 2% ∼
8%. Additionally, as shown in Table 3, we evaluate the performance
of our model on the large-scale dataset MI-Motion. Our model out-
performs previous model, with improvement of 3% ∼ 22%, in terms
of the JPE metric across five different scenes.
Qualitative Results. Figure 5 shows our visualization results com-
pared to the baselines and ground truth. TBIFormer [33] demon-
strates the trend of converging to a static pose in long-term pre-
dictions, with less pronounced motion amplitudes. JRFormer [45]
does not perform well in learning the climbing pattern, as indicated
by the red and black boxes in the figure. In contrast, our model
generate dynamic and accurate prediction results. Compared to
other methods, our approach is closer to the ground truth.

6.4 Ablation Studies
We further conduct extensive ablation studies on CMU-Mocap to in-
vestigate the contribution of technical components in CONSFormer,
with results given in Table 4 and Table 5.
Effectiveness of Rolling Design. The purpose of Rolling Design
is to provide rolling guidance for the prediction sequence of mul-
tiple frames and establish long-term temporal dependencies. As
illustrated in the first row of Table 5, if the Rolling Design is re-
moved, our model exhibits more pronounced errors in long-term
predictions. Additionally, in Table 4, we conduct experiments on
the number of rolling predictions and find that predicting 5 frames
per roll (d=9) yields the best results in long-term predictions.
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Figure 5: Visualization comparison with the baselines and the ground truth on the sample of the MI-Motion dataset. The left
two columns are inputs, and the right four columns are predictions. Our method successfully captures the alternating motion
pattern of the legs when a person climbs a ladder. In contrast, other methods only capture the overall upward movement,
keeping the legs in their predictions nearly stationary.

Figure 6: Correlation visualization between two interacting
individuals. The large correlation values pinpoint the key
points, where their interaction is most intense.

Effectiveness of Hybrid Supervision. The purpose of Hybrid
Supervision Mechanism is to reduce the accumulation and propaga-
tion of errors in each rolling prediction. We employ the Hybrid Su-
pervision Mechanism by introducing ground truth as the predicted
frames. When we remove Hybrid Supervision, the performance
drops substantially as in the second row of Table 5. Apparently, our
model equipped with Hybrid Supervision can enhance the model’s
robustness to noise. Additionally, to verify the importance of the
hybrid supervision in our framework, we compare the training
loss and test loss on the CMU-Mocap dataset under three different
training conditions with: hybrid supervision, i.e., Lℎ𝑦𝑏𝑟𝑖𝑑 , stan-
dard supervision only, i.e., L𝑒𝑟𝑟𝑜𝑟 and auxiliary supervision only,
i.e., L𝑔𝑡 . As shown in Figure 4, it can be observed that the final
result with hybrid supervision (0.6) is much smaller than the result
with standard supervision (0.7) and auxiliary supervision (1.7) only,
indicating the effectiveness of the hybrid supervision.

Effectiveness of SJE module. SJE is designed to learn the spatial
relationships between all joints. If the SJE is removed, the perfor-
mance drops substantially as shown in the third row of Table 5.
Effectiveness of TJE module.TJE is designed to learn the inde-
pendent variations of each joint over time and captures the motion
characteristics of each joint. As shown in the last row of Table 5, if
the TJE is removed, the experimental results become worse.

6.5 Fine-grained Correlation Visualization
We visualize the attention score between individuals’ query and key
features in the attention mechanism in Figure 6. The figure shows
the motion of two people, in the left figure, we can see person1
and person2 hugging each other, with higher attention weights on
their hand and neck joints. In the right figure, as person1 takes
person2’s hand, the hands of person1 and person2 have higher
attention weights.

7 Conclusion
In this paper, we present a transformer-based framework designed
to effectively reduce uncertainty for multi-person pose prediction.
We first introduce Hybrid-Supervised coder (HScoder) block that
provides rolling guidance for multi-frame prediction. We also de-
velop a hybrid supervision mechanism to ensure the training effi-
ciency and the robustness of the final learned model to the accu-
mulated prediction errors. In addition, we integrate the STE block
into HScoder for fine-grained modeling to learn spatiotemporal cor-
relations. Experiments demonstrate that our method outperforms
state-of-the-art methods on multiple motion datasets.
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