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ABSTRACT

Offline meta-reinforcement learning (offline meta-RL) extracts knowledge from
a given dataset of multiple tasks and achieves fast adaptation to new tasks. Re-
cent offline meta-RL methods typically use task-dependent behavior policies (e.g.,
training RL agents on each individual task) to collect a multi-task dataset and
learn an offline meta-policy. However, these methods always require extra in-
formation for fast adaptation, such as offline context for testing tasks or oracle
reward functions. Offline meta-RL with few-shot online adaptation remains an
open problem. In this paper, we first formally characterize a unique challenge
under this setting: reward and transition distribution mismatch between offline
training and online adaptation. This distribution mismatch may lead to unreliable
offline policy evaluation and the regular adaptation methods of online meta-RL
will suffer. To address this challenge, we introduce a novel mechanism of data
distribution correction, which ensures the consistency between offline and online
evaluation by filtering out out-of-distribution episodes in online adaptation. As
few-shot out-of-distribution episodes usually have lower returns, we propose a
Greedy Context-based data distribution Correction approach, called GCC, which
greedily infers how to solve new tasks. GCC diversely samples “task hypotheses”
from the current posterior belief and selects greedy hypotheses with higher return
to update the task belief. Our method is the first to provide an effective online
adaptation without additional information, and can be combined with off-the-shelf
context-based offline meta-training algorithms. Empirical experiments show that
GCC achieves state-of-the-art performance on the Meta-World ML1 benchmark
compared to baselines with/without offline adaptation.

1 INTRODUCTION

Human intelligence is capable of learning a wide variety of skills from past history and can adapt to
new environments by transferring skills with limited experience. Current reinforcement learning (RL)
has surpassed human-level performance (Mnih et al., 2015; Silver et al., 2017; Hafner et al., 2019)
but requires a vast amount of experience. However, in many real-world applications, RL encounters
two major challenges: multi-task efficiency and costly online interactions. In multi-task settings, such
as robotic manipulation or locomotion (Yu et al., 2020b), agents are expected to solve new tasks with
few-shot adaptation with previously learned knowledge. Moreover, collecting sufficient exploratory
interactions is usually expensive or dangerous in robotics (Rafailov et al., 2021), autonomous driving
(Yu et al., 2018), and healthcare (Gottesman et al., 2019). One popular paradigm for breaking this
practical barrier is offline meta reinforcement learning (offline meta-RL; Li et al., 2020; Mitchell
et al., 2021), which trains a meta-RL agent with pre-collected offline multi-task datasets and enables
fast policy adaptation to unseen tasks.

Recent offline meta-RL methods have been proposed to utilize a multi-task dataset collected by task-
dependent behavior policies (Li et al., 2020; Dorfman et al., 2021). They show promise by solving
new tasks with few-shot adaptation. However, existing offline meta-RL approaches require additional
information or assumptions for fast adaptation. For example, FOCAL (Li et al., 2020) and MACAW
(Mitchell et al., 2021) conduct offline adaptation using extra offline contexts for meta-testing tasks.
BOReL (Dorfman et al., 2021) and SMAC (Pong et al., 2022) employ few-shot online adaptation, in
which the former assumes known reward functions, and the latter focuses on offline meta-training
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Figure 1: Illustration of data distribution mismatch between offline training and online adaptation.

with unsupervised online samples (without rewards). Therefore, achieving effective few-shot online
adaptation purely relying on online experience remains an open problem for offline meta-RL.

One particular challenge of meta-RL compared to meta-supervised learning is the need to learn how to
explore in the testing environments (Finn & Levine, 2019). In offline meta-RL, the gap of reward and
transition distribution between offline training and online adaptation presents a unique conundrum for
meta-policy learning, namely data distribution mismatch. Note that this data distribution mismatch
differs distributional shift in offline single-task RL (Levine et al., 2020), which refers to the shifts
between offline policy learning and a behavior policy, not the gap between reward and transition
distribution. As illustrated in Figure 1, when we collect an offline dataset using the expert policy
for each task, the robot will be meta-trained on all successful trajectories ( ). The robot aims
to fast adapt to new tasks during meta-testing. However, when it tries the middle path and hits a
stone, this failed adaptation trajectory ( ) does not match the offline training data distribution,
which can lead to false task inference or adaptation. To formally characterize this phenomenon, we
utilize the perspective of Bayesian RL (BRL; Duff, 2002; Zintgraf et al., 2019; Dorfman et al., 2021)
that maintains a task belief given the context history and learns a meta-policy on belief states. Our
theoretical analysis shows that task-dependent data collection may lead the agent to out-of-distribution
belief states during meta-testing and results in an inconsistency between offline meta-policy evaluation
and online adaptation evaluation. This contrasts with policy evaluation consistency in offline single-
task RL (Fujimoto et al., 2019). To deal with this inconsistency, we can choose either to trust the
offline dataset or to trust new experience and continue online exploration. The latter may not be able
to collect sufficient data in few-shot adaptation to learn a good policy only on online data. Therefore,
we adopt the former strategy and introduce a mechanism of online data distribution correction that
meta-policies with Thompson sampling (Strens, 2000) can filter out out-of-distribution episodes and
provide a theoretical consistency guarantee in policy evaluations.

To realize our theoretical implications in practical settings, we propose a context-based offline
meta-RL algorithm with a novel online adaptation mechanism, called Greedy Context-based data
distribution Correction (GCC). To align adaptation context with the meta-training distribution, GCC
utilizes greedy task inference, which diversely samples “task hypotheses” and selects hypotheses
with higher return to update task belief. In Figure 1, the robot can sample other “task hypotheses”
(i.e., try other paths) and the failed adaptation trajectory (middle) will not be used for task inference
due to out-of-distribution with a lower return. To our best knowledge, our method is the first to design
a delicate context mechanism to achieve effective online adaptation for offline meta-RL and has the
advantage of directly combining with off-the-shelf context-based offline meta-training algorithms.

Our main contribution is to formalize a specific challenge (i.e., data distribution mismatch) in offline
meta-RL with online adaptation and propose a greedy context mechanism with theoretical motivation.
We extensively evaluate the performance of GCC in didactic problems proposed by prior work
(Rakelly et al., 2019; Zhang et al., 2021) and Meta-World ML1 benchmark with 50 tasks (Yu et al.,
2020b). In these didactic problems, GCC demonstrates that our context mechanism can accurately
infer task identification, whereas the original online adaptation methods will suffer due to out-of-
distribution data. Empirical results on the more challenging Meta-World ML1 benchmark show that
GCC significantly outperforms baselines with few-shot online adaptation, and achieves better or
comparable performance than offline adaptation baselines with expert context.

2 NOTATIONS AND PRELIMINARIES

2.1 STANDARD META-RL

The goal of meta-RL (Finn et al., 2017; Rakelly et al., 2019) is to train a meta-policy that can quickly
adapt to new tasks using N adaptation episodes. The standard meta-rl setting deals with a distribution
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p(κ) over MDPs, in which each task κi sampled from p(κ) presents a finite-horizon MDP (Zintgraf
et al., 2019; Yin & Wang, 2021). κi is defined by a tuple (S,A,R, H, Pκi , Rκi), including state
space S , action space A, reward space R, planning horizon H , transition function Pκi(s′|s, a), and
reward function Rκi(r|s, a). Denote K is the space of task κi. In this paper, we assume dynamics
function P and reward function R may vary across tasks and share a common structure. The meta-RL
algorithms repeatedly sample batches of tasks to train a meta-policy. In the meta-testing, agents aim
to rapidly adapt a good policy for new tasks drawn from p(κ).

From a perspective of Bayesian RL (BRL; Ghavamzadeh et al., 2015), recent meta-RL methods
(Zintgraf et al., 2019) utilize a Bayes-adaptive Markov decision process (BAMDP; Duff, 2002)
to formalize standard meta-RL. A BAMDP is a belief MDP (Kaelbling et al., 1998) of a special
Partially Observable MDP (POMDP; Astrom, 1965) whose unobserved state information presents
unknown task identification in N adaptation episodes. BAMDPs are defined as a tuple M+ =(
S+,A,R, H+, P+

0 , P+, R+
)

(Zintgraf et al., 2019), in which S+ = S ×B is the hyper-state space,
B is the space of task beliefs over meta-RL MDPs, A is the action space, R is the reward space,
H+ = N × H is the planning horizon across adaptation episodes, P+

0

(
s+0
)

is the initial hyper-
state distribution representing task distribution p(κ), P+

(
s+t+1

∣∣s+t , at, rt ) is the transition function,
and R+

(
rt
∣∣s+t , at ) is the reward function. A meta-policy π+

(
at
∣∣s+t ) on BAMDPs prescribes a

distribution over actions for each hyper-state s+t = (st, bt). The objective of meta-RL agents is
to find a meta-policy π+ that maximizes expected return, i.e., online policy evaluation denoted by
JM+ (π+). Formal descriptions are deferred to Appendix A.1.3.

2.2 OFFLINE META-RL
In the offline meta-RL setting, a meta-learner only has access to an offline multi-task dataset D+ and
is not allowed to interact with the environment during meta-training (Li et al., 2020). Recent offline
meta-RL methods (Dorfman et al., 2021) always utilize task-dependent behavior policies p(µ|κ),
which represents the random variable of the behavior policy µ(a|s) conditioned on the random
variable of the task κ. For brevity, we overload [µ] = p(µ|κ). Similar to related work on offline RL
(Yin & Wang, 2021), we assume that D+ consists of multiple i.i.d. trajectories that are collected by
executing task-dependent policies [µ] in M+. We define the reward and transition distribution of the
task-dependent data collection by PM+,[µ] (Jin et al., 2021), i.e., for each step t in a trajectory,

PM+,[µ]

(
rt, st+1

∣∣s+t , at ) ∝ Eκi∼p(κ),µi∼p(µ|κi)

[
Pκi (rt, st+1 |st, at ) · pM+

(
s+t |κi, µi

)]
, (1)

where the reward and transition distribution of data collection with µi in a task κi is defined as

Pκi
(rt, st+1 |st, at ) = Rκi (rt |st, at ) · Pκi (st+1 |st, at ) , (2)

and pM+

(
s+t |κi, µi

)
denotes the probability of s+t when executing µi in a task κi. Note that

the offline dataset D+ can be narrow and a large amount of state-action pairs are not covered.
These unseen state-action pairs will be erroneously estimated to have unrealistic values, called a
phenomenon of extrapolation error (Fujimoto et al., 2019). To overcome extrapolation error in
offline RL, related works (Fujimoto et al., 2019) introduce batch-constrained RL, which restricts the
action space in order to force policy selection of an agent with respect to a given dataset. A policy
π+ is defined to be batch-constrained by D+ if π+ (a |s+ ) = 0 for all (s+, a) tuples that are not
contained in D+. Offline RL (Liu et al., 2020; Chen & Jiang, 2019) approximates policy evaluation
for a batch-constrained policy π+ by sampling from an offline dataset D+, which is denoted by
JD+ (π+) and called Approximate Dynamic Programming (ADP; Bertsekas & Tsitsiklis, 1995).
During meta-testing, RL agents perform online adaptation using a meta-policy π+ in new tasks drawn
from meta-RL task distribution. The reward and transition distribution of data collection with π+ in
M+ during adaptation is defined by

PM+

(
rt, st+1

∣∣s+t , at ) = R+
(
rt
∣∣s+t , at ) · P+

(
st+1

∣∣s+t , at ) , (3)

where R+, P+ are defined in M+. Detailed formulations are deferred to Appendix A.1.4.

3 THEORY: DATA DISTRIBUTION MISMATCH CORRECTION

Consistency of training and testing conditions is an important principle for machine learning (Finn
& Levine, 2019). Recently, offline meta-RL with task-dependent behavior policies (Dorfman et al.,
2021) faces a special challenge: the reward and transition distribution in offline training and online
adaptation may not match. We first build a theory about data distribution mismatch to understand
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this phenomenon. Our theoretical analysis is based on Bayesian RL (BRL; Zintgraf et al., 2019)
and demonstrates that data distribution mismatch may lead to out-of-distribution belief states during
meta-testing and results in a large gap between online and offline policy evaluation. To address this
challenge, we propose a new mechanism to correct data distribution, which transforms the BAMDPs
(Duff, 2002) to enrich information about task-dependent behavior policies into overall beliefs. This
transformed BAMDPs provide reliable policy evaluation by filtering out out-of-distribution episodes.

3.1 DATA DISTRIBUTION MISMATCH IN OFFLINE META-RL

We define data distribution mismatch in offline meta-RL as follows.
Definition 1 (Data Distribution Mismatch). In a BAMDP M+, for each task-dependent behavior
policies [µ] and batch-constrained meta-policy π+, the data distribution mismatch between π+ and
[µ] is defined by that ∃s+t , at, s.t.,

pπ
+

M+

(
s+t , at

)
> 0 and PM+

(
rt, st+1

∣∣s+t , at ) ̸= PM+,[µ]

(
rt, st+1

∣∣s+t , at ) , (4)

where pπ
+

M+

(
s+t , at

)
is the probability of reaching a tuple

(
s+t , at

)
while executing π+ in M+ (formal

definition deferred to Appendix A.2), and PM+ ,PM+,[µ] are the reward and transition distribution of
data collection with π+ and [µ] defined in Eq. (1) and (3), respectively.

The data distribution induced by π+ and [µ] mismatches when the reward and transition distribution
of π+ and [µ] differs in a tuple

(
s+t , at

)
, in which the agent can reach this tuple by executing π+ in

M+, i.e., pπ
+

M+

(
s+t , at

)
> 0. Note that if π+ can reach a tuple

(
s+t , at

)
, this tuple is guaranteed to

be collected in the offline dataset, i.e., p[µ]M+

(
s+t , at

)
> 0, because a batch-constrained policy π+ will

not select an action outside of the dataset collected by [µ], as introduced in Section 2.2.
Theorem 1. There exists a BAMDP M+ with task-dependent behavior policies [µ] such that, for any
batch-constrained meta-policy π+, the data distribution induced by π+ and [µ] does not match.

s0

rκ1 (a1)=1,rκi̸=1 (a1)=0

**...
//

rκv (av)=1,rκi̸=v (av)=0

44 s0

p(κi) =
1
v , p(µi|κi) = 1, and µi(ai|s0) = 1

Figure 2: A concrete example, which has v meta-
RL tasks, one state, v actions, v behavior policies,
horizon H = 1 in an episode, and v adaptation
episodes, where v ≥ 3.

To serve a concrete example, we construct
an offline meta-RL setting shown in Figure 2.
In this example, there are v meta-RL tasks
K = {κ1, . . . , κv} and v behavior policies
{µ1, . . . , µv}, where v ≥ 3. Each task κi has
one state s0, v actions, and horizon H = 1. For
each task κi, RL agents can receive reward 1
performing action ai. During adaptation, the RL
agent can interact with the environment within
v episodes. The task distribution is uniform,
the behavior policy of task κi is µi, and each
behavior policy µi will perform ai. When any
batch-constrained meta-policy π+ selects an action ã on the initial state s+0 , we find that

PM+

(
r = 1

∣∣s+0 , ã) = 1

v
̸= PM+,[µ]

(
r = 1

∣∣s+0 , ã) = 1, (5)

in which there is the probability of 1
v to sample a corresponding testing task, whose reward function

of ã is 1, whereas the reward in the offline dataset collected by [µ] is all 1.
Fact 1. With any probability 1− δ ∈ [0, 1), there exists a BAMDP M+ with task-dependent behavior
policies [µ] such that, for any batch-constrained meta-policy π+, the agent will visit out-of-distribution
belief states during meta-testing due to data distribution mismatch.

In the example shown in Figure 2, an offline multi-task dataset D+ is drawn from the task-dependent
data collection PM+,[µ]. Since the reward of D+ is all 1, the belief states in D+ has two types: (i)
all task possible s+0 and (ii) determining task i with receiving reward 1 in action ai. For any batch-
constrained meta-policy π+ selecting an action ãj on s+0 during meta-testing, there has probability
1− 1

v to receive reward 0 and the belief state will become "excluding task j", which is not contained
in D+ with v ≥ 3. For any δ ∈ (0, 1], let v > 1

δ , with probability 1 − δ, the agent will visit
out-of-distribution belief states during adaptation. Note that, this phenomenon will directly lead to the
following proposition since RL agents will visit out-of-distribution belief states during meta-testing
in BAMDPs and induce unreliable offline policy evaluation.
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Proposition 1. There exists a BAMDP M+ with task-dependent behavior policies [µ] such that,
for any batch-constrained meta-policy π+, the gap of policy evaluation of π+ between offline
meta-training and online adaptation is at least H+−1

2 , where H+ is the planning horizon of M+.
In Figure 2, an offline dataset D+ only contains reward 1, thus for each batch-constrained meta-policy
π+, the offline evaluation of π+ in D+ is JD+ (π+) = H+ = vH , as defined in Section 2.2. The
optimal meta-policy π+,∗ in this example is to enumerate a1, . . . , av until the task identification
is inferred from the action with a reward of 1. A meta-policy π+,∗ needs to explore in the testing
environments and its online policy evaluation is JM+ (π+,∗) = H++1

2 . The detailed proof is deferred
to Appendix A.2. Thus, the evaluation gap between offline meta-training and online adaptation is∣∣JM+

(
π+
)
− JD+

(
π+
)∣∣ ≥ JD+

(
π+
)
− JM+

(
π+,∗) = H+ − 1

2
. (6)

Proposition 1 suggests that offline policy evaluation can fail by visiting out-of-distribution belief
states. As few-shot online adaptation, we choose to trust the offline dataset and it is imperative to
build a connection between online and offline evaluation for effective offline meta-policy training.

3.2 DATA DISTRIBUTION CORRECTION MECHANISM

To correct data distribution mismatch, we define the transformed BAMDPs as follows.
Definition 2 (Transformed BAMDPs, informal). A transformed BAMDP is defined by a new BAMDP
M

+
, whose belief b̄t is about meta-RL MDPs κ and task-dependent behavior policies [µ]. The goal

of meta-RL agents is to find a meta-policy π̄+
(
at
∣∣s̄+t ) that maximizes online policy evaluation

J
M

+ (π̄+), where s̄+t =
(
st, b̄t

)
is a hyper-state of M

+
. Denote the offline dataset on M

+
by D+

.

Transformed BAMDPs maintain an overall belief about the task and behavior policies given the current
context history. Compared to the original BAMDPs stated in Section 2.2, the transformed BAMDPs
incorporate additional information about offline data collection into beliefs. This transformation will
introduce an extra condition to the online adaptation process, as indicated by the following fact.
Fact 2. For feasible Bayesian belief updating, transformed BAMDPs confine the agent in the in-
distribution belief states during meta-testing.

During online adaptation, RL agents construct a hyper-state s̄+t =
(
st, b̄t

)
from the context history

and perform a meta-policy π̄+
(
at
∣∣s̄+t ). The new belief b̄t accounts for the uncertainty of task MDPs

and task-dependent behavior policies. In contrast with Fact 1, transformed BAMDPs do not allow the
agent to visit out-of-distribution belief states with D+

. Otherwise, the context history will conflict
with the belief of behavior policies, i.e., RL agents cannot update beliefs b̄t when they have observed
an event that they believe to have probability zero. For example in Figure 2, RL agents can take an
action a1 and receive a reward of 0 during meta-testing. After observing an action a1, the posterior
belief will be p

(
κ1, µ1

∣∣b̄t ) = 1, which is contradictory because the reward function of a1 is 1 in κ1.
To support feasible Bayesian belief updating, transformed BAMDPs require the RL agents to filter
out out-of-distribution episodes and induce the following theorem.

Theorem 2. In a transformed BAMDP M
+

, for each task-dependent behavior policy [µ] and batch-
constrained meta-policy π̄+, the data distribution induced by π̄+ and [µ] matches after filtering out
out-of-distribution episodes in online adaptation. Besides, the policy evaluation of π̄+ in offline
meta-training and online adaptation will be asymptotically consistent, as the offline dataset grows.

In Theorem 2, the proof of consistent policy evaluation is similar to that in offline single-task RL
(Fujimoto et al., 2019), whose proof is deferred to Appendix A.3. This theorem indicates that we can
design a delicate context mechanism to correct data distribution and guarantee the final performance
of online adaptation by maximizing the expected future return during offline meta-training. Moreover,
we prove that meta-policies with Thompson sampling (Strens, 2000) can filter out out-of-distribution
episodes in M

+
with high probability, as the offline dataset D+

grows (see Appendix A.5).

4 GCC: GREEDY CONTEXT-BASED DATA DISTRIBUTION CORRECTION

In this section, we investigate a scheme to address data distribution mismatch in offline meta-RL
with few-shot online adaptation. Inspired by the theoretical results discussed in Section 3, we aim to
distinguish whether an adaptation episode is in the distribution of the given meta-training dataset,
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then meta-policies with Thompson sampling (Strens, 2000) can utilize in-distribution context to infer
how to solve meta-testing tasks. However, in practice, accurate out-of-distribution quantification
is challenging (Yu et al., 2021; Wang et al., 2021). For example, we conduct a popular empirical
measure of offline RL, uncertainty estimation via an ensemble (Yu et al., 2020c; Kidambi et al., 2020),
and find that such quantification works poorly in the offline meta-RL (see Section 5.1). To address
this challenge, we introduce a novel Greedy Context-based data distribution Correction (GCC),
which elaborates a greedy online adaptation mechanism and can directly combine with off-the-shelf
offline meta-RL algorithms. GCC consists of two main components: (i) an off-the-shelf context-based
offline meta-training method which extracts meta-knowledge from a given multi-task dataset, and (ii)
a greedy context-based online adaptation that realizes a selective context mechanism to infer how to
solve meta-testing tasks. The whole algorithm is illustrated in Algorithm 1.

4.1 CONTEXT-BASED OFFLINE META-TRAINING

To support effective offline meta-training, we employ a state-of-the-art off-the-shelf context-based
algorithm, i.e., FOCAL (Li et al., 2020), which follows the algorithmic framework of a popular
meta-RL approach, PEARL (Rakelly et al., 2019). In this meta-training paradigm, task identification
κ is modeled by a latent task embedding z. GCC meta-trains a context encoder q(z|c), a policy
π(a|s, z), and a value function Q(s, a, z), where c is the context information including states, actions,
rewards, and next states. The encoder q infers a task belief about the latent task variable z based
on the received context. We use q(z) to denote the prior distribution for c = ∅. The policy π and
value function Q are conditioned on the latent task variable z, in which the representation of z can be
end-to-end trained on the RL losses of π or Q. In addition to the gradient from π or Q, recent offline
meta-RL (Li et al., 2020; Yuan & Lu, 2022) also uses a contrastive loss to help the representation of z
distinguish different tasks. We argue that meta-training the inference network q within a given dataset
implicitly incorporates the information about offline data collection into the belief, as discussed in
Definition 3. Formally, in the offline setting, the prior distribution q(z) can approximately present a
distribution of the latent task variable z over meta-training tasks, i.e., a sample z̃ drawn from q(z) is
equivalent to sampling a task during meta-training and inferring z̃ using the offline context from the
offline dataset. During meta-testing, few-shot out-of-distribution episodes may confuse the context
encoder q(z|c) and RL agents need to use in-distribution context to provide reliable task beliefs.

4.2 GREEDY CONTEXT-BASED META-TESTING

GCC is a context-based meta-RL algorithm (Rakelly et al., 2019), whose adaptation protocol follows
the framework of Thompson sampling (Strens, 2000). The RL agent will iteratively update task belief
by interacting with the environment and improve the meta-policy based on the "task hypothesis"
sampled from the current beliefs. This adaptation paradigm is generalized from Bayesian inference
(Thompson, 1933) and has a solid background in RL theory (Agrawal & Goyal, 2012). To ensure
feasible Bayesian belief updating, we adopt a heuristic of offline RL (Fujimoto et al., 2019), i.e.,
few-shot out-of-distribution episodes generated by an offline-learned meta-policy usually have lower
returns since offline training paradigm does not well-optimize meta-policies on out-of-distribution
states. Its contrapositive statement is that episodes with higher returns have a higher probability of
being in-distribution and the true return of episodes can be a good out-of-distribution quantification.
In this way, GCC contains two steps to perform a greedy posterior belief update at each iteration: (i)
a diverse sampling of latent task variables, and (ii) a greedy context mechanism that selects a task
embedding with higher return to update the belief. For each iteration t, denote the current task belief
by bt, the meta-testing task by κtest, and the number of belief updating iterations by nit.

A diverse sampling of latent task variables will generate nz
t candidates of the task embedding

zt, denoting by Zt =
{
zit
}nz

t−1

i=0
, to provide various policies π

(
a
∣∣s, zit ) for the subsequent context

selection mechanism. Due to the contrastive loss applied to the representation of z (Li et al., 2020),
a closer task embedding z may yield a more similar policy. Hence, to encourage the diversity of
policies, each candidate zit ∈ Zt is designed by

zit = argmax
z̃∈Z̃i

t

(
min

(
min
j<i

∥∥∥z̃ − zjt

∥∥∥
2
, min
t′<t,k<nz

t′

∥∥z̃ − zkt′
∥∥
2

))
and Z̃i

t =
{
z̃i,ut ∼ bt

}nz̃−1

u=0
, (7)

in which zit aims to maximize the minimum distance to the previous embeddings among nz̃ samples.
This greedy method is similar to Farthest-Point Clustering (Gonzalez, 1985), a two-approximation
algorithm for an NP-hard problem Minimax Facility Location (Fowler et al., 1981), which seeks a set
of locations to minimize the maximum distance from other facilities to the set.
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A greedy selective context mechanism will select a latent task variable zt ∈ Zt with higher return
to update the task belief bt. To evaluate the return of each zit, GCC utilizes the policy π

(
a
∣∣s, zit )

to draw ne episodes in κtest, denoting by E i
t =

{
ei,jt

}ne−1

j=0
. The policy evaluation of zit can be

approximated by sampling:

Jκtest

(
zit
)
= Jκtest

(
π
(
a
∣∣s, zit )) ≈ J̃κtest

(
E i
t

)
=

1

ne

ne−1∑
j=0

(
H−1∑
k=0

rk

(
ei,jt

))
, (8)

where J̃κtest

(
E i
t

)
is the average return of episodes E i

t and rk

(
ei,jt

)
is the reward of k-th step

in an episode ei,jt . The task belief update in GCC consists of two phases: (i) an initial stage
and (ii) an iterative optimization process. In the initial stage, GCC aims to find a reliable initial
task inference z0 using a large amount of nz

0 diverse candidates, i.e., the initial context is c0 =

argmaxE0∈{Ei
0} J̃κtest (E0), maintaining the corresponding task embedding z0, and deriving the

posterior belief b1 = q(z|c0). In the following iterations, GCC utilizes an iterative optimization
method to maximize final performance during few-shot online adaptation, i.e., when t > 1, let
nz
t = 1 and if J̃κtest

(
E0
t

)
> J̃κtest (ct−1), we have ct = E0

t and update the posterior belief
bt+1 = q(z| ∪t′≤t ct′), otherwise ct = ct−1 and keep the belief bt+1 = bt. The final policy
π (a |s, zt ) will depend on the optimal task embedding zt with the highest return.

Algorithm 1 GCC: Greedy Context-based data distribution Correction
1: Require: An offline multi-task dataset D+, a meta-testing task κtest ∼ p(κ), the number of

iterations nit, n
z
0, and a context-based offline meta-training algorithm A (i.e., FOCAL)

2: Randomly initialize a context encoder q(z|c), a policy π(a|s, z), and a value function Q(s, a, z)
3: Offline meta-train q, π, and Q given an algorithm A and a dataset D+ ▷ Offline meta-training
4: Generate a prior task distribution q(z) using the dataset D+ ▷ Start online meta-testing
5: Collect diverse adaptation episodes

{
E i
0

}nz
0−1

i=0
using q(z) and π in κtest

6: Compute the greedy context c0, task embedding z0, and posterior belief b1 ▷ An initial stage
7: for t = 1 . . . nit − 1 do ▷ An iterative optimization process
8: Collect a diverse episode E0

t using bt and π(a|s, zt) in κtest

9: Compute the greedy context ct and posterior belief bt+1

10: Derive the final policy πout (a |s, zt ) with the optimal task embedding zt
11: Return: πout

5 EXPERIMENTS

In this section, we first study a didactic example to analyze the out-of-distribution problem, and show
how GCC alleviates this problem by its greedy selective mechanism. Then we conduct large-scale
experiments on Meta-World ML1(Yu et al., 2020a), a popular meta-RL benchmark that consists
of 50 robot arm manipulation task sets. Finally, we perform ablation studies to analyze GCC’s
sensitivity to hyper-parameter settings and dataset qualities. Following FOCAL (Li et al., 2020),
we use expert-level datasets sampled by policies trained with SAC on the corresponding tasks. We
compare against FOCAL (Li et al., 2020) and MACAW (Mitchell et al., 2021), as well as their online
adaptation variants. We also compare against BOReL (Dorfman et al., 2021), an offline Meta-RL
algorithm build upon VariBAD (Zintgraf et al., 2019). For fair comparison, we evaluate a variant of
BOReL that does not utilize oracle reward functions, as introduced in the original paper(Dorfman
et al., 2021). FOCAL is built upon PEARL (Rakelly et al., 2019) and uses contrastive losses to
learn context embeddings, while MACAW is a MAML-based (Finn et al., 2017) algorithm and
incorporates AWR (Peng et al., 2019). Both FOCAL and MACAW are originally proposed for the
offline adaptation settings (i.e., with expert context). For online adaptation, we use online experiences
instead of expert contexts, and adopt the adaptation protocol of PEARL and MAML, respectively.
Evaluation results are averaged over six random seeds, and variance is measured by 95% bootstrapped
confidence interval. Detailed hyper-parameter settings are deferred to Appendix B.

5.1 DIDACTIC EXAMPLE

We introduce Point-Robot, a simple 2D navigation task set commonly used in meta-RL (Rakelly
et al., 2019; Zhang et al., 2021). Figure 3(a) illustrates the distribution mismatch between offline
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(a) (b) (c)

Figure 3: (a) Illustration of data distribution mismatch between offline meta-training (blue) and online
adaptation (green and red trajectories). (b) The agent fails to identify in-distribution trajectories
via uncertainty estimation. Trajectories are colored with corresponding normalized uncertainty
estimation. (c) Adaptation performance of GCC, FOCAL, FOCAL with expert context, and selecting
trajectories with uncertainty estimation.

meta-training and online adaptation, as the dataset is collected by task-dependent behavior policies.
As a consequence, directly performing adaptation with the online collected trajectories lead to poor
adaptation performance (see FOCAL in Figure 3(c)). Figure 3(b) shows that existing methods that
estimate uncertainty with ensembles (Kidambi et al., 2020) cannot correctly detect OOD data, as there
is a large error on uncertainty estimation. GCC fixes this problem by greedily selecting trajectories. As
shown in Figure 3(a), at the end of the initial stage, GCC only updates its belief with the red trajectory
as it has the highest return. After the initial stage, GCC iteratively optimizes the posterior belief to
get the final policy. As shown in Figure 3(c), GCC achieves comparable performance to FOCAL
with expert context and significantly outperforms FOCAL with online adaptation. Visualization of
GCC’s and FOCAL’s adaptation trajectories after the initial stage are deferred to Appendix D. Further
analysis and visualization about the uncertainty estimation methods are deferred to Appendix C.

5.2 MAIN RESULTS

We evaluate on Meta-World ML1(Yu et al., 2020a), a popular meta-RL benchmark that consists of 50
robot arm manipulation task sets. Each task set consists of 50 tasks with different goals. For each
task set, we use 40 tasks as meta-training tasks, and remain the other 10 tasks as meta-testing tasks.
As shown in Table 1, GCC significantly outperforms baselines under the online context setting. With
expert contexts, FOCAL and MACAW both achieve reasonable performance. GCC achieves better
or comparable performance to baselines with expert contexts, which implies that expert contexts
may not be necessary for offline meta-RL. Under online contexts, FOCAL fails due to the data
distribution mismatch between offline training and online adaptation. MACAW has the ability of
online fine-tuning as it is based on MAML, but it also suffers from the distribution mismatch problem,
and online fine-tuning can hardly improve its performance within a few adaptation episodes. BOReL
fails on most of the tasks, as BOReL without oracle reward functions will also suffer from the
distribution mismatch problem, which is consistent with the results in the original paper. We also
test the uncertainty estimation method on several representative tasks, and it performs similarly to
FOCAL. Detailed results are deferred to Table 5 in Appendix E.1.

Table 1: Algorithms’ normalized scores averaged over 50 Meta-World ML1 task sets. Scores are
normalized by expert-level policy return.

GCC FOCAL MACAW FOCAL with
Expert Context

MACAW with
Expert Context BOReL

0.73 ± 0.07 0.53 ± 0.1 0.18 ± 0.1 0.67 ± 0.07 0.68 ± 0.07 0.04 ± 0.01

Table 2 shows algorithms’ performance on 20 representative Meta-World ML1 task sets, as well a
sparse-reward version of Point-Robot and Cheetah-Vel, which are popular meta-RL tasks (Li et al.,
2020). GCC achieves remarkable performance in most tasks and may fail in some hard tasks as
offline meta-training is difficult. We also find that GCC achieves better or comparable performance to
baselines with expert contexts on 33 out of the 50 task sets. Detailed algorithm performance on all 50
tasks as well as comparison to baselines with expert contexts are deferred to Appendix E.2. We further
perform ablation studies on hyper-parameter settings and dataset qualities, and results are deferred to
Appendix F. Results demonstrate that GCC is generally robust to the choice of hyper-parameters, and
performs well on medium-quality datasets.

8
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Table 2: Performance on example tasks, a bunch of Meta-World ML1 tasks with normalized scores.
For Meta-World tasks, “-V2” is omitted for brevity.

Example Env GCC FOCAL MACAW BOReL

Coffee-Push 1.26 ± 0.13 0.66 ± 0.07 0.01 ± 0.01 0.00 ± 0.00
Faucet-Close 1.12 ± 0.01 1.06 ± 0.02 0.07 ± 0.01 0.13 ± 0.03
Faucet-Open 1.05 ± 0.02 1.01 ± 0.02 0.08 ± 0.04 0.12 ± 0.05
Door-Close 0.99 ± 0.00 0.97 ± 0.01 0.00 ± 0.00 0.37 ± 0.19
Drawer-Close 0.99 ± 0.02 0.96 ± 0.04 0.53 ± 0.50 0.00 ± 0.00
Door-Lock 0.97 ± 0.01 0.90 ± 0.02 0.25 ± 0.11 0.14 ± 0.00
Plate-Slide-Back 0.96 ± 0.02 0.58 ± 0.06 0.21 ± 0.17 0.01 ± 0.00
Dial-Turn 0.91 ± 0.05 0.84 ± 0.09 0.00 ± 0.00 0.00 ± 0.00
Handle-Press 0.88 ± 0.05 0.87 ± 0.02 0.28 ± 0.10 0.01 ± 0.00
Hammer 0.84 ± 0.06 0.59 ± 0.07 0.10 ± 0.01 0.09 ± 0.01
Button-Press 0.74 ± 0.08 0.68 ± 0.14 0.02 ± 0.01 0.01 ± 0.01
Push-Wall 0.71 ± 0.15 0.43 ± 0.06 0.23 ± 0.18 0.00 ± 0.00
Hand-Insert 0.63 ± 0.04 0.29 ± 0.07 0.02 ± 0.01 0.00 ± 0.00
Peg-Unplug-Side 0.56 ± 0.07 0.19 ± 0.09 0.00 ± 0.00 0.00 ± 0.00
Bin-Picking 0.53 ± 0.16 0.31 ± 0.21 0.66 ± 0.11 0.00 ± 0.00
Soccer 0.44 ± 0.04 0.11 ± 0.03 0.38 ± 0.31 0.04 ± 0.02
Coffee-Pull 0.40 ± 0.05 0.23 ± 0.04 0.19 ± 0.12 0.00 ± 0.00
Pick-Place-Wall 0.28 ± 0.12 0.09 ± 0.04 0.39 ± 0.25 0.00 ± 0.00
Pick-Out-Of-Hole 0.26 ± 0.25 0.16 ± 0.16 0.59 ± 0.06 0.00 ± 0.00
Handle-Pull-Side 0.14 ± 0.04 0.13 ± 0.09 0.00 ± 0.00 0.00 ± 0.00

Cheetah-Vel -171.5 ± 22.00 -287.7 ± 30.6 -234.0 ± 23.5 -301.4 ± 36.8
Point-Robot -5.10 ± 0.26 -15.38 ± 0.95 -14.61 ± 0.98 -17.28 ± 1.16
Point-Robot-Sparse 7.78 ± 0.64 0.83 ± 0.37 0.00 ± 0.00 0.00 ± 0.00

6 RELATED WORK

In the literature, offline meta-RL methods utilize a context-based (Rakelly et al., 2019) or gradient-
based (Finn et al., 2017) meta-RL framework to solve new tasks with few-shot adaptation. They
utilize the techniques of contrastive learning (Li et al., 2020; Yuan & Lu, 2022), more expressive
power (Mitchell et al., 2021), or reward relabeling (Dorfman et al., 2021; Pong et al., 2022) with
various popular offline single-task RL tricks, i.e., using KL divergence (Wu et al., 2019; Peng et al.,
2019; Nair et al., 2020) or explicitly constraining the policy to be close to the dataset (Fujimoto et al.,
2019; Zhou et al., 2020). However, these methods always require extra information for fast adaptation,
such as offline context for testing tasks (Li et al., 2020; Mitchell et al., 2021; Yuan & Lu, 2022), oracle
reward functions (Dorfman et al., 2021), or free interactions without reward supervision (Pong et al.,
2022). To address the challenge, we propose GCC, a greedy context mechanism with theoretical
motivation, to perform effective online adaptation without requiring additional information.

The concepts of distribution shift in z-space in Pong et al. (2022) and MDP ambiguity in Dorfman et al.
(2021) are related to the data distribution mismatch proposed in this paper. We reveal that the task-
dependent behavior policies will induce different reward and transition distribution between offline
meta-training and online adaptation, in which this mismatch combined with "policy" distribution
shift in offline single-task RL (Levine et al., 2020) are two essential factors in the phenomenon of
distribution shift in z-space (Pong et al., 2022). After filtering out these out-of-distribution data, GCC
can maintain an overall belief about the task with behavior policies to address MDP ambiguity.

7 CONCLUSION

This paper formalizes data distribution mismatch in offline meta-RL with online adaptation and
introduces GCC, a novel context-based online adaptation approach. Inspired by theoretical implica-
tions, GCC adopts a greedy context mechanism to filter out out-of-distribution with lower return for
online data correction. We demonstrate that GCC can perform accurate task inference and achieve
state-of-the-art performance on Meta-World ML1 benchmark with 50 tasks. Compared to offline
adaptation baselines with expert context, GCC also performs better or comparably, suggesting that
offline context may not be necessary for the testing environments. One potential future direction is to
extend GCC to gradient-based online adaptation methods with data distribution correction and to
deal with task distributional shift problem in offline meta-RL (which is not considered in GCC).

9



Under review as a conference paper at ICLR 2023

REFERENCES

Shipra Agrawal and Navin Goyal. Analysis of thompson sampling for the multi-armed bandit problem.
In Conference on learning theory, pp. 39–1. JMLR Workshop and Conference Proceedings, 2012.

Alex Slivkins Alekh Agarwal. Lecture 10: Reinforcement learning. In COMS E6998.001, Columbia
University. 2017. OpenCourseLecture.

Karl J Astrom. Optimal control of markov decision processes with incomplete state estimation. J.
Math. Anal. Applic., 10:174–205, 1965.

Dimitri P Bertsekas and John N Tsitsiklis. Neuro-dynamic programming: an overview. In Proceedings
of 1995 34th IEEE conference on decision and control, volume 1, pp. 560–564. IEEE, 1995.

Anthony R Cassandra, Leslie Pack Kaelbling, and Michael L Littman. Acting optimally in partially
observable stochastic domains. In Aaai, volume 94, pp. 1023–1028, 1994.

Jinglin Chen and Nan Jiang. Information-theoretic considerations in batch reinforcement learning. In
International Conference on Machine Learning, pp. 1042–1051. PMLR, 2019.

Ron Dorfman, Idan Shenfeld, and Aviv Tamar. Offline meta reinforcement learning–identifiability
challenges and effective data collection strategies. Advances in Neural Information Processing
Systems, 34, 2021.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient
for sample efficient reinforcement learning? arXiv preprint arXiv:1910.03016, 2019.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779, 2016.

Michael O’Gordon Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov
decision processes. University of Massachusetts Amherst, 2002.

Chelsea Finn and Sergey Levine. Meta-learning: from few-shot learning to rapid reinforcement
learning. In ICML, 2019.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Proceedings of the 34th International Conference on Machine Learning-Volume
70, pp. 1126–1135. JMLR. org, 2017.

Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and covering in the
plane are np-complete. Information processing letters, 12(3):133–137, 1981.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy deep reinforcement learning without
exploration. In International Conference on Machine Learning, pp. 2052–2062. PMLR, 2019.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, Aviv Tamar, et al. Bayesian reinforcement
learning: A survey. Foundations and Trends® in Machine Learning, 8(5-6):359–483, 2015.

Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical computer
science, 38:293–306, 1985.

Omer Gottesman, Fredrik Johansson, Matthieu Komorowski, Aldo Faisal, David Sontag, Finale
Doshi-Velez, and Leo Anthony Celi. Guidelines for reinforcement learning in healthcare. Nature
medicine, 25(1):16–18, 2019.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. In International Conference on Learning Representations, 2019.

Ying Jin, Zhuoran Yang, and Zhaoran Wang. Is pessimism provably efficient for offline rl? In
International Conference on Machine Learning, pp. 5084–5096. PMLR, 2021.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R Cassandra. Planning and acting in partially
observable stochastic domains. Artificial intelligence, 101(1-2):99–134, 1998.

10



Under review as a conference paper at ICLR 2023

Rahul Kidambi, Aravind Rajeswaran, Praneeth Netrapalli, and Thorsten Joachims. Morel: Model-
based offline reinforcement learning. Advances in neural information processing systems, 33:
21810–21823, 2020.

Aviral Kumar, Justin Fu, Matthew Soh, George Tucker, and Sergey Levine. Stabilizing off-policy
q-learning via bootstrapping error reduction. Advances in Neural Information Processing Systems,
32, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.

Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv preprint arXiv:2005.01643, 2020.

Lanqing Li, Rui Yang, and Dijun Luo. Focal: Efficient fully-offline meta-reinforcement learning via
distance metric learning and behavior regularization. arXiv preprint arXiv:2010.01112, 2020.

Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Provably good batch reinforce-
ment learning without great exploration. arXiv preprint arXiv:2007.08202, 2020.

Eric Mitchell, Rafael Rafailov, Xue Bin Peng, Sergey Levine, and Chelsea Finn. Offline meta-
reinforcement learning with advantage weighting. In International Conference on Machine
Learning, pp. 7780–7791. PMLR, 2021.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):529, 2015.

Ashvin Nair, Abhishek Gupta, Murtaza Dalal, and Sergey Levine. Awac: Accelerating online
reinforcement learning with offline datasets. arXiv preprint arXiv:2006.09359, 2020.

Xue Bin Peng, Aviral Kumar, Grace Zhang, and Sergey Levine. Advantage-weighted regression:
Simple and scalable off-policy reinforcement learning. arXiv preprint arXiv:1910.00177, 2019.

Vitchyr H Pong, Ashvin V Nair, Laura M Smith, Catherine Huang, and Sergey Levine. Offline
meta-reinforcement learning with online self-supervision. In International Conference on Machine
Learning, pp. 17811–17829. PMLR, 2022.

Rafael Rafailov, Tianhe Yu, Aravind Rajeswaran, and Chelsea Finn. Offline reinforcement learning
from images with latent space models. In Learning for Dynamics and Control, pp. 1154–1168.
PMLR, 2021.

Kate Rakelly, Aurick Zhou, Chelsea Finn, Sergey Levine, and Deirdre Quillen. Efficient off-policy
meta-reinforcement learning via probabilistic context variables. In International Conference on
Machine Learning, pp. 5331–5340, 2019.

Tongzheng Ren, Jialian Li, Bo Dai, Simon S Du, and Sujay Sanghavi. Nearly horizon-free offline
reinforcement learning. Advances in neural information processing systems, 34, 2021.

Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. Pessimistic q-learning for offline
reinforcement learning: Towards optimal sample complexity. arXiv preprint arXiv:2202.13890,
2022.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017.

Richard D Smallwood and Edward J Sondik. The optimal control of partially observable markov
processes over a finite horizon. Operations research, 21(5):1071–1088, 1973.

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000, pp.
943–950, 2000.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

11



Under review as a conference paper at ICLR 2023

Csaba Szepesvári. Lecture 17: Batch rl: Introduction discussion. In CMPUT 653: Theoretical
Foundations of Reinforcement Learning, University of Alberta. 2022. OpenCourseLecture.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of
the evidence of two samples. Biometrika, 25(3/4):285–294, 1933.

Jane X Wang, Zeb Kurth-Nelson, Dhruva Tirumala, Hubert Soyer, Joel Z Leibo, Remi Munos,
Charles Blundell, Dharshan Kumaran, and Matt Botvinick. Learning to reinforcement learn. arXiv
preprint arXiv:1611.05763, 2016.

Jianhao Wang, Wenzhe Li, Haozhe Jiang, Guangxiang Zhu, Siyuan Li, and Chongjie Zhang. Offline
reinforcement learning with reverse model-based imagination. Advances in Neural Information
Processing Systems, 34:29420–29432, 2021.

Yifan Wu, George Tucker, and Ofir Nachum. Behavior regularized offline reinforcement learning.
arXiv preprint arXiv:1911.11361, 2019.

Ming Yin and Yu-Xiang Wang. Towards instance-optimal offline reinforcement learning with
pessimism. Advances in neural information processing systems, 34, 2021.

Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal provable uniform convergence in offline policy
evaluation for reinforcement learning. arXiv preprint arXiv:2007.03760, 2020.

Ming Yin, Yu Bai, and Yu-Xiang Wang. Near-optimal offline reinforcement learning via double
variance reduction. Advances in neural information processing systems, 34, 2021.

Fisher Yu, Wenqi Xian, Yingying Chen, Fangchen Liu, Mike Liao, Vashisht Madhavan, and Trevor
Darrell. Bdd100k: A diverse driving video database with scalable annotation tooling. arXiv
preprint arXiv:1805.04687, 2(5):6, 2018.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on Robot Learning, pp. 1094–1100. PMLR, 2020a.

Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and Sergey
Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement learning.
In Conference on robot learning, pp. 1094–1100. PMLR, 2020b.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. Advances in Neural Information
Processing Systems, 33:14129–14142, 2020c.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. arXiv preprint arXiv:2102.08363,
2021.

Haoqi Yuan and Zongqing Lu. Robust task representations for offline meta-reinforcement learning
via contrastive learning. In International Conference on Machine Learning, pp. 25747–25759.
PMLR, 2022.

Jin Zhang, Jianhao Wang, Hao Hu, Tong Chen, Yingfeng Chen, Changjie Fan, and Chongjie Zhang.
Metacure: Meta reinforcement learning with empowerment-driven exploration. In International
Conference on Machine Learning, pp. 12600–12610. PMLR, 2021.

Wenxuan Zhou, Sujay Bajracharya, and David Held. Plas: Latent action space for offline reinforce-
ment learning. arXiv preprint arXiv:2011.07213, 2020.

Luisa Zintgraf, Kyriacos Shiarlis, Maximilian Igl, Sebastian Schulze, Yarin Gal, Katja Hofmann, and
Shimon Whiteson. Varibad: A very good method for bayes-adaptive deep rl via meta-learning. In
International Conference on Learning Representations, 2019.

12



Under review as a conference paper at ICLR 2023

A THEORY

A.1 BACKGROUND

Throughout this paper, for a given non-negative integer N ∈ Z+, we use [N ] to denote the set
{0, 1, . . . , N − 1}. For any object that is a function of/distribution over S, S × A, S × A × S, or
S ×A×R, we will treat it as a vector whenever convenient.

A.1.1 FINITE-HORIZON SINGLE-TASK RL

In single-task RL, an agent interacts with a Markov Decision Process (MDP) to maximize its
cumulative reward (Sutton & Barto, 2018). A finite-horizon MDP is defined as a tuple M =
(S,A,R, H, P,R) (Zintgraf et al., 2019; Du et al., 2019), where S is the state space, A is the action
space, R is the reward space, H ∈ Z+ is the planning horizon, P : S ×A → ∆(S) is the transition
function which takes a state-action pair and returns a distribution over states, and R : S×A → ∆(R)
is the reward distribution. In particular, we consider finite state, action, and reward spaces in the
theoretical analysis, i.e., |S| < ∞, |A| < ∞, |R| < ∞. Without loss of generality, we assume a fixed
initial state s0

1. A policy π : S → ∆(A) prescribes a distribution over actions for each state. The
policy π induces a (random) H-horizon trajectory τπH = (s0, a0, r0, s1, a1, . . . , sH−1, aH−1, rH−1),
where a0 ∼ π(s0), r0 ∼ R(s0, a0), s1 ∼ P (s0, a0), a1 ∼ π(s1), etc. To streamline our analysis, for
each h ∈ [H], we use Sh ⊆ S to denote the set of states at h-th timestep, and we assume Sh do not
intersect with each other. To simplify notation, we assume the transition from any state in SH−1 and
any action to the initial state s0, i.e., ∀s ∈ SH−1, a ∈ A, we have P (s0|s, a) = 12. We also assume
rt ∈ [0, 1],∀t ∈ [H] almost surely. Denote the probability of τH :

p (τπH) =

 ∏
t∈[H]

π(at|st) ·R(rt|st, at)

 ∏
t∈[H−1]

P (st+1|st, at). (9)

For any policy π, we define a value function Vπ : S → R as: ∀h ∈ [H],∀s ∈ Sh,

Vπ(s) = Esh=s,at∼π(·|st),rt∼R(·|st,at),st+1∼P (·|st,at)

[
H−1∑
t=h

rt

]
(10)

=



∑
a∈A

π(a|s) · Er∼R(·|s,a) [r] , if h = H − 1,

∑
a∈A

π(a|s)

Er∼R(·|s,a) [r] +
∑

s′∈Sh+1

P (s′|s, a)Vπ(s
′)

 , otherwise,

and a visitation distribution of π is defined by ρπ(·) : ∆ (S) which is ∀h ∈ [H],∀s ∈ Sh,

ρπ(s) =



1

H
, if h = 0 and s = s0,∑

s̃∈Sh−1,ã∈A
ρπ(s̃) · π(ã|s̃) · P (s|s̃, ã), if h > 0,

0, otherwise,

(11)

and ∀s ∈ S, a ∈ A, r ∈ R,

ρπ(s, a) = ρπ(s) · π(a|s) and ρπ(s, a, r) = ρπ(s) · π(a|s) ·R(r|s, a). (12)

The expected total reward induced by policy π, i.e., the policy evaluation of π, is defined by

JM (π) = Vπ (s0) = H
∑

s∈S,a∈A
ρπ(s, a) · Er∼R(·|s,a) [r] . (13)

The goal of RL is to find a policy π that maximizes its expected return J (π).
1Some papers assume the initial state is sampled from a distribution P1. Note this is equivalent to assuming

a fixed initial state s0, by setting P (s0, a) = P1 for all a ∈ A and now our state s1 is equivalent to the initial
state in their assumption.

2The transition from the state in SH−1 does not affect learning in the finite-horizon MDP M .
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A.1.2 OFFLINE FINITE-HORIZON SINGLE-TASK RL

We consider the offline finite-horizon single-task RL setting, that is, a learner only has access to
a dataset D consisting of K trajectories

{(
skt , a

k
t , r

k
t

)}k∈[K]

t∈[H]
(i.e., |D| = KH tuples) and is not

allowed to interact with the environment for additional online explorations. The data can be collected
through multi-source logging policies and denote the unknown behavior policy µ. Similar with
related work (Ren et al., 2021; Yin et al., 2020; Yin & Wang, 2021; Yin et al., 2021; Shi et al., 2022),
we assume that D is collected through interacting K i.i.d. episodes using policy µ in M . Define
the reward and transition distribution of data collection with µ in M by PM (Jin et al., 2021), i.e.,
∀t ∈ [H] in each episode,

PM (rt, st+1 |st, at ) = RM (rt |st, at ) · PM (st+1 |st, at ) , (14)

where the action at is drawn from a behavior policy µ. Denote a dataset collected following the i.i.d.
data collecting process, i.e., D ∼ (PM , µ) is an i.i.d. dataset. Note that the offline dataset D can be
narrow collected by some behavior policy µ and a large amount of state-action pairs are not contained
in D. These unseen state-action pairs will be erroneously estimated to have unrealistic values, called
a phenomenon extrapolation error (Fujimoto et al., 2019). To overcome extrapolation error in policy
learning of finite MDPs, Fujimoto et al. (Fujimoto et al., 2019) introduces batch-constrained RL,
which restricts the action space in order to force policy selection of an agent with respect to a subset
of the given data. Thus, define a batch-constrained policy set is

ΠD = {π |π(a|s) = 0 whenever (s, a) ̸∈ D} , (15)

where denoting (s, a) ∈ D if there exists a trajectory containing (s, a) in the dataset D, and similarly
for s ∈ D, (s, a, r) ∈ D, or (s, a, r, s′) ∈ D. The batch-constrained policy set ΠD consists of the
policies that for any state s observed in the dataset D, the agent will not select an action outside of
the dataset. Thus, for any batch-constrained policy π ∈ ΠD, define the approximate value function
V D
π : S → R estimated from D (Fujimoto et al., 2019; Liu et al., 2020) as: ∀h ∈ [H],∀s ∈ Sh,

V D
π (s) = Esh=s,at∼π(·|st),(st,at,rt,st+1)∼D

[
H−1∑
t=h

rt

]
(16)

=


∑
a∈A

π(a|s)E(s,a,r)∈D [r] , if h = H − 1,∑
a∈A

π(a|s)E(s,a,r,s′)∈D
[
r + V D

π (s′)
]
, otherwise,

(17)

which is called Approximate Dynamic Programming (ADP) (Bertsekas & Tsitsiklis, 1995) and such
methods take sampling data as input and approximate the value-function (Liu et al., 2020; Chen &
Jiang, 2019). In addition, define the approximate policy evaluation of π estimated from D as

JD(π) = V D
π (s0). (18)

The offline RL literature (Fujimoto et al., 2019; Liu et al., 2020; Chen & Jiang, 2019; Kumar et al.,
2019; 2020) aims to utilize approximate expected total reward JD(π) with various conservatism
regularizations (i.e., policy constraints, policy penalty, uncertainty penalty, etc.) (Levine et al., 2020)
to find a good policy within a batch-constrained policy set ΠD.

Similar to offline finite-horizon single-task RL theory (Ren et al., 2021; Yin et al., 2020; Yin & Wang,
2021; Yin et al., 2021; Shi et al., 2022), define

dMµ = min {ρµ(s, a) |ρµ(s, a) > 0,∀s ∈ S, a ∈ A} , (19)

which is the minimal visitation state-action distribution induced by the behavior policy µ in M and is
an intrinsic quantity required by theoretical offline learning (Yin et al., 2020). Note that, different
from recent offline episodic RL theory (Ren et al., 2021; Yin et al., 2020; Yin & Wang, 2021; Yin
et al., 2021; Shi et al., 2022), we do not assume any weak or uniform converage assumption in the
dataset because we focus on the policy evaluation of all batch-constrained policies in ΠD rather than
the optimal policy in the MDP M .
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A.1.3 STANDARD META-RL

The goal of meta-RL (Finn et al., 2017; Rakelly et al., 2019) is to train a meta-policy that can
quickly adapt to new tasks using N adaptation episodes. The standard meta-RL setting deals with a
distribution p(κ) over MDPs, in which each task κi sampled from p(κ) presents a finite-horizon MDP
(Zintgraf et al., 2019; Du et al., 2019). κi is defined by a tuple (S,A,R, H, Pκi , Rκi), including
state space S , action space A, reward space R, planning horizon H , transition function Pκi(s′|s, a),
and reward function Rκi(r|s, a). Denote K is the space of task κi. In this paper, we assume dynamics
function P and reward function R may vary across tasks and share a common structure. The meta-RL
algorithms repeatedly sample batches of tasks to train a meta-policy. In the meta-testing, agents aim
to rapidly adapt a good policy for new tasks drawn from p(κ).

POMDPs. We can formalize the meta-RL with few-shot adaptation as a specific finite-horizon
Partially Observable Markov Decision Process (POMDP), which is defined by a tuple M̂ =(
Ŝ,A,R, Ω, Ĥ, P̂ , P̂0, O, R̂

)
, where Ŝ = S × K is the state space, A and R are the same ac-

tion and reward spaces as the finite-horizon MDP M defined in Appendix A.1.1, respectively, Ω = S
is the observation space, Ĥ = N × H is the planning horizon which represents N adaptation
episodes for a single meta-RL MDP κi, as discussed in Zintgraf et al. (Zintgraf et al., 2019),
P̂ : Ŝ × A → ∆

(
Ŝ
)

is the transition function: ∀ŝ, ŝ′ ∈ Ŝ, a ∈ A, where denoting ŝ = (s, κi) and
ŝ′ = (s′, κj),

P̂ (ŝ′|ŝ, a) =
{
Pκi(s′|s, a), if κi = κj ,

0, otherwise,
(20)

P̂0 : ∆
(
Ŝ
)

is the initial state distribution: ∀ŝ = (s, κi) ∈ Ŝ,

P̂0 (ŝ) =

{
p(κi), if s = s0,

0, otherwise,
(21)

O : Ŝ → ∆(Ω) is the observation probability distribution conditioned on a state: ∀ŝ = (s, κi) ∈
Ŝ, o ∈ Ω,

O (o|ŝ) =
{
1, if o = s,

0, otherwise,
(22)

and R̂ : Ŝ × A → ∆(R) is the reward distribution: ∀ŝ = (s, κi) ∈ Ŝ, a ∈ A, r ∈ R,

R̂ (r|ŝ, a) = Rκi(r|s, a). (23)

Denote context ct = (at, rt, st+1) as an experience collected at timestep t, and c:t =

⟨s0, c0, . . . , ct−1⟩3∈ Ct ≡ Ω × (A×R×Ω)
t indicates all experiences collected during t timesteps.

Note that t may be larger than H , and when it is the case, c:t represents experiences collected across
episodes in the single meta-RL MDP κi. Denote the entire context space C =

⋃Ĥ−1
t=0 Ct and a

meta-policy π̂ : C → ∆(A) (Wang et al., 2016; Duan et al., 2016) prescribes a distribution over
actions for each context. The goal of meta-RL is to find a meta-policy on history contexts π̂ that
maximizes the expected return within N adaptation episodes:

J
M̂
(π̂) = Eŝ0∼P0,ot∼O(·|st),at∼π̂(·|c:t),rt∼R̂(·|st,at),ŝt+1∼P̂ (·|ŝt,at)

Ĥ−1∑
t=0

rt

 (24)

= Eκi∼p(κ)

N−1∑
j=0

Eat∼π̂(·|c:(jH+t) ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] . (25)

3For clarity, we denote cκi
:0 = s0.
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BAMDPs. A Markovian belief state allows a POMDP to be formulated as a Markov decision
process where every belief is a state (Cassandra et al., 1994). We can transform the finite-horizon
POMDP M̂ to a finite-horizon belief MDP, which is called Bayes-Adaptive MDP (BAMDP) in the
literature (Zintgraf et al., 2019; Ghavamzadeh et al., 2015; Dorfman et al., 2021) and is defined
by a tuple M+ =

(
S+,A,R, H+, P+, P+

0 , R+
)
, S+ = S × B is the hyper-state space, where

B = {p(κ|c) |c ∈ C } is the set of belief states over the meta-RL MDPs, the prior
bκ0 = p (κ|c:0) = p(κ) (26)

is the meta-RL MDP distribution, and ∀t ∈
[
Ĥ − 1

]
, ∀c:(t+1) ∈ C, denoting bκt = p (κ|c:t) and

bκt+1 = p
(
κ|c:(t+1)

)
= p

(
p (κ|c:t) |c:(t+1)

)
= p (p (κ|c:t) |st, ct) = p (bκt |st, ct) (27)

∝ p (bκt , ct|st) = p (ct|st, bκt ) p (bκt |st) = p (ct|st, bκt ) bκt (28)
= Eκi∼bκt

[Rκi(rt|st, at) · Pκi(st+1|st, at)] · bκt (29)
is the posterior over the MDPs given the context c:(t+1), A,R are the same action space and reward
space as the finite-horizon POMDP M̂ , respectively, H+ = N ×H is the planning horizon across
adaptation episodes, P+ : S+ ×A×R → ∆(S+) is the transition function: ∀s+t , s+t+1 ∈ S+, at ∈
A, rt ∈ R, where denoting s+t = (st, b

κ
t ) and s+t+1 =

(
st+1, b̃

κ
t+1

)
,

P+
(
s+t+1

∣∣s+t , at, rt ) = P+
(
st+1, b̃

κ
t+1 |st, bκt , at, rt

)
(30)

= P+ (st+1 |st, bκt , at, rt )P+
(
b̃κt+1 |st, bκt , ct

)
(31)

= Eκi∼p(bκt |st,at,rt) [P
κi(st+1|st, at)] · 1

[
b̃κt+1 = p(bκt |st, ct)

]
, (32)

P+
0 : ∆ (S+) is the initial hyper-state distribution, i.e., a deterministic initial hyper-state is

s+0 = (s0, b
κ
0 ) = (s0, p(κ)) ∈ S+, (33)

and R+ : S+ ×A → ∆(R) is the reward distribution: ∀s+ = (s, bκ) ∈ S+, a ∈ A, r ∈ R,
R+

(
r|s+, a

)
= R+ (r|s, bκ, a) = Eκi∼bκ [R

κi(r|s, a)] . (34)
In a BAMDP, the belief is over the transition and reward functions, which are constant for a given
task. A meta-policy on BAMDP π+ : S+ → ∆(A) prescribes a distribution over actions for each
hyper-state. The agent’s objective is now to find a meta-policy on hyper-states π+ that maximizes the
expected return in the BAMDP,

JM+

(
π+
)
= Eat∼π+(·|s+t ),rt∼R+(·|s+t ,at ),s+t+1∼P+(·|s+t ,at )

Ĥ−1∑
t=0

rt

 (35)

= Eκi∼p(κ)

N−1∑
j=0

Eat∼π+(·|s+jH+t ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] . (36)

For any meta-policy on hyper-states π+, denote the corresponding meta-policy on history contexts
f̂π+ : C → ∆(A), i.e., ∀t ∈

[
Ĥ − 1

]
,∀c:t ∈ Ct, s.t., f̂π+ (·|c:t) = π+

(
·|s+t

)
, where s+t =

(st, b
κ
t ) = (st, p(κ|c:t)), and we have

J
M̂

(
f̂π+

)
= Eκi∼p(κ)

N−1∑
j=0

Eat∼f̂π+(·|c:(jH+t) ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] (37)

= JM+

(
π+
)
. (38)

The belief MDP is such that an optimal policy for it, coupled with the correct state estimator, will
give rise to optimal behavior for the original POMDP (Astrom, 1965; Smallwood & Sondik, 1973;
Kaelbling et al., 1998), which indicates that

JM+

(
π+,∗) = J

M̂

(
f̂π+,∗

)
= J

M̂
(π̂∗) , (39)

where π+,∗ and π̂∗ are the optimal policies for BAMDP M+ and POMDP M̂ , respectively. Thus,
the agent can find a policy π+ to maximize the expected return in the BAMDP M+ to address the
POMDP M̂ by the transformed policy f̂π+ .
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A.1.4 OFFLINE META-RL

In the offline meta-RL setting, a meta-learner only has access to an offline multi-task dataset D+

and is not allowed to interact with the environment during meta-training (Li et al., 2020). Recent
offline meta-RL methods (Dorfman et al., 2021) always utilize task-dependent behavior policies
p(µ|κ), which represents the random variable of the behavior policy µ(a|s) conditioned on the
random variable of the task κ. For brevity, we overload [µ] = p(µ|κ). Similar to related work
on offline RL (Shi et al., 2022), we assume that D+ is collected through interacting multiple i.i.d.
trajectories using task-dependent policies [µ] in M+. Define the reward and transition distribution of
the task-dependent data collection by PM+,[µ] (Jin et al., 2021), i.e., for each step t in a trajectory,

PM+,[µ]

(
rt, st+1

∣∣s+t , at ) ∝ Eκi∼p(κ),µi∼p(µ|κi)

[
Pκi (rt, st+1 |st, at ) · pM+

(
s+t |κi, µi

)]
, (40)

where Pκi
is the reward and transition distribution of κi defined in Eq. (14), and pM+

(
s+t |κi, µi

)
denotes the probability of s+t when executing µi in a task κi, i.e.,

pM+

(
s+t |κi, µi

)
=
∑

c:t∈Ct

pµi
κi
(c:t) · 1 [bκt = p(κ|c:t)] , (41)

where the state in c:t is st and pµi
κi
(c:t) is defined in Eq. (9). Similar to offline single-task RL (see

Appendix A.1.2), offline dataset D+ can be narrow and a large amount of state-action pairs are
not contained. These unseen state-action pairs will be erroneously estimated to have unrealistic
values, called a phenomenon extrapolation error (Fujimoto et al., 2019). To overcome extrapolation
error in offline RL, related works (Fujimoto et al., 2019) introduce batch-constrained RL, which
restricts the action space in order to force policy selection of an agent with respect to a given dataset.
Define a policy π+ to be batch-constrained by D+ if π+ (a |s+ ) = 0 whenever a tuple (s+, a) is not
contained in D+. Offline RL (Liu et al., 2020; Chen & Jiang, 2019) approximates policy evaluation
for a batch-constrained policy π+ by sampling from an offline dataset D+, which is denoted by
JD+ (π+) and called Approximate Dynamic Programming (ADP; Bertsekas & Tsitsiklis, 1995).
During meta-testing, RL agents perform online adaptation using a meta-policy π+ in new tasks drawn
from meta-RL task distribution. The reward and transition distribution of data collection with π+ in
M+ during adaptation is defined by

PM+

(
rt, st+1

∣∣s+t , at ) = R+
(
rt
∣∣s+t , at ) · P+

(
st+1

∣∣s+t , at ) , (42)

where P+
(
st+1

∣∣s+t , at ) is the marginal transition functions of M+, i.e.,

P+
(
st+1

∣∣s+t , at ) = Eκi∼bκt
[Pκi (st+1 |st, at )] . (43)

A.2 MAIN RESULTS IN SECTION 3.1

Definition 1 (Data Distribution Mismatch). In a BAMDP M+, for each task-dependent behavior
policies [µ] and batch-constrained meta-policy π+, the data distribution mismatch between π+ and
[µ] is defined by that ∃s+t , at, s.t.,

pπ
+

M+

(
s+t , at

)
> 0 and PM+

(
rt, st+1

∣∣s+t , at ) ̸= PM+,[µ]

(
rt, st+1

∣∣s+t , at ) , (4)

where pπ
+

M+

(
s+t , at

)
is the probability of reaching a tuple

(
s+t , at

)
while executing π+ in M+ (formal

definition deferred to Appendix A.2), and PM+ ,PM+,[µ] are the reward and transition distribution of
data collection with π+ and [µ] defined in Eq. (1) and (3), respectively.

More specifically,

pπ
+

M+

(
s+t , at

)
= pπ

+

M+(s
+
t ) · π+

(
at
∣∣s+t ) , (44)

where pπ
+

M+(s
+
t ) is defined in Eq. (9).

Theorem 1. There exists a BAMDP M+ with task-dependent behavior policies [µ] such that, for any
batch-constrained meta-policy π+, the data distribution induced by π+ and [µ] does not match.

Proof. To serve a concrete example, we construct an offline meta-RL setting shown in Figure 4. In
this example, there are v meta-RL tasks K = {κ1, . . . , κv} and v behavior policies {µ1, . . . , µv},
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s0

rκ1 (a1)=1,rκi̸=1 (a1)=0

**...
//

rκv (av)=1,rκi̸=v (av)=0

44 s0

p(κi) =
1
v , p(µi|κi) = 1, and µi(ai|s0) = 1

Figure 4: A concrete example, which has v meta-RL tasks, one state, v actions, v behavior polices,
horizon H = 1 in a episode, and v adaptation episodes, where v ≥ 3.

where v ≥ 3. Each task κi has one state S = {s0}, 2v actions A = {a1, . . . , av}, and horizon in
an episode H = 1. For each task κi, RL agents can receive reward 1 performing action ai. During
adaptation, the RL agent can interact with the environment within v episodes. The task distribution is
uniform, the behavior policy of task κi is µi, and each behavior policy µi will perform ai. When a
batch-constrained meta-policy π+ selects an action ã in the initial state s+0 , we find that

PM+

(
r = 1

∣∣s+0 , ã) = 1

v
̸= PM+,[µ]

(
r = 1

∣∣s+0 , ã) = 1, (45)

in which there is the probability of 1
v to sample a corresponding testing task, whose reward function

of ã is 1, whereas the reward in the offline dataset collected by [µ] is all 1.

Fact 1. With any probability 1− δ ∈ [0, 1), there exists a BAMDP M+ with task-dependent behavior
policies [µ] such that, for any batch-constrained meta-policy π+, the agent will visit out-of-distribution
belief states during meta-testing due to data distribution mismatch.

Proof. In the example shown in Figure 4, an offline multi-task dataset D+ is drawn from the task-
dependent data collection PM+,[µ]. Since the reward of D+ is all 1, the belief states in D+ has two
types: (i) all task possible s+0 and (ii) determining task i with receiving reward 1 in action ai. For
any batch-constrained meta-policy π+ selecting an action ãj on s+0 during meta-testing, there has
probability 1− 1

v to receive reward 0 and the belief state will become "excluding task j", which is
not contained in D+ with v ≥ 3. For any δ ∈ (0, 1], let v > 1

δ , with probability 1− δ, the agent will
visit out-of-distribution belief states during adaptation.

Proposition 1. There exists a BAMDP M+ with task-dependent behavior policies [µ] such that,
for any batch-constrained meta-policy π+, the gap of policy evaluation of π+ between offline
meta-training and online adaptation is at least H+−1

2 , where H+ is the planning horizon of M+.

Proof. In the example shown in Figure 2, an offline dataset D+ only contains reward 1, thus for each
batch-constrained meta-policy π+, the offline evaluation of π+ in D+ is JD+ (π+) = H+ = vH .
The optimal meta-policy π+,∗ in this example is to enumerate a1, . . . , av until the task identification
is inferred from an action with a reward of 1. A meta-policy π+,∗ needs to explore in the testing
environments and its online policy evaluation is

JM+

(
π+,∗) = N−1∑

k=0

N − k

v − k

k−1∏
j=0

(
1− 1

v − j

)
(46)

=

N−1∑
k=0

k−1∏
j=0

v − j − 1

v − j
(47)

=

N−1∑
k=0

v − k

v
= N − N(N − 1)

2v
(48)

=
v + 1

2
=

H+ + 1

2
, (49)

18



Under review as a conference paper at ICLR 2023

where N = v is the number of adaptation episodes. Thus, the gap of policy evaluation of π+ between
offline meta-training and online adaptation is∣∣JM+

(
π+
)
− JD+

(
π+
)∣∣ ≥ JD+

(
π+
)
− JM+

(
π+,∗) = H+ − 1

2
. (50)

A.3 MAIN RESULTS IN SECTION 3.2

Definition 3 (Transformed BAMDPs (formal version of Definition 2)). A transformed BAMDP is
defined as a tuple M

+
=
(
S+

,A,R, H+, P
+
, P

+

0 , R
+
)

, where S+
= S × B is the hyper-state

space, B is the space of overall beliefs over meta-RL MDPs with behavior policies, A,R, H+ are the
same action space, reward space, and planning horizon as the original BAMDP M+, respectively,
P

+

0 is the initial hyper-state distribution presenting joint distribution of task and behavior policies
p(κ, µ) = p(κ)p(µ|κ), and P

+
, R

+
are the transition and reward functions. The goal of meta-RL

agents is to find a meta-policy π̄+
(
at
∣∣s̄+t ) that maximizes online policy evaluation J

M
+ (π̄+).

Denote the reward and transition distribution of the task-dependent data collection in a transformed
BAMDP M

+
by P

M
+
,[µ]

, as defined in Eq. (40). Denote the offline multi-task dataset collected by

task-dependent data collection P
M

+
,[µ]

by D+
.

More specifically, a finite-horizon transformed BAMDP is defined by a tuple M
+

=(
S+

,A,R, H+, P
+
, P

+

0 , R
+
)

, S+
= S×B is the hyper-state space, where B = {p(κ, µ|c) |c ∈ C }

is the space of beliefs over meta-RL MDPs with behavior policies, the prior

bκ,µ0 = p (κ, µ |c:0 ) = p(κ, µ) (51)

is the distribution of meta-RL MDPs with behavior policies, and ∀t ∈
[
Ĥ − 1

]
, ∀c:(t+1) ∈ C,

denoting bκ,µt = p (κ, µ|c:t) and

bκ,µt+1 = p
(
κ, µ

∣∣c:(t+1)

)
= p

(
p (κ, µ|c:t)

∣∣c:(t+1)

)
= p (p (κ, µ|c:t) |st, ct) = p (bκ,µt | st, ct) (52)

∝ p (bκ,µt , ct| st) = p (ct |st, bκ,µt ) p (bκ,µt | st) = p (ct |st, bκ,µt ) bκ,µt (53)

= E(κi,µi)∼bκ,µ
t

[µi (at|st) ·Rκi(rt|st, at) · Pκi(st+1|st, at)] · bκ,µt (54)

is the posterior over the meta-RL MDPs with behavior policies given the context c:(t+1), A, R and
Ĥ are the same action space, reward space, and planning horizon as the finite-horizon BAMDP
M+, respectively, P

+
: S+ ×A×R → ∆

(
S+
)

is the transition function: ∀s̄+t , s̄+t+1 ∈ S+
, at ∈

A, rt ∈ R, where denoting s̄+t = (st, b
κ,µ
t ) and s̄+t+1 =

(
st+1, b̃

κ,µ
t+1

)
,

P
+ (

s̄+t+1

∣∣s̄+t , at, rt ) = P
+
(
st+1, b̃

κ,µ
t+1

∣∣∣ st, bκ,µt , at, rt

)
(55)

= P
+
(st+1 |st, bκ,µt , at, rt )P

+
(
b̃κ,µt+1

∣∣∣ st, bκ,µt , ct

)
(56)

= E(κi,µi)∼p( bκ,µ
t |st,at,rt) [P

κi(st+1|st, at)] · 1
[
b̃κ,µt+1 = p(bκ,µt |st, ct)

]
,

(57)

P
+

0 : ∆
(
S+
)

is the initial hyper-state distribution, i.e., a deterministic initial hyper-state is

s̄+0 = (s0, b
κ,µ
0 ) = (s0, p(κ, µ)) ∈ S+

, (58)

and R
+
: S+ ×A → ∆(R) is the reward distribution: ∀s̄+ = (s, bκ,µ) ∈ S+

, a ∈ A, r ∈ R,

R
+ (

r|s̄+, a
)
= R

+
(r |s, bκ,µ, a ) = E(κi,µi)∼bκ,µ [Rκi(r|s, a)] . (59)
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In a transformed BAMDP M
+

, the overall belief is about the task-dependent behavior policies,
transition function, and reward function, which are constant for a given task. A meta-policy on M

+
is

π̄+ : S+ → ∆(A) prescribes a distribution over actions for each hyper-state. With feasible Bayesian
belief updating, the objective of RL agents is now to find a meta-policy on hyper-states π̄+ that
maximizes the expected return in the transformed BAMDP,

J
M

+

(
π̄+
)
= E

at∼π̄+(·|s̄+t ),rt∼R
+(·|s̄+t ,at ),s+t+1∼P

+(·|s̄+t ,at )

Ĥ−1∑
t=0

rt

 (60)

= E(κi,µi)∼p(κ,µ)

N−1∑
j=0

Eat∼π̄+(·|s̄+jH+t ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

]
(61)

= Eκi∼p(κ)

N−1∑
j=0

Eat∼π̄+(·|s̄+jH+t ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] . (62)

For any meta-policy on hyper-states π̄+, denote the corresponding meta-policy on history contexts
f̂π̄+ : C → ∆(A), i.e., ∀t ∈

[
Ĥ − 1

]
,∀c:t ∈ Ct, s.t., f̂π̄+ (·|c:t) = π̄+

(
·
∣∣s̄+t ), where s̄+t =

(st, b
κ,µ
t ) = (st, p (κ, µ|c:t)), and we have

J
M̂

(
f̂π̄+

)
= Eκi∼p(κ)

N−1∑
j=0

Eat∼f̂π̄+(·|c:(jH+t) ),rt∼Rκi (·|st,at),st+1∼Pκi (·|st,at)

[
H−1∑
t=0

rt

] (63)

= J
M

+

(
π̄+
)
. (64)

Fact 2. For feasible Bayesian belief updating, transformed BAMDPs confine the agent in the in-
distribution belief states during meta-testing.

Proof. During online adaptation, RL agents construct a hyper-state s̄+t =
(
st, b̄t

)
from the context

history and perform a meta-policy π̄+
(
at
∣∣s̄+t ). The new belief b̄t accounts for the uncertainty of

task MDPs and task-dependent behavior policies. In contrast with Fact 1, for feasible Bayesian
belief updating, transformed BAMDPs do not allow the agent to visit out-of-distribution belief states.
Otherwise, the context history will conflict with the belief about behavior policies, i.e., RL agents
cannot update their beliefs b̄t when they have observed an event that they believe to have probability
zero.

Lemma 1. In an MDP M , for each behavior policy µ and batch-constrained policy π, collect a
dataset D and the gap between approximate offline policy evaluation JD(π) and accurate policy
evaluation JM (π) will asymptotically approach to 0, as the offline dataset D grows.

From a given dataset D, an abstract MDP MD can be estimated (Fujimoto et al., 2019; Yin & Wang,
2021; Szepesvári, 2022). According to concentration bounds, the estimated transition and reward
function will asymptotically approach M (Yin & Wang, 2021) during the support of D. Then, using
the simulation lemma (Alekh Agarwal, 2017; Szepesvári, 2022), the gap between JD(π) and JM (π)
will asymptotically approach to 0, as the offline dataset D grows. Formal proofs are deferred in
Appendix A.4.

Theorem 2. In a transformed BAMDP M
+

, for each task-dependent behavior policy [µ] and batch-
constrained meta-policy π̄+, the data distribution induced by π̄+ and [µ] matches after filtering out
out-of-distribution episodes in online adaptation. Besides, the policy evaluation of π̄+ in offline
meta-training and online adaptation will be asymptotically consistent, as the offline dataset grows.

Proof. We assume feasible Bayesian belief updating in this proof. At first, ∀s+t , at, s.t.
pπ̄

+

M
+

(
s̄+t , at

)
> 0, we aim to prove

P
M

+

(
rt, st+1

∣∣s̄+t , at ) = P
M

+
,[µ]

(
rt, st+1

∣∣s̄+t , at ) . (65)
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Since π̄+ is batch-constrained policy by [µ], if pπ̄
+

M
+

(
s̄+t , at

)
> 0, we have p[µ]

M
+

(
s̄+t , at

)
> 0. Then,

P
M

+

(
rt, st+1

∣∣s̄+t , at ) = R
+ (

rt
∣∣s̄+t , at ) · P+ (

st+1

∣∣s̄+t , at ) (66)

= Eκi∼bκ,µ
t

[Pκi
(rt, st+1 |st, at )] (67)

= E(κi,µi)∼bκ,µ
t

[Pκi
(rt, st+1 |st, at )] (68)

where bκ,µt is defined in Eq. (51) and

p (κi, µi |bκ,µt ) = Eκi∼p(κ),µi∼p(µ|κi)

[
Ec:t∼p

M+ (c:t|κi,µi) [1 [b
κ,µ
t = p(κ, µ|c:t)]]

]
, (69)

where p
M

+ (c:t|κi, µi) is defined in Eq. (9). According to Eq. (40) and (41),

P
M

+
,[µ]

(
rt, st+1

∣∣s̄+t , at ) (70)

∝ Eκi∼p(κ),µi∼p(µ|κi)

[
Pκi

(rt, st+1 |st, at ) · pM+

(
s̄+t |κi, µi

)]
(71)

= Eκi∼p(κ),µi∼p(µ|κi)

[
Ec:t∼p

M+ (c:t|κi,µi) [Pκi
(rt, st+1 |st, at ) · 1 [bκ,µt = p(κ, µ|c:t)]]

]
(72)

= E(κi,µi)∼bκ,µ
t

[Pκi (rt, st+1 |st, at )] (73)

= P
M

+

(
rt, st+1

∣∣s̄+t , at ) . (74)

Thus, the data distribution induced by π̄+ and [µ] matches. Directly use Lemma 1 in a transformed
BAMDP M

+
, in which M

+
is a belief MDP, a type of MDP. Therefore, the policy evaluation of π̄+

in offline meta-training and online adaptation will be asymptotically consistent, as the offline dataset
grows.

A.4 OMITTED PROOF OF LEMMA 1

Definition 4 (Dataset Induced Finite-Horizon MDPs). In a finite-horizon MDP M with an offline
dataset D, a dataset induced finite-horizon MDP is defined by MD =

(
S,A,R, H, PMD

, RMD
)

,
with the same state space, action space, reward space, and horizon as M . The transition function is
defined as follows: ∀s, s′ ∈ S, a ∈ A,

PMD
(s′|s, a) =


N(s, a, s′)

N(s, a)
, if N(s, a) > 0,

0, otherwise,
(75)

where N(s, a, s′) and N(s, a) are the number of times the tuples (s, a, s′) and (s, a) are observed in
D, respectively. The reward function is defined by ∀s ∈ S, a ∈ A, r ∈ R,

RMD
(r|s, a) =


N(s, a, r)

N(s, a)
, if N(s, a) > 0,

0, otherwise,
(76)

where N(s, a, r) is the number of times the tuple (s, a, r) are observed in D. The offline policy
evaluation in D is equal to the policy evaluation in MD, i.e., for any batch-constrained policy π,

JD(π) = JMD (π). (77)

Note that dataset induced finite-horizon MDPs MD are not defined on supports outside of dataset D.
For simplicity, We set all undefined numbers to 0 in the transition and reward function.

Lemma 2 (Simulation Lemma for Offline Finite-Horizon MDPs). In an MDP M with an offline
dataset D, for any batch-constrained policy π ∈ ΠD, if

max
s∈S,a∈A with ρ

MD
π (s,a)>0

∥∥PMD (·|s, a)− PM (·|s, a)
∥∥
1
≤ ϵP , (78)

max
s∈S,a∈A with ρ

MD
π (s,a)>0

∣∣rMD (s, a)− rM (s, a)
∣∣ ≤ ϵr, (79)
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max
s∈S,a∈A

max
(
rMD (s, a), rM (s, a)

)
≤ rmax, (80)

where rM (s, a) = Er̃∼RM (s,a)[r̃] and rMD (s, a) = Er̃∼RMD (s,a)[r̃], we have

|JMD (π)− JM (π)| ≤ Hϵr +
H(H − 1)rmax

2
ϵP . (81)

Proof. Similar with famous Simulation Lemma in finite-horizon MDPs (Alekh Agarwal, 2017), the
proof is as follows. Recall value function ∀h ∈ [H − 1], ∀s ∈ Sh (see Eq. (10)),

V M
π (s) =

∑
a∈A

π(a|s)

rM (s, a) +
∑

s′∈S̄h+1

PM (s′|s, a)V M
π (s′)

 , (82)

JM (π) = V M
π (s0), and ∀h ∈ [H],

max
s∈S̄h

∣∣V κ̄
π (s)

∣∣ ≤ (H − h)rmax. (83)

We will prove ∀h ∈ [H],∀s ∈ Sh with ρMD
π (s) > 0,∣∣V MD

π (s)− V M
π (s)

∣∣ ≤ (H − h)ϵr +
(H − h)(H − h− 1)rmax

2
ϵP (84)

by induction. When h = H − 1, we have ∀s ∈ Sh with ρMD
π (s) > 0,

∣∣V MD
π (s)− V M

π (s)
∣∣ = ∣∣∣∣∣∑

a∈A
π(a|s)rMD (s, a)−

∑
a∈A

π(a|s)rM (s, a)

∣∣∣∣∣ ≤ ϵr (85)

holds. And ∀h ∈ [H − 1], ∀s ∈ Sh with ρMD
π (s) > 0,∣∣V MD

π (s)− V M
π (s)

∣∣ (86)

=

∣∣∣∣∣∑
a∈A

π(a|s)

rMD (s, a) +
∑

s′∈Sh+1

PMD (s′|s, a)V MD
π (s′)

− (87)

∑
a∈A

π(a|s)

rM (s, a) +
∑

s′∈Sh+1

PM (s′|s, a)V M
π (s′)

∣∣∣∣∣ (88)

≤
∑
a∈A

π(a|s)
∣∣rMD (s, a)− rM (s, a)

∣∣+ (89)∑
a∈A

π(a|s)
∑

s′∈Sh+1

∣∣PMD (s′|s, a)V MD
π (s′)− PM (s′|s, a)V M

π (s′)
∣∣ (90)

≤ ϵr +
∑
a∈A

π(a|s)
∑

s′∈Sh+1

∣∣PMD (s′|s, a)− PM (s′|s, a)
∣∣V M

π (s′)+ (91)

∑
a∈A

π(a|s)
∑

s′∈Sh+1

PMD (s′|s, a)
∣∣V MD

π (s′)− V M
π (s′)

∣∣ (92)

≤ ϵr + (H − (h+ 1))rmaxϵP+ (93)(
(H − (h+ 1))ϵr +

(H − (h+ 1))(H − (h+ 1)− 1)rmax

2
ϵP

)
(94)

= (H − h)ϵr +
(H − h)(H − h− 1)rmax

2
ϵP . (95)

Thus,

|JMD (π)− JM (π)| =
∣∣V MD

π (s0)− V M
π (s0)

∣∣ ≤ Hϵr +
H(H − 1)rmax

2
ϵP . (96)
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Lemma 3. In an MDP M with an offline dataset D collected by a behavior policy µ, for any
batch-constrained policy π ∈ ΠD, ∀δ ∈ (0, 1], with probability 1− δ,

|JMD (π)− JM (π)| ≤ H2 |S|

√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
KdMD

µ

, (97)

where K is the number of trajectories in the dataset D and dMD
µ is the minimal visitation state-action

distribution induced by the behavior policy µ in MD (see Eq. (19)).

Proof. ∀s, s′ ∈ S, a ∈ A with ρMD
π (s, a) > 0, note that ρMD

π (s, a) ≥ dMD
µ and according to

Binomial theorem and Hoeffding’s inequality, ∀ϵ ∈ [0, 1],

P
(∣∣PMD (s′|s, a)− PM (s′|s, a)

∣∣ ≥ ϵ
)
≤ 2

(
1− dMD

µ + dMD
µ exp

(
−2ϵ2

))K
(98)

≤ 2
(
1− dMD

µ ϵ2
)K

(99)
and

P
(∣∣rMD (s, a)− rM (s, a)

∣∣ ≥ ϵ
)
≤ 2

(
1− dMD

µ ϵ2
)K

. (100)

Thus, using union bound, ∀δ ∈ (0, 1], with probability 1− δ, denote

ϵP = max
s∈S,a∈A with ρ

MD
π (s,a)>0

∥∥PMD (·|s, a)− PM (·|s, a)
∥∥
1

(101)

≤ max
s∈S,a∈A with ρ

MD
π (s,a)>0

|S|
∥∥PMD (·|s, a)− PM (·|s, a)

∥∥
∞ (102)

≤ |S|

√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
KdMD

µ

, (103)

ϵr = max
s∈S,a∈A with ρ

MD
π (s,a)>0

∣∣rMD (s, a)− rM (s, a)
∣∣ ≤

√
log
(
1
δ

)
+ log (2 |S| |A|)
KdMD

µ

, (104)

and rmax = 1, thus, according to Lemma 2 (a varianted simulation lemma in offline RL), we have

|JMD (π)− JM (π)| ≤
(
H +

H(H − 1)

2
|S|
)√√√√ log

(
1
δ

)
+ log

(
2 |S|2 |A|

)
KdMD

µ

(105)

≤ H2 |S|

√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
KdMD

µ

(106)

Lemma 1. In an MDP M , for each behavior policy µ and batch-constrained policy π, collect a
dataset D and the gap between approximate offline policy evaluation JD(π) and accurate policy
evaluation JM (π) will asymptotically approach to 0, as the offline dataset D grows.

Proof. From Lemma 3, as the size of an offline dataset |D| = KH grows, the gap between approx-
imate offline policy evaluation JD(π) and accurate policy evaluation JM (π) will asymptotically
approach to 0.

A.5 HOW TO FILTER OUT OUT-OF-DISTRIBUTION EPISODES IN TRANSFORMED BAMDPS
DURING META-TESTING?

Definition 5 (Sub-Datasets Collected by Single Task Data Collection). In a transformed BAMDP
M

+
, an offline multi-task dataset D+

is drawn from the task-dependent data collection P
M

+
,[µ]

.
A sub-dataset collected by a behavior policy µi in a task κi is defined by Dκi,µi . Note an offline
multi-task dataset D+

is the union of sub-datasets Dκi,µi , i.e.,

D+
=
⋃

κi,µi

Dκi,µi . (107)
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For each sub-dataset Dκi,µi
, we can define a batch-constrained policy set in a single-task (κi, µi) as

ΠDκi,µi (see the definition in Eq. (15)).

Definition 6 (Meta-Policy with Thompson Sampling). For each transformed BAMDP M
+

, a meta-
policy set with Thompson sampling on M

+
is defined by π̄+,T : S × B × K × Π[µ] → ∆(A),

where B is the space of beliefs over meta-RL MDPs with behavior policies, K is the space of task
κ, and Π[µ] is the space of task-dependent behavior policies. In each episode, π̄+,T samples a task
hypothesis (κi, µi) from the current belief bκ,µt′ , where t′ is the starting step in this episode. During
this episode, π̄+,T (· |st, bκ,µt′ , κi, µi ) prescribes a distribution over actions for each state st, belief
bκ,µt′ , and task hypothesis (κi, µi). Beliefs bκ,µt′ and task hypotheses (κi, µi) will periodically update
after each episode.

In the deep-learning-based implementation, a context-based meta-RL algorithm, PEARL (Rakelly
et al., 2019), utilizes a meta-policy with Thompson sampling (Strens, 2000) to iteratively update task
belief by interacting with the environment and improve the meta-policy based on the "task hypothesis"
sampled from the current beliefs. We can adopt such adaptation protocol to design practical offline
meta-RL algorithms for transformed BAMDPs.

Definition 7 (Batch-Constrained Meta-Policy Set with Thompson Sampling). For each transformed
BAMDP M

+
with an offline multi-task dataset D+

, a batch-constrained meta-policy set with Thomp-
son sampling is defined by

ΠD+
,T =

{
π̄+,T

∣∣π̄+,T (at |st, bκ,µt′ , κi, µi ) = 0 whenever (st, at) ̸∈ Dκi,µi
,∀bκ,µt′

}
, (108)

where denoting (st, at) ∈ Dκi,µi if there exists a trajectory containing (st, at) in the dataset Dκi,µi .

The batch-constrained meta-policy set with Thompson sampling ΠD+
,T consists of the meta-policies

that for any state st observed in the hypothesis dataset Dκi,µi
, the agent will not select an action

outside of the dataset. Note that in each episode with a task hypothesis (κi, µi), a batch-constrained
meta-policy with Thompson sampling π̄+,T is batch-constrained within a sub-dataset Dκi,µi , i.e.,
∀bκ,µt′ , we have π̄+,T (· |st, bκ,µt′ , κi, µi ) ∈ ΠDκi,µi .

Definition 8 (Probability that a Policy Leaves the Dataset). In an MDP M and an arbitrary offline
dataset D, for each policy π : S → ∆(A), the probability that executing π in M leaves the dataset
D for an episode is defined by

pM,D
out (π) =

∑
τH

pMπ (τH)1 [τH leaves D] (109)

=
∑
τH

pMπ (τH)1 [∃t ∈ [H] s.t. st ̸∈ D or (st, at, rt) ̸∈ D] , (110)

where pMπ (τH) is the probability of executing π in M to generate an H-horizon trajectory τH (see
the definition in Eq. (9)), denoting st ∈ D if there exists a trajectory containing st in the dataset D,
and similarly for (st, at, rt) ∈ D.

When we aim to confine the agent in the in-distribution states with high probability as the offline
dataset D grows, it is equivalent to bound the probability that executing a policy π in M leaves the
dataset D for an episode, i.e., pM,D

out (π).

Theorem 3. In a transformed BAMDP M
+

with an offline multi-task dataset D+
collected by

task-dependent behavior policies [µ], consider each batch-constrained meta-policy with Thompson
sampling π̄+,T ∈ ΠD+

,T (see Definition 6 and 7). For each adaptation episode in a meta-testing
task κtest ∼ p(κ), denote the current belief by bκ,µt′ , there exists a task hypothesis (κi, µi) from bκ,µt′ ,
executing π̄+,T with (bκ,µt′ , κi, µi) in κtest will confine the agent in the in-distribution belief states
with high probability, as the offline dataset D+

grows.

From Theorem 3, for each adaptation episode in κtest with the current belief bκ,µt′ , we can sample task
task hypothesis (κi, µi) ∼ bκ,µt′ and execute π̄+,T with (bκ,µt′ , κi, µi) to interact with the environment
until finding an in-distribution episode. Thus, we prove that meta-policies with Thompson sampling
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can filter out out-of-distribution episodes in M
+

with high probability, as the offline dataset D+

grows. Note that Theorem 3 considers arbitrary task distribution p(κ), since the distance between the
closest meta-training task κi∗ and κtest will asymptotically approach zero with high probability, as
the i.i.d. offline meta-training tasks Ktrain sampled from p(κ) in D+

grows. The detailed proofs are
as follows.

Proof. For each batch-constrained meta-policy with Thompson sampling π̄+,T ∈ ΠD+
,T with

(bκ,µt′ , κi, µi), similar to Definition 8, define the probability that executing π̄+,T (· |st, bκ,µt′ , κi, µi )

leaves the dataset D+
in an adaptation episode of a meta-testing task κtest ∼ p(κ):

pκtest,D
+

out

(
π̄+,T , bκ,µt′ , κi, µi

)
=
∑
τ̄+
H

pκtest

π̄+,T

(
τ̄+H
∣∣ bκ,µt′ , κi, µi

)
1

[
τ̄+H leaves D+

]
, (111)

where pκtest

π̄+,T

(
τ̄+H
∣∣ bκ,µt′ , κi, µi

)
is the probability of executing π̄+,T (· |st, bκ,µt′ , κi, µi ) in κtest to

generate an H-horizon trajectory τ̄+H in an adaptation episode, i.e.,

pκtest

π̄+,T

(
τ̄+H
∣∣ bκ,µt′ , κi, µi

)
(112)

=

t′+H−1∏
t=t′

π̄+,T (at |st, bκ,µt′ , κi, µi ) ·Rκtest (rt|st, at)

 t′+H−2∏
t=t′

Pκtest (st+1 |st, at, rt ) (113)

= pκtest

π̄+,T (τH | bκ,µt′ , κi, µi) , (114)

where we can transform τ̄+H to τH with the same probability since the belief bκ,µt′ and task hypothsis
(κi, µi) will periodically update after each episode. Therefore,

pκtest,D
+

out

(
π̄+,T , bκ,µt′ , κi, µi

)
=
∑
τ̄+
H

pκtest

π̄+,T (τH | bκ,µt′ , κi, µi)1
[
τ̄+H leaves D+

]
(115)

≤
∑
τH

pκtest

π̄+,T (τH | bκ,µt′ , κi, µi)1 [τH leaves Dκi∗ ,µi∗ ] (116)

= p
κtest,Dκi∗ ,µi∗
out

(
π̄+,T

∣∣ bκ,µt′ , κi, µi

)
, (117)

where p
κtest,Dκi∗ ,µi∗
out

(
π̄+,T

∣∣ bκ,µt′ , κi, µi

)
is the probability that executing π̄+,T (· |st, bκ,µt′ , κi, µi )

in κtest leaves the sub-dataset Dκi∗ ,µi∗ for an episode (see Definition 8), Dκi∗ ,µi∗ is a sub-dataset
collected in D+

(see Definition 5) and κi∗ is the closest offline meta-training task to κtest, i.e.,

κi∗ = argmin
κi∈Ktrain

∥κi − κtest∥∞ (118)

= argmin
κi∈Ktrain

max (∥Pκi(s, a, s′)− Pκtest(s, a, s′)∥∞ , ∥Rκi(s, a, r)−Rκtest(s, a, r)∥∞) ,

(119)

in which denoting the i.i.d. offline meta-training tasks sampled from p(κ) in D+
by Ktrain. From

Lemma 5, as the offline dataset D+
grows, Dκi∗ ,µi∗ and Ktrain grow monotonically, for any

batch-constrained policy π in Dκi∗ ,µi∗ , i.e., ∀π ∈ ΠDκi∗ ,µi∗ , when executing π in an episode of

κtest ∼ p(κ), the probability leaving the dataset D+
is p

κtest,Dκi∗ ,µi∗
out (π), which asymptotically

approaches zero.

For the first adaptation episode in a meta-testing task κtest ∼ p(κ) with the prior belief
p(κ, µ) = p(κ)p(µ|κ), there exists a task hypothesis (κi∗ , µi∗) in the prior p(κ, µ), then due to
π̄+,T (· |st, p(κ, µ), κi∗ , µi∗ ) ∈ ΠDκi∗ ,µi∗ from Definition 7 and

pκtest,D
+

out

(
π̄+,T , p(κ, µ), κi∗ , µi∗

)
≤ p

κtest,Dκi∗ ,µi∗
out

(
π̄+,T

∣∣ p(κ, µ), κi∗ , µi∗
)
, (120)

as the offline dataset D+
grows, executing π̄+,T with (p(κ, µ), κi∗ , µi∗) for the first episode in

κtest will confine the agent in in-distribution belief states with high probability. In the subsequent
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adaptation episodes with current belief bκ,µt′ in κtest, the task hypothesis (κi∗ , µi∗) is also in the belief
bκ,µt′ by induction.

Therefore, for each adaptation episode with current belief bκ,µt′ in κtest, there exists a task hypothesis
(κi, µi) from bκ,µt′ , e.g., (κi∗ , µi∗), executing π̄+,T with (bκ,µt′ , κi, µi) in κtest will confine the agent
in in-distribution belief states with high probability, as the offline dataset D+

grows.

A.6 OMITTED LEMMAS FOR THEOREM 3

Lemma 4. In an MDP M and an arbitrary offline dataset D, for each policy π,

pM,D
out (π) ≤ H

(∥∥ρMπ (s)− ρMD
π (s)

∥∥
1
+
∥∥ρMπ (s, a, r)− ρMD

π (s, a, r)
∥∥
1

)
, (121)

where ρMπ (s, a, r) is the visitation distribution of (s, a, r) in M , as defined in Eq. (12).

Proof. For each τH leaving D, we use the first outlier data (st ̸∈ D or (st, at, rt) ̸∈ D) to represent
τH . Thus,

pM,D
out (π) =

∑
τH

pMπ (τH)1 [∃t ∈ [H] s.t. st ̸∈ D or (st, at, rt) ̸∈ D] (122)

≤ H

 ∑
s∈S with ρ

MD
π (s)=0

ρMπ (s) +
∑

s∈S,a∈A,r∈R with ρ
MD
π (s,a,r)=0

ρMπ (s, a, r)

 (123)

≤ H
(∥∥ρMπ (s)− ρMD

π (s)
∥∥
1
+
∥∥ρMπ (s, a, r)− ρMD

π (s, a, r)
∥∥
1

)
. (124)

Lemma 5. In a transformed BAMDP M
+

with an offline multi-task dataset D+
collected by task-

dependent behavior policies [µ], denoting the i.i.d. offline meta-training tasks sampled from p(κ) in
D+

by Ktrain, for each meta-testing task κtest ∼ p(κ), and denoting the closest offline meta-training
task to κtest by κi∗ , i.e.,

κi∗ = argmin
κi∈Ktrain

∥κi − κtest∥∞ (125)

= argmin
κi∈Ktrain

max (∥Pκi(s, a, s′)− Pκtest(s, a, s′)∥∞ , ∥Rκi(s, a, r)−Rκtest(s, a, r)∥∞) ,

(126)

then for any batch-constrained policy π in Dκi∗ ,µi∗ , where Dκi∗ ,µi∗ is a sub-dataset collected in D+

(see Definition 5), i.e., ∀π ∈ ΠDκi∗ ,µi∗ ,

p
κtest,Dκi∗ ,µi∗
out (π) (127)

≤ 2H2 |S|2 |A| |R|



√√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
Kκi∗ ,µi∗ · d

MDκi∗ ,µi∗
µ︸ ︷︷ ︸

Asymptotically approaches zero,
when Dκi∗ ,µi∗ is sufficiently large

+ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

︸ ︷︷ ︸
Asymptotically approaches zero,
when Ktrain is sufficiently large


, (128)

where Kκi∗ ,µi∗ is the number of trajectories in the sub-dataset Dκi∗ ,µi∗ , d
MDκi∗ ,µi∗
µ is the minimal

visitation state-action distribution induced by the behavior policy µ in MDκi∗ ,µi∗
(see Eq. (19)), and

|Ktrain| is the number of i.i.d. offline meta-training tasks sampled from p(κ) in D+
.

Proof. According to Lemma 4,

p
κtest,Dκi∗ ,µi∗
out (π) (129)
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≤ H
(∥∥∥ρMDκi∗ ,µi∗

π (s)− ρκtest
π (s)

∥∥∥
1
+
∥∥∥ρMDκi∗ ,µi∗

π (s, a, r)− ρκtest
π (s, a, r)

∥∥∥
1

)
(130)

≤ H
(∥∥∥ρMDκi∗ ,µi∗

π (s)− ρκi∗
π (s)

∥∥∥
1
+
∥∥∥ρMDκi∗ ,µi∗

π (s, a, r)− ρκi∗
π (s, a, r)

∥∥∥
1

)
+ (131)

H (∥ρκi∗
π (s)− ρκtest

π (s)∥1 + ∥ρκi∗
π (s, a, r)− ρκtest

π (s, a, r)∥1) . (132)

Part I Similar with Lemma 3, ∀δ ∈ (0, 1], with probability 1− δ, denote

ϵP = max
s∈S,a∈A with ρ

MDκi∗ ,µi∗
π (s,a)>0

∥∥∥PMDκi∗ ,µi∗ (·|s, a)− Pκi∗ (·|s, a)
∥∥∥
1

(133)

≤ |S|

√√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
Kκi∗ ,µi∗ · d

MDκi∗ ,µi∗
µ

, (134)

ϵr = max
s∈S,a∈A with ρ

MDκi∗ ,µi∗
π (s,a)>0

∣∣∣rMDκi∗ ,µi∗ (s, a)− rκi∗ (s, a)
∣∣∣ (135)

≤

√√√√ log
(
1
δ

)
+ log (2 |S| |A|)

Kκi∗ ,µi∗ · d
MDκi∗ ,µi∗
µ

, (136)

thus, from Lemma 6, we have

H
(∥∥∥ρMDκi∗ ,µi∗

π (s)− ρκi∗
π (s)

∥∥∥
1
+
∥∥∥ρMDκi∗ ,µi∗

π (s, a, r)− ρκi∗
π (s, a, r)

∥∥∥
1

)
(137)

≤ 2H2 |S|2 |A| |R|

√√√√√ log
(
1
δ

)
+ log

(
2 |S|2 |A|

)
Kκi∗ ,µi∗ · d

MDκi∗ ,µi∗
µ

. (138)

Part II From Lemma 10, ∀δ ∈ (0, 1], with probability 1− δ, denote

ϵ̃P = max
s∈S,a∈A

∥Pκi∗ (·|s, a)− Pκtest(·|s, a)∥1 (139)

≤ |S| ∥κi∗ − κtest∥∞ (140)

≤ 2 |S|

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

, (141)

ϵ̃R = max
s∈S,a∈A,r∈R

|Rκi∗ (r|s, a)−Rκtest(r|s, a)| (142)

≤ ∥κi∗ − κtest∥∞ (143)

≤ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

, (144)

then from Lemma 8, we have

H (∥ρκi∗
π (s)− ρκtest

π (s)∥1 + ∥ρκi∗
π (s, a, r)− ρκtest

π (s, a, r)∥1) (145)

≤ 4H2 |S|2 |A| |R|

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

. (146)

Overall Combining Part I and Part II, we have

p
κtest,Dκi∗ ,µi∗
out (π) (147)

≤ H
(∥∥∥ρMDκi∗ ,µi∗

π (s)− ρκi∗
π (s)

∥∥∥
1
+
∥∥∥ρMDκi∗ ,µi∗

π (s, a, r)− ρκi∗
π (s, a, r)

∥∥∥
1

)
+ (148)

H (∥ρκi∗
π (s)− ρκtest

π (s)∥1 + ∥ρκi∗
π (s, a, r)− ρκtest

π (s, a, r)∥1) (149)
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≤ 2H2 |S|2 |A| |R|


√√√√√ log

(
1
δ

)
+ log

(
2 |S|2 |A|

)
Kκi∗ ,µi∗ · d

MDκi∗ ,µi∗
µ

+ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

 . (150)

A.6.1 DETAILED LEMMAS (PART I)

Lemma 6. In an MDP M with an offline dataset D, for any batch-constrained policy π ∈ ΠD, if
max

s∈S,a∈A with ρ
MD
π (s,a)>0

∥∥PMD (·|s, a)− PM (·|s, a)
∥∥
1
≤ ϵP , (151)

max
s∈S,a∈A,r∈R with ρ

MD
π (s,a)>0

∣∣RMD (r|s, a)−RM (r|s, a)
∣∣ ≤ ϵR, (152)

we have ∥∥ρMπ (s)− ρMD
π (s)

∥∥
1
+
∥∥ρMπ (s, a, r)− ρMD

π (s, a, r)
∥∥
1

(153)

≤ |S| (|A| |R|+ 1)
H − 1

2
ϵP + |S| |A| |R| ϵR. (154)

Proof. For each ŝ ∈ S, â ∈ A, create an auxiliary reward function r̃(s, a) : S × A → [0, 1]:
∀s ∈ S, a ∈ A,

r̃(s, a) =


1

H
, if s = ŝ and a = â,

0, otherwise.
(155)

Denote M̂ =
(
S,A,R, H, PM , r̃

)
and M̂D =

(
S,A,R, H, PMD , r̃

)
. Using the offline Simulation

Lemma shown in Lemma 2, for any batch-constrained policy π ∈ ΠD,

ρMπ (ŝ, â) = J
M̂
(π) and ρMD

π (ŝ, â) = J
M̂D

(π). (156)

Thus, ϵr = 0, rmax = 1
H , and∣∣ρMπ (ŝ, â)− ρMD

π (ŝ, â)
∣∣ ≤ ∣∣∣JM̂

(π)− J
M̂D

(π)
∣∣∣ (157)

≤ Hϵr +
H(H − 1)rmax

2
ϵP (158)

=
H − 1

2
ϵP . (159)

Similary, we have ∀s ∈ S, ∣∣ρMπ (s)− ρMD
π (s)

∣∣ ≤ H − 1

2
ϵP . (160)

For any s ∈ S, a ∈ A, r ∈ R,∣∣ρMπ (s, a, r)− ρMD
π (s, a, r)

∣∣ (161)

=
∣∣ρMπ (s, a)RM (r|s, a)− ρMD

π (s, a)RMD (r|s, a)
∣∣ (162)

≤
∣∣ρMπ (s, a)− ρMD

π (s, a)
∣∣RM (r|s, a) + ρMD

π (s, a)
∣∣RM (r|s, a)−RMD (r|s, a)

∣∣ (163)

≤
∣∣ρMπ (s, a)− ρMD

π (s, a)
∣∣+ ∣∣RM (r|s, a)−RMD (r|s, a)

∣∣ (164)

≤ H − 1

2
ϵP + ϵR. (165)

Therefore, ∥∥ρMπ (s)− ρMD
π (s)

∥∥
1
+
∥∥ρMπ (s, a, r)− ρMD

π (s, a, r)
∥∥
1

(166)

≤ |S| H − 1

2
ϵP + |S| |A| |R|

(
H − 1

2
ϵP + ϵR

)
(167)

= |S| (|A| |R|+ 1)
H − 1

2
ϵP + |S| |A| |R| ϵR. (168)
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A.6.2 DETAILED LEMMAS (PART II)

Lemma 7 (Simulation Lemma for Finite-Horizon MDPs). Given a pair of finite-horizon MDPs
M1 and M2 with the same state space S, same action space A, same reward function R, and same
horizon H . If

max
s∈S,a∈A

∥∥PM1(·|s, a)− PM2(·|s, a)
∥∥
1
≤ ϵ̃P , (169)

max
s∈S,a∈A

∣∣rM1(s, a)− rM2(s, a)
∣∣ ≤ ϵ̃r, (170)

max
s∈S,a∈A

max
(
rM1(s, a), rM2(s, a)

)
≤ rmax, (171)

where rM1(s, a) = Er̃∼RM1 (s,a)[r̃] and rM2(s, a) = Er̃∼RM2 (s,a)[r̃], we have

|JM1
(π)− JM2

(π)| ≤ Hϵ̃r +
H(H − 1)rmax

2
ϵ̃P . (172)

Proof. Similar with famous Simulation Lemma in finite-horizon MDPs (Alekh Agarwal, 2017) and
the offline variant shown in Lemma 2, we will prove ∀h ∈ [H],∀s ∈ Sh,∣∣V M1

π (s)− V M2
π (s)

∣∣ ≤ (H − h)ϵ̃r +
(H − h)(H − h− 1)rmax

2
ϵ̃P (173)

by induction. When h = H − 1, we have ∀s ∈ Sh,
∣∣V M1

π (s)− V M2
π (s)

∣∣ ≤ ϵ̃r holds. And
∀h ∈ [H − 1], ∀s ∈ Sh,∣∣V M1

π (s)− V M2
π (s)

∣∣ (174)

≤
∑
a∈A

π(a|s)
∣∣rM1(s, a)− rM2(s, a)

∣∣+ (175)∑
a∈A

π(a|s)
∑

s′∈Sh+1

∣∣PM1(s′|s, a)V M1
π (s′)− PM2(s′|s, a)V M2

π (s′)
∣∣ (176)

≤ (H − h)ϵ̃r +
(H − h)(H − h− 1)rmax

2
ϵ̃P . (177)

Thus,

|JM1
(π)− JM2

(π)| =
∣∣V M1

π (s0)− V M2
π (s0)

∣∣ (178)

≤ Hϵ̃r +
H(H − 1)rmax

2
ϵ̃P . (179)

Lemma 8. Given a pair of finite-horizon MDPs M1 and M2 with the same state space, same action
space, same reward function, and same horizon. If

max
s∈S,a∈A

∥∥PM1(·|s, a)− PM2(·|s, a)
∥∥
1
≤ ϵ̃P , (180)

max
s∈S,a∈A,r∈R

∣∣RM1(r|s, a)−RM2(r|s, a)
∣∣ ≤ ϵ̃R, (181)

we have ∥∥ρM1
π (s)− ρM2

π (s)
∥∥
1
+
∥∥ρM1

π (s, a, r)− ρM2
π (s, a, r)

∥∥
1

(182)

≤ |S| (|A| |R|+ 1)
H − 1

2
ϵ̃P + |S| |A| |R| ϵ̃R. (183)

Proof. Similar with Lemma 6, ∀s ∈ S, a ∈ A, r ∈ R, using Simulation Lemma 7, we have∣∣ρM1
π (s)− ρM2

π (s)
∣∣ ≤ H − 1

2
ϵ̃P and

∣∣ρM1
π (s, a)− ρM2

π (s, a)
∣∣ ≤ H − 1

2
ϵ̃P , (184)

and ∣∣ρMπ (s, a, r)− ρMD
π (s, a, r)

∣∣ ≤ H − 1

2
ϵ̃P + ϵ̃R. (185)
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Therefore, ∥∥ρM1
π (s)− ρM2

π (s)
∥∥
1
+
∥∥ρM1

π (s, a, r)− ρM2
π (s, a, r)

∥∥
1

(186)

≤ |S| (|A| |R|+ 1)
H − 1

2
ϵ̃P + |S| |A| |R| ϵ̃R. (187)

Lemma 9. Let X,Y be two i.i.d. random vectors that take values in [0, 1]n, n ∈ N+. For any
ϵ ∈ (0, 1], we have

P
[
max
i∈[n]

|Xi − Yi| ≥ ϵ

]
≤ 1−

( ϵ
2

)n
. (188)

Proof. Denote an auxiliary set

V =

{
x ∈ Rn

∣∣∣∣max
i∈[n]

|xi| <
ϵ

2

}
, (189)

then if X,Y ∈ V , we must have
max
i∈[n]

|Xi − Yi| < ϵ. (190)

For any c ∈ Nn, denote

V c = V + vc, where vci =

(
ci +

1

2

)
ϵ, ∀i ∈ [n]. (191)

We may construct a set of such cosets of V as follows:

S = {V c|c ∈ C} , where C =

{
c ∈ Nn

∣∣∣∣ci ∈ [⌈1ϵ
⌉]}

. (192)

There are several properties related to these constructions:

• For any c ∈ Nn, if X,Y ∈ V c, maxi∈[n] |Xi − Yi| < ϵ.

• The union of sets in S contains [0, 1]n

• Any two different sets in S are disjoint.

The only loophole is that we have not considered points in boundaries ∂V c (V c ∈ S). These
boundaries can be decomposed into disjoint union of hyperplanes in Rn. For each one of the
hyperplanes, arbitrarily designate it to an adjacent V c ∈ S. New V cs are the union of the original
one and the hyperplanes designated to it. Note that∑

c∈C

[X ∈ V c] = 1. (193)

Therefore,

P
[
max
i∈[n]

|Xi − Yi| ≥ ϵ

]
≤ 1−

∑
c∈C

P [X ∈ V c]P [Y ∈ V c] (194)

= 1−
∑
c∈C

P [X ∈ V c]
2 (195)

≤ 1− 1

|C|

(∑
c∈C

P [X ∈ V c]

)2

(196)

= 1− 1

|C|
. (197)

Since 1
ϵ ≥ 1, we have

|C| =
⌈
1

ϵ

⌉n
<

(
1 +

1

ϵ

)n

≤
(
2

ϵ

)n

and P
[
max
i∈[n]

|Xi − Yi| ≥ ϵ

]
≤ 1−

( ϵ
2

)n
. (198)
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Lemma 10. In a transformed BAMDP M
+

with an offline multi-task dataset D+
, for any meta-testing

task κtest ∼ p(κ), ∀δ ∈ (0, 1], with probability 1− δ, we have

∥κi∗ − κtest∥∞ (199)

= max (∥Pκi∗ (s, a, s′)− Pκtest(s, a, s′)∥∞ , ∥Rκi∗ (s, a, r)−Rκtest(s, a, r)∥∞) (200)

≤ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

, (201)

where κi∗ ∈ Ktrain is the closest offline meta-training task to κtest (see Eq. (125)), ∥κi∗ − κtest∥∞
is the distance between κi∗ and κtest (see Eq. (126)), and Ktrain is the i.i.d. offline meta-training
tasks sampled from p(κ) in D+

.

Proof. From Lemma 9, we set n = |S| |A| (|S|+ |R|), then ∀ϵ ∈ (0, 1],∀κi ∈ Ktrain,

P [∥κi − κtest∥∞ ≥ ϵ] ≤ 1−
( ϵ
2

)n
. (202)

Hence

P
[
argmin
κi∈Ktrain

∥κi − κtest∥∞ ≥ ϵ

]
=

∏
κi∈Ktrain

P [∥κi − κtest∥∞ ≥ ϵ] (203)

≤
(
1−

( ϵ
2

)n)|Ktrain|
. (204)

Therefore, ∀δ ∈ (0, 1], with probability 1− δ,

argmin
κi∈Ktrain

∥κi − κtest∥∞ ≤ 2

(
log
(
1
δ

)
|Ktrain|

) 1
|S||A|(|S|+|R|)

. (205)
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B HYPER-PARAMETER SETTINGS

Environment Settings. Table 3 shows hyper-parameter settings for the task sets used in our exper-
iments. Most hyper-parameters are adopted from previous works (Li et al., 2020; Mitchell et al.,
2021). For all task sets, 80% of the tasks are meta-training tasks, and the remaining 20% tasks are
meta-testing tasks.

Table 3: Environment parameter settings.

Environment Episode Length # of Adaptation
Episodes # of Tasks # of Trajectories

per Task

All Meta-World Envs 500 10 50 45
Cheetah-Vel 200 10 100 45
Point-Robot 20 20 100 45
Point-Robot-Sparse 20 20 100 45

GCC hyper-parameter settings. Table 4 shows GCC’s hyper-parameter settings. Most hyper-
parameters are adopted from FOCAL (Li et al., 2020). We set ne to 1 as the evaluation environments
are all nearly deterministic.

Table 4: Detailed hyper-parameter settings for GCC.
Hyper-Parameter Hyper-Parameter Values

batch size 256
meta batch size 16

learning rates for dual critic 1e-4
learning rates for all other components 3e-4
network structure for all components three fully connected layers with 200 units

optimizer adam
discount 0.99

latent size 20
reward scale 100 for point envs, 1 for all other envs

nit 1/2 of total adaptation episodes
nz
0 1/2 of total adaptation episodes

nz̃ 5
ne 1
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C ANALYSIS AND VISUALIZATION ON UNCERTAINTY ESTIMATION

To further investigate why the uncertainty estimation method (Kidambi et al., 2020) fails to identify in-
distribution trajectories, we demonstrate the ensemble’s prediction errors and uncertainty estimation
on the first 10 trajectories. As shown in Figure 5, uncertainty estimation methods cannot accurately
estimate the distance to the offline dataset, and fail to identify in-distribution data. On the other hand,
GCC can successfully select in-distribution data with its greedy selection mechanism.

(a) GCC

(b) Uncertainty Estimation

Figure 5: Visualization of GCC and uncertainty estimation method’s trajectory selection. (a) GCC
successfully selects the in-distribution trajectory. (b) Uncertainty estimation method cannot identify
in-distribution data, as its uncertainty estimation is not accurate.

D ADDITIONAL VISUALIZATION RESULTS

Figure 6 shows GCC, FOCAL, and uncertainty estimation method (Kidambi et al., 2020) ’s adaptation
visualization (episode 11-20) after the initial exploration phase in adaptation (episode 1-10). Results
demonstrate that while GCC is able to identify in-distribution data and achieve superior adaptation
performance, FOCAL utilizes all the 10 trajectories for adaptation, and cannot correctly update
task belief due to the out-of-distribution issue. The uncertainty estimation method, as discussed in
Appendix C, fails to correctly select the in-distribution trajectory, and thus cannot successfully reach
the goal.
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(a) GCC

(b) FOCAL

(c) Uncertainty Estimation

Figure 6: Visualization of GCC, FOCAL and uncertainty estimation method’s adaptation in Episode
11-20 on the Point-Robot environment. (a) GCC successfully selects the in-distribution trajectory and
keeps improving in adaptation. (b) FOCAL suffers from the out-of-distribution issue, and cannot
correctly update posterior belief, leading to poor performance. (c) Uncertainty estimation method
cannot identify in-distribution data, and also suffers from the out-of-distribution issue.
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E ADDITIONAL EXPERIMENT RESULTS

E.1 UNCERTAINTY ESTIMATION METHOD ON REPRESENTATIVE TASKS

Table 5 shows the uncertainty estimation method’s online adaptation performance on several represen-
tative tasks. Results demonstrate that the uncertainty estimation method achieves similar performance
to FOCAL, and underperforms GCC. This is because the uncertainty estimation method cannot
correctly estimate in-distribution trajectories, as discussed in Section 5.1, Appendix C and D.

Table 5: Comparison between GCC, FOCAL, and the uncertainty estimation method’s performance
on several representative tasks. For Meta-World tasks we show normalized scores.

Env GCC Uncertainty Estimation FOCAL

Plate-Slide-Back 0.96 ± 0.02 0.64 ± 0.21 0.58 ± 0.06
Hammer 0.84 ± 0.06 0.61 ± 0.33 0.59 ± 0.07
Coffee-Push 1.26 ± 0.13 0.02 ± 0.01 0.66 ± 0.07
Push-Wall 0.71 ± 0.15 0.48 ± 0.19 0.43 ± 0.06
Point-Robot -5.10 ± 0.26 -19.62 ± 0.77 -15.38 ± 0.95

E.2 DETAILED ALGORITHM PERFORMANCE ON ALL TASKS

Table 6, Table 7, and Table 8 shows baselines’ online adaptation and offline performance on all
50 Meta-World ML1 task sets, respectively. GCC significantly outperforms baselines with online
adaptation, and achieves better or comparable performance to baselines with offline adaptation.
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Table 6: Comparison between FOCAL and MACAW with online adaptation and GCC. For Meta-
World tasks, “-V2” is omitted for brevity.

Environment GCC FOCAL MACAW

Coffee-Push 1.26 ± 0.13 0.66 ± 0.07 0.01 ± 0.01
Faucet-Close 1.12 ± 0.01 1.06 ± 0.02 0.07 ± 0.01
Door-Unlock 1.11 ± 0.02 0.97 ± 0.03 0.11 ± 0.01
Plate-Slide-Side 1.07 ± 0.08 0.70 ± 0.14 0.00 ± 0.00
Faucet-Open 1.05 ± 0.02 1.01 ± 0.02 0.08 ± 0.04
Button-Press-Wall 1.04 ± 0.04 0.99 ± 0.06 0.02 ± 0.00
Plate-Slide 1.01 ± 0.03 0.83 ± 0.09 0.01 ± 0.00
Door-Close 0.99 ± 0.00 0.97 ± 0.01 0.00 ± 0.00
Drawer-Close 0.99 ± 0.02 0.96 ± 0.04 0.53 ± 0.50
Plate-Slide-Back-Side 0.97 ± 0.02 0.77 ± 0.20 0.02 ± 0.01
Door-Lock 0.97 ± 0.01 0.90 ± 0.02 0.25 ± 0.11
Window-Open 0.96 ± 0.02 0.81 ± 0.07 0.15 ± 0.11
Door-Open 0.96 ± 0.02 0.78 ± 0.13 0.06 ± 0.01
Plate-Slide-Back 0.96 ± 0.02 0.58 ± 0.06 0.21 ± 0.17
Window-Close 0.94 ± 0.01 0.79 ± 0.01 0.54 ± 0.44
Reach-Wall 0.93 ± 0.05 0.53 ± 0.18 0.82 ± 0.02
Dial-Turn 0.91 ± 0.05 0.84 ± 0.09 0.00 ± 0.00
Handle-Press-Side 0.91 ± 0.02 0.79 ± 0.10 0.51 ± 0.41
Handle-Pull 0.90 ± 0.02 0.67 ± 0.03 0.00 ± 0.00
Handle-Press 0.88 ± 0.05 0.87 ± 0.02 0.28 ± 0.10
Reach 0.85 ± 0.03 0.62 ± 0.05 0.63 ± 0.04
Lever-Pull 0.85 ± 0.02 0.73 ± 0.07 0.20 ± 0.16
Hammer 0.84 ± 0.06 0.59 ± 0.07 0.10 ± 0.01
Drawer-Open 0.82 ± 0.06 0.64 ± 0.10 0.11 ± 0.02
Sweep 0.77 ± 0.04 0.32 ± 0.08 0.20 ± 0.20
Button-Press 0.74 ± 0.08 0.68 ± 0.14 0.02 ± 0.01
Stick-Push 0.73 ± 0.09 0.46 ± 0.15 0.17 ± 0.17
Coffee-Button 0.73 ± 0.14 0.66 ± 0.16 0.15 ± 0.13
Push-Wall 0.71 ± 0.15 0.43 ± 0.06 0.23 ± 0.18
Shelf-Place 0.70 ± 0.18 0.32 ± 0.11 0.01 ± 0.01
Basketball 0.64 ± 0.15 0.41 ± 0.24 0.00 ± 0.00
Hand-Insert 0.63 ± 0.04 0.29 ± 0.07 0.02 ± 0.01
Sweep-Into 0.61 ± 0.06 0.33 ± 0.05 0.00 ± 0.00
Button-Press-Topdown 0.57 ± 0.11 0.45 ± 0.06 0.38 ± 0.36
Peg-Unplug-Side 0.56 ± 0.07 0.19 ± 0.09 0.00 ± 0.00
Assembly 0.55 ± 0.13 0.28 ± 0.05 0.33 ± 0.01
Push 0.55 ± 0.10 0.34 ± 0.14 0.28 ± 0.19
Bin-Picking 0.53 ± 0.16 0.31 ± 0.21 0.66 ± 0.11
Push-Back 0.52 ± 0.05 0.16 ± 0.04 0.00 ± 0.00
Box-Close 0.51 ± 0.11 0.15 ± 0.09 0.36 ± 0.11
Soccer 0.44 ± 0.04 0.11 ± 0.03 0.38 ± 0.31
Button-Press-Topdown-Wall 0.43 ± 0.03 0.40 ± 0.07 0.05 ± 0.02
Disassemble 0.42 ± 0.14 0.26 ± 0.04 0.05 ± 0.00
Coffee-Pull 0.40 ± 0.05 0.23 ± 0.04 0.19 ± 0.12
Stick-Pull 0.32 ± 0.06 0.17 ± 0.07 0.00 ± 0.00
Peg-Insert-Side 0.30 ± 0.04 0.08 ± 0.03 0.00 ± 0.00
Pick-Place-Wall 0.28 ± 0.12 0.09 ± 0.04 0.39 ± 0.25
Pick-Out-Of-Hole 0.26 ± 0.25 0.16 ± 0.16 0.59 ± 0.06
Pick-Place 0.20 ± 0.03 0.07 ± 0.02 0.05 ± 0.05
Handle-Pull-Side 0.14 ± 0.04 0.13 ± 0.09 0.00 ± 0.00

Average 0.73 ± 0.07 0.53 ± 0.08 0.18 ± 0.09

Cheetah-Vel -171.52 ± 21.96 -287.70 ± 30.62 -233.97 ± 23.46
Point-Robot -5.10 ± 0.26 -15.38 ± 0.95 -14.61 ± 0.98
Point-Robot-Sparse 7.78 ± 0.64 0.83 ± 0.37 0.00 ± 0.00
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Table 7: Comparison between BOReL and GCC. For Meta-World tasks, “-V2” is omitted for brevity.
Environment GCC BOReL

Coffee-Push 1.26 ± 0.13 0.00 ± 0.00
Faucet-Close 1.12 ± 0.01 0.13 ± 0.03
Door-Unlock 1.11 ± 0.02 0.13 ± 0.03
Plate-Slide-Side 1.07 ± 0.08 0.00 ± 0.00
Faucet-Open 1.05 ± 0.02 0.12 ± 0.05
Button-Press-Wall 1.04 ± 0.04 0.01 ± 0.00
Plate-Slide 1.01 ± 0.03 0.01 ± 0.00
Door-Close 0.99 ± 0.00 0.37 ± 0.19
Drawer-Close 0.99 ± 0.02 0.00 ± 0.00
Plate-Slide-Back-Side 0.97 ± 0.02 0.01 ± 0.00
Door-Lock 0.97 ± 0.01 0.14 ± 0.00
Window-Open 0.96 ± 0.02 0.03 ± 0.00
Door-Open 0.96 ± 0.02 0.12 ± 0.01
Plate-Slide-Back 0.96 ± 0.02 0.01 ± 0.00
Window-Close 0.94 ± 0.01 0.03 ± 0.00
Reach-Wall 0.93 ± 0.05 0.06 ± 0.00
Dial-Turn 0.91 ± 0.05 0.00 ± 0.00
Handle-Press-Side 0.91 ± 0.02 0.02 ± 0.01
Handle-Pull 0.90 ± 0.02 0.00 ± 0.00
Handle-Press 0.88 ± 0.05 0.01 ± 0.00
Reach 0.85 ± 0.03 0.04 ± 0.01
Lever-Pull 0.85 ± 0.02 0.05 ± 0.00
Hammer 0.84 ± 0.06 0.09 ± 0.01
Drawer-Open 0.82 ± 0.06 0.10 ± 0.00
Sweep 0.77 ± 0.04 0.00 ± 0.00
Button-Press 0.74 ± 0.08 0.01 ± 0.01
Stick-Push 0.73 ± 0.09 0.00 ± 0.00
Coffee-Button 0.73 ± 0.14 0.02 ± 0.00
Push-Wall 0.71 ± 0.15 0.00 ± 0.00
Shelf-Place 0.70 ± 0.18 0.00 ± 0.00
Basketball 0.64 ± 0.15 0.00 ± 0.00
Hand-Insert 0.63 ± 0.04 0.00 ± 0.00
Sweep-Into 0.61 ± 0.06 0.01 ± 0.00
Button-Press-Topdown 0.57 ± 0.11 0.02 ± 0.02
Peg-Unplug-Side 0.56 ± 0.07 0.00 ± 0.00
Assembly 0.55 ± 0.13 0.04 ± 0.00
Push 0.55 ± 0.10 0.00 ± 0.00
Bin-Picking 0.53 ± 0.16 0.00 ± 0.00
Push-Back 0.52 ± 0.05 0.00 ± 0.00
Box-Close 0.51 ± 0.11 0.05 ± 0.01
Soccer 0.44 ± 0.04 0.04 ± 0.02
Button-Press-Topdown-Wall 0.43 ± 0.03 0.05 ± 0.01
Disassemble 0.42 ± 0.14 0.04 ± 0.00
Coffee-Pull 0.40 ± 0.05 0.00 ± 0.00
Stick-Pull 0.32 ± 0.06 0.00 ± 0.00
Peg-Insert-Side 0.30 ± 0.04 0.00 ± 0.00
Pick-Place-Wall 0.28 ± 0.12 0.00 ± 0.00
Pick-Out-Of-Hole 0.26 ± 0.25 0.00 ± 0.00
Pick-Place 0.20 ± 0.03 0.00 ± 0.00
Handle-Pull-Side 0.14 ± 0.04 0.00 ± 0.00

Average 0.73 ± 0.07 0.04 ± 0.01

Cheetah-Vel -171.52 ± 21.96 -301.4 ± 36.8
Point-Robot -5.10 ± 0.26 -17.28 ± 1.16
Point-Robot-Sparse 7.78 ± 0.64 0.00 ± 0.00
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Table 8: Comparison between baselines with offline adaptation and GCC. For Meta-World tasks,
“-V2” is omitted for brevity.

Environment GCC FOCAL with
Expert Context

MACAW with
Expert Context

Coffee-Push 1.26 ± 0.13 0.50 ± 0.06 1.14 ± 0.27
Faucet-Close 1.12 ± 0.01 1.07 ± 0.02 1.01 ± 0.01
Door-Unlock 1.11 ± 0.02 0.96 ± 0.03 0.99 ± 0.04
Plate-Slide-Side 1.07 ± 0.08 0.75 ± 0.09 0.91 ± 0.09
Faucet-Open 1.05 ± 0.02 1.00 ± 0.02 0.99 ± 0.01
Button-Press-Wall 1.04 ± 0.04 0.98 ± 0.05 0.99 ± 0.01
Plate-Slide 1.01 ± 0.03 1.00 ± 0.03 0.67 ± 0.07
Door-Close 0.99 ± 0.00 0.97 ± 0.01 0.92 ± 0.05
Drawer-Close 0.99 ± 0.02 0.96 ± 0.04 1.00 ± 0.01
Plate-Slide-Back-Side 0.97 ± 0.02 0.90 ± 0.07 0.80 ± 0.05
Door-Lock 0.97 ± 0.01 0.88 ± 0.04 0.97 ± 0.03
Window-Open 0.96 ± 0.02 0.93 ± 0.05 0.98 ± 0.02
Door-Open 0.96 ± 0.02 0.90 ± 0.02 0.99 ± 0.02
Plate-Slide-Back 0.96 ± 0.02 0.93 ± 0.01 0.55 ± 0.11
Window-Close 0.94 ± 0.01 0.73 ± 0.02 1.00 ± 0.01
Reach-Wall 0.93 ± 0.05 0.91 ± 0.05 0.82 ± 0.02
Dial-Turn 0.91 ± 0.05 0.84 ± 0.08 0.98 ± 0.01
Handle-Press-Side 0.91 ± 0.02 0.87 ± 0.04 0.82 ± 0.10
Handle-Pull 0.90 ± 0.02 0.70 ± 0.05 0.95 ± 0.05
Handle-Press 0.88 ± 0.05 0.79 ± 0.08 0.56 ± 0.19
Reach 0.85 ± 0.03 0.83 ± 0.05 0.64 ± 0.08
Lever-Pull 0.85 ± 0.02 0.76 ± 0.03 0.97 ± 0.07
Hammer 0.84 ± 0.06 0.78 ± 0.04 0.40 ± 0.18
Drawer-Open 0.82 ± 0.06 0.73 ± 0.11 0.98 ± 0.01
Sweep 0.77 ± 0.04 0.74 ± 0.02 0.98 ± 0.01
Button-Press 0.74 ± 0.08 0.63 ± 0.09 0.71 ± 0.04
Stick-Push 0.73 ± 0.09 0.14 ± 0.09 0.67 ± 0.09
Coffee-Button 0.73 ± 0.14 0.61 ± 0.20 0.21 ± 0.11
Push-Wall 0.71 ± 0.15 0.90 ± 0.12 0.96 ± 0.09
Shelf-Place 0.70 ± 0.18 0.57 ± 0.13 0.55 ± 0.03
Basketball 0.64 ± 0.15 0.49 ± 0.17 0.47 ± 0.18
Hand-Insert 0.63 ± 0.04 0.64 ± 0.09 0.20 ± 0.09
Sweep-Into 0.61 ± 0.06 0.64 ± 0.09 0.00 ± 0.00
Button-Press-Topdown 0.57 ± 0.11 0.48 ± 0.11 0.92 ± 0.04
Peg-Unplug-Side 0.56 ± 0.07 0.57 ± 0.10 0.18 ± 0.10
Assembly 0.55 ± 0.13 0.64 ± 0.03 0.36 ± 0.02
Push 0.55 ± 0.10 0.98 ± 0.13 0.86 ± 0.02
Bin-Picking 0.53 ± 0.16 0.61 ± 0.12 0.63 ± 0.11
Push-Back 0.52 ± 0.05 0.52 ± 0.16 0.15 ± 0.09
Box-Close 0.51 ± 0.11 0.56 ± 0.08 0.35 ± 0.11
Soccer 0.44 ± 0.04 0.45 ± 0.03 0.59 ± 0.11
Button-Press-Topdown-Wall 0.43 ± 0.03 0.40 ± 0.06 0.43 ± 0.06
Disassemble 0.42 ± 0.14 0.23 ± 0.05 0.50 ± 0.06
Coffee-Pull 0.40 ± 0.05 0.58 ± 0.11 0.45 ± 0.11
Stick-Pull 0.32 ± 0.06 0.18 ± 0.06 0.27 ± 0.09
Peg-Insert-Side 0.30 ± 0.04 0.52 ± 0.08 0.25 ± 0.04
Pick-Place-Wall 0.28 ± 0.12 0.13 ± 0.07 0.21 ± 0.16
Pick-Out-Of-Hole 0.26 ± 0.25 0.27 ± 0.27 0.59 ± 0.08
Pick-Place 0.20 ± 0.03 0.29 ± 0.11 0.72 ± 0.09
Handle-Pull-Side 0.14 ± 0.04 0.09 ± 0.05 0.94 ± 0.08

Average 0.73 ± 0.07 0.67 ± 0.07 0.68 ± 0.07

Cheetah-Vel -171.52 ± 21.96 -156.07 ± 23.22 -292.92 ± 36.66
Point-Robot -5.10 ± 0.26 -4.68 ± 0.18 -19.60 ± 1.15
Point-Robot-Sparse 7.78 ± 0.64 8.37 ± 0.67 0.00 ± 0.00
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F ABLATION STUDY

In this section, we conduct various ablation studies to investigate the robustness of GCC in dataset
quality and hyper-parameters.

Initial stage length. Table 9 shows GCC’s performance with different initial stage lengths. The total
number of adaptation episodes is 20. We find that GCC performs well during 10-15 episodes, which
is 50%-75% of the total number of adaptation episodes. A small initial stage length (5) may lead to a
possibly unreliable task belief and cause a degrade in performance. The 19-episode does not perform
the iterative optimization process, and the task belief updates will not converge.

Number of latent task variables sampled in the initial phase. nz̃ controls the number of diverse
samples used to produce the task embedding candidates zit . As shown in Table 10, GCC is robust to
changes of nz̃ , and works in a large range from 5 to 20.

Dataset Quality. We test GCC and baselines with several “medium” datasets, which are collected by
periodically evaluating policies of SAC. As shown in Table 11, GCC still significantly outperforms
baseline algorithms on medium datasets, which implies GCC’s ability to learn various datasets. We
do not test BOReL, as it already fails on the easier expert-level datasets.

Table 9: GCC’s performance with various initial stage lengths.
Environment 5 Episodes 10 Episodes 15 Episodes 19 Episodes

Point-Robot -6.04 ± 0.31 -5.11 ± 0.21 -5.10 ± 0.26 -5.37 ± 0.11
Point-Robot-Sparse 4.04 ± 0.58 7.78 ± 0.64 8.07 ± 0.62 7.29 ± 0.50

Table 10: GCC’s performance with various nz̃s.
Environment nz̃ = 1 nz̃ = 5 nz̃ = 10 nz̃ = 20

Point-Robot -5.92 ± 0.31 -5.11 ± 0.21 -4.94 ± 0.16 -4.99 ± 0.23
Point-Robot-Sparse 5.66 ± 0.63 7.78 ± 0.64 7.31 ± 0.74 7.78 ± 0.57

Table 11: Algorithms’ performance on datasets of various qualities.
Environment GCC FOCAL MACAW

Sweep 0.77 ± 0.04 0.32 ± 0.08 0.20 ± 0.20
Sweep-Medium 0.59 ± 0.13 0.38 ± 0.13 0.04 ± 0.03

Peg-Insert-Side 0.30 ± 0.04 0.08 ± 0.03 0.00 ± 0.00
Peg-Insert-Side-Medium 0.30 ± 0.14 0.10 ± 0.07 0.00 ± 0.00
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