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Abstract. In this study, we demonstrate the efficacy of scoring statistics
derived from a medial axis transform, for differentiating tumor and non-
tumor nuclei, in malignant breast tumor histopathology images. Char-
acterizing nuclei shape is a crucial part of diagnosing breast tumors for
human doctors, and these scoring metrics may be integrated into machine
perception algorithms which aggregate nuclei information across a region
to label whole breast lesions. In particular, we present a low-dimensional
representation capturing characteristics of a skeleton extracted from nu-
clei. We show that this representation outperforms both prior morpho-
logical features, as well as CNN features, for classification of tumors.
Nuclei and region scoring algorithms such as the one presented here can
aid pathologists in the diagnosis of breast tumors.

Keywords: Medial axis transform, breast cancer, digital pathology, com-
puter vision

1 Introduction

Recent advancements in whole-slide imaging technology have paved the way for
what has been termed Digital Pathology, the digitization of pathology data.
Once a biopsy sample has been processed, it can then be scanned into a digital
format for viewing by the pathologist. This allows for viewing at any time, while
not affecting diagnostic accuracy [1]. Additional benefits of Digital Pathology
include the ability to store large amounts of cases for teaching and research
purposes, as well as facilitating telepathology, allowing multiple pathologists to
view cases simultaneously and remotely. However, what we are most interested
in is how the digitization of pathology data allows for the use of computational
algorithms to analyze the data and provide useful information to the pathologist.

Digitization proceeds as follows. Slices of the extracted tissue sample are
scanned into whole slide images (WSI’s). These images are far too large and
high resolution (around 5 gigapixels) to perform most analytical computation
on, so regions of interest (ROI’s) may be extracted via a plethora of methods [2].
Regions are often extracted via texture analysis, where regions of high texture
variance are more likely to contain useful information, like a breast duct. These
smaller sub-regions of the whole slide (usually around 1M pixels) are likely to
contain information useful to the diagnosis, while ignoring large parts of the
image which are not useful (such as white space). Most computational analysis is
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done on the region level. With these manageable ROI’s, we can employ a variety
of machine learning and computer vision techniques to guide pathologists in the
decision making process.

This study focuses on breast tumor analysis in particular for several reasons.
Breast cancer is the second most common form of cancer found in women in
the US, with an estimated 12% of women developing invasive breast cancer
over the course of their life [3]. Annually, roughly 1.6 million breast biopsies are
conducted, with around 25% of them showing malignancy [4]. The remaining
cases may be classified along a spectrum of labels, from fully benign up to a
very high risk of becoming malignant in the future. The differences in appearance
between these classes of pre-malignant tumors can be incredibly subtle, which is
reflected in the high rates of discordant diagnoses among pathologists for those
high-risk cases [4]. In particular, discordance rates are 52% for high-risk benign
lesions, compared to just 4% for distinguishing between invasive and non-invasive
cancer [4]. Despite the challenges, accurate diagnosis of these lesions is crucial
in providing optimal treatment, and early detection and treatment reduces the
risk of future malignancy [5–7].

Differentiating between a benign lesion and a low or high-risk lesion requires
analysis of subtle structural and shape changes in the breast tissue. Complex,
high-level structural changes occur in the tumor region as it progresses along the
spectrum from benign to malignant [8]. High-risk lesions often show breast ducts
being crowded with nuclei in rigid patterns around the lumen (interior opening
of the duct). Even the smallest structures present in the tissue, the cell nuclei,
demonstrate a change in shape as the disease progresses along the spectrum from
benign to malignant.

In particular, higher-risk lesions, like flat epithelial atypia (FEA) have rounder
epithelial nuclei than lower risk lesions like columnar cell change (CCC) [9].
Atypical ductal hyperplasia (ADH) is one of the highest risk tumors. Epithelial
nuclei in ADH tumors are typically completely rounded [10]. Further, to get a
full picture of the tumor environment in order to make an accurate prediction,
one must consider not only the distribution of structures across the image (how
densely the nuclei are crowded and in what pattern), but also the shape of the
structures themselves, in particular the nuclei. This is the focus of our study, to
find an accurate and robust way of characterizing the shape of epithelial nuclei
in breast tumors.

In this study, we apply the Medial Axis Transform (MAT) [11], a skele-
tonization algorithm, to the task of classifying nuclei as tumor or non-tumor
based solely on their shape. We propose a variety of features to aggregate MAT
per-pixel scores into region scores, including novel features measuring branching,
bend, and eccentricity. Using our features extracted from the skeleton, we show
considerable separation of the two classes of nuclei. In particular, we show that
our MAT-based features allow more accurate cancer classification, compared to
prior morphological features and those extracted from a CNN applied on a color
image or one applied on a 3-channel skeleton image.
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We highlight the importance of model interpretability in medical studies such
as this one. Many deep learning models exist which obtain impressive classifi-
cation results in this domain, such as in [12] where they achieve almost 98%
accuracy on the BreakHis dataset (benign vs. malignant tumors). However, one
thing missing from deep learning models is the ability to directly interpret re-
sults. Methods exist for probing deep nets to obtain some result interpretability,
such as LIME [13], but these require further processing. This is especially im-
portant when considering who will be using the software, primarily pathologists,
who are not experts in data science. If our aim is to improve the field of pathol-
ogy by providing pathologists with tools that will aid them in their diagnostic
process, a crucial step is gaining the trust of pathologists, and that can be ac-
complished through model interpretability. Using hand-picked features which
can be mapped to real world descriptions (such as a nucleus being rounded) and
simpler decision models leads to better potential interpretability and more trust
in the model. Our method thus explores a shape representation that achieves
competitive results but is also interpretable. Further work could include adding
interpretability into the proposed feature extraction framework.

2 Related Works

Although classification of whole breast tumors is a more common problem, sev-
eral studies have been conducted on classifying individual nuclei within the tu-
mor images. Although the end goal is to be able to classify whole tumor images,
studying the individual nuclei in the image can be a useful sub-task, as tumor
nuclei change shape as a tumor progresses. Being able to highlight individual
potentially problematic nuclei in a tumor image would also lend to a more in-
terpretable model. Models that seek to classify from the whole image without
special attention to the nuclei, as well as other biological structures, are ignoring
biological precedent for the classification. The classic Wisconsin Breast Cancer
dataset [14], which features nuclei labeled as either malignant or benign, along
with 10 hand-computed features for each nucleus (e.g. radius, perimeter, tex-
ture), was used to train simple classifiers with near 100% accuracy on a small
test set, such as in [15]. However, a model trained on these parameters could
never be used in a clinical setting, as it would require the manual measurement
of each nuclei in the biopsy scans, a task more expensive and time consuming
than having a pathologist look at it manually.

Many methods exist which seek to replicate the above results in a more
scalable fashion, with the nuclei features being computed by an algorithm. Once
these explicitly defined features are extracted, simple classifiers can be trained
on them with reasonable success. In [16], the authors extracted four simple shape
features and 138 textural features. They then classified the nuclei into benign and
malignant using an SVM, achieving 96% accuracy. Similarly, in [17], the authors
extracted 32 shape and texture features and classified the nuclei into high and low
risk categories using an SVM with an accuracy of 90%. One downside of taking
this approach to nuclei classification is the requirement of manually obtaining
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or computing nuclei segmentations, or boundaries around each nuclei, in order
to do the shape and texture analysis.

Methods which exploit deep learning do not strictly require a segmentation.
For example, Raza [18] use a CNN to classify colon tumor nuclei into four classes
with state-of-the-art results. Many works exist which study various CNN frame-
works on classifying whole tumor images, such as in [19–21], all of which show
very promising results. However, the main issue with deep learning approaches
is a lack of inherent interpretability. Pathologists may be reluctant to incorpo-
rate such black-box methods into their workflow. Although methods exist which
allow us to interpret results regardless of the model (such as LIME [13]), there
is motivation to keep models more simple and inherently interpretable.

3 Approach

We first describe the data we use, and how we pre-process it. Next, we describe
our approach that leverages the well-known Medial Axis Transform (MAT) [11].
Finally, we relate our full set of novel features that we extract from the MAT
skeleton.

3.1 Data

We use the BreCaHAD dataset of [22], which contains labeled tumor and
non-tumor nuclei (i.e. malignant nuclei present inside a malignant tumor and
nuclei outside of the tumor, in the stroma, etc.). We leave studying the finer-
grained nuances in the middle of the spectrum (i.e. classifying high-risk benign
lesions) as future work, because no such annotated dataset is currently available.
BreCaHAD consists of 162 breast lesion images, all of which show varying de-
grees of malignancy. The centroid of each nuclei in the images is labeled with one
of the following six classes: mitosis, apoptosis, tumor nuclei, non-tumor nuclei,
tubule, and non-tubule. For our purposes, we are just interested in differentiating
the tumor and non-tumor nuclei. Theoretically, if we can design a framework to
differentiate tumor and non-tumor nuclei in malignant cases based on shape, the
same framework should be successful at analyzing high-risk benign tumor nuclei,
the more challenging task (for which no annotated datasets currently exist).

The dataset presents some challenges. Most importantly, all of the images
show malignant tissue samples. Thus, at the nuclei (rather than full tissue sam-
ple) level, there is a dramatic class imbalance in the data, with almost 92% of
nuclei labeled as ‘tumor’. Additionally, the ground truth labels (centroid and
class label) are not enough for our purposes since nuclei need to be segmented
first for further processing (feature extraction and classification). We next de-
scribe how we handle both challenges.

Nuclei segmentation: If we wish to analyze the shape of the nuclei present
in the biopsy images, we need some definition of the boundaries of the nuclei.
Ideally, this would come with the dataset, and be a ground truth value. However,
in our case, we are only given centroid locations of the nuclei, and thus must
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Fig. 1. Segmentation results using the method described in [23]. Overall the output is
fairly accurate, but some of the nuclei are segmented together, into a larger blob.

produce our own segmentation. We use the segmentation algorithm proposed
by Chen [23], which is a fully convolutional network based on U-Net [24], with
additional smoothing applied after the upsampling. A segmentation on a sample
from the dataset using this method is shown in Figure 1. Once the segmentation
is computed, the labeled centroids can be matched to their corresponding nuclei
boundary by determining which (masked) boundary the centroid falls within.
The labels in the dataset could then be associated with a nuclei boundary. Using
this segmentation scheme, 80.18% of the ground truth nuclei in the dataset were
found (18149 nuclei). Of these, 92% were positive (16689). Crops of size (81, 81)
pixels centered at each nuclei were taken from the original images, and used as
the training and testing data.

Class imbalance: To account for the class imbalance, training and testing sets
were obtained by randomly sampling with replacement from the over-represented
class (tumor) until there was an equal number of samples for both classes. With-
out this step, the model would tend to demonstrate very low specificity (high rate
of false positives), while still maintaining a low loss. There were 1460 negative
(non-tumor) nuclei after segmentation, so the same number of positive nuclei
were randomly selected from the initial set of 16689. This is not ideal, as many
positives are thrown out, however it is preferable to an overfitted model.

3.2 Medial Axis Transform

We propose a novel representation for nuclei shape analysis, based on the medial
axis transform (MAT) [11]. The MAT is a skeletonization algorithm wherein a
closed binary shape is reduced down to a 1-pixel-wide branching structure wholly
contained within the original shape. This may be conceptualized as a thinning
process, where the border of the shape becomes thinner, or erodes, until opposite
sides of the shape come together, defining the skeleton. The skeleton points are
center points of maximally inscribed discs, i.e. circles with more than one point
on their surface tangent to the shape boundary. This property makes the MAT
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Fig. 2. Medial Axis Transform on a binary image of a horse (left) [18]. A nuclei seg-
mentation (cyan) and skeletonization (red) on a tumor nucleus is shown on the right.

skeletonization an appropriate candidate for deriving a shape descriptor. We
show an example in Figure 2.

The skeleton itself does not contain enough information on its own to derive
a shape descriptor, as it only provides us with a set of pixels which define the
skeleton. However, it can be used to derive several scoring statistics. Rezanejad
[25] derive three scores from the MAT: ribbon, taper, and separation. They also
show that these scores can be successfully used by a CNN to perform scene
classification from line images (no color or texture). The scene classification task
is significantly different from the nuclei classification one, as scene images feature
many contours, some of which may not be closed shapes. Further, a nuclei image
will contain far fewer contours compared to a dense scene. However, the results
in [25] imply that these scores capture contour shape accurately, which applies
to nuclei shape analysis, where we are hoping to capture how rounded the nuclei
are.

Let p be a point on the skeleton defined by its pixel location in the image,
R(p) be the radius function for that point (shortest distance from the skeleton
point to the boundary), and [α, β] be a range of skeleton points of size k. Finally,
let p ∈ [α, β]. Then the three score metrics are defined as follows, based on the
first and second derivative of R(p):

Sribbon(p) = R′(p) (3.1)

Staper(p) = R′′(p) (3.2)

Sseparation(p) = 1− (

∫ β

α

1

R(p)
dp)/k (3.3)

Because pixels are discrete, and thus so are the intervals we are integrating
and deriving over, we must use numerical gradients. A small value of k was
used, as the nuclei are fairly small (roughly 100 pixel perimeter), and the scoring
metrics are designed to capture local symmetry. For all of the tests, we used a
value of k=8. The skeletonization method was adapted from [26–29].
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Table 1. Proposed skeleton features

Feature Description

Min rib/tap/sep Minimum of each of the 3 scores for all pixels in the skeleton
(ribbon, taper, separation)

Max rib/tap/sep Maximum of each of the 3 scores

Mean rib/tap/sep Mean of each of the 3 scores

Deviation
rib/tap/sep

Standard deviation of each of the 3 scores

Max branch length The length (in pixels) of the longest branch of the skeleton

Avg branch length Average length (in pixels) of the branches of the skeleton

Num branches The number of branches in the skeleton

Bend Angle between the line connecting the furthest two points on
the skeleton and the skeleton’s major axis

Major/minor axis len Length (in pixels) of the major and minor axes of the ellipse with
the same normalized second central moments as the skeleton

Eccentricity Eccentricity of the ellipse that has the same second-moment as
the skeleton, the ratio of the distance between the foci of the
ellipse and its major axis length

Solidity Proportion of pixels in convex hull that are also in the skeleton

The Rezanejad algorithm defines three scores for each skeleton point. Thus,
it could be treated as a 3-channel color image, where all non-skeletal pixels have
a value of 0 and skeleton points are described with 3 scores. The ribbon score
(Sribbon(p)) captures the degree of parallelity of the surrounding contours, and
increases as they become more parallel. The taper score (Staper(p)) is designed
to increase as contours resemble the shape of a funnel or railroad tracks, but
also has a high value for parallel contours. Separation (Sseparation(p)) captures
the degree of separation between the contours, and increases with distance.

3.3 Final Representation

We propose a set of 20 features, described in Table 1. Three of those features
rely on the per-pixel ribbon, taper and separation features described above. The
per-pixel features are aggregated on the whole nuclei level by taking their min,
max, mean, and standard deviation.

The following additional skeleton structural features were extracted: number
of branches, average and max branch length, and bend (angle between line con-
necting furthest 2 skeleton points and major axis). Branches were isolated by
computing junction points using [30], then setting junction points to zero and
applying connected component analysis on the separated branches.

Another interesting method for extracting a feature from the skeleton data
would be to define the skeleton as a graph, with node features being the 3
scores, and apply graph convolutions or graph kernels to do the classification.
Deep learning on graph structured data has shown promise in recent years [31]
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and could prove useful in this task. However, the graph analysis is outside of the
scope of this study currently.

4 Experimental Validation

We describe the methods compared and metrics used. We next show quantitative
results, and finally some examples of the features that our method relies on.

4.1 Methods compared

In order to show the efficacy of the proposed method for capturing nuclei shape,
the tests will be conducted on features with no information of texture or color
in the nuclei. For this reason, we test our method against another method which
does not incorporate texture, but has shown to be successful. Yamamoto [17]
obtained an accuracy of 85% using only a small number of hand-picked morpho-
logical features and an SVM. We were able to replicate their accuracy results
on the balanced test set using the following set of features originally proposed
in [17]: area, eccentricity, extend, major axis, minor axis, convex area, circu-
larity, equivalent diameter, filled area, perimeter, and solidity. Note again how
none of these features incorporate any color or texture information. In total,
19 morphological features were extracted, similar to the dimensionality of the
skeleton feature vector we will be comparing it to. We refer to this method as
Morphological features in Table 2.

However, color and texture features have also been used with success [16].
Thus, we also compare the proposed shape-based method to a standard convolu-
tional neural network which includes color, namely AlexNet [32], pre-trained on
ImageNet. We used this model to extract features from the last fully-connected
layer (D=1000). The CNN was tested both on the full color crops, as well as
the 3-channel skeleton score image (see below). We refer to these methods as
CNN on full color crop and CNN on 3-channel skeleton image in Table
2, respectively.

Our method uses the 20-dimensional proposed feature vector described in
Section 3.3, and is referred to as MAT skeleton features.

4.2 Metrics and setup

We evaluate model performance using accuracy, sensitivity, and specificity, with
special attention paid to sensitivity. In medical tests, maximizing sensitivity, or
minimizing false negatives, is an important goal, as we do not want to under
interpret a sample and cause a patient to not receive necessary treatment. The
dataset was split into 70% for training, and 30% for testing, giving sizes of
2044 and 876 nuclei respectively. Classification for all tests was done using a
linear SVM with RBF kernel. We use an equal class representation, so a random
algorithm would achieve an accuracy of roughly 0.5. Scores were averaged over
20 runs, with a different random train/test split for each run.
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Table 2. BreCaHAD Classification: Main Results

Method Accuracy Sensitivity Specificity

Morphological features 0.846 +/- 0.001 0.831 +/- 0.001 0.861 +/- 0.001
CNN on full color crop 0.632 +/- 0.001 0.477 +/- 0.001 0.798 +/- 0.001
CNN on 3-channel skeleton
image

0.654 +/- 0.002 0.623 +/- 0.001 0.687 +/- 0.001

MAT skeleton features
(Ours)

0.850 +/- 0.004 0.844 +/- 0.004 0.852 +/- 0.003

4.3 Quantitative results

Our results are shown in Table 2. Our proposed method achieves the highest
accuracy. Further, the results are statistically significant. We reject the null
hypothesis that the distributions of accuracies for the skeleton features and the
morphological features come from different distributions at significance level 5%.

Additionally, our MAT skeleton features achieve the highest sensitivity of
the methods testing. Sensitivity is especially important in a medical setting,
where a false negative (missed disease diagnosis) is much more costly than a
false positive. This also highlights the failure of the color CNN feature, where
its passable accuracy score was achieved by outputting mostly negative labels,
resulting in many false negatives. It also demonstrates that the 3-channel skele-
ton image CNN feature was actually significantly better than the CNN on the
full color image, as is seen in the difference in sensitivity. Note that we could
have tried a larger CNN for extracting the features, but the sizable gap in the
CNN methods’ accuracy vs. ours and the morphological features, indicated that
further exploration of CNN features may not work well.

Finally, we compare performance of the SVM on the MAT skeleton scores
feature which closely follows [25] (min/max/mean/deviation of the ribbon, taper,
and separation scores) and the new skeleton features that we propose (max
branch length, number of branches, etc.). The results can be seen in Table 3.
While the MAT score-derived features are more successful in the classification
of the nuclei shape in isolation, the other features we propose do significantly
contribute to performance.

Scores could likely be improved for both the morphological and skeleton
features by taking several steps. First, color features could be incorporated into
the skeleton and morphological features. These could be extracted from a CNN,
or just be basic statistical measures such as in [16]. However, with these results we
have shown the efficacy of the MAT skeleton feature as a means of distinguishing
nuclei shapes.

4.4 Qualitative results

Analysis of the linear predictor coefficients of the SVM with all MAT skeleton
features in Table 4 shows that the maximum separation score feature was by
far the most discriminant. Recall that the separation score measures the level of
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Table 3. BreCaHAD Classification: Ablation Results

Method Accuracy Sensitivity Specificity

Min/max/avg/dev skeleton
features

0.820 +/- 0.003 0.789 +/- 0.011 0.853 +/- 0.006

Other skeleton features 0.692 +/- 0.002 0.680 +/- 0.004 0.705 +/- 0.009
All skeleton features
(Ours)

0.850 +/- 0.004 0.844 +/- 0.004 0.852 +/- 0.003

Fig. 3. The nuclei with the lowest maximum separation score (left), a non-tumor nuclei,
and that with the highest maximum separation score (right), a tumor nuclei.

separation between the skeleton and its boundary. Intuitively, this makes sense,
as we know tumor nuclei to be more engorged and rounded (and thus have high
separation), and non-tumor nuclei to be thinner and more elongated (resulting
in a smaller separation). This intuition is validated by viewing the data samples
which exhibit the highest and lowest max separation scores for the respective
classes. The sample which exhibited the highest max separation score was from
the positive class, and the sample which exhibited the lowest separation was
negative, both of which are illustrated in Figure 3. Other important features
include our new axis and branch features.

5 Conclusion

The primary aim of the study was not to achieve the best classification metrics
and outperform all other state of the art models, but rather to define a robust
shape descriptor that accurately captures the change of shape of the nucleus.
The MAT skeleton feature showed improvement over the baseline morphological
features. Additionally, features extracted with a CNN on the weighted skeleton
image performed better than similar features extracted from the full color image.
The MAT skeleton scoring algorithm outlined in this paper is thus a useful shape
descriptor in regards to tracking nuclei shape heterogeneity in breast tumors.

Although here the MAT skeleton feature was applied to distinguishing tumor
and non-tumor nuclei in malignant breast tumors, it may be robust enough to
tackle harder challenges, such as the classification of high-risk tumors, or be
applied to other modalities and cancers, such as prostate cancer (which also
uses stained slide images for diagnosis). Further work will focus on applying this
technique to more challenging tasks and datasets.
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Table 4. SVM Beta Values for the top 5 features

Feature Beta Value

Max separation 4.082

Major axis length 0.844

Average branch length 0.582

Number of branches 0.580

Minor axis length 0.519

We can also apply the nucleus scoring algorithm, where each nuclei receives
a set of features, to classify a whole region by considering all contained nuclei.
One approach is to take a majority vote: if most nuclei in the region are cancer-
ous, then predict the image as cancerous. Another method could be normalized
mean statistics being taken over the graph to return a 1-dimensional vector. A
more interesting way to combine the nuclei features across the image could be
to define a graph over the image, where the nodes in the graph are the nuclei,
and each node inherits the features describing the nuclei. This would maintain
the structure and distribution of nuclei in the original image, while allowing for
various graph learning methods to be applied, which can consider both the indi-
vidual nuclei features, as well as the overall structure of the tumor environment.
This is a topic for further study.
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