

000 001 002 003 004 005 006 007 REASONING AS REPRESENTATION: 008 RETHINKING VISUAL REINFORCEMENT LEARNING IN 009 IMAGE QUALITY ASSESSMENT 010 011 012

007 **Anonymous authors**
008 Paper under double-blind review
009
010
011
012

ABSTRACT

013 Reasoning-based image quality assessment (IQA) models trained through rein-
014 force learning (RL) exhibit exceptional generalization, yet the underlying
015 mechanisms and critical factors driving this capability remain underexplored in
016 current research. Moreover, despite their superior performance, these models
017 incur inference energy usage and latency orders of magnitude higher than their
018 earlier counterparts, restricting their deployment in specific scenarios. Through
019 extensive experiments, this paper verifies and elaborates that through RL training,
020 MLLMs leverage their reasoning capability to convert redundant visual repres-
021 entations into compact, cross-domain aligned text representations. This conversion
022 is precisely the source of the generalization exhibited by these reasoning-based
023 IQA models. Building on this fundamental insight, we propose a novel algo-
024 rithm, RALI, which employs contrastive learning to directly align images with
025 these generalizable text representations learned by RL. This approach eliminates
026 the reliance on reasoning processes and even obviates the need to load an LLM
027 **during inference**. For the quality scoring task, this framework achieves general-
028 ization performance comparable to reasoning-based models while requiring less
029 than 5% of their model parameters and inference time.
030
031

1 INTRODUCTION

032 Image Quality Assessment (IQA) is a fundamental
033 task in the field of computer vision, with application
034 scenarios covering two key dimensions. In natural
035 scenarios, it can support critical applications such
036 as selection of photography and quality monitoring
037 of video platforms, directly related to the visual ex-
038 perience of users (Sheikh, 2005; Lin et al., 2019;
039 Fang et al., 2020; Wu et al., 2024b); In the field
040 of generative algorithms, IQA serves as a core re-
041 ward signal in the Reinforcement Learning from Hu-
042 man Feedback (RLHF) framework (Rombach et al.,
043 2022; Dhariwal & Nichol, 2021; Wang et al., 2025;
044 He et al., 2024), which is crucial for the training pro-
045 cess of generative image and video models. Its per-
046 formance directly affects the convergence efficiency
047 and the effect of reinforcement learning strategies.
048

049 With the development of multimodal large language
050 models (MLLMs), a series of innovative methods
051 have emerged in the IQA field. Q-Align (Wu et al.,
052 2024b) and DeQA (You et al., 2025) enable
053 MLLMs to directly output image quality scores through supervised fine-tuning (SFT). Descriptive
algorithms such as DepictQA (You et al., 2024b) focus on the text representation of image quality.
Recently, studies represented by Q-Insight (Li et al., 2025; Zhang et al., 2025a) and VisualQuality-
R1 (Liu et al., 2025c) have introduced visual reinforcement learning (RL) into IQA tasks by out-
putting **quality reasoning text** during reasoning and scores afterward. Their generalization in image

054 **Figure 1: Performance comparison among**
055 **IQA methods in PLCC/SRCC and par-**
056 **ameter numbers.** RALI uses only about 4%
057 of Q-Insight’s (Li et al. (2025)) parameters
058 while achieving comparable accuracy.

059 2024b) and DeQA (You et al., 2025) enable
060 MLLMs to directly output image quality scores through supervised fine-tuning (SFT). Descriptive
061 algorithms such as DepictQA (You et al., 2024b) focus on the text representation of image quality.
062 Recently, studies represented by Q-Insight (Li et al., 2025; Zhang et al., 2025a) and VisualQuality-
063 R1 (Liu et al., 2025c) have introduced visual reinforcement learning (RL) into IQA tasks by out-
064 putting **quality reasoning text** during reasoning and scores afterward. Their generalization in image

054 quality prediction is significantly superior to previous SFT methods. Despite the excellent performance
 055 of visual RL methods, current research has two core challenges. First, the principle behind
 056 their generalization improvement lacks systematic analysis. Notably, while studies have explored
 057 RL generalization in other fields (Chu et al., 2025; Liu et al., 2025c; Pan et al., 2025; Xu et al., 2025),
 058 the unique complexity of visual characteristics and the subjectivity of quality evaluation in IQA tasks
 059 render direct transfer of these findings difficult. Second, models with strong reasoning capabilities
 060 have obvious application limitations: the high latency caused by stepwise reasoning, combined with
 061 model loading overhead, severely restricts their deployment in scenarios such as online RL, mobile
 062 devices, and real-time applications. This raises two critical questions: ***How is generalization related***
 063 ***to reasoning in IQA, and is it essential?*** To address the above questions, this paper focuses on the
 064 source of generalization of RL-based IQA models (e.g., Q-Insight (Li et al., 2025)).

065 Turning to the first question—***How is generalization related to reasoning in IQA?*** Generalization
 066 has been a topic of discussion for IQA tasks, as individual datasets are typically small-scale and
 067 there is a pronounced domain gap between them due to their varying distributions in image quality
 068 and label annotations (You et al., 2025). Thus, using high-dimensional visual representations to
 069 predict scores tends to lead to overfitting. However, experimental verification reveals a key finding.
 070 For reasoning-based models like Q-Insight, the dependence in their scoring process has changed
 071 almost entirely. Instead of relying on lengthy visual tokens, it now depends on concise and compact
 072 **quality reasoning text** tokens. The core mechanism is that RL methods (e.g., GRPO (Shao et al.,
 073 2024; Guo et al., 2025)) enable MLLM to acquire a dimensionality reduction strategy: reasoning,
 074 which manifests itself as mapping input images to **quality reasoning text** to form IQA representations.
 075 Specifically, previous MLLMs typically predict image quality through visual representations
 076 (more than 1000 tokens), whereas reasoning-based models **rely primarily on the textual representations**
 077 (less than 100 tokens), resulting in a compression of more than 10 times. Furthermore, we
 078 demonstrate that the text representations can mitigate domain discrepancies. Meanwhile, the
 079 reasoning process itself, that is, the conversion of images to **quality reasoning text**, exhibits weak
 080 correlation with specific datasets and can maintain stable alignment across different domains. To-
 081 gether, these factors explain the generalization of reasoning-based IQA models. We further validate
 082 the generalization of image **quality reasoning text** by proposing a novel **Reasoning-Aligned Cross-**
 083 **domain Training (RACT)** framework. This novel approach addresses dataset distribution issues in
 084 image quality assessment tasks, enabling effective cross-domain training in misaligned data scenarios.

085 Turning to the second question: ***Is reasoning essential?*** From our prior discussion, we know that
 086 LLM reasoning maps images to **quality reasoning text** to achieve generalization, but contrastive
 087 learning methods, such as CLIP (Radford et al. (2021)) (which maps text and images to a shared
 088 embedding space), can also accomplish this mapping without the need for multistep reasoning, po-
 089 tentially offering a new pathway for generalization in IQA. Existing CLIP-based IQA methods (e.g.,
 090 CLIP-IQA (Wang et al., 2023)) have similar attempts but two flaws: shallow alignment with general
 091 text (not quality-specific) and overly simplistic text corpora (e.g., only “good/bad photo” and lack-
 092 ing complex quality dimensions). Building on prior research into Visual RL training mechanisms
 093 and reasoning processes, we have addressed these limitations and proposed a **Reasoning-Aligned**
 094 **Lightweight IQA (RALI)** framework. RALI consists of three key steps: First, we acquire image-
 095 text-score data triplets via reinforcement learning; second, we align images with **quality reason-**
 096 **ing text** through CLIP-based contrastive learning; finally, for the textual score space, we leverage
 097 description-score pairs to define a higher-dimensional, more sophisticated score mapping space. For
 098 score prediction, we directly map images to the pre-constructed image quality text space (without
 099 retaining the reasoning process) and accomplish scoring via intra-space similarity calculation. As
 100 shown in Fig. 1, RALI uses only 4% of Q-Insight’s parameter while achieving comparable scor-
 101 ing accuracy. Extensive experiments demonstrate that RALI achieves generalization on par with
 102 RL-based MLLMs, significantly outperforms all other methods, and eliminates both the reasoning
 103 process and the deployment of LLMs, reducing the inference time and the memory by more than
 104 95%.

105 In summary, this paper shows that the generalization of reasoning IQA model is rooted in the com-
 106 pression of visual information into textual representations, and this finding is further corroborated
 107 by RACT. Additionally, we prove that an equivalent level of generalization can be realized through
 RALI, a framework that does not incorporate reasoning process or depend on LLMs.

108

2 RELATED WORKS

110 **Image Quality Assessment.** Classical research divides IQA into full reference and no reference
 111 settings. Full reference methods (Wang et al. (2004); Sheikh & Bovik (2006); Zhang et al. (2011))
 112 compare a distorted image with a pristine reference using traditional metrics such as SSIM (Wang
 113 et al. (2004)) as well as deep learning based metrics (Bosse et al. (2017); Cao et al. (2022); Ding
 114 et al. (2020; 2021); Ghildyal & Liu (2022); Prashnani et al. (2018)) like LPIPS (Zhang et al. (2018)).
 115 No reference methods estimate perceptual quality without an explicit reference, evolving from hand-
 116 crafted natural scene statistics (Ma et al. (2017); Mittal et al. (2012a;b); Moorthy & Bovik (2010;
 117 2011); Saad et al. (2012)) to models that learn strong quality priors from data (Kang et al. (2014);
 118 Ke et al. (2021); Liu et al. (2017); Pan et al. (2018); Su et al. (2020); Zheng et al. (2021); Zhu et al.
 119 (2020); Sun et al. (2022); Wang et al. (2023)).

120 **MLLM-Based IQA Methods.** Recent work employs multi-modal large language models (MLLMs)
 121 to assess image quality. Score-based approaches such as Q-Align (Wu et al. (2024b)) and DeQA-
 122 Score (You et al. (2025)) produce numerical ratings by leveraging the models’ perception and
 123 world knowledge, yet they limit the intrinsic descriptive ability of MLLMs. Description-based ap-
 124 proaches (Wu et al. (2025a; 2024a); You et al. (2024b;a); Wu et al. (2024c); Chen et al. (2024);
 125 Zhang et al. (2025c;d;b)) aim to deliver qualitative judgments with richer explanations and better
 126 interpretability, while relying on large volumes of textual annotations for supervised fine tuning
 127 (SFT). Very recently, visual reinforcement learning is introduced into IQA tasks (Li et al. (2025);
 128 Zhang et al. (2025a); Wu et al. (2025b)). These RL-based IQA methods can jointly output **quality**
 129 **reasoning text** and scores, and show superior generalization ability to SFT-based methods.

130

3 REVISITING REASONING-BASED MLLMs IN IQA

131

3.1 PRELIMINARIES

132 **Reinforcement Learning for Image Quality Assessment.** Reinforcement learning (RL) improves
 133 the reasoning ability of large language models through feedback driven refinement (Christiano
 134 et al. (2017); Silver et al. (2017); Shao et al. (2024); Yang et al. (2024); Ying et al. (2024); Hui et al.
 135 (2024); Zhang et al. (2024)). Recently, DeepSeek-R1 Zero (Guo et al. (2025)) introduces group re-
 136 lative policy optimization (GRPO) (Shao et al. (2024)), which strengthens reasoning using rule-based
 137 rewards and avoids heavily supervised fine-tuning. In the context of visual quality understanding,
 138 Q-Insight (Li et al. (2025)) firstly integrates GRPO by using quality scores to construct rule based
 139 rewards and by training two tasks jointly, score regression and degradation perception. For each im-
 140 age and task specific question, the policy generates groups of answers with explicit reasoning, task
 141 specific evaluators compute rewards for score regression and for degradation type and level, and a
 142 multi task GRPO update increases the likelihood of higher reward answers while a KL regularizer
 143 keeps the policy close to a fixed reference. **The generalization of Q-Insight is significantly enhanced**
 144 **by training that incorporates reasoning, this critical factor is further elaborated with explanations**
 145 **and experiments in the Appendix A.** In inference, Q-Insight outputs reasoning contents (between
 146 <think> and </think>) and then score results (between <answer> and </answer>), with the first
 147 being image **quality reasoning text**.

150 **Figure 2: Comparison of Reasoning Between Q-Insight and Qwen-VL on the IQA Task. (left)**
 151 Q-Insight’s reasoning was more concise than Qwen-VL’s and more correlated with image quality.
 152 **(right)** On the KonIQ (Hosu et al. (2020)) test set, CLIP features derived from Q-Insight’s reasoning
 153 were more correlated with scores following t-SNE visualization. In this paper, we adopt the **quality**
 154 **reasoning text** between <think> and </think> as the reasoning contents for clarity.

162
163

3.2 REASONING MECHANISMS OF MLLMs IN IMAGE QUALITY SCORING.

164
165
166
167
168
169
170
171
172

In this paper, we take Q-Insight as a case study for elaboration. We analyze the reasoning differences between Q-Insight and Qwen VL (Bai et al. (2025)) in the image quality scoring task, where the former is a model fine-tuned by reinforcement learning for image quality scoring based on Qwen VL, while the latter is a general purpose MLLM. Two critical observations emerged from our analysis. First, it is observed that Q-Insight generated more concise descriptions with less unrelated information. Second, we found that reinforcement learning training significantly improved the correlation between **quality reasoning text** and subjective quality scores. As shown in Figure 2, we extracted the features through CLIP (Radford et al. (2021)) from the reasoning outputs of Q-Insight and Qwen VL on the KonIQ testset and visualized these features using t-SNE (van der Maaten & Hinton (2008)).

173
174
175
176
177
178

To further uncover the relationship between reasoning and scoring, we visualized its attention heatmap during the generation of score tokens. As illustrated in Figure 3, when the model outputs score tokens, **95%** attention weights are assigned to the previously generated reasoning text tokens (excluding the fixed prompt).

179
180
181
182
183

Based on the analysis above, we conclude that through reinforcement learning, the reasoning model shifted its dependency on image quality scoring from visual tokens to reasoning text tokens, and its text tokens were more concise and more relevant to image quality.

184
185
186

3.3 KEY TO GENERALIZATION: COMPRESSING VISUALS INTO TEXT REPRESENTATION

187
188
189
190
191
192
193

Text is a More Compact and Domain-bridging IQA Representation. It is well-established that at comparable levels of representational capacity, more compact one exhibits better generalization (Bengio et al. (2013)), and text exhibits this trait. A 512×384 image requires approximately 1,000 tokens when using visual representations to predict the quality score, while fewer than 100 tokens suffice with text representations. Furthermore, reasoning models leveraging text for image quality prediction yield in-domain decent performance, confirming representational capability of the text.

194
195
196
197
198
199
200
201
202
203
204
205
206

Text representations can mitigate the domain gap between different datasets. We conducted reinforcement learning training on KonIQ (Hosu et al. (2020)) and SPAQ (Fang et al. (2020)) separately and visualized the visual tokens and reasoning text tokens of the two datasets during the image quality assessment process using t-SNE. Figure 4 demonstrates that the feature distributions of the datasets display notable disparities in the visual representational space, and training on features with this prominent domain gap is likely to reduce generalizability. Conversely, this domain gap is alleviated in the textual representational space.

207
208
209

IQA Reasoning is a Generalizable Image-to-Text Compression. We further demonstrate that the reasoning process itself exhibits strong generalization in IQA tasks, that is, the reasoning processes learned across different datasets are comparable and reduce the risk of overfitting.

210
211
212
213
214
215

We conducted an experiment in which we performed RL fine-tuning on the KonIQ (Hosu et al. (2020)) and KADID (Lin et al. (2019)) datasets separately, starting from a pre-trained Qwen VL model, while retaining only its LLM components, as these are responsible for the reasoning process. To isolate the effect of the Visual Encoder, we then paired these LLMs with the pre-trained Qwen Visual Encoder and evaluated them across multiple datasets. As shown in Table 1, the two LLM models exhibited little differences on out-of-domain datasets, CSIQ (Larson & Chandler (2010)) and LiveW (Ghadiyaram & Bovik (2015)), with PLCC difference within 0.01. However, for in-

Figure 3: **Attention heatmap during score-token generation of Q-Insight.** It primarily attends to reasoning text tokens (95% vs. 5%).

Figure 4: **t-SNE visualization** of visual tokens and reasoning text tokens from SPAQ and KonIQ.

216 **Table 1: PLCC/SRCC Comparison of Q-Insight trained on KonIQ and KADID using the Qwen Visual**
 217 **Encoder.** Out-of-domain results demonstrate that LLM and its reasoning processes trained across different
 218 datasets are highly consistent.

Composition		In-domain		Out-of-domain	
Visual Encoder	LLM Trained on	KonIQ	KADID	CSIQ	LiveW
Qwen VL	KonIQ	0.876 / 0.844	0.752 / 0.749	0.832 / 0.789	0.837 / 0.789
Qwen VL	KADID	0.810 / 0.749	0.841 / 0.841	0.839 / 0.790	0.832 / 0.791

222 domain evaluations, the scoring results for the respective datasets were higher, resulting from a
 223 closer alignment between scoring preferences and in-domain characteristics.

224 Now we can answer the question: ***How is generalization related to reasoning in IQA?*** In summary,
 225 reinforcement learning enables the model to acquire a highly generalizable compression from visual
 226 tokens to text tokens. With the strong representational capability and generalization of text tokens,
 227 the scoring process exhibits excellent generalization.

229 3.4 REASONING-ALIGNED CROSS-DOMAIN TRAINING FRAMEWORK

231 To further demonstrate **quality reasoning text** as an excellent representation of IQA, we propose
 232 that it could offer a new path to align datasets with varying distributions. Dataset variation from
 233 divergent distributions is one of the key challenges of IQA. To address this, ranking-based NR-IQA
 234 models have been introduced and adopted in prior MLLM-based IQA works (e.g., Compare2Score
 235 (Zhu et al. (2024)), DeQA (You et al. (2025)), VisualQuality-R1 (Wu et al. (2025b))). However, this
 236 challenge worsens in RL, as cross-dataset reward acquisition issues impede learning optimal rea-
 237 soning paths. In particular, Q-Insight shows severe convergence problem on mixed datasets, while
 238 VisualQuality-R1’s ranking-based training mitigates this, it still degrades with extensive mixed sam-
 239 ples—e.g., its PLCC on KonIQ decreased by 0.024 compared to standalone training. These obser-
 240 vations will be presented in the subsequent experimental section.

241 Based on the aforementioned analysis of the reasoning model scoring scheme and its generalization,
 242 we design the **Reasoning-Aligned Cross-Domain Training (RACT)** framework to enable co-training
 243 on multiple IQA datasets. First, we conduct independent reinforcement learning training on each
 244 IQA dataset (single-domain RL training). Second, we perform label alignment by leveraging the
 245 reasoning module to generate image **quality reasoning text** for each dataset, thereby forming unified
 246 cross-dataset labels in the form of image-text pairs. Third, we perform cross-domain SFT on the
 247 single-domain RL-trained model using aligned image-text pairs. For the schematic diagram, please
 248 refer to Figure A.1 in the appendix. Given that both the reasoning process (from visual tokens to
 249 text tokens) and the description outputs are cross-domain aligned, the aforementioned training can
 250 be implemented across domains. This training process primarily aims to adapt the visual encoder
 251 to images of varying quality and scenes, enabling it to effectively convert them into visual tokens.
 252 Furthermore, we only introduce score information from a single dataset during training, as multi-
 253 domain scores impair convergence.

254 4 REASONING-ALIGNED LIGHTWEIGHT IQA FRAMEWORK

255 We have revealed that reasoning is the key to generalization, but ***is reasoning essential?*** To an-
 256 swer this question, we design a **Reasoning-Aligned Lightweight IQA** framework, dubbed **RALI**.
 257 It aligns the reasoning description text produced by visual RL with the Visual Encoder, enabling it
 258 to achieve performance close to RL-based IQA methods while offering strong advantages in speed
 259 and memory usage. Specifically, as illustrated in Figure 5, our approach follows the basic pipeline
 260 “Visual token → Text token → Score”, and consists of three steps: contrastive alignment, feature
 261 compression, and scoring definition.

262 **Contrastive Alignment.** First, we use a pre-trained reasoning-based IQA model Q-Insight to gen-
 263 erate reasoning texts on its training set \mathbb{C} such as (Hosu et al., 2020). Concretely, we encourage the
 264 scoring model to assign quality scores and extract the reasoning text from $\langle \text{think} \rangle$ and $\langle / \text{think} \rangle$,
 265 forming image-text-score triplets $\{\mathbf{I}, \mathbf{T}, s\}$. Notably, for the same input image, we use different
 266 seeds to enrich the diversity of the generated **quality reasoning text**. We then finetune a CLIP (Rad-
 267 fford et al., 2021) vision encoder with an image-text contrastive learning loss (Radford et al., 2021)
 268 so that it aligns with the underlying **quality reasoning text** space. To be noted, we freeze the text
 269 encoder and only train the image encoder during the process.

Figure 5: **Illustration of the proposed reasoning-aligned lightweight IQA (RALI) framework.** (a) presents the components and functions of the RL-based IQA model. (b)–(d) jointly constitute our lightweight RALI scheme, including contrastive learning with **quality reasoning text**, feature compression, and score definition. The model’s inference pipeline is identical to (d).

Feature Compression. With the finetuned vision encoder \mathcal{E}_{align} , we convert the L images in the training set \mathbb{C} into L embeddings $\mathbf{E} \in \mathbb{R}^D$, here D is set to 768. Although high-dimensional visual embeddings can fit the feature space well, they may harm out-of-distribution generalization (Bengio et al., 2013), so we compress the visual tokens and reduce the visual space. We first apply the principal component analysis (PCA) to further reduce the embeddings from $\mathbb{R}^D \rightarrow \mathbb{R}^M$, here $M = 512$, producing the compressed embeddings $\hat{\mathbf{E}}$ and projection matrix $\mathbf{U} \in \mathbb{R}^{D \times M}$. This process further reduces dimensionality and filters out quality-irrelevant information from raw features. Then, to further reduce the number of embeddings and ensure that the retained embeddings correspond to a relatively dispersed score distribution, we partition the score range $[1, 5]$ into N buckets and define \mathcal{I}_n as the index set of samples whose scores fall into the n -th bucket, i.e., $\mathcal{I}_n = \{m : s_m \in \text{bucket } n\}$, where s_m denotes the ground-truth score of sample m . For each bucket $n \in \{1, \dots, N\}$, we perform k_n clusters indexed by $j \in \{1, \dots, k_n\}$.

$$r_{mj}^{(n)} = \mathbf{1}[j = \operatorname{argmin}_{j' \in \{1, \dots, k_n\}} \|\hat{\mathbf{E}}_m - \mu_{nj'}\|_2^2], \quad m \in \mathcal{I}_n; \quad (1)$$

$$\mu_{nj} = \sum_{m \in \mathcal{I}_n} r_{mj}^{(n)} \hat{\mathbf{E}}_m / \sum_{m \in \mathcal{I}_n} r_{mj}^{(n)}, \quad f_{nj} = \sum_{m \in \mathcal{I}_n} r_{mj}^{(n)} s_m / \sum_{m \in \mathcal{I}_n} r_{mj}^{(n)}, \quad (2)$$

where the vector $\hat{\mathbf{E}}_m \in \mathbb{R}^M$ denotes the compressed embedding of sample m , the binary assignment variable $r_{mj}^{(n)} \in \{0, 1\}$ denotes whether $\hat{\mathbf{E}}_m$ is assigned to cluster j in bucket n , determined by the indicator $\mathbf{1}[\cdot]$ and the nearest-centroid rule. The cluster centroid in bucket n , cluster j , is $\mu_{nj} \in \mathbb{R}^M$, computed as the mean of assigned embeddings, and its representative score is f_{nj} , the mean of their scores. $\|\cdot\|_2$ denotes the Euclidean norm. Finally, our bucketed k -means yields a compact feature space with K embeddings and scores aggregated over all buckets $\{\mu_i, f_i\}_{i=1}^K$, where $K = \sum_{n=1}^N k_n$ and we flatten (n, j) to a global index i for simplicity, here $K = 250$, $N = 240$.

Scoring Definition. After obtaining the compact representation space, we further finetune these basic vectors μ_i and their scores f_i using image-score pairs $\{\mathbf{I}, s\}$ to better match human scoring preference. Given an input image \mathbf{I} , we use the aligned encoder \mathcal{E}_{align} to compute its image embedding and project it to \mathbb{R}^M via the PCA matrix \mathbf{U} . Then, we compute cosine similarities with the K basis vectors, and normalize them via a softmax function to obtain weights w_i , obtaining the final score as the weighted sum of the K basic scores.

$$w_i = \frac{\exp(\cos \langle \mathbf{U}^\top \mathcal{E}_{align}(\mathbf{I}), \mu_i \rangle)}{\sum_{j=1}^K \exp(\cos \langle \mathbf{U}^\top \mathcal{E}_{align}(\mathbf{I}), \mu_j \rangle)}, \quad \hat{f} = \sum_{i=1}^K w_i f_i. \quad (3)$$

324 During training, we initialize with the PCA and bucketed k -means results and continue to finetune
 325 them by fitting the predicted scores \hat{f} to the score labels s . After end-to-end learning, the basis vec-
 326 tors align better with human preferences and yield more accurate scoring results. During inference,
 327 we only need to store the fixed vectors μ_i and f_i , inference reduces to simple dot products with
 328 them, incurring minimal computational overhead.

331 5 EXPERIMENTS

333 5.1 EXPERIMENTAL SETUP

335 **Datasets and Metrics.** Following the setup of Q-Insight (Li et al., 2025), we evaluate on a broad
 336 suite of IQA datasets spanning four groups: (a) in-the-wild collections—KonIQ (Hosu et al., 2020),
 337 SPAQ (Fang et al., 2020), and LIVE-Wild (Ghadiyaram & Bovik, 2015); (b) synthetic distor-
 338 tions—KADID (Lin et al., 2019), CSIQ (Larson & Chandler, 2010) and TID2013 (Ponomarenko
 339 et al., 2015); (c) model-processed distortions—PIPAL (GU et al., 2020); and (d) AI-generated im-
 340 ages—AGIQA (Li et al., 2023). Mean Opinion Scores (MOS) from all datasets are rescaled to the
 341 interval [1, 5]. For score regression, we report performance using the Pearson Linear Correlation
 342 Coefficient (PLCC) and the Spearman Rank-Order Correlation Coefficient (SRCC).

343 **Implementation Details.** For RALI, we choose CLIP-VIT-LARGE-PATCH14-336 as our vision en-
 344 coder. The learning rate is set to 1×10^{-5} in contrastive alignment and set to 3×10^{-2} in scoring
 345 fitting. We use PCA to reduce the dimension of the original feature space from 768 to 512 to re-
 346 duce some noise and interference. The number of basic vectors and buckets are respectively set to
 347 250 and 240. For RACT, we use QWEN-2.5-VL-7B-INSTRUCT (Bai et al., 2025) as our baseline
 348 models. Within GRPO, we sample $N = 8$ candidates per update and apply a KL regularizer with
 349 coefficient $\beta = 1 \times 10^{-3}$. The auxiliary losses use weights $\alpha_1 = 0.25$ and $\alpha_2 = 0.75$. We use
 350 AdamW (Loshchilov & Hutter, 2017) with an initial learning rate of 1×10^{-6} that decays linearly
 351 to 1×10^{-9} over training. The model is trained for 10 epochs with a batch size of 128, and the full
 352 run completes in approximately one day on 8 NVIDIA H20 GPUs.

354 5.2 RESULTS OF SCORE REGRESSION

356 **Results of Single-dataset Training with RALI.** To evaluate the effectiveness of our proposed
 357 RALI, we compare our method with handcrafted methods such as NIQE (Mittal et al., 2012b);
 358 non-MLLM deep-learning methods including NIMA Talebi & Milanfar (2018), MUSIQ (Ke et al.,
 359 2021), CLIP-IQA+ (Wang et al., 2023), and ManIQA (Yang et al., 2022); and recent MLLM-based
 360 methods such as C2Score (Zhu et al., 2024), Q-Align (Wu et al., 2024b), DeQA-Score (You et al.,
 361 2025), supervised fine-tuned Qwen (Bai et al., 2025), and Q-Insight (Li et al., 2025). For a fair
 362 comparison, all methods (except handcrafted ones) are trained on the KonIQ dataset.

363 Our comparison results are reported in Table 2. It can be observed that our method achieves compet-
 364 itive results to the SOTA model Q-Insight on PLCC and SRCC. Meanwhile, compared to Q-Insight
 365 (7B parameters), we only use about 4% of the parameters and significantly shorten the running time
 366 and storage overhead. Compared to the SOTA none MLLM-based method CLIP-IQA+, our method
 367 also surpasses it by 0.056 and 0.059 on PLCC and SRCC respectively. This fully demonstrates the
 368 efficiency of our reasoning-free scheme and the accuracy of score fitting.

369 **Results of Multi-dataset Co-training with RACT.** RACT’s results for cross-domain training are
 370 presented in Table 3, with comparisons to four baseline methods: VisualQuality-R1 (Liu et al.,
 371 2025c), Q-Align (Wu et al., 2024b), DeQA (You et al., 2025), and Q-Insight (Li et al., 2025). Among
 372 these, Q-Align and DeQA are SFT-based MLLMs, while Q-Insight and VisualQuality-R1 are RL-
 373 based MLLMs. All algorithms are co-trained on the KonIQ, SPAQ, KADID, and PIPAL datasets,
 374 and test results are split into in-domain and out-of-domain groups for detailed comparison.

375 On in-domain datasets, SFT-based algorithms show a clear advantage over RL-based counterparts.
 376 Specifically, Q-Insight exhibits poor in-domain fitting due to the lack of cross-domain alignment;
 377 On out-of-domain datasets, RL optimized via RACT achieves the highest performance across all
 378 out-of-domain datasets.

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 2: **PLCC / SRCC comparison on the single-domain score regression tasks** between RALI and other competitive IQA methods. All methods except handcrafted ones are trained on the KonIQ dataset. The best and second-best results of each test setting are highlighted in **bold red** and underlined blue.

Category	Methods	KonIQ	SPAQ	KADID	PIPAL	LiveW	AGIQA	CSIQ	AVG.
Handcrafted	NIQE (Mittal et al., 2012b)	0.533 /0.530	0.679 /0.664	0.468 /0.405	0.195 /0.161	0.493 /0.449	0.560 /0.533	0.718 /0.628	0.521 /0.481
	BRISQUE (Mittal et al., 2012a)	0.225 /0.226	0.490 /0.406	0.429 /0.356	0.267 /0.232	0.361 /0.313	0.541 /0.497	0.740 /0.556	0.436 /0.369
	C2Score (Zhu et al., 2024)	0.923 /0.910	0.867 /0.860	0.500 /0.453	0.354 /0.342	0.786 /0.772	0.777 /0.671	0.735 /0.705	0.706 /0.673
	Q-Align (Wu et al., 2024b)	<u>0.941</u> /0.940	0.886 /0.887	0.674 /0.684	0.403 /0.419	0.853 /0.860	0.772 /0.735	0.671 /0.737	0.705 /0.752
MLLM-based	DeQA (You et al., 2025)	0.953 /0.941	0.895 /0.896	0.694 /0.687	0.472 /0.478	0.892 /0.879	0.809 /0.729	0.787 /0.744	0.786 /0.765
	VisualQuality-R1 (Wu et al., 2025b)	0.923 /0.908	0.891 /0.892	0.712 /0.711	0.441 /0.438	0.874 /0.849	0.822 /0.767	0.712 /0.662	0.768 /0.747
	Q-Insight (Li et al., 2025)	0.933 /0.916	0.907 /0.905	0.742 /0.736	<u>0.486</u> /0.474	<u>0.893</u> /0.865	<u>0.811</u> /0.764	0.870 /0.824	0.806 /0.783
	MUSIQ (Ke et al., 2021)	0.924 /0.929	0.868 /0.863	0.575 /0.556	0.431 /0.431	0.789 /0.830	0.722 /0.630	0.771 /0.710	0.726 /0.707
	ManIQA (Yang et al., 2022)	0.895 /0.849	0.864 /0.768	0.654 /0.499	0.419 /0.457	0.805 /0.849	0.685 /0.723	0.719 /0.623	0.720 /0.681
	CLIP-IQA+ (Wang et al., 2023)	0.909 /0.834	0.866 /0.758	0.653 /0.465	0.427 /0.452	0.832 /0.832	0.736 /0.636	0.772 /0.627	0.742 /0.658
	LIQE (Zhang et al., 2023)	0.901 /0.895	0.860 /0.862	0.720 /0.735	0.480 /0.501	0.842 /0.865	0.739 /0.697	0.782 /0.808	0.761 /0.766
Non-MLLM Deep-learning	RALI (Ours)	0.939 /0.922	<u>0.897</u> /0.897	0.723 /0.725	0.527 /0.528	0.896 /0.876	0.779 /0.715	0.828 /0.788	0.798 /0.779

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Table 3: **PLCC / SRCC comparison on the cross-domain score regression tasks** between RACT and other MLLMs based IQA methods. All methods are trained on the KonIQ, SPAQ, KADID and PIPAL datasets.

Methods	In-domain					Out-of-domain				
	KonIQ	SPAQ	KADID	PIPAL	AVG.	LiveW	AGIQA	CSIQ	TID13	AVG.
Q-Align (Wu et al., 2024b)	0.926 /0.932	0.917 /0.920	0.950 /0.954	0.702 /0.671	0.874 /0.869	0.853 /0.845	0.765 /0.722	0.838 /0.789	0.811 /0.795	0.817 /0.788
	0.958 /0.946	0.932 /0.929	0.963 /0.961	0.724 /0.690	0.894 /0.882	<u>0.877</u> /0.857	0.770 /0.735	<u>0.863</u> /0.807	0.828 /0.796	0.835 /0.799
DeQA (You et al., 2025)	0.946 /0.946	0.929 /0.929	0.961 /0.961	0.690 /0.588	0.894 /0.826	0.857 /0.834	0.735 /0.753	0.863 /0.772	0.828 /0.764	0.835 /0.781
	0.899 /0.881	0.918 /0.914	0.918 /0.920	0.603 /0.588	0.834 /0.826	0.852 /0.834	0.812 /0.753	0.859 /0.772	0.799 /0.764	0.831 /0.781
VisualQuality-R1 (Liu et al., 2025c)	0.899 /0.881	0.918 /0.914	0.918 /0.920	0.603 /0.588	0.834 /0.826	0.852 /0.834	0.812 /0.753	0.859 /0.772	0.799 /0.764	0.831 /0.781
	0.899 /0.871	0.913 /0.907	0.757 /0.765	0.579 /0.559	0.787 /0.776	0.867 /0.830	0.805 /0.757	0.768 /0.720	0.743 /0.651	0.796 /0.740
Q-Insight (Li et al., 2025)	0.899 /0.871	0.913 /0.907	0.757 /0.765	0.579 /0.559	0.787 /0.776	0.867 /0.830	0.805 /0.757	0.768 /0.720	0.743 /0.651	0.796 /0.740
	0.928 /0.907	0.922 /0.918	0.919 /0.916	0.642 /0.626	0.853 /0.842	0.881 /0.846	0.813 /0.763	0.892 /0.838	0.844 /0.817	0.858 /0.816
RACT (Ours)										

5.3 ABLATION STUDIES

422
423
424
425
426
427
428
429
430
431
Ablation on RALI’s Key Components. To assess the effectiveness of each component in RALI, we conduct ablation studies on the key components including Contrastive Alignment, PCA Reduction, Bucketed K-Means, Seed Augmentation, and Scoring Definition. The average PLCC and SRCC results, computed in line with single-domain experimental settings, are presented in Table 4. When contrastive alignment is omitted and the original CLIP weights are used directly, we observe a significant degradation in scoring performance. This is because CLIP primarily attends to high-level semantic space and does not adequately interpret the quality reasoning text. When removing PCA reduction and directly use CLIP’s native 768-D features, we observe a slight drop in scoring performance, since PCA effectively removes noise in feature fitting and improves generalization. Replacing bucketed k-means with standard k-means leads to a substantial degradation in RALI’s IQA performance, as the resulting cluster-based scores are overly concentrated and fail to cover the full score range. Without using multiple seeds to augment **quality reasoning text**, the CLIP model

Table 4: **Ablation studies on the key components of RALI.** It can be observed that alignment to descriptions and scoring definition based on basis vectors with scores significantly enhance the performance of our method.

	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6
Contrastive Alignment	✗	✓	✓	✓	✓	✓
PCA Reduction	✓	✗	✓	✓	✓	✓
Bucketed K-Means	✓	✓	✗	✓	✓	✓
Seed Augmentation	✗	✓	✓	✗	✓	✓
Scoring Definition	✓	✓	✓	✓	✗	✓
AVG. PLCC	0.748	0.792	0.785	0.793	0.743	0.798
AVG. SRCC	0.727	0.772	0.766	0.773	0.723	0.779

Table 5: **Ablation on labels and training modules in cross-domain SFT.** Scores yield no out-of-domain gain, and fine-tuning only the Visual Encoder (VE as in the table) suffices for comparable performance, as cross-domain reasoning is aligned.

#	Label		Train Module		In-domain		Out-of-domain	
	Text	Score	VE	LLM	KoniQ	KADID	CSIQ	AGIQA
1	✓	✓	✓	✓	0.926 / 0.903	0.924 / 0.920	0.878 / 0.843	0.804 / 0.752
2	✓		✓		0.927 / 0.905	0.920 / 0.915	0.883 / 0.820	0.808 / 0.751
3	✓		✓	✓	0.928 / 0.907	0.919 / 0.916	0.881 / 0.846	0.813 / 0.763

is insufficiently aligned and struggles to converge well. Finally, even without defining and fitting scores on the dimension-reduced basic vectors, the model already surpasses CLIP-IQA+, which demonstrates the effectiveness of our contrastive alignment; adding the score definition further improves the accuracy of score prediction.

Ablation on Labels and Training Modules in RACT. We incorporated scores into cross-domain SFT and found they only benefit in-domain performance, with no out-of-domain improvement. The reason is that cross-dataset annotations carry annotator biases—text retains objective quality, but scores incorporate subjective aspects. Training on scores makes the model overfit these variable biases, hence no out-of-domain gain. As discussed earlier, single-dataset-learned reasoning is generalizable, so cross-dataset training only needs to tune the Visual Encoder for cross-domain image inputs. We conducted comparative experiments, and the results are shown in Table 5. Training the Visual Encoder alone and joint training with the LLM yielded comparable performance, which is consistent with our earlier conclusion. However, we observed slower convergence when training the Visual Encoder only.

5.4 EFFICIENCY STUDIES OF RALI

As discussed earlier, reasoning MLLMs consume substantial GPU memory due to large parameters and require multistep reasoning, further raising inference costs. RALI offers strong generalization with drastically lower deployment and inference costs than MLLMs. The tests on the NVIDIA A100 (80GB), as shown in Figure 6, reveal the marked efficiency advantage of RALI over Q-Insight: at batch size 16, it consumes only 14.7% of Q-Insight’s memory and 3.4% of its inference time.

6 CONCLUSION

In this paper, we revisit reasoning MLLMs in image quality assessment and find their generalization stems from compressing visual information into descriptive text—a compact, domain-bridging representation. Building on this, we pursue two complementary directions. To start with, we leverage this textual representation to develop the Reasoning-Aligned Cross-domain Training (RACT) framework, addressing divergent data distributions: it delivers SOTA out-of-distribution performance on mixed training. Going a step further, we propose the Reasoning-Aligned Lightweight IQA (RALI) framework, which matches reasoning MLLMs in image-to-text mapping by integrating contrastive learning (image-text alignment), PCA (dimensionality reduction), and bucketed K-means (label-text conversion) to delineate quality scoring space. It achieves comparable performance with only 0.3B parameters and no explicit reasoning. Overall, our work reveals how reasoning MLLMs generalize in IQA, provides efficient high-performance solutions, and informs future IQA model design.

Figure 6: **Efficiency comparison** between Q-Insight and RALI.

486 REFERENCES
487

488 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
489 Shijie Wang, Jun Tang, et al. Qwen2.5-v1 technical report. *arXiv preprint arXiv:2502.13923*,
490 2025.

491 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
492 perspectives. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 35(8):1798–1828,
493 2013. doi: 10.1109/TPAMI.2013.50.

494

495 Sebastian Bosse, Dominique Maniry, Klaus-Robert Müller, Thomas Wiegand, and Wojciech Samek.
496 Deep neural networks for no-reference and full-reference image quality assessment. *IEEE Trans-
497 actions on Image Processing (TIP)*, 27(1):206–219, 2017.

498

499 Yue Cao, Zhaolin Wan, Dongwei Ren, Zifei Yan, and Wangmeng Zuo. Incorporating semi-
500 supervised and positive-unlabeled learning for boosting full reference image quality assess-
501 ment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR)*, pp. 5851–5861, 2022.

502

503 Chaofeng Chen, Sensen Yang, Haoning Wu, Liang Liao, Zicheng Zhang, Annan Wang, Wenxiu
504 Sun, Qiong Yan, and Weisi Lin. Q-ground: Image quality grounding with large multi-modality
505 models. In *Proceedings of the ACM International Conference on Multimedia (ACM MM)*, pp.
506 486–495, 2024.

507

508 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
509 reinforcement learning from human preferences. *Proceedings of the Advances in Neural Infor-
510 mation Processing Systems (NeurIPS)*, 30, 2017.

511

512 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
513 Le, Sergey Levine, and Yi Ma. Sft memorizes, rl generalizes: A comparative study of foundation
514 model post-training. In *Forty-second International Conference on Machine Learning*, 2025.

515

516 Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. *Pro-
517 ceedings of the Advances in Neural Information Processing Systems (NeurIPS)*, 34:8780–8794,
518 2021.

519

520 Keyan Ding, Kede Ma, Shiqi Wang, and Eero P Simoncelli. Image quality assessment: Unifying
521 structure and texture similarity. *IEEE Transactions on Pattern Analysis and Machine Intelligence
(TPAMI)*, 44(5):2567–2581, 2020.

522

523 Keyan Ding, Yi Liu, Xueyi Zou, Shiqi Wang, and Kede Ma. Locally adaptive structure and texture
524 similarity for image quality assessment. In *Proceedings of the ACM International Conference on
Multimedia (ACM MM)*, pp. 2483–2491, 2021.

525

526 Yuming Fang, Hanwei Zhu, Yan Zeng, Kede Ma, and Zhou Wang. Perceptual quality assessment of
527 smartphone photography. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
528 Pattern Recognition (CVPR)*, pp. 3677–3686, 2020.

529

530 Deepti Ghadiyaram and Alan C Bovik. Live in the wild image quality challenge database. *Online:
531 http://live. ece. utexas. edu/research/ChallengeDB/index. html* [Mar, 2017], 2015.

532

533 Abhijay Ghildyal and Feng Liu. Shift-tolerant perceptual similarity metric. In *Proceedings of the
European Conference on Computer Vision (ECCV)*, pp. 91–107. Springer, 2022.

534

535 Jinjin GU, Haoming Cai, Haoyu Chen, Xiaoxing Ye, Ren Jimmy S, and Chao Dong. Pipal: a large-
536 scale image quality assessment dataset for perceptual image restoration. In *Proceedings of the
537 European Conference on Computer Vision (ECCV)*, pp. 633–651. Springer, 2020.

538

539 Daya Guo, Dejian Yang, Huawei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

540 Xuan He, Dongfu Jiang, Ge Zhang, Max Ku, Achint Soni, Sherman Siu, Haonan Chen, Abhranil
 541 Chandra, Ziyuan Jiang, Aaran Arulraj, et al. Videoscore: Building automatic metrics to simulate
 542 fine-grained human feedback for video generation. In *Proceedings of the 2024 Conference on*
 543 *Empirical Methods in Natural Language Processing*, pp. 2105–2123, 2024.

544 Vlad Hosu, Hanhe Lin, Tamas Sziranyi, and Dietmar Saupe. Koniq-10k: An ecologically valid
 545 database for deep learning of blind image quality assessment. *IEEE Transactions on Image Pro-*
 546 *cessing (TIP)*, 29:4041–4056, 2020.

547 Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
 548 Bowen Yu, Keming Lu, et al. Qwen2.5-coder technical report. *arXiv preprint arXiv:2409.12186*,
 549 2024.

550 Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao, Wenyue Hua, Yanda Meng, Yongfeng Zhang,
 551 and Mengnan Du. The impact of reasoning step length on large language models. In Lun-
 552 Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Compu-*
 553 *tational Linguistics: ACL 2024*, pp. 1830–1842, Bangkok, Thailand, August 2024. Associa-
 554 *tion for Computational Linguistics*. doi: 10.18653/v1/2024.findings-acl.108. URL <https://aclanthology.org/2024.findings-acl.108/>.

555 Le Kang, Peng Ye, Yi Li, and David Doermann. Convolutional neural networks for no-reference
 556 image quality assessment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 557 *Pattern Recognition (CVPR)*, pp. 1733–1740, 2014.

558 Junjie Ke, Qifei Wang, Yilin Wang, Peyman Milanfar, and Feng Yang. Musiq: Multi-scale image
 559 quality transformer. In *Proceedings of the IEEE/CVF International Conference on Computer*
 560 *Vision (ICCV)*, pp. 5148–5157, 2021.

561 Eric C Larson and Damon M Chandler. Most apparent distortion: full-reference image quality
 562 assessment and the role of strategy. *Journal of Electronic Imaging*, 19(1):011006–011006, 2010.

563 Chunyi Li, Zicheng Zhang, Haoning Wu, Wei Sun, Xiongkuo Min, Xiaohong Liu, Guangtao Zhai,
 564 and Weisi Lin. Agiqa-3k: An open database for ai-generated image quality assessment. *IEEE*
 565 *Transactions on Circuits and Systems for Video Technology (TCSVT)*, 34(8):6833–6846, 2023.

566 Weiqi Li, Xuanyu Zhang, Shijie Zhao, Yabin Zhang, Junlin Li, Li Zhang, and Jian Zhang. Q-insight:
 567 Understanding image quality via visual reinforcement learning. In *Proceedings of the Advances*
 568 *in Neural Information Processing Systems (NeurIPS)*, 2025.

569 Hanhe Lin, Vlad Hosu, and Dietmar Saupe. Kadid-10k: A large-scale artificially distorted iqas
 570 database. In *Proceedings of International Conference on Quality of Multimedia Experience*
 571 (*QoMEX*), pp. 1–3. IEEE, 2019.

572 Jie Liu, Gongye Liu, Jiajun Liang, Yangguang Li, Jiaheng Liu, Xintao Wang, Pengfei Wan,
 573 Di Zhang, and Wanli Ouyang. Flow-grpo: Training flow matching models via online rl. *arXiv*
 574 *preprint arXiv:2505.05470*, 2025a.

575 Runtao Liu, Haoyu Wu, Ziqiang Zheng, Chen Wei, Yingqing He, Renjie Pi, and Qifeng Chen.
 576 Videodpo: Omni-preference alignment for video diffusion generation. In *Proceedings of the*
 577 *Computer Vision and Pattern Recognition Conference*, pp. 8009–8019, 2025b.

578 Xialei Liu, Joost Van De Weijer, and Andrew D Bagdanov. Rankiqa: Learning from rankings for no-
 579 reference image quality assessment. In *Proceedings of the IEEE/CVF International Conference*
 580 *on Computer Vision (ICCV)*, pp. 1040–1049, 2017.

581 Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and Jiaqi
 582 Wang. Visual-rft: Visual reinforcement fine-tuning. *arXiv preprint arXiv:2503.01785*, 2025c.

583 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 584 *arXiv:1711.05101*, 2017.

585 Chao Ma, Chih-Yuan Yang, Xiaokang Yang, and Ming-Hsuan Yang. Learning a no-reference quality
 586 metric for single-image super-resolution. *Computer Vision and Image Understanding*, 158:1–16,
 587 2017.

594 Anish Mittal, Anush Krishna Moorthy, and Alan Conrad Bovik. No-reference image quality assess-
 595 ment in the spatial domain. *IEEE Transactions on Image Processing (TIP)*, 21(12):4695–4708,
 596 2012a.

597 Anish Mittal, Rajiv Soundararajan, and Alan C Bovik. Making a “completely blind” image quality
 598 analyzer. *IEEE Signal Processing Letters*, 20(3):209–212, 2012b.

600 Anush Krishna Moorthy and Alan Conrad Bovik. A two-step framework for constructing blind
 601 image quality indices. *IEEE Signal Processing Letters*, 17(5):513–516, 2010.

603 Anush Krishna Moorthy and Alan Conrad Bovik. Blind image quality assessment: From natural
 604 scene statistics to perceptual quality. *IEEE Transactions on Image Processing (TIP)*, 20(12):
 605 3350–3364, 2011.

606 Da Pan, Ping Shi, Ming Hou, Zefeng Ying, Sizhe Fu, and Yuan Zhang. Blind predicting similar qual-
 607 ity map for image quality assessment. In *Proceedings of the IEEE/CVF Conference on Computer*
 608 *Vision and Pattern Recognition (CVPR)*, pp. 6373–6382, 2018.

610 Jiazheng Pan, Che Liu, Junde Wu, Fenglin Liu, Jiayuan Zhu, Hongwei Bran Li, Chen Chen, Cheng
 611 Ouyang, and Daniel Rueckert. Medvilm-r1: Incentivizing medical reasoning capability of vision-
 612 language models (vlms) via reinforcement learning. *arXiv preprint arXiv:2502.19634*, 2025.

613 Nikolay Ponomarenko, Lina Jin, Oleg Ieremeiev, Vladimir Lukin, Karen Egiazarian, Jaakko Astola,
 614 Benoit Vozel, Kacem Chehdi, Marco Carli, Federica Battisti, et al. Image database tid2013:
 615 Peculiarities, results and perspectives. *Signal processing: Image communication*, 30:57–77, 2015.

617 Ekta Prashnani, Hong Cai, Yasamin Mostofi, and Pradeep Sen. Pieapp: Perceptual image-error as-
 618 sessment through pairwise preference. In *Proceedings of the IEEE/CVF Conference on Computer*
 619 *Vision and Pattern Recognition (CVPR)*, pp. 1808–1817, 2018.

621 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 622 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 623 models from natural language supervision. In *International conference on machine learning*, pp.
 624 8748–8763, 2021.

625 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 626 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF Con-
 627 ference on Computer Vision and Pattern Recognition (CVPR)*, pp. 10684–10695, 2022.

629 Michele A Saad, Alan C Bovik, and Christophe Charrier. Blind image quality assessment: A natural
 630 scene statistics approach in the dct domain. *IEEE Transactions on Image Processing (TIP)*, 21
 631 (8):3339–3352, 2012.

632 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 633 Mingchuan Zhang, YK Li, Y Wu, et al. Deepseekmath: Pushing the limits of mathematical
 634 reasoning in open language models. *arXiv preprint arXiv:2402.03300*, 2024.

636 H Sheikh. Live image quality assessment database release 2. <http://live.ece.utexas.edu/research/quality>, 2005.

638 Hamid R Sheikh and Alan C Bovik. Image information and visual quality. *IEEE Transactions on*
 639 *Image Processing (TIP)*, 15(2):430–444, 2006.

641 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
 642 Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
 643 without human knowledge. *Nature*, 550(7676):354–359, 2017.

645 Shaolin Su, Qingsen Yan, Yu Zhu, Cheng Zhang, Xin Ge, Jinqiu Sun, and Yanning Zhang. Blindly
 646 assess image quality in the wild guided by a self-adaptive hyper network. In *Proceedings of the*
 647 *IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 3667–3676,
 2020.

648 Simeng Sun, Tao Yu, Jiahua Xu, Wei Zhou, and Zhibo Chen. Graphiq: Learning distortion graph
 649 representations for blind image quality assessment. *IEEE Transactions on Multimedia (TMM)*,
 650 25:2912–2925, 2022.

651

652 Hossein Talebi and Peyman Milanfar. Nima: Neural image assessment. *IEEE Transactions on*
 653 *Image Processing (TIP)*, 27(8):3998–4011, 2018.

654 Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. *Journal of Ma-*
 655 *chine Learning Research*, 9(86):2579–2605, 2008. URL <http://jmlr.org/papers/v9/vandermaaten08a.html>.

656

657 Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Exploring clip for assessing the look and feel
 658 of images. In *Proceedings of the AAAI Conference on Artificial Intelligence (AAAI)*, volume 37,
 659 pp. 2555–2563, 2023.

660

661 Yibin Wang, Zhimin Li, Yuhang Zang, Chunyu Wang, Qinglin Lu, Cheng Jin, and Jiaqi Wang.
 662 Unified multimodal chain-of-thought reward model through reinforcement fine-tuning. *arXiv*
 663 *preprint arXiv:2505.03318*, 2025.

664

665 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 666 from error visibility to structural similarity. *IEEE Transactions on Image Processing (TIP)*, 13
 667 (4):600–612, 2004.

668

669 Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Kaixin Xu,
 670 Chunyi Li, Jingwen Hou, Guangtao Zhai, et al. Q-instruct: Improving low-level visual abilities
 671 for multi-modality foundation models. In *Proceedings of the IEEE/CVF Conference on Computer*
 672 *Vision and Pattern Recognition (CVPR)*, pp. 25490–25500, 2024a.

673

674 Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
 675 Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching LMMs for visual scoring via
 676 discrete text-defined levels. In *Proceedings of the International Conference on Machine Learning*
 677 (*ICML*), 2024b.

678

679 Haoning Wu, Hanwei Zhu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Chunyi Li,
 680 Annan Wang, Wenxiu Sun, Qiong Yan, et al. Towards open-ended visual quality comparison. In
 681 *Proceedings of the European Conference on Computer Vision (ECCV)*, pp. 360–377. Springer,
 682 2024c.

683

684 Haoning Wu, Zicheng Zhang, Erli Zhang, Chaofeng Chen, Liang Liao, Annan Wang, Chunyi Li,
 685 Wenxiu Sun, Qiong Yan, Guangtao Zhai, et al. Q-bench: A benchmark for general-purpose foun-
 686 dation models on low-level vision. In *Proceedings of the International Conference on Learning*
 687 *Representations (ICLR)*, 2025a.

688

689 Tianhe Wu, Jian Zou, Jie Liang, Lei Zhang, and Kede Ma. Visualquality-r1: Reasoning-induced
 690 image quality assessment via reinforcement learning to rank. In *Proceedings of the Advances in*
 691 *Neural Information Processing Systems (NeurIPS)*, 2025b.

692

693 Zhipei Xu, Xuanyu Zhang, Xing Zhou, and Jian Zhang. Avatarshield: Visual reinforcement learning
 694 for human-centric video forgery detection. *arXiv preprint arXiv:2505.15173*, 2025.

695

696 An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
 697 hong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2.5-math technical report: Toward mathematical
 698 expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.

699

700 Sidi Yang, Tianhe Wu, Shuwei Shi, Shanshan Lao, Yuan Gong, Mingdeng Cao, Jiahao Wang, and
 701 Yujiu Yang. Maniqa: Multi-dimension attention network for no-reference image quality assess-
 702 ment. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*
 703 (*CVPR*), pp. 1191–1200, 2022.

704

705 Huaiyuan Ying, Shuo Zhang, Linyang Li, Zhejian Zhou, Yunfan Shao, Zhaoye Fei, Yichuan Ma,
 706 Jiawei Hong, Kuikun Liu, Ziyi Wang, et al. Internlm-math: Open math large language models
 707 toward verifiable reasoning. *arXiv preprint arXiv:2402.06332*, 2024.

702 Zhiyuan You, Jinjin Gu, Zheyuan Li, Xin Cai, Kaiwen Zhu, Chao Dong, and Tianfan Xue. Descrip-
 703 tive image quality assessment in the wild. *arXiv preprint arXiv:2405.18842*, 2024a.
 704

705 Zhiyuan You, Zheyuan Li, Jinjin Gu, Zhenfei Yin, Tianfan Xue, and Chao Dong. Depicting beyond
 706 scores: Advancing image quality assessment through multi-modal language models. In *Proceed-
 707 ings of the European Conference on Computer Vision (ECCV)*, pp. 259–276. Springer, 2024b.
 708

709 Zhiyuan You, Xin Cai, Jinjin Gu, Tianfan Xue, and Chao Dong. Teaching large language models to
 710 regress accurate image quality scores using score distribution. In *Proceedings of the IEEE/CVF
 711 Conference on Computer Vision and Pattern Recognition (CVPR)*, 2025.
 712

713 Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
 714 image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*,
 pp. 11975–11986, 2023.
 715

716 Lin Zhang, Lei Zhang, Xuanqin Mou, and David Zhang. Fsim: A feature similarity index for image
 717 quality assessment. *IEEE Transactions on Image Processing (TIP)*, 20(8):2378–2386, 2011.
 718

719 Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
 720 effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE/CVF Conference
 721 on Computer Vision and Pattern Recognition (CVPR)*, pp. 586–595, 2018.
 722

723 Weixia Zhang, Guangtao Zhai, Ying Wei, Xiaokang Yang, and Kede Ma. Blind image quality
 724 assessment via vision-language correspondence: A multitask learning perspective. In *Proceedings
 725 of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 14071–
 726 14081, 2023.
 727

728 Xuanyu Zhang, Weiqi Li, Shijie Zhao, Junlin Li, Li Zhang, and Jian Zhang. Vq-insight: Teaching
 729 vlms for ai-generated video quality understanding via progressive visual reinforcement learning.
 730 *arXiv preprint arXiv:2506.18564*, 2025a.
 731

732 Yuxiang Zhang, Shangxi Wu, Yuqi Yang, Jiangming Shu, Jinlin Xiao, Chao Kong, and Jitao Sang.
 733 o1-coder: an o1 replication for coding. *arXiv preprint arXiv:2412.00154*, 2024.
 734

735 Zicheng Zhang, Ziheng Jia, Haoning Wu, Chunyi Li, Zijian Chen, Yingjie Zhou, Wei Sun, Xi-
 736 aohong Liu, Xiongkuo Min, Weisi Lin, et al. Q-bench-video: Benchmarking the video quality
 737 understanding of lmms. In *Proceedings of the IEEE/CVF Conference on Computer Vision and
 738 Pattern Recognition (CVPR)*, 2025b.
 739

740 Zicheng Zhang, Tengchuan Kou, Shushi Wang, Chunyi Li, Wei Sun, Wei Wang, Xiaoyu Li, Zongyu
 741 Wang, Xuezhi Cao, Xiongkuo Min, et al. Q-eval-100k: Evaluating visual quality and alignment
 742 level for text-to-vision content. *arXiv preprint arXiv:2503.02357*, 2025c.
 743

744 Zicheng Zhang, Haoning Wu, Ziheng Jia, Weisi Lin, and Guangtao Zhai. Teaching lmms for image
 745 quality scoring and interpreting. *arXiv preprint arXiv:2503.09197*, 2025d.
 746

747 Heliang Zheng, Huan Yang, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo. Learning conditional
 748 knowledge distillation for degraded-reference image quality assessment. In *Proceedings of the
 749 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 10242–10251, 2021.
 750

751 Hancheng Zhu, Leida Li, Jinjian Wu, Weisheng Dong, and Guangming Shi. Metaiqa: Deep meta-
 752 learning for no-reference image quality assessment. In *Proceedings of the IEEE/CVF Conference
 753 on Computer Vision and Pattern Recognition (CVPR)*, pp. 14143–14152, 2020.
 754

755 Hanwei Zhu, Haoning Wu, Yixuan Li, Zicheng Zhang, Baoliang Chen, Lingyu Zhu, Yuming Fang,
 756 Guangtao Zhai, Weisi Lin, and Shiqi Wang. Adaptive image quality assessment via teaching large
 757 multimodal model to compare. In *Proceedings of the Advances in Neural Information Processing
 758 Systems (NeurIPS)*, 2024.

APPENDIX

A THE RELATIONSHIP BETWEEN REASONING AND GENERALIZATION IN Q-INSIGHT

More Experiments. To further investigate the relationship between reasoning and generalizability, we have conducted an experiment where Qwen2.5-VL is trained on KonIQ via GRPO without incorporating the reasoning process in Table A.1. Through comparisons, we observe that while GRPO training yields a modest performance improvement over SFT, Q-Insight with the reasoning capability disabled exhibits a significant performance drop, especially in the OOD testing dataset. This validates the correlation between reasoning and generalization in this task.

More Discussions. Beyond experiments, we further elaborate on the relationship between reasoning and generalization. The Q-Insight paper already validated this via comparative experiments and analyses of Qwen-SFT and a suite of SFT models. Q-Insight’s core motivation and insight is to inspire the large model to “reason deeply and develop insightful perspectives on image quality metrics during scoring” — rather than merely teaching it “how to score images.” Removing the reasoning process reduces training to mere score-based constraints, causing the model to forfeit this critical advantage. Furthermore, many previous works have discussed the relationship between reasoning and generalization. For instance, Visual-RFT (Liu et al., 2025c) also notes that “The reasoning process is key to the model’s self-learning and improvement during reinforcement fine-tuning.” The essence of Visual-RFT lies in teaching the model “how to think” rather than “what answer to memorize,” which constitutes its core competitive advantage over traditional SFT. In addition, during training Q-Insight, we observed that excessively short reasoning lengths leads to performance drop. Other studies have also discussed related phenomena; for example, (Jin et al., 2024) mentions that insufficient reasoning length can impair LLM performance. Conversely, removing reasoning entirely represents the most extreme case and would result in a significant decline in generalization.

Table A.1: PLCC / SRCC comparison of different training strategies. Q-Insight with the reasoning capability disabled exhibits a significant performance drop.

Method	KoniQ	SPAQ	KADID	PIPAL	LiveW	AGIQA	CSIQ	AVG.
Qwen-SFT	0.889/0.866	0.874/0.875	0.668/0.663	0.473/0.442	0.734/0.728	0.813/0.739	0.674/0.650	0.732/0.709
Qwen-GRPO (w/o Reasoning)	0.921/0.901	0.904/0.901	0.701/0.698	0.459/0.452	0.878/0.852	0.787/0.728	0.728/0.677	0.768/0.744
Qwen-GRPO (w/ Reasoning, Q-Insight)	0.933/0.916	0.907/0.905	0.742/0.736	0.486/0.474	0.893/0.865	0.811/0.764	0.870/0.824	0.806/0.783

B LIMITATIONS AND BROADER IMPACTS

Limitations. Although our lightweight RALI achieves strong results, its performance ceiling is still constrained by the representational and reasoning capacity of the underlying CLIP vision encoder. In future work, we will explore stronger CLIP variants (e.g., SigLIP (Zhai et al., 2023)). Meanwhile, following Q-Insight, our experiments primarily target natural-image IQA; however, we believe our reasoning-aligned lightweight approach, together with cross-domain training, can be readily extended to video and AIGC quality assessment.

Broader Impacts. Our analysis of reasoning-based MLLMs is not confined to image quality assessment, it readily extends to broader vision–language tasks. In particular, our examination of attention mechanisms in reasoning MLLMs, our exploration of compact textual representation spaces, and our considerations for mitigating cross-domain bias offer actionable insights for future research. Moreover, the proposed reasoning-aligned lightweight IQA framework provides a general and convenient pathway to convert reasoning-based evaluators into reasoning-free ones. This efficient paradigm not only facilitates on-device deployment, but also substantially streamlines the use of reward models in post-training pipelines, such as (Liu et al., 2025b;a).

Figure A.1: Illustrations of the proposed **Reasoning-Aligned Cross-Domain Training Framework (RACT)**. (a) Single-domain RL: We train an MLLM on each IQA dataset to produce reasoning and scores. (b) Label alignment: We use the reasoning module to convert images into **quality reasoning text**, forming unified image–text labels across datasets. (c) Cross-domain SFT: We finetune the RL-trained model with the aligned image–text pairs to adapt the visual encoder across domains; only one dataset’s scores are used to stabilize convergence.

C MORE DETAILS ABOUT REASONING-ALIGNED CROSS-DOMAIN TRAINING FRAMEWORK.

Framework and More Discussion. A detailed pipeline is illustrated in Figure A.1, the model trained in this manner can be conceptualized as follows: we train the image-to-description conversion module using annotation information from multiple datasets, while the description-to-score prediction module is trained solely on annotations from a single dataset. In our ablation studies, we further note that incorporating scores from multiple datasets into SFT results in degraded performance. Our interpretation of this phenomenon lies in the dual-component nature of dataset annotations: they encompass both objective image quality and annotator group bias. Through reinforcement learning, the model has already acquired objective image **quality reasoning text**—ones that possess generalizability and domain-bridging capabilities. What remains, however, is annotator group bias, which exhibits a substantial gap across different dataset domains. A more intuitive illustration of this is: if groups A, B, and C are mutually unrelated, fitting group C’s preferences using only group A’s biases yields no improvement compared to fitting them using the combined biases of groups A and B.

Advantages of RACT Against Naive Multi-dataset RL Training. To enable a clearer comparison between RACT and Q-Insight, we conducted two additional experiments: specifically, mixed training experiments of both methods on the KonIQ and SPAQ datasets. These experimental results are consolidated in a single table to facilitate comparison. As shown in Table A.2: 1) Compared to Q-Insight trained on a single dataset, mixed training leads to a performance degradation of Q-Insight, and this degradation becomes more severe as the number of mixed datasets increases. 2) In the same training settings, RACT exhibits better convergence and generalization. Moreover, as more datasets are included, the additional gains of RACT become more significant.

Table A.2: PLCC / SRCC comparison between Q-Insight and RACT across different training settings and datasets.

Training Datasets	Method	KoniQ	SPAQ	KADID	PIPAL	LiveW	AGIQQA	CSIQ	TID	AVG.
KoniQ	Q-Insight	0.933/0.916	0.907/0.905	0.742/0.736	0.486/0.474	0.893/0.865	0.811/0.764	0.870/0.824	0.749/0.656	0.798/0.767
	RACT	0.928/0.913	0.928/0.924	0.717/0.711	0.496/0.482	0.886/0.861	0.816/0.747	0.816/0.754	0.728/0.638	0.789/0.754
KoniQ, SPAQ	Q-Insight	0.929/0.909	0.922/0.918	0.752/0.742	0.477/0.467	0.878/0.847	0.814/0.757	0.890/0.842	0.752/0.662	0.802/0.768
	RACT	0.929/0.907	0.922/0.918	0.919/0.916	0.642/0.626	0.881/0.846	0.813/0.763	0.892/0.838	0.844/0.817	0.855/0.829
KoniQ, SPAQ, KADD, PIPAL	Q-Insight	0.899/0.871	0.913/0.907	0.757/0.765	0.579/0.559	0.867/0.830	0.805/0.757	0.768/0.720	0.743/0.651	0.791/0.757
	RACT	0.928/0.907	0.922/0.918	0.919/0.916	0.642/0.626	0.881/0.846	0.813/0.763	0.892/0.838	0.844/0.817	0.855/0.829

The Impact of Different Score-labeled Datasets on RACT’s Performance. In the experiments presented in Table 3, only the numerical scores from KonIQ were used to train RACT—specifically, cross-domain training was conducted based on Q-Insight pre-trained on KonIQ. We conducted cross-domain training with RACT using Q-Insight pre-trained on SPAQ and performed comparative analyses, leading to the conclusion that RACT is not sensitive to the dataset from which training numeric scores are sourced.

864
865 Table A.3: PLCC / SRCC comparison when training RACT with numeric scores from different
866 datasets.
867

Scores From	KonIQ	SPAQ	KADID	PIPAL	LiveW	AGIQA	CSIQ	TID	AVG.
KonIQ	0.928/0.907	0.922/0.918	0.919/0.916	0.642/0.626	0.881/0.846	0.813/0.763	0.892/0.838	0.844/0.817	0.858/0.816
SPAQ	0.917/0.892	0.925/0.920	0.921/0.919	0.630/0.613	0.880/0.848	0.806/0.761	0.897/0.844	0.841/0.812	0.852/0.826

868
869 **Designed Prompts.** The prompts designed for each task in RACT are detailed in Tab. A.4. For
870 the single dataset RL training, the input includes a task-specific prompt and the image to be rated,
871 with the Mean Opinion Score (MOS) serving as the ground-truth. For the multi-datasets SFT, the
872 input includes a task-specific prompt and the image to be described, with the [quality reasoning text](#)
873 serving as the ground-truth.
874

875 Table A.4: Prompts for RACT.
876

877 **System Prompt for RL Training:** A conversation between User and Assistant. The user asks a
878 question, and the Assistant solves it. The assistant first thinks about the reasoning process in the
879 mind and then provides the user with the answer. The reasoning process and answer are enclosed
880 within `<think></think>` and `<answer></answer>` tags, respectively, i.e., `<think>`
881 reasoning process here `</think><answer> answer here </answer>`.

882 **Prompt for Score Regression Task:** What is your overall rating on the quality of this picture?
883 The rating should be a float between 1 and 5, rounded to two decimal places, with 1 representing
884 very poor quality and 5 representing excellent quality. Return the final answer in JSON format
885 with the following keys: "rating": The score.
886

887 **Prompts for Quality Description Task:** What is your overall assessment of the quality of this
888 picture?
889

890 D MORE ABLATION STUDIES
891

892 **Ablation on the Hyperparameters of the Proposed RALI.** To further demonstrate the rationality
893 of our hyperparameter choices, we sweep the PCA dimension, the number of basis vectors, and the
894 number of buckets. Results are reported in Table A.5. We find that when the PCA reduction is too
895 low or the number of basic vectors is too small (e.g., 256-D / 100), both these settings (case (1)-(6))
896 and 512-D (case (8)) can achieve roughly 0.745 PLCC without score definition. However, due to
897 substantial information loss, the dimension-reduced bases cannot adequately fit the feature space,
898 and thus after applying score definition they fail to reach a higher performance ceiling. When the
899 number of buckets is too small, the basis scores become overly concentrated and cannot effectively
900 cover the full score range. Conversely, with a very high basis dimensionality (e.g., 700-D), the model
901 tends to perform better in in-domain scenarios but exhibits reduced generalization out of domain.
902 Moreover, excessively high dimensionality and a large number of bases increase the optimization
903 difficulty of RALI. Thus, we choose case (8) as our final solution.
904

905 Table A.5: Ablation study on the hyperparameter selection of RALI.
906

Case	Score Definition	PCA Dimension	Basic Vectors	Bucket Bins	PLCC	SRCC
1	✗	256	100	90	0.748	0.720
2	✓	256	100	90	0.785	0.764
3	✗	256	250	240	0.747	0.718
4	✓	256	250	240	0.783	0.762
5	✗	512	100	90	0.745	0.717
6	✓	512	100	90	0.783	0.762
7	✗	512	250	240	0.743	0.723
8	✓	512	250	240	0.798	0.779
9	✗	700	250	240	0.745	0.719
10	✓	700	250	240	0.787	0.767

918 E RELATION TO MODEL LIGHTWEIGHTING
919

920 An alternative strategy for model acceleration involves directly applying conventional model
921 lightweighting techniques to MLLMs. How do these methods compare to our RALI approach?
922 There are distinct differences: Firstly, standard lightweighted algorithms typically remain archi-
923 tecturally homologous to their original counterparts, whereas RALI differs fundamentally from
924 MLLM-based algorithms in terms of architectural design. Secondly, RALI achieves an extreme
925 lightweighting ratio of up to 95% while maintaining a performance comparable to that of MLLMs,
926 an efficiency-performance balance that standard lightweight models do not achieve. To validate this,
927 we conducted a controlled experiment: we performed reinforcement learning training on the 3B
928 Qwen-VL model using the KonIQ dataset, with results presented in Table A.6. Experimental find-
929 ings reveal that when the parameter count is reduced by approximately 50%, the MLLM exhibits
930 a significant performance drop, and 3B Q-Insight cannot skip the reasoning. This confirms that
931 lightweighting Q-Insight cannot match the performance of RALI.

932 Table A.6: PLCC / SRCC comparison on single-domain score regression tasks. All methods are
933 trained on the KonIQ dataset. Q-Insight (3B) shows significantly lower performance than RALI
934 (Ours) after 50% parameter reduction.

Methods	KonIQ	SPAQ	KADID	PIPAL	LiveW	AGIQQA	CSIQ	AVG.
Q-Insight (3B)	0.907	0.897	0.704	0.445	0.824	0.831	0.826	0.776
(Li et al., 2025)	/0.887	/0.892	/0.699	/0.452	/0.788	/0.758	/0.798	/0.753
RALI	0.939	0.897	0.723	0.527	0.896	0.779	0.828	0.798
(Ours)	/0.922	/0.897	/0.725	/0.528	/0.876	/0.715	/0.788	/0.779

940 F VISUALIZATION
941

943 We further present visualization comparisons of reasoning traces and scores between our RACT
944 and VisualQuality-R1 in Figures A.2 and A.3. As shown in Figures A.2 and A.3, our method
945 produces more concise reasoning that is better aligned with image quality, and its predicted scores
946 are consistently more accurate than those of VisualQuality-R1.

948 G LLM USAGE STATEMENT
949

950 We used a large language model (LLM) only for minor grammar and phrasing polishes. All technical
951 content, including ideas, experiments, analyses, and discussions, was entirely created by the authors.
952

972
973
974
975
976
977
978
979
980
981

What is your overall rating on the quality of this picture? The rating should be a float between 1 and 5, rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality. Return the final answer in JSON format with the following keys: \"rating\": The score.

GT Score: 3.95

982
983
984
985
986
987

<think> The image appears clear and well-lit, capturing the details of the White House, the statue, and the tulip garden effectively. The colors are vibrant, especially the red tulips, which stand out against the green grass and the white building. There are no visible distortions or blurs that would affect the overall quality. The composition is balanced, with the statue and the White House as focal points. **</think>**

<answer> 4.70 </answer>

VisualQuality-R1

988
989
990
991
992
993
994
995
996
997
998
999
1000

<think> The image appears clear with good lighting and sharp details. The colors are vibrant, especially the red tulips, which stand out against the green grass and the white building. There's no visible noise or distortion that would lower the quality significantly. The composition is well-framed, capturing the White House, the statue, and the flowerbeds effectively.

</think>

<answer> 3.92 </answer>

RACT (Ours)

1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

What is your overall rating on the quality of this picture? The rating should be a float between 1 and 5, rounded to two decimal places, with 1 representing very poor quality and 5 representing excellent quality. Return the final answer in JSON format with the following keys: \"rating\": The score.

GT Score: 3.59

<think> The image appears to be clear and well-lit, with good visibility of the architectural details such as the stone wall texture, the wooden door, and the window with shutters. The colors are natural and there's no noticeable noise or distortion. However, the image seems to have been edited or filtered, which slightly affects its natural appearance but does not significantly degrade the overall quality. **</think>**

<answer> 3.80 </answer>

VisualQuality-R1

<think> The image appears clear, with good contrast and sharpness that allows for the details of the stone wall, door, and window to be discernible. There's no evident motion blur or significant distortion affecting the image quality. However, there seems to be some noise or slight graininess present, which might slightly reduce the perceived quality. **</think>**

<answer> 3.50 </answer>

RACT (Ours)

Figure A.2: Visualization comparison between our proposed RACT and visualquality-R1 (Wu et al., 2025b) on the CSIQ dataset.