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Abstract

Linear Quadratic Regulator (LQR) and Linear Quadratic Gaussian (LQG) control
are foundational and extensively researched problems in optimal control. We
investigate LQR and LQG problems with semi-adversarial perturbations and time-
varying adversarial bandit loss functions. The best-known sublinear regret algo-
rithm of Gradu et al. [2020] has a T

3
4 time horizon dependence, and the authors

posed an open question about whether a tight rate of
p
T could be achieved. We

answer in the affirmative, giving an algorithm for bandit LQR and LQG which
attains optimal regret (up to logarithmic factors) for both known and unknown
systems. A central component of our method is a new scheme for bandit convex
optimization with memory, which is of independent interest.

1 Introduction

Linear-Quadratic Regulator (LQR) and the more general Linear-Gaussian (LQG) control problems
have been extensively studied in the field of control theory due to their wide range of applications
and admittance of analytical solutions by the seminal works of Bellman [1954] and Kalman [1960].
LQR and LQG control problems study the design of a feedback control policy for a linear dynamical
system with the goal of minimizing cumulative, possibly time-varying quadratic costs. The discrete
version of the problem studies the control of the following linear dynamical system governed by
dynamics (A,B,C) 1:

xt+1 = Axt +But +wt , yt = Cxt + et ,

where at time t, xt represents the system’s state, ut represents the control exerted on the system,
and {wt}Tt=1 represents a sequence of i.i.d. centered Gaussian perturbations injected to the system.
For a simple example of the model, consider the problem of controlling an elevator to reach the
desired floors while minimizing the discomfort (due to acceleration or deceleration) and the energy
consumption. In this case, the state xt would be a vector consisting of the elevator’s position and
velocity at time t. The control input ut is the force applied by the elevator motor at time t. wt

represents process noise at time t, caused possibly by unexpected mechanical disturbances. In the
generality of LQG, the system’s states are not accessible. In the elevator example, one may not have
the access to the measurement of the elevator’s velocity or the precise position of the elevator. Instead,
the algorithm has access to an observation yt, which is a linear transformation of state perturbed by a
sequence {et}Tt=1 of i.i.d. centered Gaussian noises, i.e. the elevator’s observed position. The cost is

1The LQR/LQG dynamics can be generalized to time-varying linear dynamical systems. Here we restrict
ourselves to linear time-invariant systems for simplicity.
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a quadratic function of both the observation and the control exerted. The goal in LQR/LQG problems
is to find a control policy ⇡ in some policy class ⇧ that minimizes the cumulative cost over a finite
time horizon T . With y⇡

t
,u⇡

t
denoting the observation and control at time t resulted from executing

policy ⇡, the objective is formally given by

minimize
⇡2⇧

JT (⇡)
def
=

TX

t=1

ct(y
⇡

t
,u⇡

t
) =

TX

t=1

y⇡

t

>Qty
⇡

t
+ u⇡

t

>Rtu
⇡

t
,

where Qt, Rt are some possibly time-varying state-weighting and control-weighting matrices, re-
spectively. In the elevator example, if our goal is to control the elevator to reach the desired floors
while minimizing the discomfort and the energy consumption, the cost function at every time step t
may take the form ct(yt,ut) = c1kyt � zgoalk22 + c2kutk22, where zgoal is the target position of the
elevator, c1, c2 > 0.

Variations of the LQR/LQG problem have garnered considerable interest in the machine learning com-
munity. In the recent literature of online nonstochastic control, several setting-based generalizations
to the aforementioned linear-control framework have been explored, including:

• Adversarial cost functions (Cohen et al. [2018], Agarwal et al. [2019a]): In this setting,
the cost functions are adversarially chosen in an unpredictable way to the learner. This
generalized formulation allows for applications such as building climate control in the
presence of time-varying energy costs, as the energy costs may depend on unexpected
demand fluctuation (Cohen et al. [2018]). More recently, the model of adversarially chosen
cost functions, along with adversarial perturbations in the subsequent paragraph, give rise
to building connection between control theory and meta optimization (Chen and Hazan
[2023]), where the nonconvex problem of hyperparameter tuning (e.g. learning rate tuning)
can be reduced to online nonstochastic control, which often admits a convex formulation.

• Adversarial perturbations (Agarwal et al. [2019a], etc.): In this setting, differing from
the usual Gaussian assumption on the perturbation distribution (wt

i.i.d.⇠ N(0,⌃)), non-
stochastic control often considers arbitrary disturbances wt in the dynamics. The relaxed
assumption on the perturbations allows for the control of nonlinear systems under model
inaccuracies by approximating them as linear systems (Ghai et al. [2022]).

• Bandit feedback: Together with the aforementioned two generalizations, control under
bandit feedback further generalizes the control problem and suits many real-world applica-
tions. In the bandit setting, the cost functions is unknown to the learner. The learner has
access only to the cost incurred by their chosen control. In addition, the learner has access
to the system’s state (xt in the fully observed LQR setting) or a noisy, possibly and usually
low-dimensional observation (yt in the partially observed LQG setting). The bandit LQG
problem can be illustrated with a motivating example. In the problem of controlling medical
device such as a ventilator, the state usually represents a number of health status indicators of
the patient, such as heart rate, blood pressure, and other related metrics. However, this state
may not be fully observable. After the treatment is provided, the learner can observe the
patient’s response, e.g. changes in some vital indicators, with some observation noise and a
cost function, e.g. deviation from the targeted breathing pattern. In this limited information
setting, can a learner hope to learn meaning controls under minimal assumptions? Previ-
ously, the work of Gradu et al. [2020] and Cassel and Koren [2020] both studied the bandit
nonstochastic control problem of fully observed systems and provided provable guarantees.

Taken together, these settings give rise to a general setting in differentiable reinforcement learning
that strictly contains a variety of classical problems in optimal and robust control. Naturally, when
adversarial costs and perturbations are considered, an optimal solution is not defined a priori. Instead,
the primary performance metric is regret: the difference between the total cost of a control algorithm
and that of the best controller from a specific policy class in hindsight.

As mentioned above, this general setting of bandit nonstochastic control was considered in the
recent work of Gradu et al. [2020], whose proposed Bandit Perturbation Controller (BPC) algorithm
has a provable regret guarantee of Õ(T

3
4 ) when compared to a rich policy class called disturbance

action controllers (DAC) for fully observed systems. Similar setting has also been studied by Cassel
and Koren [2020], who established an optimal regret up to logarithmic factor of Õ(

p
T ) for fully
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observable systems under stochastic perturbations and adversarially chosen cost functions. Recently
Ghai et al. [2023] improves the dimension dependence of regret bounds using exploration in action-
space rather than parameter-space. However, bandit control for partially observable systems (e.g.
LQG) is less understood. Thus, these developments in the search for efficient, low-regret bandit
online control algorithms leave a central open question (also stated by by Gradu et al. [2020]):

Can we achieve optimal regret O(
p
T ) with bandit LQG and nonstochastic noise?

Our work answers this question up to logarithmic factors. Our novel Ellipsoidal Bandit Perturbation
Controller (EBPC) achieves a Õ(

p
T ) regret guarantee in the presence of semi-adversarial perturba-

tions in bandit LQG problems with strongly convex cost functions, with the additional generality
of possibly unknown system dynamics. By Shamir [2013], this is asymptotically optimal up to
logarithmic factors, as bandit optimization over quadratics reduces to bandit control with quadratic
losses under A = 0, B = I . Our work therefore resolves the upper-bound/lower-bound gap for this
generalization of LQR/LQG. The following table gives a comprehensive comparison between the
regret guarantee of EBPC and existing results in literature.

Table 1: Comparison of previous results to our contributions.

Algorithm Noise Observation Feedback System Regret
Agarwal et al. [2019a] Adversarial full full known Õ(

p
T )

Agarwal et al. [2019b] Stochastic full full known Õ(1)
Foster and Simchowitz [2020] Adversarial full full known Õ(1)

Simchowitz et al. [2020] Semi-Adv. partial full known Õ(1)
Simchowitz et al. [2020] Semi-Adv. partial full unknown Õ(

p
T )

Gradu et al. [2020] Adversarial full bandit unknown Õ(T
3
4 )

Cassel and Koren [2020] Stochastic full bandit known Õ(
p
T )

Cassel and Koren [2020] Adversarial full bandit known Õ(T
2
3 )

Theorem 4.1 Semi-Adv. partial bandit known Õ(
p
T )

Theorem 4.2 Semi-Adv. partial bandit unknown Õ(
p
T )

1.1 Related work

Online Nonstochastic Control and Online LQR. In the last decade, much research has been
devoted to the intersection of learning and control. Abbasi-Yadkori and Szepesvári [2011] and
Ibrahimi et al. [2012] considered the problem of learning a controller in LQR for known quadratic
cost functions and stochastic/martingale difference perturbation sequence when the dynamics of
the system is unknown, and achieved Õ(

p
T )-regret in this case. Dean et al. [2018] provided the

first provable low-regret, efficient algorithm to solve LQR problems with known cost functions and
stochastic perturbations. Cohen et al. [2018] extended this result to changing quadratic costs with
stochastic perturbations and provided a regret guarantee of O(

p
T ). Lale et al. [2021] consider the

LQG problem with stochastic noise and unknown systems.

More recently, interest has turned to nonstochastic control, in which the cost functions and the
perturbations can be adversarially chosen Agarwal et al. [2019a]. A broad spectrum of control
problems were reconsidered from the nonstochastic perspective, and several different generalizations
were derived. See Hazan and Singh [2022] for a comprehensive text detailing these results.

Online Bandit Convex Optimization with Memory. A classical approach to nonstochastic control
of stable/stabilizable linear dynamical systems is to reduce control problems to online convex
optimization with bounded memory. This reduction stems from the observation that the effects of past
controls decay exponentially in stable/stabilizable systems. In the bandit online convex optimization
with bounded memory setting, the learner iteratively plays a decision xt in a convex set K ✓ Rd

and suffers an adversarially chosen loss Ft(xt�H+1:t), where xt�H+1:t is the sequence of points
xt�H+1, ..., xt. In particular, the loss depends on the last H points played by the algorithm, and the
only information revealed to the learner is the scalar loss that they incurred. The goal is to minimize
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regret, the difference between the loss actually suffered and the loss suffered under the best single
play in hindsight:

Regret
T

def
=

TX

t=H

Ft(xt�H+1:t)�min
x2K

TX

t=H

Ft(x, . . . , x).

Since the loss function is unknown to the learner in the bandit setting, online bandit convex opti-
mization algorithms make use of low-bias estimators of the true gradient or Hessian. Therefore, it is
standard to measure the algorithm’s performance by regret over the expectation of losses, where the
expectation is taken over the randomness injected when creating such estimators.

Online convex optimization with memory in the full information setting, where the loss function
is known to the learner, was proposed by Anava et al. [2015]. The work of Agarwal et al. [2019a],
was the first to connect this to control, and to give a regret bound for online control with adversarial
perturbations.

The Õ(T
3
4 ) regret bound of Gradu et al. [2020] leveraged the bandit convex optimization method of

Flaxman et al. [2005]. We focus on the bandit LQR/LQG setting with strongly convex and smooth
loss functions. It is thus natural to use the techniques of Hazan and Levy [2014], who obtained a
Õ(
p
T ) regret guarantee for bandit convex optimization without memory.

Online Learning with Delay. One technical difficulty in extending OCO with memory to the bandit
setting arises from the requirement of independence between every play and the noises injected from
the recent H steps. We resolve this issue by adapting online learning with delay to the subroutine
algorithm used in our BCO algorithm. Online learning with delay was introduced by Quanrud and
Khashabi [2015]. In particular, Flaspohler et al. [2021] relates online learning with delay to online
learning with optimism and established a sublinear regret guarantee for mirror descent algorithms. A
similar delay scheme was seen in [Gradu et al., 2020].

1.2 Notations and organization

Notation. For convenience and succinctness, we denote H̄ def
= H � 1. We use lowercase bold letters

(e.g. x,y,u,w, e) to denote the states, observations, controls, and noises of the dynamical system 2,
and dx, du, dy to denote their corresponding dimensions. We use Sn�1 to denote the unit sphere
in Rn, as Sn�1 ⇠= Rn�1. R+,R++ denote all non-negative, positive real numbers, respectively.
For a differentiable function F : (Rn)H ! R, we denote the gradient of F with respect to its
ith argument vector by riF (·). ⇢(·) acting on a square matrix measures the spectral radius of the
matrix. For a sequence M = (M [i])i2I , we use kMk`1,op to denote the sum of the operator norm:
kMk`1,op

def
=

P
i2I
kM [i]kop. �(A) denotes the �-algebra generated by a random variable A. We

use O(·) to hide all universal constants, Õ(·) to hide poly(log T ) terms, and O(·) to hide all natural
parameters.

Organization. Our method has two main components: a novel algorithm for BCO with memory
(EBCO-M), and its application to building a novel bandit perturbation controller (EBPC). Section 2
describes our problem setting. Section 3 gives EBCO-M and its near-optimal regret guarantee.
Section 4 introduces EBPC and its regret guarantees to both known and unknown systems.

2 The Bandit LQG Problem

In this section we provide necessary background and describe and formalize the main problem of
interest. We consider control of linear time-invariant dynamical systems of the form

xt+1 = Axt +But +wt , yt = Cxt + et . (2.1)

with dynamics matrices A 2 Rdx⇥dx , B 2 Rdx⇥du , C 2 Rdy⇥dx . Here, consistent with previous
notations, xt 2 Rdx is the state of the system at time t, ut 2 Rdu is the control applied at time t, and

2It shall be noted that unbolded x, y, u are used in the EBCO-M algorithm (Algorithm 1) and is unrelated to
the linear dynamical system.
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wt 2 Rdx , et 2 Rdy are the system and measurement perturbations. At each timestep, the learner
may observe yt 2 Rdy , which usually represents a possibly noisy projection of the state xt onto
some (possibly and usually) low-dimensional space.

In the online bandit setting, the learner is asked to perform a control ut at time t. After the control
is performed, the adversary chooses a quadratic cost function ct(yt,ut). The learner observes the
scalar ct(yt,ut) 2 R+ and the signal yt, but no additional information about ct(·, ·), xt, wt, or et is
given. The goal of the learner is to minimize expected regret, where regret against the controller class
⇧ is defined as

Regret
T

def
=

TX

t=1

ct(yt,ut)�min
⇡2⇧

TX

t=1

ct(y
⇡

t
,u⇡

t
) , (2.2)

where u⇡

t
is the control exerted at time t by policy ⇡, and y⇡

t
is the time-t observation that would have

occurred against the same costs/noises if the control policy ⇡ were carried out from the beginning.

In controlling linear dynamical systems with partial observations, we often make use of the system’s
counterfactual signal had no controls been performed since the beginning of the instance:
Definition 2.1 (Nature’s y). Nature’s y at time t, denoted by ynat

t
, is the signal that the system

would have generated at time t under u1:t = 0. We may compute this as

xnat
t+1 = Axnat

t
+wt , ynat

t
= Cxnat

t
,

or, equivalently, ynat
t

= et +
P

t�1
i=1 CAt�i�1wi.

Critically, this may be calculated via the Markov operator:

Definition 2.2 (Markov operator). The Markov operator G = [G[i]]i2N corresponding to a linear

system parametrized by (A,B,C) as in Eq.(2.1) is a sequence of matrices in Rdy⇥du such that

G[i] def

= CAi�1B, G[0] def

= 0dy⇥du .

It follows immediately that ynat
t

may be computed from observations as ynat
t

= yt�
P

t

i=1 G
[i]ut�i.

2.1 Assumptions

We impose four core assumptions on the problem:
Assumption 2.3 (Stable system). We assume the system is stable: the spectral radius ⇢(A) < 1 3

.

This assumption has the following important consequence:
Remark 2.4 (Decay of stable systems). That the system is stable implies that 9P � 0dx⇥dx ,

P 2 Sym(dx) such that rP ⌫ A>PA for some 0  r < 1, and therefore 9 depending on

kBkop, kCkop,�min(P ) such that kG[i]kop  ri�1
. Then with H = O(log T ), we can assume that

kGk`1,op =
P1

i=0 kG[i]kop  RG and  G(H)
def

=
P1

i=H
kG[i]kop  RG

T
.

Together, Assumption 2.3 and its consequence Remark 2.4 allows modeling the nonstochastic control
problem as an online convex optimization problem against adversary with bounded memory, as the
effect of past controls decays exponentially. Assumption 2.5-2.7 introduce the assumptions on the
adversarial cost functions and perturbations.
Assumption 2.5 (Noise model). The perturbations {wt, et}Tt=1 are assumed to be semi-adversarial:

wt, et decompose as sums of adversarial and stochastic components wt = wadv
t

+wstoch
t

and et =
eadv
t

+estoch
t

. The stochastic components of the perturbations are assumed to come from distributions

satisfying E[wstoch
t

] = E[estoch
t

] = 0, E
h
wstoch

t
wstoch

t

>
i
⌫ �2

wI , E
h
estoch
t

estoch
t

>
i
⌫ �2

eI ,

�e > 0. {wt, et}Tt=1 are bounded such that kynat
t
k2  Rnat, 8t, for some parameter Rnat.

3Although out of scope of this work, we refer the readers to Appendix G of Simchowitz et al. [2020] for a
possible and expected extension of out results to the relaxed assumption of stability: the learner is given access
to a stabilizing controller of the system.
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The bound on ynat is implied by bounded noise, which is a standard assumption in literature, and
the stability of the system. The semi-adversarial assumption is also seen in prior work [Simchowitz
et al., 2020], and is a necessary condition for our analysis: we depend on the regret guarantee of a
bandit online convex optimization with memory algorithm which requires the strong convexity of
the expected loss functions conditioned on all but the ⇥(poly(log T )) most recent steps of history.
This assumption is essentially equivalent to the adversarial assumption in applications: in almost all
systems, noise is either endemic or may be injected. We also emphasize that this assumption is much
weaker than that of previous optimal-rate work: even in the known-state, known-dynamic case, the
previous optimal guarantee in the bandit setting depended on no adversarial perturbation (see Table
1).
Assumption 2.6 (Cost model). The cost functions ct(·, ·) are assumed to be quadratic, �c-strongly

convex, �c-smooth, i.e. ct(y,u) = y>Qty + u>Rtu with �cI ⌫ Qt ⌫ �cI,�cI ⌫ Rt ⌫ �cI 8t.
They are also assumed to obey the following Lipschitz condition: 8(y,u), (y0,u0) 2 Rdy+du ,

|ct(y,u)� ct(y
0,u0)|  Lc(k(y,u)k2 _ k(y0,u0)k2)k(y � y0,u� u0)k2. (2.3)

These conditions are relatively standard for bandit convex optimization algorithms, and are needed
for the novel BCO-with-memory algorithm which underpins our control algorithm.
Assumption 2.7 (Adversary). {ct(·, ·),wadv

t
, eadv

t
}T
t=1 is chosen by the adversary ahead of time.

2.2 Disturbance Response Controllers

Regret compares the excess cost from executing our proposed control algorithm with respect to the
cost of the best algorithm in hindsight from a given policy class. In particular, low regret against a
rich policy class is a very strong near-optimality guarantee. We take the comparator policy class ⇧ to
be the set of disturbance response controllers (DRC), formally given by the following definition.
Definition 2.8 (Disturbance Response Controllers). The disturbance response controller (DRC) and

the DRC policy class are defined as:

• A disturbance response controller (DRC) is a policy ⇡M parametrized by M = (M [j])H̄
j=0,

where H 2 Z++, a sequence of H matrices in Rdu⇥dy s.t. the control at time t given by

⇡M is u⇡M

t
=

P
H̄

j=0 M
[j]ynat

t�j
. We shorthand uM

t

def

= u⇡M

t
.

• The DRC policy class parametrized by H 2 Z++, R 2 R+ is the set of all disturbance

response controller with bounded length H and norm R: M(H,R) = {M = (M [j])H̄
j=0 |

kMk`1,op =
P

H̄

j=0 kM [j]kop  R}.

Previous works have demonstrated the richness of the DRC policy class. In particular, Theorem 1
from Simchowitz et al. [2020] has established that the DRC policy class generalizes the state-of-art
benchmark class of stabilizing linear dynamic controllers (LDC) with error e�⇥(H).

2.3 Approach and Technical Challenges

The classical approach in online nonstochastic control of stable/stabilizable systems is to reduce
to a problem of online convex optimization with memory. This insight relies on the exponentially
decaying effect of past states and controls on the present, which allows approximating the cost
functions as functions of the most recent controls.

A core technical challenge lies in the bandit convex optimization problem obtained from the bandit
control problem. In the bandit setting, no gradient information is given to the learner, and thus
the learner needs to construct a low-bias gradient estimator. Previous work uses the classical
spherical gradient estimator proposed by Flaxman et al. [2004], but the regret guarantee is suboptimal.
We would like to leverage the ellipsoidal gradient estimator proposed by Hazan and Levy [2014].
However, when extending to loss functions with memory, there is no clear mechanism for obtaining a
low-bias bound for general convex functions. We exploit the quadratic structure of the LQR/LQG
cost functions to build EBCO-M (Algorithm 1), which uses ellipsoidal gradient estimators. We note
that even outside of the control applications, EBCO-M may be of independent interests in bandit
online learning theory.
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3 BCO with Memory: Quadratic and Strongly Convex Functions

As with previous works, our control algorithm will depend crucially on a generic algorithm for bandit
convex optimization with memory (BCO-M). We present a new online bandit convex optimization
with memory algorithm that explores the structure of quadratic costs to achieve near-optimal regret.

3.1 Setting and working assumptions

In the BCO-M setting with memory length H , we consider an algorithm playing against an adversary.
At time t, the algorithm is asked to play its choice of yt in the convex constraint set K. The adversary
chooses a loss function Ft : KH ! R+ which takes as input the algorithm’s current play as well as
its previous H̄ plays. The algorithm then observes a cost Ft(yt�H̄ , . . . , yt) (and no other information
about Ft(·)) before it chooses and plays the next action yt+1. The goal is to minimize regret with
respect to the expected loss, which is the excessive loss incurred by the algorithm compared to the
best fixed decision in K:

Regret
T

def
=

TX

t=H

E[Ft(yt�H̄ , . . . , yt)]�min
x2K

TX

t=H

E[Ft(x, . . . , x)].

For notation convenience, we will at times shorthand yt�H̄:t
def
= (yt�H̄ , . . . , yt) 2 KH .

3.1.1 BCO-M assumptions

We make the following assumptions on the loss functions {Ft}Tt=H
and the constraint set K.

Assumption 3.1 (Constraint set). K is convex, closed, and bounded with non-empty interior.

diam(K) = sup
z,z02K

kz � z0k2  D.

Assumption 3.2 (Loss functions). The loss functions chosen by the adversary obeys the following

regularity and curvature assumptions:

• Ft : KH ! R+ is quadratic and �-smooth:

– Quadratic: 9Wt 2 RnH⇥nH , bt 2 RnH , ct 2 R such that Ft(w) = w>Wtw+ b>
t
w+

ct, 8w 2 KH
.

– Smooth: Wt � �InH⇥nH .

• Ft : KH ! R+ is �-strongly convex in its induced unary form: ft : K! R+ with ft(z) =
Ft(z, . . . , z) is �-strongly convex, i.e. ft(z) � ft(z0) +rft(z0)>(z � z0) + �

2 kz � z0k22.,

8z, z0 2 K.

• Ft satisfies the following diameter and gradient bound on K: 9B,L > 0 such that

B = sup
w,w02KH

|Ft(w)� Ft(w
0)|, L = sup

w2KH

krFt(w)k2.

In the online control problems, when formulating the cost function ct as a function Ft of the
most recent H controls played, the function Ft itself may depend on the entire history of the
algorithm through step t�H . Therefore, it is essential to analyze the regret guarantee of our BCO-M
algorithm when playing against an adversary that can be (t�H)-adaptive, giving rise to the following
assumption.
Assumption 3.3 (Adversarial adaptivity). The adversary chooses Ft independently of the noise

ut�H̄:t which is drawn by the algorithm in the H most recent steps, but possibly not independently of

earlier noises.

Note that Assumption 3.3 is minimal for BCO: if this fails, then in the subcase of a delayed loss, the
adversary may fully control the agent’s observations, resulting in no possibility of learning.

Self-concordant barrier. The algorithm makes use of a self-concordant barrier R(·) of K as the
regularization function in the updates.
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Definition 3.4 (Self-concordant barrier). A three-time continuously differentiable function R(·) over

a closed convex set K ⇢ Rn
with non-empty interior is a ⌫-self-concordant barrier of K if it satisfies

the following two properties:

1. (Boundary property) For any sequence {xn}n2N ⇢ int(K) such that limn!1 xn = x 2 @K,

limn!1 R(xn) =1.

2. (Self-concordant) 8x 2 int(K), h 2 Rn
,

(a) |r3R(x)[h, h, h]|  2|r2R(x)[h, h]|3/2.

(b) |hrR(x), hi| 
p
⌫|r2R(x)[h, h]|1/2.

3.2 Algorithm specification and regret guarantee

We present EBCO-M (Algorithm 1) for online bandit convex optimization with memory. The key
novelty is the use of an ellipsoidal gradient estimator. It is difficult to establish a low-bias guarantee
for ellipsoidal gradient estimator for general convex loss functions. However, thanks to the quadratic
structure of the loss functions in LQR/LQG problems, we can show provable low bias for the
ellipsoidal gradient estimator, and therefore achieve optimal regret.

Algorithm 1 Ellipsoidal BCO with memory (EBCO-M)
1: Input: Convex, closed set K ✓ Rn with non-empty interior, time horizon T , memory length H ,

step size ⌘, ⌫-self-concordant barrier R(·) over K, convexity strength parameter �.
2: Initialize xt = argmin

x2K R(x), 8t = 1, . . . , H .
3: Compute At = (r2R(xt) + ⌘�tI)�1/2, 8t = 1, . . . , H .
4: Sample u1, . . . , uH ⇠ Sn�1 i.i.d. uniformly at random.
5: Set yt = xt +Atut, 8t = 1, . . . , H .
6: Set gt = 0, 8t = 1, . . . , H̄ .
7: Play y1, . . . , yH̄ .
8: for t = H, . . . , T do
9: Play yt, suffer loss Ft(yt�H̄:t).

10: Store gt = nFt(yt�H̄:t)
P

H̄

i=0 A
�1
t�i

ut�i.

11: Set xt+1 = argmin
x2K

P
t

s=H

⇣
g>
s�H̄

x+ �

2 kx� xs�H̄k2
⌘
+ 1

⌘
R(x).

12: Compute At+1 = (r2R(xt+1) + ⌘�(t+ 1)I)�1/2.
13: Sample ut+1 ⇠ Sn�1 uniformly at random.
14: Set yt+1 = xt+1 +At+1ut+1.
15: end for

Before analyzing the regret, we first make note of two properties of Algorithm 1.
Remark 3.5 (Delayed dependence). In Algorithm 1, xt is independent of ut�H̄:t, 8t, and therefore

At is independent of ut�H̄:t as At is determined by xt.

Remark 3.6 (Correctness). yt played by Algorithm 1 lies in K: kyt�xtk2r2R(xt)
= kAtutk2r2R(xt)


kutk22 = 1, and by Proposition C.1, the Dikin ellipsoid centered at xt is contained in K.

We give the following two theorems on regret guarantees of the EBCO-M algorithm. In particu-
lar, Theorem 3.6.B is a slight generalization of Theorem 3.6.A in its relaxation on the curvature
assumption on the sequence of loss functions FH:T .
Theorem 3.6.A (EBCO-M regret with strong convexity). For any sequence of cost functions {Ft}Tt=H

satisfying Assumption 3.2, constraint set K satisfying Assumption 3.1, adversary satisfying Assump-

tion 3.3, and H = poly (log T ), Algorithm 1 satisfies the regret bound

Regret
T
(EBCO-M) =

TX

t=H

E[Ft(yt�H̄:t)]�min
x2K

TX

t=H

E[ft(x)]  Õ
✓
�n

�

p
T

◆
,

where the expectation is taken over the randomness of the exploration noises u1:T , with Õ hiding all

natural parameters (B,D,L) and logarithmic dependence on T .

8



Theorem 3.6.B (EBCO-M regret with conditional strong convexity). Suppose Algorithm 1 is run

on K satisfying Assumption 3.1 against an adversary satisfying Assumption 3.3 with a sequence of

random cost functions {Ft}Tt=H
satisfying that

1. Ft is quadratic, convex, �-smooth, has diameter bound B and gradient bound L on KH
.

2. 9 filtration G1:T such that u1:T is independent of GT , Ft 2 �(u1:t�H) [ Gt, and Ft is

conditionally �-strongly convex in its induced unary form: f̄t(z)
def

= E[ft(z) | u1:t�H ,Gt�H ]
is �-strongly convex.

Then, Algorithm 1 satisfies the same regret bound attained in Theorem 3.6.A, i.e.

Regret
T
(EBCO-M) =

TX

t=H

E[Ft(yt�H̄:t)]�min
x2K

TX

t=H

E[ft(x)]  Õ
✓
�n

�

p
T

◆
,

where the expectation is taken over the randomness of the exploration noises u1:T and the random

functions FH:T , with Õ hiding all natural parameters (B,D,L) and logarithmic dependence on T .

4 Bandit Controller: Known and Unknown Systems

We will now use our BCO-with-memory algorithm to find an optimal controller (as in Gradu et al.
[2020]), arguing that regret in choice of controller transfers into the setting discussed in the previous
section. We first consider the case where the system is known, and then reduce the unknown system
case to the known system case.

4.1 Known systems

Applying Algorithm 1 to predict controllers4 with losses given by control losses, we obtain Algorithm
2.

Algorithm 2 Ellipsoidal Bandit Perturbation Controller (EBPC)
1: Input: Time horizon T , memory length H , Markov operator G. BCO-M parameters �, ⌘.

Self-concordant barrier R(·) over M(H,R) ⇢ RH⇥du⇥dy .
2: Initialize M1 = · · · = MH = argmin

M2M(H,R)
R(M).

3: Compute Ai = (r2R(Mi) + ⌘�tI)�1/2, 8i = 1, . . . , H .
4: Sample "1, . . . , "H ⇠ SH⇥du⇥dy�1 i.i.d. uniformly at random.
5: Set fMi = Mi + "i, 8i = 1, . . . , H . Set gi = 0, 8i = 1, . . . , H̄ .
6: Play control ui = 0, incur cost ci(yi,ui), 8i = 1, . . . , H̄ .
7: for t = H, . . . , T do
8: Play control ut = ut(fMt) =

P
H̄

i=0
fM [i]

t
ynat
t�i

, incur cost ct(yt,ut).
9: Observe yt+1 and compute signal ynat

t+1 = yt+1 �
P

t

i=1 G
[i]ut�i.

10: Store gt = dudyHct(yt,ut)
P

H̄

i=0 A
�1
t�i
"t�i.

11: Update Mt+1 = argmin
M2M(H,R)

P
t

s=H

�
hgs�H̄ ,Mi+ �

2 kM �Ms�H̄k2
�
+ 1

⌘
R(M).

12: Compute At+1 = (r2R(Mt+1) + ⌘�(t+ 1)I)�1/2.
13: Sample "t+1 ⇠ SH⇥du⇥dy�1 uniformly at random. Set fMt+1 = Mt+1 +At+1"t+1.
14: end for

Theorem 4.1 (Known system control regret). Consider a linear dynamical system governed by

known dynamics (A,B,C) and the interaction model with adversarially chosen cost functions

4Notation: while our controller M is typically a tensor, it should be thought of as the output vector of
Algorithm 1. As such, the relevant vector and matrix operations in that algorithm will correspond to tensor
operations here, and the notation reflects that correspondence. In particular, the inner product on line 11 is an
all-dimension tensor dot product and A is a square “matrix” which acts on tensors of shape (H, du, dy).
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and perturbations satisfying Assumption 2.3, 2.5, 2.6, 2.7. Then running Algorithm 2 with H =

⇥(poly(log T )), � = �c
⇣
�2
e + �w

�min(C)
1+kAk2

op

⌘
, and ⌘ = ⇥

⇣
1

dudyLcH
3
p
T

⌘
guarantees

E[Regret
T
(EBPC)]  Õ

✓
�cdudy
�c

p
T

◆
,

where regret is defined as in Eq.(2.2), the expectation is taken over the exploration noises "1:T of the

algorithm as well as the stochastic components {wstoch
t

, estoch
t

}T
t=1 of the perturbations {wt, et}Tt=1,

and Õ(·) hides all universal constants, natural parameters, and logarithmic dependence on T .

4.2 Unknown systems: control after estimation

Note that EBPC (Algorithm 2) relies on the access to the system’s Markov operator G, which is
available if and only if the system dynamics (A,B,C) are known. When the system dynamics
is unknown, we can identify the system using a system estimation algorithm, obtain an estimated
Markov operator Ĝ, and run EBPC with G  Ĝ. Algorithm 3 outlines the estimation method of
system dynamics via least squares.

Algorithm 3 System estimation via least squares (SysEst-LS)
1: Input: estimation sample size N , system length H .
2: Initialize: Ĝ[t] = 0, 8t � H .
3: Sample and play ut ⇠ N(0, Idu⇥du), 8t = 1, . . . , N .
4: Set Ĝ[0:H̄] = argmin

P
N

t=H
kyt �

P
H̄

i=0 Ĝ
[i]ut�ik22.

5: Return Ĝ.

Theorem 4.2 (Unknown system control regret). Consider a linear dynamical system governed by

unknown dynamics (A,B,C) and the interaction model with adversarially chosen cost functions

and perturbations satisfying Assumption 2.3, 2.5, 2.6, 2.7. Suppose we obtain an estimated Markov

operator Ĝ from Algorithm 3 with N = d
p
T e and H = ⇥(poly log T ). Then Algorithm 2 with

G Ĝ, H  3H , � = 1
8�c�

2
e, and ⌘ = ⇥

⇣
1

dudyLcH
3
p
T

⌘
guarantees

E[Regret
T
(EBPC)]  Õ

✓
�cdudy
�c

p
T

◆
,

where regret is defined as in Eq.(2.2), the expectation is taken over the exploration noises "1:T in

Algorithm 2, the sampled Gaussian controls u1:N in Algorithm 3, and the stochastic components

{wstoch
t

, estoch
t

}T
t=1 of the perturbations {wt, et}Tt=1, and Õ(·) hides all universal constants, natural

parameters, and logarithmic dependence on T .

5 Discussion and conclusion

We solve the open problem put forth by Gradu et al. [2020] on the optimal rate for online bandit
control for the case of LQR/LQG control, improving to regret Õ(

p
T ) from Õ(T

3
4 ) in the semi-

adversarial noise model and for strongly convex LQR/LQG cost functions. Our method builds
upon recent advancements in bandit convex optimization for quadratic functions, providing the first
near-optimal regret algorithm for bandit convex optimization with memory in a nonstochastic setting.

It would be interesting to investigate (1) whether the results can be extended to fully adversarial noise,
(2) whether a similar stable controller recovery as seen in [Chen and Hazan, 2021] for fully observable
systems can be established for partially observable systems, and whether that can be incorporated to
extend our result to stabilizable systems even without access to a stabilizing controller.
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