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Detecting Multimodal Situations with Insufficient Context and
Abstaining from Baseless Predictions

Q: Why is this boat so messy?

A: Just got back

Q: Why is this woman in bed?

VQA OKVQA

A: Childbirth

Q: How do these people know each 

other?
A: Siblings

A-OKVQA

Q: What is the intent of Person 3 not 

clapping like the rest of the audience?

VisualCOMET

Q: How is Person 1 feeling right now?

VCR

A: Alert the police to what she seesA: He is upset
VLM VLM + CARA

CARA

Person 1
Person 3

P: They grew up together.P: He is feeling pretty good. P: Because she is sick. P: Because the person doesn’t care.P: Fishing.

There is not 

sufficient context 

and I do not know 

the answer.

Figure 1: Examples of samples with insufficient context to answer the question across several representative Vision Language
Understanding (VLU) benchmarks. “Q” represents the question, “A” stands for the answer, and “P” denotes a typical Vision
Language Model (VLM; here BLIP-2) prediction. We find that samples with insufficient context are common across several VLU
benchmarks, causing VLMs to hallucinate predictions. Using (wearing) our proposed CARA (hat), VLMs are able to abstain
from responding instead of making baseless predictions in such cases.

ABSTRACT
Despite the widespread adoption of Vision-Language Understand-
ing (VLU) benchmarks such as VQA v2, OKVQA, A-OKVQA, GQA,
VCR, SWAG, and VisualCOMET, our analysis reveals a pervasive
issue affecting their integrity: these benchmarks contain samples
where answers rely on assumptions unsupported by the provided
context. Training models on such data fosters biased learning and
hallucinations as models tend to make similar unwarranted assump-
tions. To address this issue, we collect contextual data for each
sample whenever available and train a context selection module to
facilitate evidence-based model predictions. Strong improvements
across multiple benchmarks demonstrate the effectiveness of our
approach. Further, we develop a general-purpose Context-AwaRe
Abstention (CARA) detector to identify samples lacking sufficient
context and enhance model accuracy by abstaining from respond-
ing if the required context is absent. CARA exhibits generalization
to new benchmarks it wasn’t trained on, underscoring its utility
for future VLU benchmarks in detecting or cleaning samples with
inadequate context. Finally, we curate a Context Ambiguity and
Sufficiency Evaluation (CASE) set to benchmark the performance
of insufficient context detectors. Overall, our work represents a
significant advancement in ensuring that vision-language mod-
els generate trustworthy and evidence-based outputs in complex
real-world scenarios.
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1 INTRODUCTION
A number of Vision Language Understanding (VLU) benchmarks
have been proposed to evaluate the capability of models to inter-
pret complex multimodal scenarios and events [1, 28, 30, 38, 53, 55].
However, these benchmarks often include samples with insufficient
event-specific context to answer the given questions. For instance,
in the first example of Figure 1, it is impossible to answer why the
boat is messy without knowing what had happened before. Sim-
ilarly, in the second example of Figure 1, knowledge of [Person
1]’s prior interaction is required to determine how the person feels.
Answering the questions for these examples requires more contex-
tual information about the events depicted in the images than is
available from the image alone.

Our analysis reveals that this issue of insufficient event-specific
context is pervasive in many VLU datasets. Figure 1 illustrates ex-
amples from some representative benchmarks – VQA v2 [1], Visual
Commonsense Reasoning (VCR) [54], OKVQA [28], A-OKVQA [38],
and VisualCOMET [30]. The lack of sufficient and specific context
in the provided samples forces models trained on such data to guess
possible answers, leading to models that confidently predict an-
swers without evidential support. Models that tend to hallucinate
assumptions in this way undermine their trustworthiness and limit
their real-world applicability in settings where accuracy is critical
e.g., assistive technologies for the visually impaired [11, 31, 58],
autonomous vehicles and robotics [12, 15], healthcare applications
[25] or security and surveillance [45].

Our findings of the ubiquity of this problem lead us to two critical
questions: 1) If the context can be retrieved, e.g., we can obtain the
corresponding video as context when the sample has an image
from that video, how to identify the most necessary context and
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effectively incorporate it into models? 2) If there is no available
context, e.g., the sample has an in-the-wild image, can we develop a
generalizable method to identify samples with insufficient context
and abstain from making baseless predictions?

Regarding the first question, numerous methods [19, 40] have
been proposed to enhance image-text understanding with external
knowledge. Yet, these approaches fail to address the absence of
event-specific context, which is not available in external sources.
The challenges presented in Figure 1, for example, cannot be over-
come simply through the application of general knowledge, as they
require insights directly related to the depicted events.

As for the second question, no prior work has focused on abstain-
ing from speculative responses by identifying insufficient event-
specific context across existing VLU benchmarks. Existing works
refrain from answering either due to low model confidence [50] or
due to out-of-distribution samples [6]. Consequently, they would
still make unfounded predictions for samples with high model con-
fidence or in-domain samples but insufficient context.

We address these limitations by 1) Collecting contextual data
where available (VCR, SWAG, and VisualCOMET) and building
a novel model-agnostic plug-and-play context selection module
to incorporate context into model prediction (see Figure 2); 2)
Reusing the aforementioned module to collect pseudo-labels to
train a Context-AwaRe Abstention (CARA) module, capable of iden-
tifying samples with insufficient context. Both our context selection
module and CARA are model- and task-agnostic.

Our experiments demonstrate that our context selection module
consistently improves performance across models and tasks. In the
process, we also investigate several important questions: 1) In which
modality (visual, textual, or both) does context benefit the most?
2) How long is context useful before it becomes noise? Further,
we show that CARA boosts state-of-the-art model performance in
full-shot and zero-shot settings by reducing inaccurate predictions
through abstention from baseless or hallucinated responses. CARA,
trained on one benchmark, can effortlessly generalizes to other
benchmarks as well. This provides evidence that CARA could be
useful for future benchmarks as well without any re-training. It
could even be used to clean future benchmarks of samples with
insufficient context. Moreover, as CARA prevents models from
making predictions that are not grounded in contextual evidence,
we believe it will significantly improve model trustworthiness.

Lastly, to evaluate CARA’s quality and benchmark its perfor-
mance, we also curate an evaluation set manually annotated with
the labels – sufficient or insufficient context. This data is valuable
for the future development of insufficient context detectors.

In summary, our work makes several key contributions:

• Highlighting a Systemic Issue: We identify a pervasive
problem in common VLU benchmarks, i.e., the presence
of samples with insufficient context. This issue has been
largely overlooked in prior studies, despite its impact on the
performance and reliability of VLU models. We conduct an
extensive analysis across benchmarks to reveal the extent of
this problem.

• Incoporating Context Effectively: We address the issue
of insufficient event-specific context in VCR, SWAG, and
VisualCOMET benchmarks by introducing a novel context

selection method. This enhances model performance by ac-
curately identifying and integrating relevant context into
task resolution.

• Multimodal Abstention Detector: We develop CARA, a
method for abstaining on samples lacking necessary context,
and demonstrate its generalization across new benchmarks.

• Data Contribution: We collect contextual data for VCR,
SWAG, and VisualCOMET, which is valuable for further
exploration of context-aware model prediction. Moreover,
we create a Context Ambiguity and Sufficiency Evaluation
(CASE) set for insufficient context detection.

2 RELATEDWORK
2.0.1 Unanswerable Visual Questions. The challenge of determin-
ing the answerability of visual questions has been explored pri-
marily from two main directions: 1) relevance of the question or
2) quality of the image. The former direction focuses on creating
datasets and methods that test models’ ability to flag irrelevant
questions [17, 22, 27, 33, 44] or questions inquiring about objects
absent in the image [23, 26, 51]. On the other hand, the latter direc-
tion requires models to flag unanswerable samples due to low image
quality [3, 11]. Both directions overlook the nuanced complexity of
unanswerability in the case of insufficient context for high-quality
images paired with relevant questions. It is this gap that our work
aims to bridge.

2.0.2 VLUwith External Resources. When information in the image
is insufficient to answer the question [28, 36, 38], several methods
have been proposed to augment the provided information with ex-
ternal knowledge fromWikipedia [24], the internet [14], and knowl-
edge graphs [19, 40]. Our approach is similar in retrieving extra
information to complement the provided visual information. How-
ever, we retrieve contextual information directly related to events
and entities depicted in the image, while prior approaches search
for general factual [2, 48] or commonsense knowledge [37, 41]. The
contextual information we seek, for example, the reason for [Per-
son 1]’s injury in Figure 2, is unavailable in those external sources.
Limited works have explored specific sample-related contextual
information. Naik et al. [29] utilize image source metadata while
Biten et al. [4], Tran et al. [46] leverage paired news article. Both
cases bypass context retrieval by exploiting image metadata as is,
unlike our work. Furthermore, they do not focus on integrating
temporal or event-specific context, which is crucial for reasoning
in semantically complex VLU tasks.

2.0.3 Abstention in Multimodal Systems. Abstaining from respond-
ing instead of making incorrect predictions was originally explored
in the unimodal language domain to address out-of-distribution or
adversarial inputs [5, 7, 9, 16, 18, 47]. In the multimodal domain,
recent works have been proposed that abstain similarly in the case
of out-of-distribution samples [6] or low model confidence [50]. In
contrast, our proposed approach avoids making predictions when
sufficient context to answer the question is unavailable. Unlike
prior works, our abstention mechanism works from a data-centric
view and applies to new benchmarks without any re-training.
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Figure 2: Illustration of how we obtain contextual data for VCR, Visual SWAG, and VisualCOMET. The video from which the
image sample is sourced is identified to obtain temporal context in the form of frames and captions around the image sample
in question. The context provides the necessary evidence required to answer these highly semantic questions.

3 PROBLEM SPACE
We investigate several benchmarks to study the problem of insuffi-
cient context in VLU domain: VQA v2, OKVQA, A-OKVQA, GQA,
VCR, VisualCOMET, and Visual SWAG. These datasets cover a range
of VLU tasks, such as visual question answering, image-based text
generation, and image-text matching. Notably, SWAG is a text-only
entailed event inference dataset. To facilitate the study on multi-
modal event entailment inference, we replace the text premise in
SWAG with the corresponding image frame retrieved from the sam-
ples’ source video. We call this multimodal dataset, Visual SWAG,
where given an image premise, the required task is to infer the
entailed event in textual form.

For the datasets with contextual data available – VCR, Visual-
COMET, and Visual SWAG – we first collect that contextual data,
as in Section 4. Then, we utilize it to facilitate evidence-based VLM
prediction via a context selection module, as in Section 5.1. Fur-
ther, we leverage a combination of vanilla VLM and VLM trained
with context to pseudo-label samples with insufficient context. The
pseudo labels are then used to train an insufficient context detector,
CARA.We demonstrate that CARA generalizes to VQA v2, OKVQA,
A-OKVQA, and GQA without having ever been trained on them.

The input information for the above reasoning benchmarks can
be generally denoted as 𝑥 = (𝑥𝑇 , 𝑥𝐼 ) where 𝑥𝑇 is the textual input
and 𝑥𝐼 is the image input. In our first study, we explore whether
adding another input Context, 𝑥 = (𝑥𝑇 , 𝑥𝐼 ,𝐶), can help and explore
how to obtain the most beneficial context. For our second study, we
develop functions to detect samples with insufficient context in the
input, 𝑥 = (𝑥𝑇 , 𝑥𝐼 ), and abstain from making baseless predictions.

4 CONTEXTUAL DATA COLLECTION
We begin by collecting contextual data for the three VLU bench-
marks described above. These benchmarks evaluate models’ un-
derstanding of events using images sourced from existing video
datasets. To ensure comprehensive context is provided for each
sample across the tasks, we collected multimodal contextual data,
including preceding and subsequent visual frames alongwith paired
text scripts. We first discuss how we retrieved the source video data

and then how context was retrieved and filtered. Finally, we present
statistics about our assembled dataset.

4.1 Data Fetching
The images from VCR, VisualCOMET, and Visual SWAG are derived
from video sources like LSMDC [35], ActivityNet[10], or YouTube.
These video datasets consist of sequences of video clips, where
each clip is paired with a sentence describing the event in the clip.
Since annotations in VCR, VisualCOMET, and Visual SWAG include
specific frame IDs and clip IDs for most samples, we can locate and
retrieve the source clip of the corresponding sample. We removed
all samples for which we could not find the corresponding source
clip or paired video scripts.

4.2 Context Retrieval and Filtering
4.2.1 Context Retrieval. We retrieve the clips before and after the
corresponding source clip as visual context. These video clips are
also paired with video scripts. We retrieve these scripts as text con-
text for data points. However, using video frames as visual context
can be highly redundant due to their repetitive nature (i.e. adjacent
frames are generally very similar), thus we find the most descriptive
frame from each of these clips by finding the best match with the
script using a pre-trained CLIP [32] model. More formally, we de-
note context from preceding clips with negative indices (𝑐−3, 𝑐−2 ...),
while context from succeeding clips has positive indices (𝑐1, 𝑐2 ...),
where each 𝑐𝑖 consists of both vision and language contexts.

4.2.2 Context Filtering. Given that a substantial portion of our
datasets comprises temporal questions, specifically those inquiring
about states before and after, we take precautions to avoid inadver-
tently providing context that may disclose the answer to the model.
We achieve this by identifying such cases using keywords and then
filtering out contexts that could potentially lead to cheating. For
instance, samples featuring questions about the past will be devoid
of negatively indexed contexts.

4.3 Data Statistics
4.3.1 Training Data. Our training dataset split includes 41,008
image-text pairs from the train split of Visual SWAG, with an ad-
ditional 94,404 distinct image-text pairs as multimodal context;
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119,994 image-question pairs from the train split of VCRwith 79,913
distinct image-text context pairs; and 190,457 image-text pairs (from
63,499 unique situations) from the train split of VisualCOMET, with
79,109 distinct image-text context pairs.

4.3.2 Evaluation Data. Our validation set includes 10,645 image-
text pairs from the train split of Visual SWAG with 57,880 distinct
image-text pairs as multimodal context; 15,092 image-question pairs
from the train split of VCR with 10,014 distinct image-text context
pairs; and 23,930 image-text pairs (from 7,978 unique situations)
from the train split of VisualCOMET, with 9,933 distinct image-text
context pairs.

0.3, 0.1, … 0.2]

Context Selection 
Module

VLM

Output
Person 0 thinks 1 is injured.

Input 𝑥

Why is Person 0 frustrated?

Person 1

Person 0

The kid’s hand is...

Multimodal Context 
= The kid’s hand is…

= SOMEONE takes a…

…

[ ǁ𝑥
∈

The kid’s hand is…
Why is Person 0 frustrated?…

…SOMEONE takes a…
Why is Person 0 frustrated?

Figure 3: A high-level demonstration of the probabilistic
context selection method. For the VLM’s input, in addition
to the question and image, a context sentence selected by the
Context Selection Module is appended to the original input.

5 METHOD
Using our collected contextual data, we first develop a model-
agnostic smart context selection module to add relevant context to
samples to improve the model’s understanding of the sample and,
hence, its performance. We then create a multimodal abstention
model to identify samples lacking sufficient event-specific context
and prevent models from making baseless predictions on such sam-
ples.

5.1 Context Selection Module
Consider a Vision-Language Model (VLM)𝑀 , with image input 𝑥𝐼
and text input 𝑥𝑇 . The most straightforward way to incorporate
context,𝐶 = [𝑐𝑖 ]𝑖∈[−𝑛,𝑛] , is to append it to the model input. That is,
𝑦𝑝𝑟𝑒𝑑 = 𝑀 (𝑥,𝐶), where 𝑥 = (𝑥𝐼 , 𝑥𝑇 ). This results in a brute-force
context injection approach, which is both heavily computationally
expensive and potentially noisy. Instead, we aim to build a method
to intelligently select the most relevant context according to the
given target image and text premises.

We thus propose a “probabilistic context selection” method (see
Figure 3). This end-to-end,model-agnostic technique aims to stream-
line the selection of event-specific context. Our method features a

context selection module𝑀𝑐 designed to identify the most relevant
context 𝑐∗ for the given input 𝑥 . As a result, the model’s output
is given by 𝑦∗

𝑝𝑟𝑒𝑑
= 𝑀 (𝑥, 𝑐∗). The core idea behind this approach

is that it can dynamically select the context that is most aligned
with the input. This allows it to integrate only the most relevant
context into the downstream reasoning process while filtering out
noisy context. We demonstrate that this significantly improves
the model’s ability to handle complex reasoning tasks requiring
contextual information.

Specifically, for a given input 𝑥 and a set of context 𝑐𝑖 , the se-
lection module 𝑀𝑐 computes a score vector 𝑆 = [𝑠𝑖 ]𝑖∈[−𝑛,𝑛] =

𝑀𝑐 (𝑥, 𝑐𝑖 ). Each score 𝑠𝑖 within this vector denotes the relevance of
𝑐𝑖 to 𝑥 . The 𝑐𝑖 with the highest 𝑠𝑖 is chosen as the selected context
for inference. During training, each 𝑠𝑖 is used to (softly) select the 𝑐𝑖
as the context in the VLM,𝑀 . This encourages the context selection
module 𝑀𝑐 to assign a low weight to context 𝑐𝑖 , which leads to a
high loss in𝑀 and vice versa. Thus,𝑀𝑐 is trained to assign a high
weight to the most relevant context. The resulting loss function is:

L =

𝑛∑︁
𝑖=−𝑛

𝑠𝑖 · 𝑙 (𝑀 (𝑥, 𝑐𝑖 ), 𝑦) (1)

where, 𝑙 represents the cross-entropy loss.
This probabilistic sampling procedure, where 𝑐𝑖 is sampled us-

ing 𝑠𝑖 , is differentiable end-to-end. We illustrate how the context
selection module interacts with the backbone VLM in Figure 3.

For a given input 𝑥 and a specific context 𝑐𝑖 , we append the
context with the input to create 𝑥𝑖 = [𝑥 ∥ 𝑐𝑖 ]. More specifically,
text context 𝑐𝑖𝑇 is appended to text input 𝑥𝑇 and image context
𝑐𝑖𝐼 with image input 𝑥𝐼 , creating 𝑥𝑖𝑇 = [𝑥𝑇 ∥ 𝑐𝑖𝑇 ] and 𝑥𝑖𝐼 = [𝑥𝐼 ∥
𝑐𝑖𝐼 ] respectively. 𝑥𝑖𝑇 and 𝑥𝑖𝐼 are then processed by𝑀 as it would
normally process 𝑥𝑇 and 𝑥𝐼 .

5.2 Multimodal Abstention Detector
The above section assumes additional context is available to be re-
covered through retrieval. However, in many real-world scenarios,
additional context may not be available. Thus, we propose a gen-
eralized multimodal abstention detector that aims to identify if a
sample is unanswerable due to a lack of context thereby preventing
baseless predictions.

Developing a mechanism to detect samples with insufficient
event-specific context is an extremely challenging problem because
the model must first hypothesize what the sufficient context would
be to answer the question before determining if that context is
lacking. In this work, we present a straightforward yet effective
solution to address this issue. We leverage our previously trained
model with context and compare its response with a vanilla model
trained without context to pseudo-label if the sample contains or
lacks sufficient context. Our key insight is that if a sample already
has sufficient context, the model’s response should remain rela-
tively consistent when additional context is added. Conversely, if
the sample lacks sufficient context, the model’s response should
improve on adding additional context. The pseudo labels are then
used to train our insufficient context detector. We illustrate this
process in Figure 4 and detail it below.
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5.2.1 Confidence-Driven Pseudo-Labelling. We train two models: a
Context-VLM (C-VLM), which incorporates context into its decision-
making process (as detailed in Section 5.1, and a vanilla VLM, which
operates without context. We compare the responses from both
models to pseudo-label samples as follows:

• Positive: Instances correctly answered by the C-VLM model
with high confidence above a designated threshold, 𝛾 , but
incorrectly answered by the VLMwith low confidence below
a designated threshold 𝜇. The significant difference in accu-
racy and confidence suggests that these instances previously
lacked sufficient context for unambiguous understanding.

• Negative: Instances correctly recognized by both models
with confidence above threshold 𝛾 , implying that context
does not play a critical role in their identification.

• Excluded: Instances not fitting into the above categories
are excluded. The impact of context on these instances is
uncertain, and including them could introduce noise into the
model training process.

When pseudo-labeling the training set, we divide the dataset
into two equal parts. Each part is labeled based on the inference
results obtained from the two models trained on the other half. This
strategy ensures a robust pseudo-labeling process that mitigates
overfitting risks and data leakage from the validation set.

5.2.2 Training. After pseudo-labeling the data points, we train
CARA, a 24-layer cross-modal attention module as our insufficient
context detector via cross-entropy loss. The input to CARA is a
sample image and the corresponding question or statement, and
the output is a binary label denoting whether the sample lacks
sufficient context or not.

5.2.3 Inferencing. When inferencing using CARA, we predict if
a data point lacks sufficient context based on whether CARA’s
prediction score exceeds a dataset-specific threshold 𝜃 .

Note that during both training and inference, the detector op-
erates without access to context. Our goal is to develop a general-
ized detector that maintains high performance and generalizability
across datasets, regardless of whether context is available.

6 EXPERIMENTS
In this section, we present experimental results and analysis to
illustrate the effectiveness of our context selection methodology
and CARA. We first present implementation details, followed by
context selection results and abstention detection results.

6.1 Implementation Details
6.1.1 Base Models. We demonstrate the efficacy of our approach
on two different classes of VLMs: discriminative (VL-BERT[42])
and generative (BLIP [21], BLIP2 [20], MCAN[52], MiniGPT-4 [57],
OFA [49], PNP[43], Prophet[39], and PromptCap[13] ). Generaliza-
tion across models shows that our approach is model-agnostic. We
adhered strictly to the implementation described in the original
papers and repositories of all models.

6.1.2 Training. Fine-tuning of VL-BERT, BLIP, and OFA is done
with 2 NVIDIA-RTX 24 GB GPUs with batch size 32, BLIP2 and
MiniGPT-4 are trained with 2 NVIDIA A100 GPUS with the same

 

Why is Person 0 wet?

Person 0

Inference

Why is Person 0 frustrated?

Person 1

Person 0

VLMC-VLM

CARA

Answer: Person 0 is having 
a bad day.

Positive: Sample 
with insufficient 

context

Answer: Person 0 thinks 
1 is injured .

There is not 
sufficient context 

and I do not 
know the answer.

Decision 
Threshold

Sufficient 
Context

It is 
raining

Insufficient
Context

Labeling

Context

The kid’s hand is covered in blood.

Input

Negative: Sample 
with sufficient 

context

VLM

Input

Excluded:
Inconclusive

C-VLM:✔ 
    VLM:❌

OtherwiseC-VLM:✔ 
    VLM:✔

Figure 4: Top:We usemodels with/without context to pseudo-
label whether instances need context. The labeled data is
then used to train CARA. Bottom: CARA decides whether
to abstain based on whether the input contains sufficient
context.

batch size. The initial learning rates for VL-BERT, BLIP, BLIP2,
MiniGPT-4, and OFA are 7e-5, 1e-5, 2e-5, 3e-5, and 3e-5, respectively.
VL-BERT is trained for 20 epochs, and BLIP is for 10 epochs, while
BLIP2 and MiniGPT-4 are trained for 5 epochs. For OFA, we follow
the original implementation and train a total of 40K steps. Training
of the models takes ∼48 hours. The abstention detector is trained
for 10 epochs with a learning rate of 7e-5.

6.1.3 Context Selection. BLIP, BLIP2, MiniGPT-4, and OFA lack
native RoI functions as in VL-BERT. Thus, to process datasets requir-
ing RoI handling such as VCR and VisualCOMET we adopt Merlot’s
approach [56] of drawing colored highlights around referenced
entities in pixel space, as shown in Figure 2. In our experiments,
we employ a Sentence-BERT [34] as the text encoder for𝑀𝐶 , and a
ViT [8] as the vision encoder. We fuse the global embeddings from
those two encoders’ output via concatenation and apply an MLP
with sigmoid to map the fused feature into a score ranging from 0
to 1.

6.1.4 Abstention Detector. We use a 24-layer cross-modal atten-
tion model as the multimodal abstention detector, following [42] to
initialize and train it on datasets labeled with the pseudo-labeling
method described in Section 5.2. However, this results in an unbal-
anced training set with significantly more negative data points. To

2024-04-13 11:27. Page 5 of 1–10.
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Figure 5: (a) Ablation study for window size. The peak in the accuracy indicates the optimal window size. (b) Ablation study for
selection number. We allow the VLM to observe multiple contexts within the window size. The peak in the curve indicates
selecting 2 out of 3 using the probabilistic selection method results in the highest evaluation result.

address this, we apply loss weighting during training. Our exper-
iments show increasing the weight of positive data points in the
loss by six results in the highest evaluation performance.

The CARA tailored for the Visual SWAG and VCR tasks are
trained on their respective datasets. However, since VisualCOMET
is a generative dataset without a binary correctness measure, we
utilize the CARA trained on VCR for it instead. In practice, we
utilize heuristics rules 1 integrating the confidence scores of the
VLM and CARA’s prediction to obtain the best model performance
over downstream tasks.

When conducting confidence-driven pseudo-labeling, the hyper-
parameters for filtering thresholds, 𝛾 , is 0.7 and 𝜇 is 0.5.

6.2 Context Selection Results
To determine the best way to integrate context into VLU tasks, we
first perform extensive ablation experiments. We analyze various
components of our context selection method, including modalities,
window size, number of selected frames or scripts, and selection
strategies. Finally, we apply our method to benchmark approaches.

Table 1: (a) Ablation of context and selection modality on
Visual SWAG. (b) Ablation of context selection methods. The
top half selects context using language models. The bottom
half tests the effect of contexts based on the index.
(a) Context and SelectionModality

Context Selection Acc.

No context N/A 74.20

Text Text 78.01
Text Image 77.87
Text Text+Image 77.78

Image Text 75.28
Image Image 74.97

Image+Text Text 77.57
Image+Text Image 76.43

(b) Selection Strategy

Method V. SWAG VCR

Embedding Sim. 76.91 72.44
Prob Selection 78.4 73.78

Random 76.79 71.43
Index -1 77.86 71.76
Index -2 77.25 71.01
Index -3 76.15 70.23

6.2.1 Data Modality Ablation. To ensure the best context utiliza-
tion, we examine which modalities are most effective for both
selecting relevant context and integrating it into VLMs. Table 1a
shows results from experiments over VL-BERT with different in-
put and output modalities for our context selection module. The
1Please refer to the Supplementary Materials for the detailed implementation steps.

Table 2: Experiment results of VLMs on Visual SWAG, VCR,
and VisualCOMET with/without context. Models with Prob
Selection (Prob.) show significant improvement over the base-
lines. VL-BERT cannot be trained for generative tasks, so
results on VisualCOMET are not shown.

Model V.SWAG VCR VisualCOMET
Acc. Acc. BLEU4 CIDER METEOR

VL-BERT 74.20 70.18 - - -
VL-BERT+Prob. 78.40 73.78 - - -

BLIP 62.65 69.03 0.1098 0.4468 0.1656
BLIP+Prob. 63.22 70.74 0.1147 0.4595 0.1674

BLIP2 81.30 78.20 0.1120 0.4492 0.1648
BLIP2+Prob. 84.36 81.32 0.1163 0.4612 0.1672

OFA 54.07 69.35 0.1329 0.4446 0.1527
OFA+Prob. 59.44 73.20 0.1354 0.4642 0.1558

MiniGPT-4 80.82 76.66 0.1189 0.4503 0.1653
MiniGPT-4+Prob. 83.88 79.28 0.1217 0.4634 0.1679

Table 3: Performance Analysis of CARA on CASE. This table
showsCARA’s detection accuracy on theCASE Set for pseudo-
labeled data from VCR and Visual SWAG, highlighting the
model’s effectiveness and generalizability in detecting sam-
ples with insufficient context.

Method Pseudolabelled
Data Source CASE-VCR CASE-V.SWAG

CARA VCR 75.69 64.55
V.SWAG 54.09 73.05

Selector-MaxProb - 51.03 50.1
Selector-MLP - 54.82 53.84

Table 4: Experiment results of CARA.We report the improved
performance via applying CARA over VLMs across bench-
marks. * indicates the performance obtained via applying
CARA trained on VCR.

Model V.SWAG VCR VisualCOMET
Acc. Acc. BLEU4 CIDER METEOR

VL-BERT 73.72 70.13 - - -
VL-BERT+CARA 77.04 (74.76* ) 73.40 - - -

BLIP2 81.30 78.20 0.1120 0.4492 0.1648
BLIP2+CARA 82.93 79.77 0.1179 0.4642 0.1674

2024-04-13 11:27. Page 6 of 1–10.
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Table 5: Generalization of CARA. We apply our abstention
detector on base models across various VL benchmarks.

Model VQA v2 GQA OKVQA A-OKVQA
+CARA +CARA +CARA +CARA

Zero-shot
BLIP2 62.5 64.9 46.33 47.57 34.68 36.55 43.94 45.00
PNP 57.52 60.42 35.68 36.96 26.98 28.54 27.78 28.43

Prophet - - - - 61.1 62.28 58.20 58.37
PromptCap - - - - 60.44 61.54 60.43 60.59
MCAN - - - - 53.05 53.63 51.97 52.09

Table 6: Verification of Abstained Samples by Human Review.
Values are expressed as percentages. “Abstained" refers to
the total percentage of validation samples from which the
model withheld a prediction. “Ambiguous" and “Insufficient"
indicate the percentages of these abstained samples verified
by humans as ambiguous or lacking sufficient context, re-
spectively. Note that samples identified as lacking sufficient
context are also considered ambiguous, but not vice versa.

Abstention VQA v2 GQA OKVQA A-OKVQA

Abstained
CARA

10.90 5.78 28.77 5.12
Ambiguous 69.00 70.00 64.00 69.00
Insufficient Context 47.00 42.00 46.00 53.00

Abstained
Selector-MLP

21.07 17.05 34.08 25.08
Ambiguous 23.00 16.00 25.00 17.00
Insufficient Context 18.00 14.00 20.00 16.00

“Selection modality” column explores the modality used to select
context and “Context Modality" refers to the modality of selected
context 2. We find that using text as both the selection and context
modality is the most effective approach. This trend holds across
different context modalities (image, text, or both).

Regardless of the selection modality, we find adding visual con-
text typically leads to a performance drop. Using text alone for
context consistently yields the best results. While the visual context
may offer rich information, our findings suggest it often introduces
noise, which hurts performance. This highlights an opportunity
for future research in integrating multimodal context in VLU tasks.
However, one critical finding is that our approach never decreases
the performance of the VLM, even in the absence of text for selec-
tion or context. To perform this ablation, we use a window size of 3,
select one context unit, and use our probabilistic selection method.

6.2.2 Window Size Ablation. We next experiment with different
context window sizes for VL-BERT on the Visual SWAG and VCR
datasets. In this experiment, we limit the number of selected context
units to 1, and the window size can range from 0 (no context) to 7.
Figure 5a shows how VL-BERT’s performance varies with differ-
ent window sizes. Our results indicate that models with nonzero
window sizes outperform the baseline (window size of 0). However,
performance plateaus and eventually decreases with excessively
large window sizes. The peak accuracies on both VCR and Visual
SWAG datasets suggest that their optimal window sizes are 3.

2Please refer to the Supplementary Materials for details.

6.2.3 Selection Number Ablation. Next, we analyze the impact of
the amount of context on model performance. Figure 5b presents
the results of training VL-BERT, BLIP2, and MiniGPT-4 on VCR and
Visual SWAG datasets with different numbers of selected contexts
over a window size of 3. In this setup, 𝑀𝑐 considers all possible
combinations of concatenating 𝑟 context from 𝑛 available options
arranged temporally rather than being limited to a single optimal
context. Themodels achieved their best performance across all three
datasets with a selection number of 2. Notice the drop at the right
end of each graph, where the selection number equals the window
size. This extreme scenario inputs all the contexts inside the window
without a context selection module and shows the importance of
our selection module for improving context utilization.

6.2.4 Selection Strategy Ablation. In Table 1b, we compare context
selection strategies with VL-BERT to determine the most effective
one. The bottom of the table presents results from heuristic methods
based on context indices, while the top part explores dynamic se-
lection strategies leveraging the embedding similarity. More specif-
ically, we can rely on sentence similarity between the question and
text context using Sentence-BERT [34] after determining textual
modality as the optimal selection modality. Both the embedding
similarity method and heuristic methods are notably outperformed
by our jointly trained model, the probabilistic context selection
method. In this comparison, selection methods are limited to a
window size of 3 and 2 selected contexts.

6.2.5 Benchmark Comparison. We apply our probabilistic context
selection approach to various base models and report the results in
Table 2. With our probabilistic selection method (+ Prob.), all five
base models can generally improve their performance across three
tasks. Furthermore, the base models can achieve SOTA scores on
VisualCOMET with our selection method. These results verify the
benefits of incorporating contextual information into VLU tasks
and the effectiveness of our method.

6.3 Abstention Detector Results
In this section, we discuss the effect of our abstention detector by
comparing the performance of VLMs with and without CARA.

6.3.1 Evaluation of Detection Accuracy for Samples with Insuffi-
cient Context. Building on the confidence-driven pseudo-labeling
method outlined in Section 5.2.1, we assembled a small data pool of
500 positive and 500 negative image-question pairs from the VCR
validation set and a similar one from Visual SWAG. These datasets
were evaluated by Amazon Mechanical Turk workers to ascertain
their ambiguity 2. With this curated data, we created the Context
Ambiguity and Sufficiency Evaluation (CASE) Set, spanning both
benchmarks to evaluate the efficacy of abstention methods in de-
tecting samples with insufficient context.

We compare CARA to two established methods [50]: Selector-
MaxProb, which abstains based on a predefined confidence thresh-
old, and Selector-MLP, which predicts the likelihood of correct
predictions using a Multilayer Perceptron module from an image
and question. As demonstrated in Table 3, CARA exhibits high detec-
tion superior accuracy across these evaluation sets. Notably, when

2024-04-13 11:27. Page 7 of 1–10.
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Table 7: Abstention evaluation metrics on VQA v2. We show the system risk R, effective reliability Φ1, and coverage C of three
methods. The arrows following the metrics indicate the direction of improvement (for example (↓) indicates lower the better).
Risks in red are higher than tolerance, and metrics are highlighted in blue when CARA outperforms the baseline methods.

VLM Method Risk Tolerance 𝑟 = 10% Risk Tolerance 𝑟 = 30% Risk Tolerance 𝑟 = 50%
R(↓) Φ1 (↑) C(↑) R (↓) Φ1 (↑) C(↑) R (↓) Φ1 (↑) C(↑)

BLIP2
Selector-MaxProb 1.4 5.0 5.2 4.9 18.7 21.2 8.5 29.3 36.8
Selector-MLP 2.3 7.9 8.7 7.4 25.1 30.2 11.7 36.0 46.2
CARA 2.6 10.0 10.7 8.8 31.1 38.8 13.1 39.0 56.3

PNP
Selector-MaxProb 29.5 2.3 7.3 35.5 12.1 45.8 41.6 23.2 79.5
Selector-MLP 29.0 9.8 11.6 35.4 23.5 48.9 41.4 29.8 78.5
CARA 28.9 13.6 15.4 36.6 28.6 51.3 41.8 33.5 80.1

trained with the pseudo-labeled data from VCR, CARA also demon-
strates strong performance on the CASE set of Visual SWAG, un-
derscoring its generalizability. Moreover, the gap between CARA’s
performance and human judgment (oracle accuracy) underscores
the ongoing challenges in detecting samples with insufficient con-
text and highlights the value of the CASE set for future research.

6.3.2 Performance Enhancement with CARA. We compare the per-
formance of baseline VLMs with and without CARA across three
VLU tasks in Table 4. When using CARA (+CARA), we calculate
the accuracy of the baseline VLM only in instances where CARA in-
dicates sufficient context for accurate prediction. The results show
that CARA results in a significant improvement in performance
across all three tasks. Surprisingly, adding CARA can approach or
even exceed the benchmarks set by context-aware models (refer-
enced in Table 2), showing that CARA adds substantial value for
multimodal abstention.

6.3.3 Generalization Across VLU Benchmarks. We tested CARA’s
generalizability across four additional VLU benchmarks: VQA v2,
GQA, OKVQA, and A-OKVQA. Using the CARA trained on VCR
for assessment, we found that CARA significantly improved the
performance of baseline VLMs across various tasks and models, as
shown in Table 5.

If we further investigate the data points filtered out by CARA and
examine them by humans3, as in table 6, we can observe that the
majority of data points filtered out by CARA consist of ambiguous
questions and most of them lack sufficient context for a determined
answer. These results demonstrate CARA’s effectiveness in enhanc-
ing model performance across benchmarks and underscore the
key problem of instances lacking sufficient context within these
benchmarks 4.

6.3.4 Benchmarking Risk and Coverage. Previous abstention strate-
gies or selective prediction systems [7, 9] were designed to optimize
the balance between risk and coverage, where risk refers to the er-
ror rate for the predictions made, and coverage quantifies the total
number of predictions issued. An optimal abstention strategy aims
to minimize risk while maximizing coverage to the greatest extent
possible. We assess the risk (R) and coverage (C) performance met-
rics of CARA compared to previous abstention strategies. Our goal
is to minimize risk while maximizing coverage. We also evaluate the

3Please refer to the Supplementary Materials for the detailed implementation steps.
4The verification results of abstained samples by human review over VCR, Visual-
COMET, and Visual SWAG can be found in the Supplementary Materials.

effective reliability (Φ𝑐 ) of CARA, rewarding accurate predictions
and penalizing incorrect responses.

Table 7 presents the evaluation results with varying risk toler-
ance levels (i.e. how much risk a model accepts before abstention).
We observe that in most cases CARA’s R’s system risk is roughly
on par with existing methods while achieving significantly higher
reliability and effective coverage for both BLIP2 [20] and PNP [43].

7 QUALITATIVE EXAMPLES

Context: As he aims his gun at someone and someone. 
Someone gets out of his car.

C-VLM: Person 0 may be equipped to respond to the 
threat.
VLM: Person 0 is a bold person that doesn't follow the 
norm.

Person 0

C-VLM: Try to stop the fight.
VLM: Walk away from Person 1.

Person 2

Answers References: Unloading, crossing street, 
walking, waiting

Person 1

Context: All four guys wrestle. They struggle, tangled 
together.

Effective Context in VLU

Context-Aware Abstention

Question: Why is Person 0 more defiant? 

Question: What’s after Person 2 is making a concerned 
face as she looks at Person 1?

Question: Why are people standing by the trucks?

VLM: Advertising.
VLM+CARA: There is not sufficient context and I do 
not know the answer.

Figure 6: Qualitative Examples. Correct answers are high-
lighted in green . Incorrect answers are highlighted in red .

Figure 6 shows qualitative examples of effective context in VLU
(top) and context-aware abstention (bottom).

8 CONCLUSION
In this paper, we discussed the issue of insufficient context grap-
pling existing VLU benchmarks and proposed strategies to effec-
tively integrate context, when available, or abstain from speculative
prediction in case of samples with insufficient context. We also con-
tributed datasets to enable further exploration of this problem.

9 LIMITATION
Please refer to the LIMITATION section in the Supplementary Ma-
terials for a detailed discussion.
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