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MVPbev: Multi-view Perspective Image Generation from BEV
with Test-time Controllability and Generalizability

Anonymous Author(s)

ABSTRACT
This work aims to address the multi-view perspective RGB genera-
tion from text prompts given Bird-Eye-View(BEV) semantics. Unlike
prior methods that neglect layout consistency, lack the ability to
handle detailed text prompts, or are incapable of generalizing to
unseen view points, MVPbev simultaneously generates cross-view
consistent images of different perspective views with a two-stage
design, allowing object-level control and novel view generation at
test-time. Specifically, MVPbev firstly projects given BEV seman-
tics to perspective view with camera parameters, empowering the
model to generalize to unseen view points. Then we introduce a
multi-view attention module where special initialization and de-
noising processes are introduced to explicitly enforce local consis-
tency among overlapping views w.r.t. cross-view homography. Last
but not the least, MVPbev further allows test-time instance-level
controllability by refining a pre-trained text-to-image diffusion
model. Our extensive experiments on NuScenes demonstrate that
our method is capable of generating high-resolution photorealistic
images from text descriptions with thousands of training samples,
surpassing the state-of-the-art methods under various evaluation
metrics. We further demonstrate the advances of our method in
terms of generalizability and controllability with the help of novel
evaluation metrics and comprehensive human analysis. Our code
and model will be made available.

CCS CONCEPTS
• Computing methodologies→ Scene understanding; Computer
vision tasks.

KEYWORDS
Test-time controllability, cross-view consistency, image generation

1 INTRODUCTION
Multi-view perspective images are beneficial for autonomous driv-
ing tasks [2]. Nowadays, multi-view cameras, including onesmounted
in the front and on the side, have become basic requirements in
large driving datasets, such as NuScenes [2], Argoverse [4] and
Waymo [26]. Typically, images from multiple cameras’ views are
perceived and further represented in Bird-Eye-View(BEV) [32],
where downstream tasks such as prediction and planning take place
later on [7, 19]. Intuitively, the BEV allowsmore interpretability as it
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Figure 1: Our MVPbev is able to generate multi-view perspec-
tive images with BEV semantics and text prompts. More im-
portantly, MVPbev allows test-time view-point and instance-
level control, significantly improving its generalizability.

provides a tangible interface to the real world, thus is beneficial and
practical for higher-level modeling and decision making [16, 17].

Though being of great importance in autonomous driving tasks,
reliable BEV representation requires a large amount of data during
the training stage, which can be time-consuming to obtain or an-
notate. One intuitive solution to this data issue is to obtain diverse
perspective RGB images as well as their corresponding BEV seman-
tics with generative models. Diverse yet plausible BEV semantics,
compared to their corresponding perspective RGB or semantics,
are much easier to simulate in a realistic manner with the help
of parametric representations [32]. To this end, it is natural and
practical to assume that BEV semantics, rather than perspective
RGB images, are given. Then the remaining question is to generate
cross-view visually and semantically consistent photorealistic RGB
images with known BEV semantics.

Despite the progress of generativemodels with given constraints [34],
there are three main drawbacks in existing attempts to address this
cross-view image generation problem [9, 27, 29]. Firstly, existing
frameworks rely heavily on the training samples, leading to unsat-
isfactory test-time controllability. For instance, changing camera
poses or providing extra control on object instance is beyond prior
art. Moreover, cross-view consistency is not well enforced, result-
ing in inconsistent visual effects in overlapping FOVs. Finally, no
thorough human analysis is performed on image generation tasks,
resulting in un-interpretable comparison results.
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To this end, we propose a novel two-stage method MVPbev that
aims to generate controllable multi-view perspective RGB images
with given BEV semantics and text prompts by explicitly enforcing
cross-view consistency (See Fig. 1.a). Unlike existing work that
lacks the test-time generalizability, MVPbev further allows both
view-point and detailed text prompt changes at test-time, providing
satisfactory performances under human analysis without requir-
ing additional training data. To achieve that, MVPbev consists of
two stages, or view projection and scene generation stages. The
former stage transforms the given BEV semantics to multiple per-
spective view w.r.t. camera parameters. On the one hand, it enforces
global consistency across views with explicit geometric transfor-
mation. On the other hand, such a design decouples the two stages,
allowing the second stage to better capture view-point-invariant
properties. The second stage of MVPbev starts from a pre-trained
stable diffusion (SD) model. By explicitly incorporating a cross-
view consistent module, together with our noise initialization and
de-noising processes design, it can produce multi-view visually
consistent and photo-realistic images, especially at overlapping
FOVs. To further improve the test-time generalizability on objects,
our MVPbev handles foreground instances and background layout
individually, leading to better controllability during inference.

We validate our ideas on NuScenes [2] and follow the standard
split. In contrast to methods that focus on improvements over down-
stream tasks or semantic consistency, we include additional exten-
sive human analysis, especially on visual consistency over overlap-
ping FOVs, across multiple views, and test-time view point and text
prompt changes. We demonstrate that our proposed method not
only provides better test-time controllability and generalizability,
but also gives high-quality cross-view RGB images.

In short, our contribution can be summarized as follows:
• A novel multi-view image generation method that is capable of

producing semantically and visually consistent perspective RGB
images from BEV semantics, with only thousands of images as
training data.

• A more controllable yet extendable algorithm that gives realistic
perspective RGB images.

• State-of-the-art performances on large driving datasets, with
comprehensive human analysis.

2 RELATEDWORK
Image editing [20] and generation [24] are heated topics in com-
puter vision. Though this can be related to a vast literature, we
would focus on two lines of work, conditional image generation
and novel view image synthesis, as they are closely relevant.
Conditional image generation Generative models, e.g., Gauss-
ian Mixture model [23] and Bayesian network [11], have been a
long-term research problem in machine learning and computer
vision as it is able to explain complex data distribution. In par-
ticular, generative models of images are not only of great impor-
tance for unsupervised feature learning, but also enable applications
such as image editing [13, 20]. With the rise of deep learning tech-
niques, such as auto-regressivemodels [3], variational autoencoders
(VAEs) [14], and generative adversarial networks (GANs) [10], as
well as the emerging of huge amount of data [8], we observe photo-
realistic images with very good quality. Among them, conditional

GANs have been well explored where various constraints, includ-
ing discrete labels, text, and images, are considered. More recently,
stable diffusion models [24] are widely used to generate detailed
images conditioned on text descriptions. Compared to the prior
art, they not only demonstrate SOTA image generation quality,
but also showcase great generalizability with the help of founda-
tion models [15]. Later on, Controlnet [34] largely improves the
overall performance of diffusion models without losing the orig-
inal robustness by allowing a diverse set of conditional controls,
e.g., depth, semantics, or sketches. Despite impressive progress,
multi-view or cross-view text-to-image generation still confronts
issues of computational efficiency and consistency across views. To
this end, MVDiffusion [29] proposes a novel correspondence-aware
attention module to create multi-view images from text with the
ability to maintain global correspondence. Though providing good
multi-view RGB images, MVDiffusion fails to generalize to more
dramatic viewpoint changes or smaller overlapping areas. Perhaps
the co-current work, including BEVGen [27], BEVControl [33], and
MagicDrive [9], are the closest to ours. The first one generates
multi-view visual consistent images based on the BEV semantics by
employing an auto-regressive transformer with cross-view atten-
tion. While the last two work with image sketches/semantics and
text, and utilizes cross-view cross-object attention to focus more
on consistency on individual contents. However, none of existing
work allows test-time generalizability, e.g., view-point changes or
detailed instance-level text prompts. Nor do they conduct human
analysis on image generation quality. In contrast, we propose to
exploit both global and local consistency to leverage semantic and
visual coherency, together with our training-free objects control
method to enforce detailed instance-level control. Moreover, we
provide comprehensive human analysis to demonstrate the effec-
tiveness of our method in a more reliable manner.
Novel view image synthesis There are two broad categories
in which the novel view synthesis methods can be divided into
geometry-based and learning-based approaches. The former tries
to first estimate (or fake) the approximate underlying 3D structures,
followed by applying some transformation to the pixels in the input
image to produce the output [1, 36]. The latter, on the other hand, ar-
gues that novel view synthesis is fundamentally a learning problem,
because otherwise it is woefully under-constrained. More recently,
neural radiance fields (NeRF) [18], which belong to the second cate-
gory, have shown impressive performance on novel view synthesis
of a specific scene by implicitly encoding volumetric density and
color through a neural network. Starting from small-scales [18],
scene-level NeRFs, such as Block-NeRF [28], are also proposed such
that important use-cases, e.g., autonomous driving [2] and aerial
surveying [12] are enabled by reconstructing large-scale environ-
ments. In contrast, our method takes the input as BEV semantics
and text description and outputs multi-view perspective RGB.

3 OUR METHOD
Our method aims to generate multi-view perspective images from
text prompts given pixel-level BEV semantic correspondences. Specif-
ically, we denote the BEV semantics as B ∈ R𝐻𝑏×𝑊𝑏×𝑐𝑏 , with the
ego car assumed to be located at the center. And 𝐻𝑏 ,𝑊𝑏 , and 𝑐𝑏
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Figure 2: MVPbev consists of two stages. The first stage projects BEV semantics to perspective view with camera parameters to
maintain global semantic consistency. The second stage parses both perspective semantics and text prompts, and generates
multi-view images with both visual consistency and test-time instance-level control by explicit enforcing in latent.

are the height, width, and number of semantic classes of B, respec-
tively. Our goal is to generate a set of perspective RGB images
with resolution 𝐻 by𝑊 , or {𝐼𝑚}𝑚 in particular, under 𝑀 virtual
camera views. And the 𝑚-th perspective image is referred to as
𝐼𝑚 ∈ R𝐻×𝑊 ×3 where𝑚 = {1, . . . , 𝑀}. In particular, we assume the
intrinsics, extrinsic rotation, and translation of the𝑚-th camera are
given and denote them as 𝐾𝑚 , 𝑅𝑚 , and 𝑇𝑚 , respectively.

As described above, we obtain visually coherent multi-view im-
ages by leveraging both global and local consistency in implicit and
explicit manners. Specifically, our method consists of two stages.
Our first stage takes BEV semantics B as well as {𝐾𝑚, 𝑅𝑚,𝑇𝑚}𝑚 as
input and projects BEV semantics to each perspective view w.r.t.
its camera parameter set, denoting as 𝑆𝑚 ∈ R𝐻×𝑊 ×𝑐𝑏 for the𝑚-th
view. The second stage parses {𝑆𝑚}𝑀

𝑚=1 and text prompts as in-
put. And it produces RGB images from 𝑀 perspective views. 𝐼𝑚
denotes the generated RGB image from𝑚-th view. More specifi-
cally, our first projection stage enforces global semantic consistency
between BEV and perspective view explicitly with the help of geo-
metric transformation. Meanwhile, the generation stage imposes
consistency implicitly among overlapping perspective views with
a multi-view attention module. Finally, we propose to explicitly
enforce the visual cues at overlapping FOVs to be coherent with
our novel training initialization and de-noising designs. The overall
pipeline of MVPbev can be found in Fig. 2. We provide more details
of the first and second stages in Sec. 3.1 and Sec. 3.2 respectively.
And the model training process is described in Sec. 3.3.

3.1 Semantic-consistent view projection
Assuming that diverse yet plausible BEV semantics B can be ob-
tained effortlessly with existing simulation methods [32], the first
fundamental problem that our method should address is to main-
tain cross-view semantic consistency from B to perspective images

{𝐼𝑚}𝑚 . Secondly, contents at overlapping FOVs should also be co-
herent. For example, not only the background classes, such as build-
ings or trees, but also the foreground road participants, should be
of similar appearance when they appear in different views. To this
end, we first propose to project BEV semantics to𝑀 perspectives
view with camera parameters, which generates {𝑆𝑚}𝑀

𝑚=1 perspec-
tive semantics. Compared to existing work [34], our projection step
ensures semantic-wise consistency between BEV and perspective
views with the help of geometry constraints, leading to fewer accu-
mulative errors at the generation step. And our projection results
can be found in Fig. 3.

3.2 View consistent image generation
Simply working on individual perspective semantics may lead to in-
consistent content across different views, especially at overlapping
FOVs. For instance, the buildings and the vegetation that appear at
the FOVs among multiple views, e.g., the front, front-right, back,
and back-left, have different appearances. This is due to the lack
of interactions among cross-view cameras. We would like to note
that such inconsistency would be reflected by neither BEV layout
segmentation nor object detection metrics as it has influences on
background classes only.

Motivated by this, we propose to focus on these overlapping
areas both methodologically and experimentally. As for our method,
we apply strong coherency constraints on the background content
by estimating the homography of overlapping areas, followed by
a multi-view attention module to implicitly enforce the styles at
various views to be coherent w.r.t. estimated corresponding points.
In this case, appearance consistency can be enforced not only on
the background layout areas where the semantics are provided, but
also on the other regions where control signals are missing. As for
the evaluation purpose, we introduce human analysis to provide
reliable evaluations on whether the generated images, especially
the overlapping regions, are realistic or not. We demonstrate that

3



349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ACM MM, 2024, Melbourne, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: We visualize our BEV project process. Given a BEV
semantic map B, we project it to multiple perspective views.
We overlay the semantics on the original RGB images in
perspective view for better comparison.

our proposed method copes with background consistency well (See
Sec.4 for quantitative and qualitative results).

Homography estimation. We take the initial step towards en-
forcing visual consistency at overlapping FOVs by estimating the
overlapping regions. To this end, we propose to compute the ho-
mography between images with overlapping FOVs. As illustrated in
many driving datasets, one view generally overlaps with views on
its left and right sides. Therefore, for the𝑚-th view, we only need to
consider𝑚𝑙 = mod (𝑚+𝑀−2, 𝑀) +1 and𝑚𝑟 = mod (𝑚+1, 𝑀),
which are the left and right views of the𝑚-th view respectively.
Then we estimate the homography from view𝑚𝑟 to view𝑚 and
denote the mapping function as 𝐻𝑚 . Consequently, the 𝑝 = [𝑥,𝑦]
coordinate in the𝑚-th view will be mapped to coordinate 𝑝 = [𝑥,𝑦]
in view𝑚𝑟 . Or 𝑝 = 𝐻𝑚 (𝑝). Similarly, we define an inverse mapping
𝐻𝑚 that maps 𝑝 in 𝐼𝑚𝑟

to 𝑝 in 𝐼𝑚 .

Multi-view attention module. What makes a set of views unrealis-
tic? The first and foremost thing is the incoherence among images.
In other words, realistic ones must appear consistent, as if they
were taken in the same physical location at the same time of a day.
More specifically, the visual styling of this set of images needs to
be consistent such that all of them appear to be created in the same
geographical area (e.g., urban vs. rural), time of day, with the same
weather conditions, and so on. To this end, we introduce a multi-
view attention module such that when generating the RGB from
the𝑚-th view, the views on its left and right sides are considered.
For a token located at position 𝑝 in the feature map 𝐹𝑚 generated

Figure 4: Ourmulti-view attentionmodule implicitly exploits
the cross-view consistency. Specifically, it aggregates infor-
mation from the target feature pixels in neighbour views,
which are obtained by homographic transformation, to the
source.

from 𝑚-th view, we compute the attention output based on the
corresponding pixels 𝐾 (𝑝) in the feature maps generated by view
�̄� ∈ {𝑚𝑟 ,𝑚𝑙 }, where 𝑝∗ ∈ 𝐾 (𝑝) denotes a 𝐾 by 𝐾 region centered
at 𝑝 .

Mathematically, we follow a similar formulation as in [30] and
define our multi-view attention module as:

a =
∑̄︁
𝑚

∑︁
𝑝∗
𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 ( [𝑄𝐹𝑚 (𝑝)] ·

[
𝐾𝐹�̄� (𝑝∗)

]
)𝑉𝐹�̄� (𝑝∗), (1)

where 𝑄 , 𝐾 , and 𝑉 are the learnable weights of query, key, and
value matrices respectively. 𝐹�̄� (𝑝∗) = 𝐹�̄� (𝑝∗) +𝑑 (𝐻𝑚 (𝑝∗) −𝑝). We
further denote 𝑑 (·) as a position encoding to the 𝐹�̄� (𝑝∗) based on
the 2D displacement between 𝑝 and 𝐻𝑚 (𝑝∗). As can be found in
Eq. 1, our multi-view attention module aims to aggregate informa-
tion from the target feature pixels 𝐾 (𝑝) to 𝑝 . We provide a simple
illustration of our multi-view attention module in Fig. 4.

3.3 Model training and inference
To train our model, we introduce a multi-view Latent Diffusion
Models (LDMs) [24] loss. Basically, the original LDMs consist of a
variational autoencoder (VAE) with encoder E and decoder D, a
denoising network 𝛿𝜃 and a condition encoder 𝜏𝜃 . The input image
𝐼𝑚 is mapped to a latent space by l𝑚 = 𝜀 (𝐼𝑚), where l𝑚 ∈ Rℎ×𝑤×𝑐 .
We follow the routine to set 𝐻

ℎ
= 𝑊

𝑤 and they both equal to 8.
Later on, the latents will be converted back to the image space by
𝐼𝑚 = D(l𝑚). The denoising network 𝛿𝜃 is a time-conditional UNet,
which leverages cross-attention mechanisms to incorporate the
condition encoding 𝜏𝜃 (c). In our case, c consists of text-prompt and
semantics in perspective view 𝑆𝑚 .

For each training step, we firstly uniformly sample a shared noise
level 𝑡 from 1 to𝑇 for all the multi-view images {𝐼𝑚}𝑀

𝑚=1, denoting
them as {𝜖𝑡𝑚}𝑚 . And 𝜖𝑡𝑚 ∼ N(0, 1). To leverage the cross-view
consistency, we further enforce these noises to be the same if they
correspond to the same pixel. Starting from the first view, or𝑚 = 1,

4
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Figure 5: We explicitly enforce that the noise value of pixels
at overlapping FOV should be consistent across views.

we re-assign value at coordinate 𝑥,𝑦 of 𝜖𝑡𝑚 , or 𝜖𝑡𝑚 (𝑥,𝑦), to 𝜖𝑡𝑚𝑟
(𝑥,𝑦).

And we repeat the process until𝑚𝑟 = 1. We provide one example
set of our initialized {𝜖𝑡𝑚}𝑀

𝑚=1 in Fig. 5. Finally, our model training
objective is defined as:

L := E{l𝑚,𝜖𝑡𝑚 }𝑀
𝑚=1,𝑡,c

[
𝑀∑︁

𝑚=1
∥𝜖𝑡𝑚 − 𝛿𝑚

𝜃
({𝑙𝑡𝑚}, 𝑡, 𝜏𝜃 (c)∥2

2

]
, (2)

where 𝛿𝑚
𝜃

is the estimated noise for the𝑚-th image. And we use
𝑙𝑡𝑚 to denote the noisy latent for the𝑚-th image.

At sampling time, the denoising (reverse) process generates sam-
ples in the latent space, and the decoder D produces RGB images
with a single forward pass. To incorporate our idea that pixels at
overlapping regions should be visually similar even at different
views, we again employ the value assignment process. Similar to
the noise initialization step, we re-assign value at coordinate 𝑥,𝑦 of
𝑙𝑡𝑚 , or 𝑙𝑡𝑚 (𝑥,𝑦), to 𝑙𝑡𝑚𝑟

(𝑥,𝑦). This re-assignment starts from𝑚 = 1
and does not stop until𝑚𝑟 equals to 1. In experiments, we observe
that our design would improve the visual results if applied to up to
3×𝑇

5 denoising steps. Otherwise, the performance deteriorates.
Inference As claimed in above, MVPbev can be extended with
instance-level controllability. Specifically, Our MVPbev allows the
user to click on the target instance and provide color-specific re-
quirements. To achieve this, we propose a special mechanism for
multiple foreground objects control, which manipulates the re-
sponse of cross-attention layers to accurately guide instance-level
synthesis. Assuming that instance-level masks can be obtained
at each view with either existing methods [5] or simple retrieval.
Specifically, we first obtain the instance-level and scene-level la-
tents individually with its paired prompt. Then they are effectively
combined with those binary instance-level mask, leading to more
spatial-consistent performance. Please note that such ability on
foreground objects of MVPbev are training-free, leading to far bet-
ter extendability and test-time controllability. We refer the readers
to supplementary for more details.

4 EXPERIMENT
4.1 Experiment setup
Dataset We validate our ideas on NuScenes dataset [2] where full
360-degree coverage provided by six cameras is available. Specifi-
cally, it consists of 1000 examples of street-view scenes in Boston
and Singapore, each of which lasts for 20s and is captured at 12Hz.
Besides 1.4M camera images, NuScenes also provides multi-modal

data, including both global map layers and 3D object bounding
boxes annotated on 40k keyframes. We follow the standard split
of 700/150/150 for training, validation, and testing. We report our
results on the validation set of Nuscenes and follow the split of [2]
where 600 sets of images are used.
Evaluation metricsWe follow the design of [29] to include image
quality of generated images as well as their visual consistency in
our evaluation metrics. In addition, semantic consistency is also
valued in our metrics as it reflects the synthesis quality of different
semantic categories.
• Image quality is measured by Fréchet InceptionDistance (FID) [6],

Inception Score (IS) [25], and CLIP Score (CS) [22]. In particular,
FID is based on the distribution similarity between the features
of the generated and real images. The IS measures the diversity
and predictability of generated images. Finally, CS measures the
text-image similarity according to pre-trained CLIP models [22].

• Visual consistency provides pixel-wise similarity measurements
on overlapping regions. We borrow the idea from Peak Signal-to-
Noise Ratio (PSNR) where we first compute this PSNR between
all the overlapping regions, and then compare this “overlapping
PSNR” for ground truth images and generated images. The higher
this value is, the better visual consistency will be. Note that the
process of computing "overlapping PSNR" is based on estimated
homography matrices, it’s possible that generated image yields
higher values than ground truth image.

• Semantic consistency measures the pixel-wise semantic consis-
tency between generated images and ground truth. In our case,
we utilize the Intersection-over-Union (IoU) score. Particularly,
we report the semantic IoU both in perspective view and BEV. As
for the former, we apply pre-trained segmentation model [5] on
generated images, leading to semantic predictions in perspective
view. These predictions are then compared with {𝑆𝑚}𝑚 to obtain
IoU in perspective view. As for the latter, we apply pre-trained
CVT [35] to generated images and the BEV IoU is obtained by
comparing predictions from CVT with B.

• Object-level controllability measures how accurately the object-
instance is generated w.r.t. test-time descriptions. Here we report
the averaged color distance Delta-E in CIELAB color space as
well as their standard deviations.
Besides these metrics, we also perform human analysis. We re-

quest humans to decide which method is more visually realistic and
consistent when results from different methods are provided. Please
note that method is anonymous to humans and when compared, we
ensure that the same input control signals are provided to various
methods. Meanwhile, we also conduct experiment with instance-
level controllability. Humans are provided with objects as well as
their targeted color, paired with the generated images. And they
will vote whether the generated objects meet the requirements.
Baselines We select the following two state-of-the-art methods as
our baselines for thorough comparisons:
• SD+ControlNet [24, 34] is a basic yet powerful image generation

model. In our experiment, we work on the projected {𝑆𝑚}𝑚 to
avoid domain gaps from different viewpoints. Starting from a pre-
trained ControlNet [34], this baseline is fine-tuned on NuScenes
training set.

• MVDiffusion [29] is proposed to generate multi-view consistent
images and achieves good performance on tasks like panoramic
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Table 1: Quantitative results and human analysis on NuScenes. We observe a noticeable superiority of our MVPbev.

(a) Quantitative results on NuScenes dataset

Method Training Samples Image Quality Semantics Consistency Visual Consistency
FID↓ IS↑ CS↑ IoUBEV↑ PSNR↑

Reference-score - 6.20 5.77 27.54 0.711 15.37
BEVGen[27] 28130 25.54 - - 0.502 -
MagicDrive[9] 28130 16.20 - - 0.611 -
Controlnet [34] 6000 21.93 4.71 27.02 0.434 12.82

MVD [29] 6000 19.89 4.91 27.07 0.440 12.66
Ours 6000 16.95 6.35 28.79 0.510 20.67

(b) Human analysis on NuScenes dataset.

Comparisons Win Undecided Lose

Cross-view
Consistency

MVD v.s. Controlnet .26 .50 .25
Ours v.s. Controlnet .73 .27 .00

Ours v.s. MVD .71 .29 .00
Camera Pose
Consistency Ours v.s. MagicDrive .61 .31 .08

Figure 6: Our MVPbev is able to achieve the most visual and semantic consistent images w.r.t. input control signal. We highlight
the overlapping area and road boundary in orange bounding boxes and green lines.

image generation. However, it is designed neither for dramatic
view changes, e.g., BEV to perspective view, nor for semantic
control signals. To this end, we follow our pipeline to first map
BEV semantics to perspective view and then update MVDiffusion
with a pre-trained ControlNet [34] backbone. Specifically, We
re-implement [29] based on its official code and fine-tune it on
NuScenes training images.

• BEVGen [27] is the first step towards road scene generation,
where the control signals are limited to BEV semantics and cam-
era parameters. The full dataset is used for training.

• MagicDrive [9]is the most recent published work on road scene
generation. We use their released model for efficient comparison.
Please note that we use only 20% images uniformly sampled from
dataset for training while they use the full dataset.

4.2 Implementation Details
Our BEV semantics B reflects an 80m × 80m space with ego car
located at the center position. 𝑐𝑏 represents the drivable area in
NuScenes. The resolution of the perspective image is𝐻 ×𝑊 = 256×
448, leading to ℎ×𝑤 = 32× 56. As for the hyper-parameters, we set

𝑀 and 𝐾 to 6 and 3 respectively. We have implemented the system
with PyTorch [21] while using publicly available Stable Diffusion
codes [31]. Specifically, it consists of a denoising UNet to execute
the denoising process within a compressed latent space and a VAE
to connect the image and latent spaces. The pre-trained VAE of
the Stable Diffusion is maintained with official weights and is used
to encode images during the training phase and decode the latent
codes into images during the inference phase. In experiments, we
use a machine with 1 NVIDIA A40 GPU for training and inference.
Batch size is set to 6 and 𝑇 equals to 50. We refer the readers to
supplementary for full implementation details.

4.3 Multi-view BEV generation
We compare ourMVPbevwith baselines and report the performance
in Table 1. The first row in this table is obtained on ground truth
images. For instance, we split the ground truth validation images
into two halves, and then obtain the FID score by taking one split
as ground truths and the other half as generated images. As for
the IoU scores, we apply the Mask2Former [5] and CVT [35] on
validation images and compare their predictions with ground truths
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Figure 7: Qualitative results of MVPbev. We provide three sets of examples. The leftmost column consists of input signals,
while the 2nd to 7th columns are images from different perspective views.

{𝑆𝑚}𝑚 and B. As can be found in this table, our MVPbev almost
always ranks first among comparable baselines, such as Controlnet
and MVD. And we even achieve comparable results w.r.t. SOTA
methods that are trained with far more training data.

We also provide visual comparisons to existing baselines in Fig. 6.
The top row showcases the bev semantics B as well as the pro-
jected semantics {𝑆𝑚}𝑀

𝑚=1 in perspective views. We also provide
the ground truths as well as multi-view images generated by other
methods from the second to the fifth row. Our method MVPbev,
compared to other baselines, produces the most consistent per-
spective images, especially at overlapping FOVs. As highlighted
by orange bounding boxes and green lines, our MVPbev not only

Figure 8: MVPbev is able to handle test-time instance-level
controllability with various color requests.

generates perspective images that are consistent with semantic
guidance, but also maintains high visual consistency across multi-
ple views. Such consistency is more visible and valuable for pixels
that appear in different views.
Qualitative results Besides quantitative results, we also provide
qualitative examples in Fig. 7. As can be found in this figure, our
MVPbev is able to generate visually consistent images from diverse
bev semantics and text prompts. Compared to ground truth, ours
can obtain satisfactory consistency at overlapping FOVs. We refer
the readers to supplementary for more visual examples about the
controllability over BEV and text prompt.

Test-time controllability and generalizability. View-point gen-
eralizability As described before, one of the main drawbacks of
the existing work is the lack of ability in terms of handling view-
point changes at test time. To showcase our ability, we revise the
camera extrinsic during inference and check whether the results
would change accordingly. In practice, we rotate the all𝑀 camera
by {−25◦,−15◦,−5◦, 5◦, 15◦, 25◦} w.r.t. the head direction of the
ego car. mimicking potential different setups of camera mounting.
This is equivalent to changing the {𝑅𝑚}𝑚 in our input signal. We
randomly generate 200 sets of images for each rotation angle and
provided the generated results from MagicDrive [9] and ours to
humans. Qualitative results are provided in Fig. 9. We overlay the
projected semantics in each view for better visualization. Not sur-
prisingly, prior art merely follows the control signal. While MVPbev
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Figure 9: MVPbev is robust to camera pose changes without re-train the entire model, providing better test-time generalizability.

Figure 10: The Delta-E distance between the ground truth
and generated color on our controlled instances.

gives superior results considering the semantics, demonstrating bet-
ter test-time generalizability. And this observation is also supported
by our detailed human analysis in Table 1.
Object-level controllability A practical generative model should
be a controllable one. To this end, we conduct another experiment
to showcase the object-level controllability. In this experiment, we
include an additional description of the object color in the original
text prompt and then check whether such control can be reflected in
generated scenes at test time. In experiment, we randomly choose
151 set of images, including 195 object instances, and provide ran-
dom color requests out of seven popular colors for vehicles. We

report our qualitative evaluations in Fig. 10 and qualitative examples
in Fig. 8 respectively. Though the Delta-E seems to be noticeable,
we argue that this is mainly due to the de-noising process where
colors of vehicles are in harmony with the environment, e.g., less
bright in rainy days. This is supported by our visual results as well
as human analysis.

Human analysis. Compared to evaluation metrics, human anal-
ysis provides a more reliable tool for image quality measurement.
Therefore, we conduct a comprehensive human analysis of our
tasks. Specifically, we provide two sets of generated images, which
are generated from two different methods with the same input sig-
nal, to humans. Then we ask them to decide which set of images
is better, considering the image quality and visual consistency. As
can be found in Table 1, our MVPbev outperforms baselines sig-
nificantly, indicating that we can indeed generate photo-realistic
yet consistent images. Meanwhile, we report the test-time view-
point changes by comparing ours to MagicDrive [9], showing that
MVPbev provides better generalizability quantitatively. Finally, we
ask humans to decide whether the generated instance color can
be regarded as the requested one. In our experiment, 93.5% of the
instances are voted as correctly generated. We refer the readers to
supplementary for more details about human analysis.

5 CONCLUSION
Our goal is to generate multi-view perspective RGB from text
prompts given BEV semantics. To this end, we introduce a two-stage
methodMVPbev to first project BEV semantics to perspective views
and then perform image generation w.r.t. both text prompts and
individual perspective semantics. Specifically, we propose a novel
initialization and denoising processes to explicitly enforce local
consistency at overlapping FOVs. Results showcase the superiority
of MVPbev under various metrics and test-time generalizability.
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