
Under review as a conference paper at ICLR 2024

UNSUPERVISED DETECTION OF RECURRENT PATTERNS
IN NEURAL RECORDINGS WITH CONSTRAINED
FILTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Spontaneous neural activity, characterized by the expression of repetitive patterns,1

is crucial for memory, learning and spatial navigation. However, further study of2

these patterns’ functional role has been difficult due to a lack of scalable methods3

for their detection in large recordings. To address this challenge, we propose an4

unsupervised method which relies on backpropagation to optimize the parame-5

ters of a fixed number of spatiotemporal filters used as pattern detectors. We6

demonstrate the scalability and efficiency of our approach for detecting place cell7

sequences in biologically plausible synthetic and real datasets recorded from the8

mouse hippocampus. Our speed benchmarks show that our method significantly9

outperforms prior art, opening new possibilities for the analysis of spontaneous10

activity in larger recordings.11

1 INTRODUCTION12

A fundamental property of biological neural networks – and one that distinguishes them from the13

majority of modern deep neural networks – is the ability to change state not only in response to14

external input, but also spontaneously (Arieli et al., 1996; Beggs & Plenz, 2003). A prominent15

example of this is what is known as "hippocampal replay" (Lee & Wilson, 2002; Foster & Wilson,16

2006; Pfeiffer & Foster, 2013), normally observed in animals during sleep or periods of immobility,17

which represents structured reactivation of neural activity patterns present during a behavioral task18

performed before. The importance of hippocampal replay has been shown to be crucial for memory,19

learning and navigation (Girardeau et al., 2009). In addition, animals’ behavior in response to external20

stimuli depends on the structure of spontaneous activity before and at the time of stimulation (Fiser21

et al., 2004), which raises the intriguing possibility that spontaneous activity might encode sensory22

priors and therefore be a form of biological memory.23

To address questions about the role of structured spontaneous activity, a number of methods have24

been proposed for unsupervised detection of neural activity patterns in the absence of an observable25

behavioral reference. These existing methods perform well and in reasonable time on modestly sized26

datasets. However, the study of spontaneous activity would benefit from the analysis of much larger27

datasets (with hundreds of neurons recorded over several days), which calls for more scalable pattern28

detection methods.29

We introduce an efficient and scalable method for unsupervised detection of sequential patterns of30

neural activity based on optimizing a set of constrained spatiotemporal filters. Distinct from existing31

approaches (e.g. convNMF, seqNMF), we optimize the filters with backpropagation, which allows32

us to take advantage of popular automatic differentiation frameworks and GPU acceleration. To33

reduce the number of learnable parameters, we also propose an alternative formulation of our method,34

in which the filters themselves are parameterized as fixed-width truncated Gaussians. Our speed35

benchmarks show that the method, which we call convSeq, works significanly faster than existing36

pattern detection methods.37

Our main contributions are as follows:38

1. Our method advances the SOTA in terms of speed: given the same dataset, it performs over39

a 100 times faster than similar recently published methods;40
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2. Unlike convNMF and seqNMF, which are conceptually similar to our method, ours provides41

uncertainty estimates for the patterns detected, without requiring multiple optimization runs;42

The rest of the paper is structured as follows. Section 2 offers a brief review of existing methods43

for detecting patterns in neural data. In Section 3 we introduce two formulations of our approach.44

In Section 4 we showcase its ability to detect various patterns in synthetic and real data, as well as45

accuracy and speed comparisons with a selection of other methods. We discuss the limitations and46

future directions in Section 5 and conclude with Section 6.47

2 RELATED WORK48

In general, classic methods working under linear assumptions, such as PCA and ICA (Jutten &49

Herault, 1991), struggle to capture spatio-temporal patterns in neural activity, as they tend to merge50

them into a single "large component” (Peter et al., 2016; Williams et al., 2020). This key limitation51

motivated many previous works which proposed alternative methods for detecting spatiotemporal52

structure in neural data, without using external reference events. For example, Watanabe et al.53

(2019) used edit similarity as a distance metric between potential spike patterns to identify cell54

assembly sequences. Quaglio et al. (2017) utilized conceptual stability to identify repeating spike55

patterns and Schrader et al. (2008); Torre et al. (2016) proposed using an “intersection matrix”56

to detect synchronous spike events (aka synfire chains), albeit in synthetic data. Shimazaki et al.57

(2012) proposed detecting higher-order spike correlations using state-space modeling. More recently,58

Grossberger et al. (2018) proposed a clustering method based on optimal transport, while Williams59

et al. (2020) designed a point process model of spike sequences utilizing a fully probabilistic Bayesian60

framework, and Stringer et al. (2023) proposed sorting neural responses along a one-dimensional61

manifold to expose the patterns.62

The convolutional non-negative matrix factorization (convNMF) proposed by Smaragdis (2004; 2006)63

and first applied to in-vitro neural data by Peter et al. (2016) is conceptually closest to our approach.64

convNMF and its improved derivative, seqNMF (Mackevicius et al., 2019), aim to jointly estimate65

both the templates of the recurrent patterns and the time course of their activity. In contrast, our66

approach, as we describe next, only optimizes the templates (which we call “filters”) and does so67

using backpropagation.68

3 METHODS69

The input to our model is a binary matrix X ∈ {1, 0}N×T , which represents a simultaneous recording70

of N neurons for T time bins (also referred to as “time steps”), such that Xn,t = 1 if there is71

a spike on the n-th neuron in time bin t, and Xn,t = 0 otherwise. We seek to find K 2D filters72

W(k) ∈ RN×M , such that each of them responds preferentially to one of K unknown patterns defined73

here as repeating sequences of spikes. Each of the K patterns repeat inexactly (due to variations in74

the relative timing (jitter) of spikes) an unknown number of times. The choice of M and K depends75

on the length (in time steps) and number of the patterns assumed to be present in the data.76

3.1 FORMULATION WITH DIRECT FILTER OPTIMIZATION77

We first describe how the filters W(k), k ∈ {1, . . . ,K}, can be found by minimizing the following78

loss function:79

L(W) =

K∑
k=1

−Var(x̂(k)) + βTVTV(x̂(k)) + βxcor

K∑
l>k

ρx̂(l)x̂(k) [j] (1)

where x̂(k) = softmax(W(k))∗X, and “*” stands for convolution. The convolution is performed with80

zero padding only along the time dimension to ensure that x̂(k) has shape 1×T . Softmax is computed81

over the time dimension of W(k). TV(x̂(k)) = 1
T

∑T−1
t=1 (x̂

(k)
t − x̂

(k)
t+1)

2 and
∑K

l>k ρx̂(l)x̂(k) [j]82

are total variation and cross-correlation over j time steps, respectively. The first term in Eq. 183

maximizes the variance of the k-th filter’s total response to the data. The idea is that if there exists84
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Figure 1: Original data matrix (A). The optimized filter (D) is sorted (E), and the sorting indices are
used to rearrange the rows of the data matrix to expose the sequences (B). Peaks in x̂(k)

exceeding the significance threshold α (dotted line) indicate significant detections of the pattern (C).
In A, B, D, E the y-axis corresponds to neuron IDs.

a repeating pattern, the right filter (when convolved with the data) will produce peaks at the times85

of that pattern’s occurrence. Importantly, while each filter’s total response stays constant (that is86 ∑[
softmax(W(k)) ∗X

]
=

∑
X), the variance of its total response is maximized when the filter87

has a good match with some repeating pattern. Keeping the filter’s total response constrained makes88

it easy to bootstrap confidence intervals for the height of peaks in x̂(k), which can be used for testing89

the significance of the patterns detected (Sec. 3.4). The total variation term helps reduce the filters’90

response to background activity (i. e. neural activity unrelated to any pattern), reduce the false91

positive rate, and facilitate visual interpretation of results (Appendix E). Finally, the cross-correlation92

term in Eq. 1 encourages filter diversity when K > 1. That is, it prevents the filters from becoming93

"tuned" to the same (stronger or overrepresented) pattern. The weights of the total variation and94

cross-correlation penalty terms as well as other hyperparameters are listed in Appendix A.95

3.2 VISUALIZATION OF STRUCTURED SPONTANEOUS ACTIVITY96

The presence, strength and temporal location of the patterns is captured by x̂(k): its peaks correspond97

to the times at which the pattern is expressed in neural activity (Fig. 1 C). These peaks alone,98

however, only suggest the presence of a pattern, and it is desirable to represent the data in a way99

that makes the detected structure clearly visible (e. g. in hippocampal recordings in which theta100

sequences are expected). To reveal the patterns, the optimized filters are sorted so that per-row101

maxima become temporally ordered. The sorting indices are used to rearrange the order of neurons in102

X. We summarize this in Fig. 1 and Appendix C. We also note that depending on pattern complexity103

and strength, as well as parameter initialization, variations of the recovered patterns’ shape are to be104

expected.105

3.3 FORMULATION WITH PARAMETERIZED GAUSSIAN FILTERS106

In the above formulation, we seek to optimize the randomly initialized filters W(k) directly, which107

means N ×W ×K trainable parameters. However, assuming that patterns are sequences of spikes,108

whose relative timing is distorted by spike timing jitter, and that this jitter is Gaussian, we can reduce109

the number of trainable parameters by a factor of N . Specifically, at each optimization step, we can110

parameterize the n-th row in the k-th filter W(k) as a truncated Gaussian function f(·) with mean111

µ
(k)
n and a fixed value of σ. In this way, we only need to optimize the means of the Gaussians in each112

row. In this formulation, the softmax function is no longer needed as the filter’s impulse response113

is now constrained by the Gaussian function truncated to the filter’s width M : x̂(k) = W(k) ∗X,114
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such that W(k)
n,: = f(µ

(k)
n , σ2, 1,M), and n ∈ {1, . . . , N}. While in terms of speed this formulation115

performs on par with the one described in Section 3.1, it offers a way to steer the model towards116

specific solutions by incorporating inductive biases into the filter design. For example, it should also117

be possible to learn per-neuron standard deviations σ(k)
n (although at the expense of doubling the118

number of trainable parameters) to capture each neuron’s temporal jitter and its degree of participation119

in a pattern, but we leave this question to future work.120

3.4 STATISTICAL TESTING121

We consider the detection of the k-th pattern to be statistically significant at some time step t if122

x̂
(k)
t >= α, where t ∈ {1, . . . , T} and α is a significance criterion, which is determined for each123

dataset individually. To estimate α, we construct 1000 random filters and get x̂(k)
0 = X ∗W(k)

0 , k ∈124

{1, . . . , 1000} . We construct the null distribution out of x̂(k)
0 , compute its mean, µ0, and standard125

deviation, σ0 and set α to be four1 standard deviations above the mean, i.e. α = 4σ0 + µ0 (Fig.126

2). Depending on the level of confidence desired, a more lenient threshold can be chosen. Besides127

significance testing, α can be used for early stopping: for example, optimization can finish once a128

desired number of peaks in x̂(k) reach or exceed α.129

Figure 2: Before optimization (top row) no pattern is detected as the peaks in x̂(k) lie below α
(dotted line). After optimization (bottom row) multiple occurrences of the pattern are detected.
Red histograms in the panels on the right illustrate x̂(k) as densities before and after optimization
compared to the density of values in x̂

(k)
0 expected from a random filter (blue histograms).

4 EXPERIMENTS130

Since both formulations of our method perform comparably, here we report the results obtained using131

the first formulation.132

4.1 ACCURACY PERFORMANCE METRICS133

To evaluate the model’s accuracy performance we use the following three metrics: true positive rate –134

the proportion of times a sequence is detected by its preferred filter. A detection is scored when the135

k-th filter responds with a significant peak in x̂(k) within no more than M time steps of the ground136

truth label marking the middle of a sequence. This margin of M time steps is needed because the137

response of an optimized filter to its preferred pattern is not guaranteed to coincide perfectly with138

the middle of the pattern. This is especially the case if a filter’s chosen width exceeds the width139

of the pattern. False positive rate – the proportion of times a filter produces a significant peak to a140

non-preferred sequence or background activity (that is when no sequence is expressed). Finally, false141

negative rate – when a filter fails to produce a significant peak in response to its preferred sequence.142

1Empirically, setting α to 4 standard deviations ensures a very low false positive rate.
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4.2 SYNTHETIC DATA143

We first test our method on three synthetic datasets. To simulate biologically realistic spike statistics,144

these datasets were constructed by embedding different spike sequences into a matrix of background145

activity X ∈ {0, 1}N×T obtained by permuting the rows and columns of the real mouse CA1146

recording described in Sec. 4.3. To facilitate comparisons, in all the experiments the shape of the147

synthetic datasets (N = 452, T = 18137) and filters (N = 452, M = 200) were kept the same148

unless indicated otherwise.149

Figure 3: (A) and (B) depict the first 5000 time steps of the data before and after sorting based on the
optimized filter, whose convolution with the data is shown in (C). (D) and (E) show the variance of
the filter’s response and performance metrics, respectively, until early termination.

Experiment 1. We first consider the simplest case, in which only one sequence is embedded. Each150

repetition of the sequence (45, 30 and 22 repetitions, 400, 600 and 800 time steps apart, respectively)151

consists of 80 neurons each of which is dropped with a probability of 0.2. We also add a Gaussian152

temporal jitter with a standard deviation of 10, 20 and 30 time steps. As illustrated in Fig. 3, the153

model is able to detect almost all the 45 sequence occurrences. Expectedly, the accuracy performance154

degrades as individual spike timings within a sequence occurrence deviate more from their ideal155

timing (higher spike jitter) and as the sequence occurrences become less frequent (longer inter-156

sequence interval). The accuracy performance also depends on how many spikes are dropped from157

the sequence (spike sequence sparsity), and the number of neurons participating in the sequence158

(sequence length). We provide additional test results and further details in Appendix B.159

10.0 20.0 30.0
0.0

0.5

1.0
TPR

10.0 20.0 30.0

Spike timing jitter

FPR
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400

600

800
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Figure 4: Model’s accuracy performance as a function of spike timing jitter and inter-sequence
interval (ISI). For additional experiments, see Appendix B.

Figure 4 provides insight about the limits of the model’s ability to detect sequences: the false positive160

and false negative rate start to increase as the frequency (total number of sequence repetitions)161

decreases and spike timing jitter increases.162
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Experiment 2. We next test the ability of the model to detect two partially overlapping sequences.163

This is a more challenging scenario because the filters will have to compete for the neurons shared by164

both sequences. We used the same parameters as in Experiment 1, except that instead of 1 sequence165

of 80 neurons, we embedded 2 sequences of 250 neurons (overlapping by 50 neurons) alternating166

every 500 time steps. Overall, each sequence was repeated 18 times (36 repetitions in total).167

Despite partial sequence overlap, the model is able to disentangle all the sequence occurrences168

correctly (Fig. 5). We note, however, the presence of undesirable peaks in the response of the169

second filter (Fig. 5C), which indicates that unidirectional patterns with shared neurons are hard to170

disentangle cleanly. Although those undesirable peaks do not reach the threshold of significance, they171

pose a potential issue for the detection of short or closely adjacent sequences with shared neurons.172

We leave detailed treatment of such cases as well as further improvements of the method to future173

work.174

Figure 5: The model can correctly detect all the repetitions of two partially overlapping sequences.
(A) fragment of the original data before permuting the rows. Response of the first and second filter
after optimization are shown in (B) and (C), respectively.

Experiment 3. Our third synthetic dataset contained two bidirectional sequences (i.e. expressed175

in both forward and reverse order), constructed in the same way as in the previous experiment, but176

consisting of fully shared 100 neurons (Fig. 6).177

Figure 6: The model successfully detects forward and reverse instances of a bidirectional sequence.
For illustration, the original data in (A) is shown before permuting the order of neurons. Sorting
the original data with the first (B) and second (C) optimized filter exposes the forward and reverse
sequences. The solid and dashed lines in (D) show the first and second filters’ responses, respectively.
The dotted horizontal line in (D) marks the significance threshold.
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4.3 RECORDING FROM THE CA1 AREA OF THE MOUSE HIPPOCAMPUS178

A

B

C

D

0 1000 2000 3000 4000 5000

Time steps

x̂
(k

),
a.u

.

E

Figure 7: The red line in (A) and (B) indicates the animal’s position on the track. In (B) neurons of
the original dataset (A) are sorted according to their known place fields. In (C) and (D), neurons of
the original dataset are rearranged with the indices obtained by sorting the first and second optimized
filters, respectively. The first and second filters’ responses are shown in (E) with solid and dashed
lines, respectively. The dotted horizontal line in (E) marks the significance threshold.

Finally, we tested the ability of our method to expose place cell sequences in real neural data . We179

used a dataset 2 from Rubin et al. (2019), which is a recording of CA1 neurons of a mouse running180

on a linear track and collecting water rewards dispensed at its ends. In this experiment the position of181

the mouse was recorded simultaneously with the neural activity, and so we can verify the detected182

patterns against the ground truth – the ordering of neurons based on their known place fields. A183

neuron’s place fields are determined by measuring its activity across the environment: the more a184

neuron fires in a particular location, the more “preferred” that location is. As the animal goes though185

different locations on the track, neurons with similar place tuning are more likely to spike together,186

and this information can be used to rearrange the order of neurons to make place cell sequences187

clearly visible (Fig. 7B).188

With K = 2 and M = 200, our model was able to disentangle the forward and backward sequences189

of place cells, with peak activation of the preferred filters exceeding the significance threshold.190

4.4 SPEED BENCHMARKS191

We show how our method’s run time scales as a function of dataset size compared to a selection of192

recently published pattern detection methods (seqNMF3 and PP-Seq4). Using the same hardware, we193

ran the methods on a grid of datasets, each with the same number of neurons and sequence properties194

(Appendix D), but different number of timesteps, T , and intensity of background activity, S, defined195

here as 1
NT

∑
X. Each optimization was run for 100 steps. 100 is the default number of optimization196

steps in the open-source implementations of PP-seq and seqNMF. In our model, the same number of197

optimization steps was sufficient for the Var(x̂(k)) term in the loss function to reach an approximate198

plateau, indicating no need for further optimization.199

To ensure as fair a comparison as possible, we first run our method with GPU disabled (orange line in200

Fig. 8). Compared to PP-Seq, our approach is about 32 times faster on the largest dataset (500000201

timesteps), and enabling the GPU further reduces the run time by a factor of six.202

2The dataset is available at https://github.com/zivlab/island and represents a binary matrix obtained by
thresholding the original Ca2+ imaging data.

3https://github.com/FeeLab/seqNMF
4https://github.com/lindermanlab/PPSeq.jl
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Figure 8: Regardless of the number of neurons (N ) and intensity of the background activity (S), our
method outperforms seqNMF and PP-Seq on the same datasets. Shades indicate 95% confidence
intervals computed over 8 runs.

4.5 IMPLEMENTATION AND TRAINING NOTES203

The model was implemented in Pytorch (Paszke et al., 2019) and optimized with the Adam (Kingma204

& Ba, 2014) optimizer with default parameters except the learning rate which was set to 0.1 for faster205

convergence. For the 2D convolution operation we used no padding in the dimension of neurons206

and a padding of M//2 zeros in the time dimension to ensure that x̂(k) has the same number of207

timesteps as the dataset. The cross-correlation term was implemented as 1D convolution with zero208

padding of size M//2. The total variation term smoothens the convolution x̂(k). We found it to be209

less important for the second formulation of our method, because the parameterization of W(k) with210

truncated Gaussians itself has a strong smoothing effect on the corresponding x̂(k). In general, given211

the same dataset and filter sizes, one optimization step takes approximately the same time for both212

formulations of our method. All the experiments were run on a Linux machine with a 64-core AMD213

EPYC 7702 CPU with 503GB of RAM and an NVIDIA A6000 GPU with 48.67 GB of RAM. We214

use batch gradient descent, since all the datasets fit entirely into the RAM. However, implementing215

batched optimization (for even larger datasets or smaller RAM) is straightforward.216

5 LIMITATIONS AND FUTURE DIRECTIONS217

As with the other similar methods, one limitation of our proposed approach is the need to make218

assumptions about the number of sequences as well as their approximate duration. We considered219

relatively simple scenarios, in which the patters were similar to those observed in the hippocampi220

of rodents moving on a linear track, and the quality of the patterns detected can be verified by eye221

inspection. In other areas, patterns can be more highly variable or rare, making their detection more222

difficult (but possible, as we show in Appendix B and Fig. B.13). Testing the method’s performance223

on more complex datasets, especially with weak and overlapping patterns, as well as exploring its224

possible extensions is an interesting direction for future work.225

6 CONCLUSIONS226

In this paper we have proposed a method for unsupervised detection of sequential patterns in neural227

recordings which may have practical utility in neuroscience research, especially in situations in which228

no behavioral references are available. We demonstrated that both on synthetic and real data, our229

approach is able to detect multiple spike sequences, including those that partially share neurons,230

or those that involve exactly the same neurons but are expressed in forward and reverse directions.231
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Importantly, our approach is much faster, which unlocks new possibilities for the study of structured232

spontaneous activity in large-scale neural recordings.233
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SUPPLEMENTARY MATERIAL304

A HYPERPARAMETERS305

Table 1: Hyperparameters

Hyperparmeter Description Value

βxcor Diversity loss weight 0 if K = 1 else 10.0 (105 in Fig. B.12)
βTV Total variation weight 15.2 in Fig. 1, 4.5 in Fig. 8, otherwise 100.0
M Filter width (along the time dimension) 200 in Figs. 1 and 7, otherwise 100
lrate Learning rate 0.1
j Maximum cross-correlation distance M
σ Standard deviation of the filters’ 16.0 (20.0 in Fig. B.12

Gaussians (2nd formulation)

In general, the total variation term can be set to zero in the formulation with truncated Gaussians (see306

main text), especially with relatively large values of σ. In cases that in involve overlapping sequences307

(as in Figs. 5, 6 and 7). We have also observed the need for a large weight for the cross-correlation308

penalty in Eq. 1309

B SEQUENCE DETECTION PERFORMANCE310

B.1 DATA PREPARATION311

To further evaluate how the model’s accuracy performance depends on sequence properties, we312

constructed a grid, in which each dataset differed by the following four properties: (1) pattern313

sparsity (spike dropout probability), (2) inter-sequence interval (number of time steps between the314

sequences), (3) length (number of neurons in a sequence before applying dropout), and (4) jitter315

(standard deviation, in time steps, by which spike timing deviates from its ideal timing). Each dataset316

was constructed by embedding the sequences with a unique combination of these parameters into317

the same background activity matrix (452 neurons by 18137 time steps). The background activity318

matrix was obtained by permuting the rows and columns of the real recording of the CA1 area of the319

hippocampus of a mouse. On each of the datasets, the model was optimized for 3000 epochs (12320

times to estimate the performance metrics’ confidence intervals for each combination of sequence321

parameters). Figs. B.4, B.5, and B.3 suggest that the method performs best on sequences that are322

strong (i.e. involve relatively many neurons), dense (have a relatively low spike dropout probability),323

temporally stable (have a relatively low jitter) and well represented (occur relatively frequently).324
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B.2 OUR METHOD325
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Figure B.1: Dependence of our method’s TPR on sequence properties: sequence length, spike dropout
probability, spike timing jitter and inter-sequence interval (ISI). Error bars are computed over 12
optimization runs (each with 3000 epochs).
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Figure B.2: Dependence of our method’s FPR on sequence properties: sequence length, spike dropout
probability, spike timing jitter and inter-sequence interval (ISI). Error bars are computed over 12
optimization runs (each with 3000 epochs).
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Figure B.3: Dependence of our method’s FNR on sequence properties: sequence length, spike dropout
probability, spike timing jitter and inter-sequence interval (ISI). Error bars are computed over 12
optimization runs (each with 3000 epochs).

B.3 PP-SEQ326

We also ran PP-Seq on the exactly the same grid of datasets with default parameters and found327

that that while its FNR was zero, the false positive rate (FPR) was higher than in our method. We328

used PP-Seq for comparisons because of its speed and because, unlike other similar approaches (e.g.329

seqNMF, convNMF), it explicitly outputs estimated times for pattern occurrences, making it easy to330

compute TPR, FPR, and FNR.331
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Figure B.4: Dependence of PP-Seq’s TPR on sequence properties: sequence length, spike dropout
probability, spike timing jitter and inter-sequence interval (ISI). Error bars are computed over 12
optimization runs.
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Figure B.5: Dependence of PP-Seq’s FPR on sequence properties: sequence length, spike dropout
probability, spike timing jitter and inter-sequence interval (ISI). Error bars are computed over 12
optimization runs.

We do not show results for PP-Seq’s FNR because of zero false negatives.332

C ALGORITHMS333

Algorithm 1 With minimally constrained filters

Input: X, K, steps
for k ∈ {1, ...,K} do

Initialize W(k)

end for
for steps do

Take a gradient step for L
Update W(k), k ∈ {1, ...,K}

end for
for k ∈ {1, ...,K} do

Sort the rows of W(k) according to the latency of the
maximum within-row value, record sorting indices s of size N

Obtain X(k) by re-ordering the rows of X with s
end for

D DATASET AND SEQUENCE PROPERTIES USED FOR SPEED BENCHMARKS334

Each dataset of N ∈ {76, 152} neurons was constructed out of background activity matrices with T ∈335

{4441, 8882, 13323, 17764, 22205, 26646, 100000, 500000} timesteps and with background spiking336

intensity S ∈ {0.0015, 0.0031, 0.0038}. Into these background activity matrices we embedded337

sequences of 40 neurons, each with the following fixed parameters: dropout probability of 0.2,338

inter-sequence interval of 200 timesteps, and the standard deviation of spike timing (jitter) of 10339

timesteps.340
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Algorithm 2 With parameterized truncated Gaussians

Input: X, K, steps, σ
for k ∈ {1, ...,K} do

for n ∈ {1, ..., N} do
Make a truncated Gaussian g(k)n with mean µ

(k)
n ∼ U(1,M) and standard deviation σ

Set the n-th row of W(k) equal to g(k)n

end for
end for
for steps do

Take a gradient step for L
Update µ

(k)
n , k ∈ {1, ...,K}

Construct a new W(k), whose rows are truncated Gaussians with µ
(k)
n , k ∈ {1, ...,K}

end for
for k ∈ {1, ...,K} do

Sort µ(k), record sorting indices s
Obtain X(k) by re-ordering the rows of X with s

end for

E TOTAL VARIATION341

The total variation term encourages convergence to smooth x̂(k). We found that insufficient values of342

βTV increase the likelihood of a false positive (compare Fig. B.6 and Fig. B.7).343

Figure B.6: With βTV = 1.5, the model produces false positives. Middle and bottom panels show
the response of the first and second filters, respectively.

Figure B.7: With βTV = 100.5, no false positives are present, the filters’ responses (middle and
bottom panels) are smooth and easy to interpret.
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F RESULTS FOR THE SECOND FORMULATION OF THE METHOD344

The results reported in the main text were generated using the first formulation of our method. To345

illustrate that the second method performs comparably, here we provide figures generated using the346

second formulation.347

Figure B.8: Same as Fig. 1 in the main text.

Figure B.9: Same as Fig. 3 in the main text.
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Figure B.10: Same as Fig. 5 in the main text.

Figure B.11: Same as Fig. 6 in the main text.

Figure B.12: Same as Fig. 7 in the main text.

G GUIDANCE ON CHOOSING K AND M348

Choosing K. Similarly to seqNMF and convNMF, our method still works if the number of filters349

K is not exactly equal to the actual number of patterns. If K is less than the number of patterns,350

the filters become tuned to the stronger of the patterns. In the reverse situation, when K happens351

to be greater than the number of patterns, some “extra” filters’ convolution curves will have a large352

degree of similarity, but their peaks will not reach statistical significance (e.g. as in Fig B.13 B and353

D). We found that a good strategy is to start with a conservative choice of K (e. g. K = 1), and354

run optimization with progressively larger values of K (such empirical search is realistic owing to355

the speed of our method). The significance of the convolution peaks provides a good guidance as to356

whether or not a particular choice of K is good.357
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Consider the case in which two patterns exist in the data, and one them is much stronger than the358

other. With K = 1 the strongest of the two will be detected. With K = 2, both patterns will be359

detected (i.e. the first (already detected) one and the second). Setting K = 3 should result in still360

detecting the two patterns plus some spurious “pattern” by the third filter (whose convolution peaks361

should not reach statistical significance, because the cross-correlation term in Eq. 1 penalizes similar362

activations and, indirectly, filters that are tuned to the same pattern).363
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Figure B.13: Even with K = 4, which is greater than the number of sequences (2), and despite partial
overlap in time the second and the fourth filters (C, E) recover the sequences. The extraneous two
filters’ peaks fail to reach the significance threshold (B, D).

Choosing M . As with K, M should be chosen empirically, unless one has prior knowledge about364

the length of the expected sequences. It should be noted that365

1. If M is longer (more than twice the pattern’s length) than the pattern, the share of the spikes366

participating in the pattern is too small relative to background spikes, effectively reducing367

the signal-to-noise ratio.368

2. if M is significantly shorter than the pattern (less than half the pattern’s length), the filter369

might not “see” the pattern in its entirety, which might lead to more than one pattern being370

tuned to different parts of the same sequence (e.g. one tuned to the beginning and the other371

tuned to the end of the sequence).372

H HANDLING TIME-WARPED SEQUENCES373
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Figure B.14: The model detects 3 sequences one of which(bottom) is time-warped with a factor
randomly chosen from {0.6, 1.0, 1.8, 2.2}. B, C and D show x̂(k), k ∈ {1, 2, 3}.
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I RUN TIME SCALING AS A FUNCTION OF K374

Figure B.15: Run time as a function of K (sequence types). Dataset parameters: T = 18137,
N = 452. One sequence of 40 neurons with dropout of 0.2, ISI of 200 time steps, and jitter of 10.

J A CLOSER LOOK AT OPTIMIZED FILTERS375

Figure B.16: Bottom panel: A sorted optimized filter. Upper panel: line plots of a selection of
the filter’s rows (delimited by the red lines). When a neuron is inactive in a pattern, its row in the
corresponding filter appears flat, while for those that are active a Gaussian-like curve is observed.
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