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Abstract

Most large language models are trained on001
linguistic input alone, yet humans appear to002
ground their understanding of words in senso-003
rimotor experience. A natural solution is to004
augment LM representations with human judg-005
ments of a word’s sensorimotor associations006
(e.g., the Lancaster Sensorimotor Norms), but007
this raises another challenge: most words are008
ambiguous, and judgments of words in isola-009
tion fail to account for this multiplicity of mean-010
ing (e.g., “wooden table” vs. “data table”). We011
attempted to address this problem by building012
a new lexical resource of contextualized sen-013
sorimotor judgments for 112 English words,014
each rated in four different contexts (448 sen-015
tences total). We show that these ratings encode016
overlapping but distinct information from the017
Lancaster Sensorimotor Norms, and that they018
also predict other measures of interest (e.g., re-019
latedness), above and beyond measures derived020
from BERT.021

1 Introduction022

Most large language models (LMs) are trained on023

linguistic input alone. This approach may be fun-024

damentally limited when it comes to language un-025

derstanding (Bender and Koller, 2020; Bisk et al.,026

2020; Tamari et al., 2020), as the meaning of a027

word arguably depends on factors beyond which028

words it co-occurs with. In particular, humans ap-029

pear to ground a word’s meaning in a rich net-030

work of sensorimotor associations (Pulvermüller,031

1999; Bergen, 2012; Bergen and Feldman, 2008;032

Barsalou, 1999; Winter and Bergen, 2012; Barsa-033

lou, 2008; Glenberg and Kaschak, 2002). For ex-034

ample, our understanding of the word “table” incor-035

porates not just the words that frequently co-occur036

with “table”, but also our embodied experience037

of tables: how they look, how they feel, which038

parts of our body we use to interact with them,039

and more. If human-like language understanding040

depends on grounding words in non-linguistic asso- 041

ciations (Harnad, 1990), then LMs trained on text 042

alone will never reach human levels of understand- 043

ing (Bender and Koller, 2020). 044

One promising solution is to link an LM’s 045

representations—based on distributional statistics 046

alone—to human judgments of a word’s sensori- 047

motor associations, such as the Lancaster Senso- 048

rimotor Norms (Lynott et al., 2019) (hereafter LS 049

Norms). The LS Norms provide human ratings 050

about the extent to which an isolated word (e.g., 051

“table”) is strongly associated with various sensory 052

modalities (e.g., Vision vs. Touch) and action effec- 053

tors (e.g., Hand/Arm vs. Foot/Leg). Recent work 054

(Kennington, 2021; Wan et al., 2020b,a) has found 055

that integrating these norms improves the perfor- 056

mance of language models on several NLP tasks, 057

such as GLUE (Wang et al., 2018) and metaphor 058

detection (Wan et al., 2020a). 059

Despite the promise and early success of this ap- 060

proach, it faces a key limitation: resources like the 061

LS Norms typically contain just a single set of judg- 062

ments for each word. In practice, however, many 063

words are ambiguous (Rodd et al., 2004; Haber 064

and Poesio, 2021). In English, anywhere from 7% 065

(Rodd et al., 2004) to 15% (Trott and Bergen, 2020) 066

of words have multiple, unrelated meanings—and 067

as many as 84% are polysemous, i.e., they have 068

multiple, related meanings (Rodd et al., 2004). For 069

example, the word “table” may refer to a piece of 070

furniture or to a database organized into rows and 071

columns. Further, even very similar uses of a word, 072

like “lemon”, in its fruit-denoting sense, evoke dif- 073

ferent sensorimotor associations in different con- 074

texts (e.g., “She peeled the lemon” vs. “She put 075

the lemon in the bag”) (Yee and Thompson-Schill, 076

2016; Elman, 2009; Trott et al., 2020). Accord- 077

ingly, there is evidence that ratings of sensorimotor 078

strength or concreteness can vary considerably de- 079

pending on whether a word is presented alone or 080

in context (Scott et al., 2019), or as a function of 081
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which context a word is presented in (Reijnierse082

et al., 2019). This suggests that any effort to ground083

words should account for the fact that most words084

are ambiguous, with dynamic, context-sensitive085

meanings subject to construal.086

In Section 2, we first describe related resources,087

as well as work on grounding large LMs using psy-088

cholinguistic resources and multimodal input. In089

Section 3, we introduce the Contextualized Sensori-090

motor Norms (CS Norms), a dataset of sensorimo-091

tor judgments about ambiguous words in context.092

In Section 4, we provide descriptive statistics about093

the CS Norms, as well as comparisons to other fac-094

tors such as the dominance of a particular sense. In095

Section 5, we show that a metric derived from the096

CS Norms—the Sensorimotor Distance between097

two contexts of use—improves our ability to pre-098

dict contextualized relatedness judgments, above099

and beyond a similar metric derived from BERT100

(Devlin et al., 2019). Finally, in Section 6, we dis-101

cuss limitations of these norms, as well as avenues102

for future research.103

2 Related Work104

2.1 Related Resources105

Norms presenting aggregated semantic judgments106

about words date back at least to the early 1980s;107

the MRC database contains judgments of both con-108

creteness and imageability for just under 9000 En-109

glish words, each presented in isolation (Coltheart,110

1981). Later, the Brysbaert concreteness norms111

expanded this dataset to approximately 37,000 En-112

glish words (Brysbaert et al., 2014b); concreteness113

ratings have also been collected for Dutch (Brys-114

baert et al., 2014a), Croatian (Ćoso et al., 2019),115

and more.116

Judgments of concreteness or overall sensori-117

motor strength are limited in that they do not ac-118

count for which sensorimotor features are partic-119

ularly salient. More recently, researchers have120

collected ratings about multiple semantic features121

for each word, including its sensorimotor asso-122

ciations (Lynott et al., 2019), as well as even123

more fine-grained judgments within each modal-124

ity (e.g., for Vision, whether the referent is Fast125

or Slow; for Touch, whether it is Hot or Cold)126

(Binder et al., 2016). Of these, the largest dataset127

is the Lancaster Sensorimotor Norms (Lynott et al.,128

2019), which includes 11-dimensional judgments129

for about 40,000 English words. This approach has130

been extended to other languages, such as French131

(Miceli et al., 2021) and Dutch (Speed and Bry- 132

baert, 2021). Again, in each case, the words were 133

presented without context. 134

Finally, several datasets have collected concrete- 135

ness judgments about words in context (Scott et al., 136

2019; Reijnierse et al., 2019). However, to our 137

knowledge, no dataset includes judgments about 138

which sensorimotor features are particularly salient 139

in different linguistic contexts. 140

2.2 Grounding LMs with Psycholinguistic 141

Resources 142

Recent work in NLP has begun to incorporate these 143

psycholinguistic resources. One approach attempts 144

to predict these judgments about concreteness or 145

salient sensorimotor features from LM representa- 146

tions, with varying degrees of success (Thompson 147

and Lupyan, 2018; Turton et al., 2020; Chersoni 148

et al., 2020; Utsumi, 2020). Another approach uses 149

sensorimotor features to augment the ability of an 150

LM on an applied task, such as the GLUE bench- 151

mark (Kennington, 2021) or metaphor detection 152

(Wan et al., 2020b). These experiments suggest 153

that sensorimotor features do improve performance 154

on specific tasks, though as mentioned in Section 155

1, they are limited in that the sensorimotor features 156

themselves were obtained for words in isolation. 157

2.3 Grounding LMs with Multimodal Input 158

An alternative approach is to ground LM represen- 159

tations more directly in multimodal input. Most 160

of this work has emphasized the visual modality, 161

linking words to static images (Kiros et al., 2018; 162

Su et al., 2020) or video (Zellers et al., 2021). This 163

paradigm shows considerable promise, though it is 164

naturally limited by resource constraints; obtaining 165

reliable multimodal data and aligning it to language 166

can be both time-consuming and costly. 167

2.4 Summary 168

There is considerable interest in grounding among 169

both psycholinguists and NLP practitioners. To that 170

end, psycholinguists have developed large linguis- 171

tic resources, which some NLP researchers have 172

used to improve LMs. 173

Still, one limitation of the majority of existing 174

resources is that they do not contain judmgents 175

about different sensorimotor features for words in 176

different contexts. Because most words are ambigu- 177

ous, this makes it difficult to know which meaning 178

the sensorimotor judgments reflect, which in turn 179

reduces the precision and utility of these resources. 180
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3 Contextualized Sensorimotor Norms181

Our primary goal was to collect sensorimotor judg-182

ments about ambiguous words, appearing in con-183

trolled sentential contexts. We used sentences from184

the RAW-C (Relatedness of Ambiguous Words–in185

Context) dataset (Trott and Bergen, 2021). RAW-186

C contains relatedness judgments for 672 English187

sentence pairs, each containing the same target188

word (e.g., “bat”) in either the same meaning (e.g.,189

“furry bat” vs. “fruit bat”) or different meaning190

(e.g., “furry bat” vs. “wooden bat”). There were191

448 unique sentences in total (112 target words,192

with 4 sentences each).193

Rather than collecting judgments about sentence194

pairs, we were interested in judgments about the195

sensorimotor associations evoked by a word in a196

particular sentential context . This also provided a197

more direct analogue to the Lancaster Sensorimo-198

tor Norms (Lynott et al., 2019), in which partici-199

pants observed a particular lexical item (e.g., “bat”)200

and provided ratings about its associated sensory201

modalities (e.g., Vision) or action effectors (e.g.,202

Hand/Arm).203

3.1 Participants204

Our goal was to collect a minimum of 10 judgments205

per sentence. Thus, we recruited participants until206

each sentence had at least 10 observations, after207

applying the exclusion criteria.208

A total of 377 participants were recruited209

through UC San Diego’s undergraduate subject210

pool for Psychology, Cognitive Science, and Lin-211

guistics students. Participants received class credit212

for participation. After excluding non-native speak-213

ers of English, participants who failed to pass the214

bot checks, and participants whose inter-annotator215

agreement score was sufficiently low (see Section216

3.3 below), we were left with 283 participants. Of217

these, 223 identified as female (47 male, 8 non-218

binary, and 5 preferred not to answer). The mean219

self-reported age was 20.4 (median = 20, SD =220

2.98), and ranged from 18 to 43.221

3.2 Procedure222

We adapted the procedure directly from Lynott et al.223

(2019), with the main modification being that par-224

ticipants now saw words in sentential contexts. As225

in Lynott et al. (2019), participants were randomly226

assigned to one of two Judgment Types: 1) Per-227

ception, in which they provided ratings about a228

word’s associated sensory modalities (Vision, Hear-229

ing, Touch, Interoception, Smell, and Taste); and 2) 230

Action, in which they rated a word’s assocated ac- 231

tion effectors (Hand/Arm, Foot/Leg, Mouth/Throat, 232

Head, and Torso). In total, 132 participants were 233

assigned to the Perception Judgment Type, and 151 234

were assigned to the Action Judgment Type. 235

After giving consent, participants answered two 236

bot check questions (e.g., “Which of the following 237

is not a place to swim?”). They were then told that 238

they would read a series of sentences, each contain- 239

ing a bolded word (e.g., “It was a wooden table”), 240

and that their task was to rate the degree to which 241

they experienced the concept denoted by that word 242

with either six sensory modalities (in the Percep- 243

tion Judgment Type) or five action effectors (in the 244

Action Judgment Type). Ratings ranged from 0 245

(not at all experienced with that sense/effector) to 246

5 (experienced greatly with that sense/effector). 247

Each participant rated approximately 60 sen- 248

tences overall, randomly sampled from the set of 249

448 sentences. No participant saw the same tar- 250

get word twice. On each trial, the sentence was 251

displayed at the top of the page, with the target 252

word bolded. Underneath the sentence, the in- 253

structions read: “To what extent do you experi- 254

ence WORD:” (for Perception) or “To what extent 255

do you experience WORD by performing an ac- 256

tion with the:” (for Action), where “WORD” was 257

replaced with the target word. Underneath the in- 258

structions were six (for Perception) or five (for 259

Action) rating scales, corresponding to each pos- 260

sible sensory modality or action effector. For the 261

Action Judgment Type, the scale was accompanied 262

by a labeled diagram of the body, as in Lynott et al. 263

(2019). 264

To reach the target of 10 respondents to each 265

word in both Action and Perception tasks, we col- 266

lected data in two stages. In the first stage (Group 267

1), participants were randomly assigned to either 268

the Perception or Action Judgment Types, and the 269

sentences they observed were randomly sampled 270

from the set of possible sentences for each word. 271

After we had collected responses from 264 par- 272

ticipants in this way, there were still a number of 273

sentences that had very few observations, simply 274

by chance—as well as many with more than ten 275

observations. Thus, in the second stage (Group 2), 276

participants were assigned a mix of Low-N (sen- 277

tences with fewer than 10 ratings) and High-N (sen- 278

tences with 10 or more ratings) items. The goal 279

was to speed data collection; to control for poten- 280

3



tial differences across groups, we compared their281

distributions of inter-annotator agreement scores,282

and found no evidence that the different data col-283

lection procedures induced different response be-284

havior (see Section 3.3).285

Finally, after providing ratings, participants re-286

ported their self-identified gender and age, as well287

as whether or not they were a native speaker of288

English.289

The data collection was conducted online using290

JsPsych (De Leeuw, 2015).291

3.3 Inter-Annotator Agreement292

We sought to establish the degree to which differ-293

ent participants agreed about their ratings for each294

sentence, both to characterize the dataset and to ex-295

clude participants whose ratings diverged substan-296

tively from the rest of the sample. Following past297

work (Trott and Bergen, 2021), we used a leave-298

one-out scheme: for each participant, we computed299

the Spearman’s rank correlation between that par-300

ticipant’s responses and the mean ratings for those301

items from the rest of the sample (excluding the302

participant’s ratings).303

Importantly, we did this in two stages. First, we304

computed the distribution of agreement scores for305

the 264 participants in Group 1, i.e., the participants306

for whom each sentence was truly randomly sam-307

pled from the set of 448 sentences. Based on this308

distribution of inter-annotator agreement scores, we309

excluded a total of 18 participants, whose scores310

were more than two standard deviations below the311

mean for that Judgment Type. Among the final312

set of 246 participants in this group, the mean313

inter-annotator rank correlation was 0.47 for Ac-314

tion judgments (SD = 0.1) and 0.64 for Perception315

judgments (SD = 0.11).316

Then we considered the 39 participants from317

Group 2, who provided ratings for a restricted set318

of sentences, i.e., sentences which either had below319

10 judgments from Group 1 (low-N) or had more320

than 10 judgments from Group 1 (high-N). For each321

participant in Group 2, we compared the ratings for322

the high-N items to the mean response for those323

items among Group 1. After excluding participants324

with low inter-annotator agreement, we were left325

with a total of 37 participants in Group 2. The mean326

rank correlation was 0.5 for Action Judgments (SD327

= 0.11) and 0.64 for Perception judgments (SD =328

0.1).329

Finally, we combined the set of inter-annotator330
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Figure 1: Distribution of mean sensorimotor strength
judgments for each dimension. As in past work (Lynott
et al., 2019), judgments are highest for the Vision di-
mension, and lowest for Olfaction and Taste.

agreement scores from both groups, and con- 331

structed a linear regression with Rank Correlation 332

as the dependent variable, and main effects of Judg- 333

ment Type (Action vs. Perception) and Group 334

(Group 1 vs. Group 2), as well as their interaction. 335

There was no significant difference in agreement 336

across groups (p > .1), but agreement was signif- 337

icantly higher for Perception ratings than Action 338

ratings [β = 0.17, SE = 0.01, p < .001]. 339

3.4 Creating the Norms 340

Once we had obtained a minimum of ten ratings per 341

sentence (per judgment type), we averaged across 342

these ratings to produce a mean and standard devia- 343

tion for each dimension. For example, the sentence 344

“He saw the furry bat” would contain the mean (and 345

standard deviation) of judgments about the salience 346

of each sensorimotor feature.1 347

4 Characterizing the Contextualized 348

Sensorimotor Norms 349

Our first goal was to characterize the Contextual- 350

ized Sensorimotor Norms (CS Norms). The norms 351

provide an 11-dimensional vector for each senten- 352

tial context in which a word appears: the mean 353

sensorimotor strength for 11 dimensions (6 sensory 354

modalities, and 5 action effectors) for a target word 355

in a given context. 356

1The norms (along with analysis code and a Data Sheet)
are included in a .zip file as as Supplementary Data. A link to
a public GitHub repository will be added once the anonymity
period is over.
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Figure 2: Pearson’s correlation coefficients between the
sensorimotor strength of each feature.

4.1 Comparing Sensorimotor Dimensions357

As a first step, we visualized the distribution of sen-358

sorimotor judgments for each dimension (see Fig-359

ure 1). Consistent with the original LS Norms (Ly-360

nott et al., 2019) and work on the English lexicon361

more generally (Majid, 2020), judgments tended to362

be highest for the Vision dimension, and lowest for363

Olfaction and Taste.364

We then asked which dimensions were corre-365

lated with which other dimensions. Consistent with366

past work (Lynott et al., 2019), we found particu-367

larly strong positive correlations between Olfaction368

and Taste, as well as Foot/Leg and Torso; we also369

found a strong positive correlation between Taste370

and Mouth/Throat (see Figure 2).371

4.2 Variance Across Contexts372

A key motivation for the CS Norms was to account373

for potential variation within each word in which374

sensorimotor features were most salient across dis-375

tinct sentential contexts.376

We quantified this variation by normalizing the377

sensorimotor features for each context of use to the378

mean norms for that word from the LS Norms.379

For example, the LS norms have a single 11-380

dimensional vector for the word “market”; for each381

of the four sentential contexts in which “market”382

appeared, we calculated the difference in mean rat-383

ings across our norms and the LS Norms. This384

provides an estimate of the degree to which the385

human judgments were impacted by the senten-386

tial context, as opposed to a representation of the387

word’s meaning in isolation (as in the LS Norms).388

He liked the housing market. He liked the stock market.

He liked the fish market. He liked the flea market.
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Figure 3: Deviation between the contextualized sensori-
motor norms and the Lancaster Sensorimotor Norms for
for the word “market”, faceted by the distinct sentential
context in which “market” appeared.

Figure 3 depicts these deviations from the LS 389

Norms for a specific word, “market”. This word 390

was chosen because it displayed particularly high 391

variation in its overall sensorimotor strength across 392

contexts. Interestingly, the deviations from the LS 393

Norms appear to track the two senses of the word 394

being profiled. The two sentences corresponding 395

to the location sense of “market” (i.e., “fish market” 396

and “flea market”) appeared to be closer to the 397

LS Norms (i.e., the deviations were smaller on 398

average); the notable exceptions were the Olfactory 399

and Mouth/Throat dimensions for the “fish market” 400

context, and the Foot/Leg dimension for the “flea 401

market” context. Both deviations make sense: a 402

salient property of fish markets is their smell and 403

the fact that food is involved, thus evoking the use 404

of the mouth/throat; in turn, walking might be a 405

particularly salient feature of flea markets (relative 406

to our conception of “market” in isolation), evoking 407

the use of feet and legs. 408

In contrast, the sentences corresponding to the 409

the financial sense of “market” (i.e., “housing mar- 410

ket” and “stock market”) were considerably lower 411

in sensorimotor strength across almost all dimen- 412

sions, especially Vision. Again, this makes sense, 413

given that this meaning is more metaphorical or 414

abstract than the location meaning of “market”: 415

apart from representations of their performance, 416

neither housing markets nor stock markets can be 417

visually perceived in the way that fish markets and 418

flea markets can. 419
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4.3 Sensorimotor Strength vs. Sense420

Dominance421

One well-documented property of ambiguous422

words is that their multiple meanings are not always423

balanced: one sense is sometimes more cognitively424

salient than the other. This is called sense domi-425

nance. The degree of dominance is known to play426

an important role in the processing of ambiguous427

words, particularly for homonyms: empirical evi-428

dence suggests that comprehenders almost always429

activate the more dominant sense of a homonym,430

even when the linguistic context supports the sub-431

ordinate meaning (Rayner et al., 1994; Binder and432

Rayner, 1998; Duffy et al., 1988). Most relevantly,433

there is some evidence that dominance is positively434

correlated with concreteness (Gilhooly and Logie,435

1980).436

We investigated whether this finding replicated437

in the CS Norms dataset. Following Lynott et al.438

(2019), we created a composite variable called439

Contextualized Sensorimotor Strength, which mea-440

sured the maximum strength across the 11 senso-441

rimotor features for each context of use. We then442

asked whether Sensorimotor Strength was signifi-443

cantly predictive of Sense Dominance, which we444

had measured for each sentence pair in the original445

RAW-C dataset (Trott and Bergen, 2021).446

Using the lme4 package (Bates et al., 2015) in447

R, we built a linear mixed effects model with Dom-448

inance as a dependent variable, fixed effects of449

Contextualized Sensorimotor Strength, a random450

intercept for each word, and two covariates reflect-451

ing the sensorimotor strength for each word (i.e.,452

from the Lancaster Sensorimotor Norms dataset).453

This model explained significantly more variance454

than a model omitting only the Contextualized Sen-455

sorimotor Strength [χ2(1) = 18.38, p < .001].456

Consistent with past work (Gilhooly and Logie,457

1980), contexts of use with higher sensorimotor458

strength were also rated as more dominant [β =459

0.26, SE = 0.06, p < .001].460

This finding does not explain why more con-461

crete meanings are more dominant than meanings462

with less sensorimotor strength. It could be that463

people communicate about those meanings more464

frequently. Alternatively, their relative primacy in465

acquisition might impact psychological dominance;466

earlier learned meanings are also more dominant467

(Gilhooly and Logie, 1980).468

Homonymy

Polysemy

0.0 0.1 0.2 0.3 0.4
Sensorimotor Distance

A
m
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 T

yp
e

Same Sense
FALSE
TRUE

Figure 4: Distribution of sensorimotor distances as a
function of same/different sense, as well as the type of
ambiguity. Same sense uses have more similar sensori-
motor associations than different sense uses.

4.4 Sensorimotor Distance 469

Another question that arises concerns the relation- 470

ship between contexts of use. Because each con- 471

text of use is associated with a vector, the simi- 472

larity or dissimilarity between these contexts can 473

be quantified by calculating the distance (e.g., the 474

cosine distance) between these vectors (Wingfield 475

and Connell, 2021). Thus, we calculated the co- 476

sine distance—referred to here as the Sensorimotor 477

Distance—between the vectors corresponding to 478

each sentence pair for each word (672 sentence 479

pairs total). Larger distances reflect more dissimi- 480

lar contexts of use, while smaller distances reflect 481

more similar contexts. 482

We then asked whether Sensorimotor Distance 483

was correlated with other psychologically relevant 484

features, such as whether the two contexts of use 485

corresponded to the same sense or different senses. 486

Based on the preliminary findings in Section 4.2, 487

we predicted that different sense uses would have 488

less similar sensorimotor features. 489

Indeed, as depicted in Figure 4, Sensorimo- 490

tor Distance was considerably larger for Different 491

Sense than Same Sense contexts. The addition 492

of Sense Boundary to a mixed effects model pre- 493

dicting Sensorimotor Distance improved model fit 494

beyond a model with only Distributional Distance 495

and Ambiguity Type (and random intercepts for 496

words) [χ2(1) = 34.86, p < .001]. This is also 497

consistent with Figure 3, in which the two location 498

senses of “market” were more similar to each other 499

than either was to the two financial senses. 500

5 Predictive Utility 501

We were also interested in the predictive utility of 502

the information provided by the CS Norms, above 503
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and beyond other commonly used factors. That is,504

to what extent do these ratings encode information505

that large language models, such as BERT, fail to506

capture?507

As a first step, we sought to predict the related-508

ness of sentence pairs. RAW-C contains relatedness509

judgments for each unique sentence pair within510

each of the 112 words, with a total of 672 sentence511

pairs (Trott and Bergen, 2021). It is also annotated512

for whether the two contexts of use correspond to513

the same or different sense (Sense Boundary), and514

whether the relationship type is one of homonymy515

or polysemy (Ambiguity Type).516

Past work (Trott and Bergen, 2021) has found517

that relatedness is negatively correlated with the co-518

sine distance between BERT’s contextualized em-519

beddings for the target word in each sentence; here,520

we call this measure the Distributional Distance.521

Yet Distributional Distance falls short compared522

to human inter-annotator agreement: it underesti-523

mates the relatedness of same sense sentence pairs,524

and overestimates the relatedness of different sense525

homonyms (Trott and Bergen, 2021).526

We asked whether a linear mixed effects model527

equipped with those previous factors (Distribu-528

tional Distance2, Sense Boundary, Ambiguity Type,529

and their interaction, as well as random inter-530

cepts for words) could be improved by the addi-531

tion of Sensorimotor Distance (see Section 4.4).532

Indeed, Sensorimotor Distance significantly im-533

proved model fit [χ2(1) = 36.74, p < .001]. As534

expected, Sensorimotor Distance was negatively535

associated with Relatedness [β = −1.81, SE =536

0.22, p < .001]: words with more dissimilar sen-537

sorimotor vectors were rated as less related, on538

average.539

We also compared the Akaike Information Cri-540

terion, or AIC, of a number of different models541

predicting Relatedness. Three of the models cor-542

responded to the two measures of distance, i.e.,543

containing either Distributional Distance (derived544

from BERT’s contextualized embeddings), Senso-545

rimotor Distance (derived from the CS Norms) or546

both. One model contained only a fixed effect of547

Sense Boundary. The remaining two models con-548

tained either every factor listed above (along with549

an interaction between Sense Boundary and Am-550

2Distributional Distance was calculated by taking the co-
sine distance between the final layers of BERT’s contextual-
ized embeddings for the target word in each sentence, using
the bert-embedding package (https://pypi.org/
project/bert-embedding/).
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Figure 5: Rescaled AIC values for models predicting Re-
latedness using an assortment of factors: Sense Bound-
ary (S), Ambiguity Type (AT), Distributional Distance
(BERT), and Sensorimotor Distance (SM). A lower AIC
score corresponds to better model fit.

biguity Type), or every factor but Sensorimotor 551

Distance. 552

Crucially, although Sense Boundary was by far 553

the best isolated predictor of Relatedness, the in- 554

clusion of Sensorimotor Distance consistently im- 555

proved model fit. This indicates that the CS Norms 556

capture information that is at least partially inde- 557

pendent from the information encoded by the other 558

factors in the model. 559

6 Discussion 560

Embodied experience appears to be crucial for how 561

humans learn and understand language (Bergen, 562

2012; Pulvermüller, 1999; Barsalou, 1999), yet 563

most large language models (LMs) are exposed to 564

linguistic input alone (Bender and Koller, 2020). 565

One solution is to augment LM representations 566

with psycholinguistic resources, such as human 567

judgments of the sensorimotor features associated 568

with a word (Lynott et al., 2019). However, this 569

approach must also contend with the challenge of 570

lexical ambiguity. Words mean different things in 571

different contexts (Rodd et al., 2004; Trott et al., 572

2020), yet many lexical resources collect judg- 573

ments about words in isolation. 574

We attempted to address this challenge by col- 575

lecting judgments about the salience of various sen- 576

sory modalities (e.g., Vision) and action effectors 577

(e.g., Torso) for the same English word, in distinct 578

sentential contexts (e.g., “flea market” vs. “housing 579

market”). We called this dataset the Contextualized 580

Sensorimotor Norms (CS Norms). 581

These contextualized norms capture variance in 582

sensorimotor associations beyond the information 583

already provided by the Lancaster Sensorimotor 584
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Norms (Figure 3). We also replicated past work585

(Gilhooly and Logie, 1980) suggesting that the psy-586

chological dominance of a meaning is correlated587

with its sensorimotor strength. Third, we found588

that the sensorimotor distance between contexts589

of use was correlated with the existence of sense590

boundary (see Figure 4). Finally, in Section 5, we591

demonstrated the predictive utility of the CS Norms592

above and beyond large LMs such as BERT: the593

sensorimotor distance between two contexts of use594

predicted human judgments of relatedness, above595

and beyond a similar measure derived from BERT.596

6.1 Limitations597

This dataset is not without limitations.598

First, it is restricted in size and breadth: 448 sen-599

tences (112 words, with 4 sentences each), in En-600

glish only. In contrast, the Lancaster Sensorimotor601

Norms contain judgments of almost 40,000 English602

words (Lynott et al., 2019), and have now been603

extended to French (Miceli et al., 2021), Dutch604

(Speed and Brybaert, 2021), and more. Having605

demonstrated the utility of the CS Norms on a small606

subset of English words, one obvious direction for607

future research would be to expand this dataset—608

including more words, more sentences per word,609

a wider variety of sentences (i.e., both experimen-610

tally controlled and naturalistic sentences), and ad-611

ditional languages. Similarly, existing datasets on612

lexical ambiguity (Haber and Poesio, 2021; Karidi613

et al., 2021) could be augmented with sensorimotor614

judgments.615

Second, as others have noted (Bender and Koller,616

2020; Bisk et al., 2020; Tamari et al., 2020; Borghi617

et al., 2019), grounding goes beyond sensorimotor618

associations. Linguistic meaning is also grounded619

in social experience and interaction. Recent work620

has attempted to incorporate these social aspects of621

grounding, either by integrating social information622

into distributional models (Johns, 2021) or sim-623

ply by including more dimensions in the grounded624

feature representations (Binder et al., 2016).625

Finally, recent work has enjoyed some success626

in learning grounded feature vectors directly from627

LM representations, typically for words rated in628

isolation (Turton et al., 2020; Chersoni et al., 2020;629

Utsumi, 2020). One question is whether contex-630

tualized embeddings, derived from a large LM631

such as BERT, are sensitive enough to capture the632

fine-grained distinctions that the CS Norms encode633

across sentential contexts for the same word.634

7 Conclusion 635

We have presented a novel resource: human judg- 636

ments about the strength or salience of various sen- 637

sorimotor features for 112 English words, each 638

appearing in four distinct sentential contexts. This 639

resource was extended from past work (Trott and 640

Bergen, 2021), and thus also contains information 641

about the relatedness between sentential contexts 642

for the same word. We provided several demon- 643

strations of the dataset’s utility, above and beyond 644

judgments of these words in isolation (Lynott et al., 645

2019), as well as large LMs such as BERT (see 646

Section 5). 647

8 Ethical Considerations 648

All responses from human participants were 649

anonymized before analyzing any data. Further, 650

the final, publicly available dataset has collapsed 651

across subject-level responses for each sentence. 652

All participants provided informed consent, and 653

were compensated in the form of class credit. The 654

project was carried out with IRB approval. 655

Finally, we have attempted to ensure dataset 656

quality by: 1) removing responses from partici- 657

pants who failed bot checks; 2) removing partici- 658

pants whose inter-annotator agreement scores were 659

more than two standard deviations below the aver- 660

age; and 3) collecting at least ten ratings per sen- 661

tence, per judgment type, as in past work (Lynott 662

et al., 2019). 663
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