How to Scale Your EMA

Dan Busbridge” Jason Ramapuram® Pierre Ablin* Tatiana Likhomanenko*
Eeshan Gunesh Dhekane Xavier Suau Russ Webb
Apple

{dbusbridge, jramapuram, p_ablin, antares,
eeshan, xsuaucuadros, rwebb}eapple.com

Abstract

Preserving training dynamics across batch sizes is an important tool for practical
machine learning as it enables the trade-off between batch size and wall-clock
time. This trade-off is typically enabled by a scaling rule, for example, in stochas-
tic gradient descent, one should scale the learning rate linearly with the batch size.
Another important machine learning tool is the model EMA, a functional copy of a
target model, whose parameters move towards those of its target model according
to an Exponential Moving Average (EMA) at a rate parameterized by a momentum
hyperparameter. This model EMA can improve the robustness and generalization
of supervised learning, stabilize pseudo-labeling, and provide a learning signal for
Self-Supervised Learning (SSL). Prior works have not considered the optimization
of the model EMA when performing scaling, leading to different training dynam-
ics across batch sizes and lower model performance. In this work, we provide a
scaling rule for optimization in the presence of a model EMA and demonstrate
the rule’s validity across a range of architectures, optimizers, and data modali-
ties. We also show the rule’s validity where the model EMA contributes to the
optimization of the target model, enabling us to train EMA-based pseudo-labeling
and SSL methods at small and large batch sizes. For SSL, we enable training of
BYOL up to batch size 24,576 without sacrificing performance, a 6x wall-clock
time reduction under idealized hardware settings.

1 Introduction

With data and models becoming progressively larger (Chen et al., 2020; Kaplan et al., 2020; Bom-
masani et al., 2021; Srivastava et al., 2022), the ability to reduce training wall-clock time is a re-
quirement for practical Machine Learning (ML) at scale. Optimizer scaling rules allow us to find
faster learning procedures that produce similar results. For example, the linear scaling rule for
Stochastic Gradient Descent (SGD) (Krizhevsky, 2014; Goyal et al., 2017), states that the learning
rate should be scaled linearly with the batch size. This optimizer scaling works both ways. Access to
larger computational resources means one can train equivalent models in reduced wall-clock time.
Alternatively, with access to limited computational resources, larger distributed computations can
be replicated at increased wall-clock time.

*Primary contributor. For a detailed breakdown of author contributions see Appendix J.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Many ML algorithms rely on a model EMA, a functional copy of a target model’, whose parame-
ters move towards those of its target model according to an Exponential Moving Average (EMA)
(Definition 1.1) at a rate parameterized by a momentum hyperparameter p.

Definition 1.1 (EMA Update). The EMA update for the model EMA parameters C, following target
model parameters ©; at iteration t with momentum p =1 — f, is

Cii=pC+(1-p)0,=(1-6,)C, +B,0;. (1

The model EMA has a number of desirable properties: i) the model EMA inhabits wider minima
than the target model, reducing overfitting and improving generalization (Ruppert, 1988; Polyak &
Juditsky, 1992; Huang et al., 2017; Izmailov et al., 2018; He et al., 2022); ii) compared to the tar-
get model, the model EMA moves slowly, making it useful as a stabilizer for networks governing
Bellman updates in reinforcement learning, (Lillicrap et al., 2016); and iii) the model EMA is rela-
tively cheap to compute, whilst providing a valid model but different to the target model. This third
property has made the model EMA a common choice for the feacher in many distillation setups,
from semi-supervised learning (Tarvainen & Valpola, 2017; Sohn et al., 2020; Manohar et al., 2021;
Higuchi et al., 2022), to Self-Supervised Learning (SSL) methods like Bootstrap Your Own Latent
(BYOL) (Grill et al., 2020), DINO (Caron et al., 2021), and data2vec (Baevski et al., 2022b,a).

Despite its significant role in optimization, a recipe for adapting the EMA Update (Definition 1.1)
when changing batch size has, to the best of our knowledge, been absent. To address this, we derive
an EMA Scaling Rule (Definition 1.2) which states how the EMA momentum p hyperparameter
should be modified”.

Definition 1.2 (EMA Scaling Rule). When computing the EMA update (Definition 1.1) of a model
undergoing stochastic optimization with batch size B = kB, use a momentum p = p* and scale other
optimizers according to their own scaling rules.

In Definition 1.2, the momentum p, which is defined at batch size B, typically corresponds to a
“good hyperparameter choice”, although this does not need to be the case in general. In this paper,
we make the following contributions.

1. With the assumptions of Goyal et al. (2017), we derive an EMA Scaling Rule: the EMA update
momentum should be scaled exponentially with the batch size (Definition 1.2).

2. To validate this EMA Scaling Rule theoretically, we propose Stochastic Differential Equation
(SDE) approximations of optimization in the presence of a model EMA (Section 2.2). This
model EMA contributes to the loss, covering semi-supervised learning and SSL. We prove that
these approximations are first order weak approximations, and that our EMA Scaling Rule is
correct in the SDE limit under realistic gradient assumptions (Corollary 2.1.1).

3. We empirically validate the EMA Scaling Rule in synthetic settings (Section 3.1) and real-
world settings where the model EMA plays an increasingly significant role in optimization: i)
where the model EMA is used during inference instead of the target model (Section 3.2); ii)
pseudo-labeling, where the model EMA (teacher) follows the target model (student), and the
student is optimized on a mixture of a) labeled data and b) data without labels, whose pseudo-
labels are produced by the feacher (Section 3.3); and iii) self-supervised learning, which is the
same as the semi-supervised case, except there is no labeled data (Section 3.4).

4. We observe that pseudo-labeling and SSL training dynamics during optimizer warm-up are not
always able to be replicated at large batch sizes using only the EMA Scaling Rule. We propose
and verify practical methods to overcome this limitation, enabling us to scale to a batch size
of 24,576 with BYOL Vision Transformers (ViTs), reducing wall-clock training by 6x under
idealized hardware scenarios while maintaining performance of the batch size 4096 baseline.

Finally, to aid practitioners looking to scale, in Appendix C we provide a Scaling Toolbox, which
gives practical advice on how to scale systematically, collecting known scaling rules, and explaining
how to think about the SDE perspective of optimization.

2The target model usually undergoes gradient-based optimization, but this does not have to be the case.

3We stress that the study of momentum in gradient-based optimizers is not the focus of this work. We refer
to Smith & Le (2018); Li et al. (2019) for a discussion on scaling rules for these methods.

2 The EMA Scaling Rule

We begin with an informal discussion of scaling rules and motivate the existence of an exponential
scaling rule for the momentum parameter controlling the update of the model EMA.

2.1 Background and an informal discussion of scaling rules

Consider a model with parameters 0, at iteration ¢ updated with SGD (Definition 2.1).

Definition 2.1 (SGD Update). The SGD update for a model with parameters 0, at iteration t given
a minibatch B = {x®) ~ P, : b =1,2,..., B} of B = |B| samples with learning rate n is

1
01 = 0, X - ZB VoL (x:0,),)

where L is the loss function, VoL (x;0;) is the parameter gradient for the sample x at iteration t,
and the x € B are Independent and Identically Distributed (i.i.d.) from Py.

Iterating over a sequence of independent minibatches By, By, . .., B,_; produces model parameters
1 k—1
O =0 =X 2 > > VoL(x;0r)). 3)
Jj=0 x€B;

If gradients vary slowly Vo.L(x;0:4) = VoL(x;6;), j=0,...,xk—1, one SGD step with 7 = kpon a
batchB = U;B; of size B = kBresults in 041 = 0441, yielding the SGD Scaling Rule (Definition 2.2).

Definition 2.2 (SGD Scaling Rule). When running SGD (Definition 2.1) with batch size B = kB,
use a learning rate 1§ = xn (Krizhevsky, 2014; Goyal et al., 2017).

For clarity in this work, we adopt the naming convention [Algorithm Name] Scaling Rule, which
means all parameters of those algorithms are appropriately scaled from batch size B to xB.
As discussed in Goyal et al. (2017), although the assumption of slowly changing gradients is strong,

if it is true, then 0,4 = 0,41 only if fj = kn. The validity of the SGD Scaling Rule has been formally
studied. In particular, there was ambiguity regarding whether the scaling should be a square-root
or linear (Krizhevsky, 2014). SDE approaches have resolved this ambiguity, and have been used to
estimate the scaling ¥ when the SGD Scaling Rule is no longer guaranteed to hold (Li et al., 2021).

To address model parameter EMAs, we first restate the EMA Update (Definition 1.1).
Definition 1.1 (EMA Update). The EMA update for the model EMA parameters T, following target
model parameters ; at iteration t with momentum p = 1 — B, is

i1 =pG+(1=p)0,=(1-8,)C + B, 0. (1)

The model EMA parameters { do not typically receive gradient information, we take the convention
that p is close to one, and the 8, subscript will be omitted where it is clear from the context.

Assuming again that gradients change slowly Vo L(x;0:.j, 8. ;) ® Vo L(x;0: C,) ~ g, for gradient
g, iterating over x independent minibatches produces model states (see Appendix E.1 for derivation)

01 1 0 -nl* [0;:—nkg
[éml: (1-p) p 0 ~[€t =[p“§t+(1—p")9t+0(r7><ﬁp) : (4)
g 0 0 1 g g

The first row is the SGD Scaling Rule (Definition 2.2). The third row implements the slowly chang-
ing gradients assumption for the first row. The second row is equivalent to a single EMA up-
date (Definition 1.1) with momentum p = p*; we can take a single SGD update with batch size
B = kB and learning rate i = xn, and a single EMA update with momentum p = p*, and we get

(041, im) % (O14x, Cyqp) up to terms O(n X). This yields the EMA Scaling Rule (Definition 1.2).

Definition 1.2 (EMA Scaling Rule). When computing the EMA update (Definition 1.1) of a model

undergoing stochastic optimization with batch size B = kB, use a momentum p = p* and scale other
optimizers according to their own scaling rules.

The EMA Scaling Rule was derived for SGD, and is extended to other optimizers in the following

way. An optimizer scaling rule ensures éHl = 04, satisfying identification for the first row. Next,
the zeroth order term in 1 X f, in the second row in Equation 4 is optimizer-independent, and
therefore unchanged. Finally, the first order terms in 1 X 8, in the second row, corresponding to the
scaling rule error, are an EMA accumulation of target model 6 updates under optimization, which is
still O(n x f,), although its functional form may be different for different optimizers.

The above discussion is intended to give an intuition for why the EMA momentum should be scaled
exponentially. As we have used the same slow-moving gradient assumption as the original SGD
Scaling Rule, this may cast doubt on whether our rule is correct. To remove this ambiguity, we will
follow Smith & Le (2018); Li et al. (2021); Malladi et al. (2022), and show that the EMA Scaling
Rule (Definition [.2) is correct in the SDE limit under more realistic gradient assumptions.

2.2 The EMA Scaling Rule through the lens of stochastic differential equations

SDEs are a tool typically used to obtain scaling rules from first principles (Li et al., 2021; Malladi
et al.,, 2022). In the following, we use SDEs to obtain strong theoretical guarantees for the EMA
Scaling Rule found in Section 2.1. We consider the following discrete dynamics for EMA:

Or+1 = O — n gk, with g = V(0 Cp) + o €x, and € ~ E5 (O, Ty),
Cks1 =P G+ (1—p) O,
where o > 0 is the noise scale, E5 (0, L) is the gradient noise distribution, assumed to be zero-mean
and variance X(0y, {;) independent of ¢, and Vf (0, {;) = Vo f (0, C;). We posit a dependency of

the loss f on the EMA € in order to cover semi-supervised (Section 3.3) and SSL (Section 3.4). The
case of Polyak-Ruppert averaging (Section 3.2), is covered by letting f be independent of .

®)

We aim to obtain an SDE approximation of Equation 5 as n goes to zero. The scaling rule for
iterations of 0 is well known (Li et al., 2021): we let oy = o+/n7. The analysis of Section 2.1 gives
the scaling rule 7j = nx and p = p*. Linearizing this rule near n = 0 gives p = 1 — x X (1 — p), which
is a linear relationship between 1 — p and r. We therefore let f, = (1 — p)/n and consider the SDE

d®; = —Vf(0O, Z;) dt + 09 (O, Zt)% dW;, with W; a Wiener process,
dZ; = Bo(©; — Z;)dt,

where ©, and Z; are SDE variables relating to model and EMA parameters respectively. The SDE in
Equation 6 approximates the discrete iterations of Equation 5 when the learning rate n goes to zero.
One way to see this is that an Euler-Maruyama discretization of the SDE with learning rate n exactly
recovers the discrete iterations. More formally, we have Theorem 2.1, which is in the same spirit as
those found in Li et al. (2021); Malladi et al. (2022). In the theorem, G is the set of functions with
derivatives up to order « that have at most polynomial growth (see Definition D.1).

Theorem 2.1 (SDE for SGD + EMA; informal see Theorem D.1). Assume that f is continuously
differentiable, with f € G*. Let ©,, Z, be solutions of Equation 6, and O, . iterations of Equation 5

with £2 € G2. Then, for any time horizon T > 0 and function g € G, there exists a constant ¢ > 0
independent of nj such that

k=0,1j1.’.lfl|?(T/,7J |E[g(®nka Z'Ik)] - E[g(ek, gk):” S c X ’7 (7)

(6)

Theorem 2.1 formalizes the intuition that the SDE is an accurate approximation of the discrete
iterations. In turn, it allows validating the scaling rule in the same spirit as in Malladi et al. (2022).

Corollary 2.1.1 (Validity of the EMA Scaling Rule). Assume that f is continuously differentiable,
with f € G* and X% € G Let GI(CB), QI(CB) be iterations of Equation 5 with batch size B and hyperpa-
rameters 1, p. Let GI(CKB), {,iKB) be iterates with batch size kB, and 7} determined by the SGD Scaling

Rule (Definition 2.2) and p determined by the EMA Scaling Rule (Definition 1.2). Then, for any time
horizon T > 0 and function g € G, there exists a constant ¢ > 0 independent of n such that

(kB) . (xkB) \7 _ (B) «(B)
o2 TEL9O e i1 ~EL9O7 5D < e X ®)

Table 1: The role of the model EMA ¢ in the optimization of (0, {) given a target model 0 for different tech-
niques, ordered by increasing influence of the EMA model. All statements assume a momentum 0 < p < 1 and
that the target model 6 is subject to stochastic optimization at a batch size B.

TECHNIQUE ROLE OF MODEL EMA

POLYAK-RUPPERT AV- 0 undergoes optimization and is tracked by ¢, which does not affect 0. € is an
ERAGING, SEC. 3.2 estimate of © with a time horizon and variance determined by B and p.
CONTINUOUS Pre-Training is as above in Polyak-Ruppert Averaging. After Pre-Training, ¢
PSEUDO-LABELING, (teacher) produces targets for 0 (student) from unlabeled data, which is com-
SEC. 3.3 bined with labeled data. The optimization endpoint is dependent on B and p.
SELF-SUPERVISED As above in After Pre-Training, except there is no labeled data. The optimiza-
LEARNING, SEC. 3.4 tion endpoint is dependent on B and p.

Corollary 2.1.1 shows that two trajectories with different batch sizes are close in the limit of small
learning rate, demonstrating the validity of Definition 1.2. A natural follow-up question is what
happens when an adaptive optimizer is used instead of SGD? Malladi et al. (2022) study this without
an EMA and characterize how hyperparameters change with the noise scale. In particular, they show
that under a high gradient noise hypothesis, there exists a limiting SDE. In Appendix D, we derive
the limiting SDEs for RMSProp and Adam with an EMA. Although a formal proof of closeness
between the iterations and these SDEs is beyond the scope of this work, these SDEs indicate that
the EMA Scaling Rule holds for adaptive algorithms. We demonstrate this empirically in Section 3.

3 Experiments

Now that we have derived and shown the validity of the EMA Scaling Rule, we verify it empirically.
The experiments validate the EMA Scaling Rule for a variety of uses of EMA and are ordered by
increasing influence of the role of EMA on the optimization procedure (see Table 1). The baseline
in all of our experiments is without the EMA Scaling Rule, which applies all known relevant scaling
rules except the EMA Scaling Rule, and represents previous best practice.

3.1 Polyak-Ruppert averaging in a simple setting

At inference, it is typical to use a model EMA, known as Polyak-Ruppert Averaging (Definition 3.1).

Definition 3.1 (Polyak-Ruppert Average). When optimizing model parameters 0, compute their
EMA € (Definition 1.1). Use € instead of 0 at inference (Polyak & Juditsky, 1992; Ruppert, 1988).

We begin by showing the EMA Scaling Rule is required to match parameter trajectories in a simple
setting. Consider the optimization of 0 in a noisy parabola whose loss £(0) is parameterized by
coefficients for curvature a > 0, scaled additive noise b > 0, and additive noise ¢ > 0:

a b 2
£0) =26, Ocst = 0 — 7 21, g, = ab +ep, e ~ N (o, g;;“))

The scaling factor x in the covariance denominator implements gradient noise reduction as scaling
(i.e. batch size) increases (Jastrzebski et al.,, 2017). Let & € R be optimized with SGD (Defini-
tion 2.1) and ¢ € R be a Polyak-Ruppert average (Definition 3.1) for 6 with momentum p =1-f .
At scaling k = 1, we use g = ng = 10~* and Iz = 10* iterations, to yield a total time T = Ig X7 = 1.
To keep gradients O(1) and gradient noise non-negligible, we take a = 1, b = 0.5, and ¢ = 0.

First, we observe the effect of scaling on a single run (Figure 1a) by tracking the position of the
model EMA. We see that at scaling x = 8 or k = 256, the runs using the EMA Scaling Rule
match the baseline trajectory, whereas the runs using the baseline momentum do not, with a greater
deviation induced by greater scaling x. Even at k = 8, there is a significant difference between scaled
and unscaled trajectories, despite the seemingly small numerical difference of their momenta®.

Second, we consider whether the EMA Scaling Rule is optimal. To do this, inspired by the SDE
analysis (Section 2.2), we define the approximation error, Err(p, k, g), of a test function g for a given

4Momentum enters optimization exponentially; small changes can lead to very different updates.

o Scaling k =8 Scaling kK = 256 5 10
N —] g
= QU =3 g
) g = 10!
R= = ks
‘% 0.8 = it
o = <
T g —— EMA,p=p3 E
< --= k=1,p=pp --— k=1l.p=pp 5 000f — EMA,p=p* ‘51072
206 — k=8,p=pf — Kk=256,p=pf s —— EMA, p =pf <]
M — K=8,p=pp —— K=256,p=pp Model &
0.85 <107
0.0 0.5 1.0 0.0 0.5 1.0 1 4 16 64 256 1024 1 4 16 64 256 1024

Continuous Time Continuous Time Scaling Factor k¥ Scaling Factor k¥

(a) Trajectory of the model EMA € under different
scalings x, with 1 — pg = ng = 1074,

(b) Choices for momentum (left) with corresponding ap-
proximation errors (Equation 10) (right).

Figure 1: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (x = 1, black
dashed) to k = 8 (left) and x = 256 (right), with (p = pl’g, blue) and without (p = pp, red) the EMA Scaling Rule.
(b, left) The momentum according for different scaling rules and the empirically optimal p* (Equation 10). (b,
right) The approximation error (Equation 10) of trajectories in (b, left) and the target model (orange).

~ Scaling k =1/2 Scaling Kk =2 Scaling k =4 Scaling Kk =8
S
=75 - I —
— ///_ g g
< /——/— //——- P /—
ﬁso —/B=512,p =p§ —— B=2048,p =pj —— B=4096,p = pj ——/B=28192,p =pj
- —— B=512,p=pp —— B=2048,p =pp —— B =409, p =pp —— B=28192,p=pp
é 25 ===+ B=1024,p =pp === B=1024,p =pp === B=1024,p =pp ===+ B=1024,p =pp
p /
< ,_/ / ,/ J
=0 //
= 0O 15 30 45 60 75 9 O 15 30 45 60 75 9 0 15 30 45 60 75 9 O 15 30 45 60 75 90
Train Epochs Train Epochs Train Epochs Train Epochs

Figure 2: ResNetv2-50 Polyak-Ruppert averaging on ImageNetlk for different scalings x. The baseline model
(x = 1, black dashed) uses batch size 1024 and momentum pg = 0.9999, is scaled down to a batch size of 512
(left), and up to a batch size of 4096 (right) with (blue, p = pg) and without (red, p = pg) the EMA Scaling
Rule (Definition 1.2). Bands indicate the mean and standard deviation across three runs.

scaling k using momentum p, and the value of the momentum p*(x, g) that minimizes this error:

p’(x,g) =arg min Err(p, , 9), Er(p,k,g) = m < Eg(%) - Eg(é,ﬁ'j;f)) : (10)
P =0,...,
For scalings k € {1,2,4,...,1024}, we determine the optimal momentum p* and compare it to the

EMA Scaling Rule (Figure b, left). The scaling rule tracks the p* until k = 256, when the p*
become systematically higher. We see target model error increase at k = 256 (Figure b, right). As
the target model error is EMA-independent, this indicates that the SGD Scaling Rule is breaking.
At the lower scaling x = 64, there is an inflection point in the EMA Scaling Rule approximation
error, before the model error grows. This difference indicates the O(# X f5,) terms of Equation 4 are
beginning to influence the EMA update. Finally, these observations are true in D = 100 dimensions,
(Appendix F.1), and we stress that not changing the momentum at every scaling x induces large
approximation error, indicating there is merit to using the EMA Scaling Rule.

3.2 Supervised learning on real data with Polyak-Ruppert averaging

We now turn to real-world classification where the target model 8 optimizes a parametric log-
likelihood maxg log p(y|x; 0) with inputs and labels (x, y) drawn from a joint distribution p(y, x).

Image Classification We consider a variant of the original SGD Scaling Rule result (Goyal et al.,
2017) and train a ResNetv2 (He et al., 2016b) on ImageNetlk (Russakovsky et al., 2014) (Figure 2)
using a three step learning rate schedule. The base momentum pg = 0.9999 at batch size 1024
was found by hyperparameter optimizing for EMA test performance, and we seek to achieve this
optimized performance at different batch sizes. We do not apply the EMA Scaling Rule on the Batch
Normalization (loffe & Szegedy, 2015) statistics’. We observe that without the EMA Scaling Rule,
there is a significant drop in model EMA test performance, whereas with the EMA Scaling Rule, we

3Since Batch Normalization statistics use an EMA update, it is reasonable to ask whether the EMA Scaling
Rule should be applied. We investigate this in Appendix F.3. We find one should apply the scaling rule,
however, the effect is less significant than the application of the EMA Scaling Rule to model parameters.

can approximate the baseline model EMA test top-1 performance across all batch sizes. We match
baseline EMA statistics across the full trajectory batch size 2048, where the test EMA performance
diverges. This is due to non-EMA test performance dropping for high k (see Appendix F.2). We
observe that model EMA top-1 is approximately 0.2% to 0.3% higher than the target model.

Automatic Speech Recognition (ASR) We train a transformer (Vaswani et al., 2017) using the
Connectionist Temporal Classification (CTC) loss (Graves et al., 2006) and Adam optimizer on the
train-clean-100 subset (100h) of LibriSpeech (Panayotov et al., 2015) (for details see Appendix G).
We apply the Adam Scaling Rule (Malladi et al. (2022), Definition C.3) and use dynamic batching
(minibatch size X sequence length = const = 290s, and s indicates audio duration in seconds).

Without the EMA Scaling Rule, there is a significant difference in model EMA test Word Error
Rate (WER) trajectories compared to the baseline, whereas with the EMA Scaling Rule, trajecto-
ries match, as is shown in Figure 3. We note that compared to image classification, in ASR, the
model EMA converges to similar final performance irrespective of use of the scaling rule. This con-
vergence is due to the longer training time compared to the EMA horizon as discussed in Table |
(see Appendix E.2 for a proof sketch). Although in this specific case one can achieve similar final
performance without the EMA Scaling Rule, it is necessary to use the EMA Scaling Rule in order
to replicate the full training trajectory, which gives guarantees on properties like final performance
(see Corollary 2.1.1). We also observe a growing gap between the baseline and EMA-scaled trajec-
tories as we increase k. Inspecting the train loss and non-EMA test WER, which do not depend on
the EMA update (see Figure 14, Appendix G.1), indicates this is due to a breakdown of the Adam
Scaling Rule. In summary, evaluation on ASR shows that the EMA Scaling Rule holds in practice
for sequential data with dynamic batch sizes, as well as when using adaptive optimization.

Scaling K = 1/4 Scaling Kk = 1/2

Scaling Kk =2 Scaling Kk = 4

100 1 === B=8x290s,p =pp
——— B=2x290s,p = pp
—— B=2x290s,p = pk

=== B=8x290s,p =pgp
——— B=4x290s,p = pp
—— B=4x290s,p = p§

=== B=8x290s,p =pp
—— B=16x290s,p =pg
——— B=16x290s,p = pf

=== B=8x290s,p =pp
——— B=132x290s,p =pp
——— B=132x290s,p =pf

501

EMA test-other WER

40 2 4
x10° Train Steps x 10°

40 2
x10° Train Steps

40 2
x10° Train Steps

0 2
Train Steps

Figure 3: Transformer Polyak-Ruppert averaging on LibriSpeech (trained on train-clean-100) with different
scalings k. The baseline (x = 1, black dashed) is trained with Adam and momentum pg = 0.99995 at a dynamic
batch size B = 8 X 290s, which corresponds to a single train step on the x-axis. We investigate dynamic batch
sizes down to B = 2 X 290s (left) and up to B = 32 X 290s (right), with (blue, p = pg), and without (red, p = pp)
the EMA Scaling Rule. The Adam Scaling Rule (Malladi et al. (2022), Definition C.3) is used throughout.

3.3 Semi-supervised speech recognition via pseudo-labeling

o

We continue using the same ASR model and training pipeline of Section 3.2. However, we consider
semi-supervised learning via continuous pseudo-labeling where labeled (¢rain-clean-100, 100h) and
unlabeled (the rest of LibriSpeech, 860h) data are given during training, and the model EMA is in-
volved in the overall optimization (Likhomanenko et al., 2021a, 2022; Manohar et al., 2021; Higuchi
etal., 2022). We first pre-train a target model (student) on a limited labeled set for a short period (e.g.
20k steps of B = 8 x 290s”). Concurrently, the student updates a model EMA (teacher). After pre-
training, we continue training the student with both labeled and unlabeled data, with the teacher first
transcribing unlabeled data from the batch producing Pseudo-Labels (PLs). These PLs are treated
by the student as ground-truth transcriptions, and standard supervised optimization is performed.

Compared to Polyak-Ruppert Averaging (Section 3.2), where the model EMA plays no role in the
joint optimization, we observe that in PL it is essential to employ the EMA Scaling Rule in order to
match the model trajectories at scaled batch sizes. When the EMA Scaling Rule is not used, Figure 4
reveals a significant difference in PL quality trajectory, leading to a higher test WER.

For k > 2, we found the Adam Scaling Rule does not perfectly match the reference trajectory in
the pre-training phase. This results in a significantly different PL quality at the start of pseudo-
labeling (20k steps of B = 8 X 290s), which affects the training dynamics (Berrebbi et al., 2023). To

5Note that number of steps is batch size dependent and should be scaled by 1/k (see Appendix C).

Scaling Kk = 1/2 Scaling Kk =2 Scaling k =4 Scaling Kk =8

24
§ 50+
—
Ay
0
% 100+ === B=8x290s,p =pp ==+ B=28x290s,p =p3 === B=28x290s,p =pg === B=8x290s,p =pp
B ——— B=4x290s,p =pp = B=16x290s,p = pp = B=32x290s,p = pp = B=064x290s,p = pp
E) 504 ——— B=4x290s,p = pf —— B=16x290s,p = pf] B =32x290s,p = pf ~——— B=064x290s,p = pf
o<
w
) I I | I] ! |]
0 2 4 0 2 4 0 2 4 0 2 4
Train Steps x 107 Train Steps x 10° Train Steps x 10° Train Steps x 10°

Figure 4: Transformer pseudo-labeling on LibriSpeech with different scalings x. The baseline (x = 1, black
dashed) is trained with Adam at a dynamic batch size of 8 X290 seconds, which corresponds to a single train step
on the x-axis. The model EMA (teacher) is updated with momentum pg = 0.9999. We investigate dynamic
batch sizes down to B = 4 X 290s (left) and up to B = 64 x 290s (right), with (blue, p = pg) and without
(red, p = pp) the EMA Scaling Rule. The Adam Scaling Rule (Malladi et al. (2022), Definition C.3) is used
throughout. For k < 2, we start pseudo-labeling after 20k/x training steps; while for x > 2, we start when
pre-training WER matches the baseline WER.

alleviate the Adam Scaling Rule mismatch effect for k > 2, we postpone the pseudo-labeling until
pre-training on labeled data gives similar validation WER, see Appendix G. With this heuristic, we
can match the baseline trajectory with the EMA Scaling Rule up to x = 8 (Figure 4).

In summary, (a) model EMA affects the optimization process of pseudo-labeling in ASR resulting in
the necessity of EMA Scaling Rule to be applied while scaling the batch size; (b) an optimizer scaling
rule breakdown results in the EMA Scaling Rule breakdown but this effect can be alleviated by longer
pre-training on labeled data having similar PLs quality at the start across different scalings.

3.4 Self-supervised image representation learning

Finally, we turn our attention to distillation based Self-Supervised Learning (SSL). where the model
EMA is the teacher (Grill et al., 2020; Niizumi et al., 2023; Caron et al., 2021; Oquab et al., 2023).

We will use BYOL (Grill et al. (2020), Definition 1.1)” for our investigation into scaling as it is well-
studied (Tian et al., 2021; Richemond et al., 2023), relatively simple to implement due to minimal
hyper-parameters, and obtains competitive results (Grill et al., 2020; Koppula et al., 2022). Since
BYOL learns through self-referential distillation, momentum plays a significant role in optimization.
We analyze: i) a ResNet-18 (He et al., 2016a) on CIFAR10 (Krizhevsky et al., 2014) (Figure 5) using
SGD (Definition 2.1); and ii) a ViT-B/16 (Dosovitskiy et al., 2021) on ImageNetlk using AdamW
(Loshchilov & Hutter, 2019). A recipe for BYOL using ViTs is provided in Appendix H.3.

ResNet-18 on CIFAR-10 We begin with a ResNet-18 model and short training duration to enable
quick iteration, and an SGD optimizer as it has as known scaling rule. This allows us to probe the
EMA Scaling Rule without potential confounders like poor gradient-based optimizer scaling®.

We observe that without the EMA Scaling Rule, there is a drop in test top-1 linear probe (Defini-
tion H.3) performance compared to the baseline, whereas with the EMA Scaling Rule, we closely
match the baseline model until batch size 4096. We show that this result is consistent for a range of
base learning rates 5 and momenta pg in Appendix H.8. At batch size 8192, we see a performance
gap between the scaled model using the EMA Scaling Rule and the baseline. We speculate that this
is due to dynamics early in the BYOL training process that are challenging to replicate at larger batch
sizes. To test, and potentially circumvent this, we introduce Progressive Scaling (Definition 3.2).

Definition 3.2 (Progressive Scaling, informal; see Appendix C.4). Given batch size B and hyperpa-
rameters at B, slowly increase the batch size to the desired largest batch size during training. At any
intermediate batch size B = kB, all hyperparameters are scaled according to their scaling rules.

"The BYOL EMA update (Equation 74) uses ;41 instead of our analyzed 0; (Equation 4). The effect upon
the overall EMA update is O(n X ff,) and so is captured by the EMA Scaling Rule (Definition 1.2).

8For competitive performance with the reference BYOL (Grill et al., 2020) using a ResNet-50, adaptive
optimization, and longer training duration, see Appendix H.10 and Figure 26.

Scaling k =2 Scaling k =4 Scaling k =8 Progressive Scaling k = 8

<
&
— 40
&
]
= —— B=2048,p = pj —— B=4096,p =pj B=8192@10, p = pj
) 20 —— B=2048,p=pp —— B =409, p =pp —— B=8192@30,p = pj
---- B=1024,p =pp ---- B=1024,p =pp ---- B=1024,p =pp
0.7

Train Loss
o o
W (=)}

e
=

e
W

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100 0 25 50 75 100
Train Epochs Train Epochs Train Epochs Train Epochs

Figure 5: ResNet-18 BYOL on CIFARIO for different k. The baseline (x = 1, black dashed) uses batch size 1024
and momentum pg = 0.992, and is scaled from batch size 2048 (left) to 8192 (third) with (blue, p = pl’g) and
without (red, p = pg) the EMA Scaling Rule. At x = 8 we also run progressive scaling (right), with transitions
at 10 (green) and 30 (orange) epochs. Bands indicate mean and standard deviation across three runs.

Progressive Scaling k =2 Progressive Scaling k =4 Progressive Scaling kK =6 Progressive Scaling x = 8

> 75
<
— 50
&
=25
-
3
= oLy
B=8192, p = p§ B=16384,p = p¥ B =24576,p = p§ B=32768,p = pf
—— B=8192, p = p —— B=16384,p = pp —— B=24576,p = pp —— B=32768,p = p
=== B=409, p = pp === B=409, p = pp —— B=24576,p = pf === B=409, p = pp
i B =124576,p = pg
§ b B =409, p = pp
— \
=] \
5 \
& \ —'X N
LW N
""'-._ ''''''
Mo, S
\\“ \\\‘
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Train Epochs Train Epochs Train Epochs Train Epochs

Figure 6: BYOL ViT-B/16 on ImageNetIk for different scalings k. The baseline model (x = 1, black dashed) uses
batch size 4096 and teacher momentum pg = 0.99, and is scaled from batch size 8192 (left) to 32768 (right)
with progressive scaling and the EMA Scaling Rule (Definition 3.2) (orange, p = pl’g), with the EMA Scaling
Rule but without progressive scaling (blue, p = pf), without the EMA Scaling Rule but with progressive scaling
(purple, p = pp), and without either (red, p = pp). Progressive scaling transitions from the reference model at
epoch 60. See Appendix H.6 for a discussion on BYOL progressive scaling.

We see that transitioning to the higher batch size during the warmup period results in a model
optimization trajectory that diverges from the baseline, whereas transitioning after warmup results in
matching final trajectories of the scaled and baseline models. In summary, progressive scaling allows
us to match BYOL dynamics at large batch sizes, provided we transition after the warmup period.
This observation is consistent with our hypothesis regarding BYOL dynamics during warmup.

Vision Transformers on ImageNetlk Progressive Scaling coupled with the EMA Scaling Rule
is required when scaling BYOL ViTs (Figure 6), enabling baseline loss tracking to a batch size of
24,576. Perfect scaling fails at batch size 32,768, consistent with observations in supervised learning
(Goyal et al., 2017; Huo et al., 2021). Despite the breakdown, there is only a small drop in 1.6%
probe performance when using the EMA Scaling Rule, compared to as 44.56% drop without it. We
also observe that it is sometimes possible to match test model performance using only Progressive
Scaling and not the EMA Scaling Rule, although this still induces a training loss mismatch. We
stress that such an approach is not guaranteed to work and discuss when this approach succeeds and
fails in Appendix H.6 and Figure 22.

At the transition point between batch sizes, an impulse perturbation’ is measured at the student,
visible from the training loss. This is recovered from by the learning process, and the new model
matches the reference batch size. This perturbation happens in both the AdamW and SGD settings,
leading us to suspect this is due to the BYOL learning process, rather than an artifact of optimizer or
momentum scaling. However, since this is not directly related to the EMA Scaling Rule proposed
in this work, we defer this analysis to future investigation.

4 Related work

Optimizer scaling rules from SDEs The SDE perspective has uncovered optimizer scaling rules
and allowed an understanding of their limitations. Smith & Le (2018) used SDEs to uncover the
SGD Scaling Rule, while (Li et al., 2021) used SDEs to explain that rule’s breakdown in terms of
discretization error. The SDE analysis was extended to adaptive optimization by (Malladi et al.,
2022), producing an Adam Scaling Rule (Definition C.3), indicating that along with the learning
rate, the f3; ; and € parameters transform. The f; ; transformation is consistent with the EMA Scaling
Rule in the SDE limit. Our work differs as it considers a model EMA that alters the objective.

Varying the batch size during training Smith et al. (2018) investigated the benefits of scheduling
the batch size at a fixed learning rate as an alternative to scheduling the learning rate at a fixed batch
size. These two are equivalent through the SGD Scaling Rule. The authors do not scale the optimizer
hyperparameters during this procedure, as they are intentionally replicating the training dynamics of

a learning rate schedule. This is in contrast with Progressive Scaling (Definition 3.2) which scales
the hyperparameters to maintain the optimization process at different levels of discretization.

Large batch training of SSL distillation methods SSL methods learn representations without
labels, meaning they can take advantage of web-scale data. Large batch optimization is required to
make use of this data in a reasonable amount of time. Grill et al. (2020) demonstrated algorithmic
robustness when reducing the batch size through gradient accumulation and EMA update skipping,
which implements an approximation of our EMA Scaling Rule for k < 1. Our work provides a
recipe to scale down and up in k. MoCo-v3 (Chen et al., 2021) enables contrastively distilled ViTs
up to a batch size of 6144, where the model drops in performance. More recently, methods like
DINO (Caron et al., 2020) present a worse scenario, and are unable to scale beyond batch size 1024
(Koppula et al., 2022). In contrast, our work presents practical tools to scale to large batch sizes in
the presence of an EMA, enabling practical training of these SSL methods on large scale data.

5 Conclusion

We provide an EMA Scaling Rule: when changing the batch size by a factor of k, exponentiate the
momentum of the EMA update to the power of x. This scaling rule should be applied in addition to
optimizer scaling rules (for example, linearly scaling the SGD learning rate), and enables the scaling
of methods which rely on EMA and are sensitive to the choice of EMA momentum.

We prove the validity of the EMA Scaling Rule by deriving first-order SDE approximations of dis-
crete model optimization when a model EMA is present and can contribute to the model objective.
We demonstrate empirical support for a variety of uses of EMA, ordered by increasing influence of
the role of EMA on the optimization procedure: supervised model tracking (i.e. Polyak-Ruppert
averaging) in speech and vision domains, pseudo-labeling in speech, and self-supervised image rep-
resentation learning. In almost all scenarios, using the EMA Scaling Rule enables matching of
training dynamics under batch size modification, whereas not using it results in significant differ-
ences in optimization trajectories. For example, we can scale the BYOL self-supervised method to
a batch size of 24,576 without any performance loss only when using the EMA Scaling Rule.

While learning rate scaling rules are relatively commonplace in ML, the role of EMA has been
overlooked. With this work, we highlight the importance of scaling the EMA momentum, and hope
that future works will use the EMA Scaling Rule to scale the EMA momentum correctly, in the same
way that learning rates and other optimizer hyperparameters are scaled.

9Instead of a single large batch transition as in Figure 6 we perform a sequential transition in Appendix H.5.
We find that a slow increase in batch size minimizes the magnitude of the perturbation and leads to a final
model with higher effective linear probe top-1 than the reference by approximately 1.17%.

10

6 Acknowledgements

We thank Miguel Sarabia del Castillo, Adam Golinski, Pau Rodriguez Lopez, Skyler Seto, Ami-
tis Shidani, Barry Theobald, Vimal Thilak, Floris Weers, Luca Zappella, and Shaungfei Zhai for
their helpful feedback and critical discussions throughout the process of writing this paper; Okan
Akalin, Hassan Babaie, Denise Hui, Mubarak Seyed Ibrahim, Li Li, Cindy Liu, Rajat Phull, Evan
Samanas, Guillaume Seguin, and the wider Apple infrastructure team for assistance with developing
and running scalable, fault tolerant code; and Kaifeng Lyu and Abhishek Panigrahi for discussion
and details regarding scaling rules for adaptive optimizers. Names are in alphabetical order by last
name within group.

References

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR,
abs/1607.06450, 2016. URL http://arxiv.org/abs/1607.06450.

Alexei Baevski, Arun Babu, Wei-Ning Hsu, and Michael Auli. Efficient self-supervised learn-
ing with contextualized target representations for vision, speech and language. CoRR,
abs/2212.07525, 2022a. doi: 10.48550/arXiv.2212.07525. URL https://doi.org/10.
48550/arXiv.2212.07525.

Alexei Baevski, Wei-Ning Hsu, Qiantong Xu, Arun Babu, Jiatao Gu, and Michael Auli. Data2vec:
A general framework for self-supervised learning in speech, vision and language. In International
Conference on Machine Learning, pp. 1298-1312. PMLR, 2022b.

Dan Berrebbi, Ronan Collobert, Samy Bengio, Navdeep Jaitly, and Tatiana Likhomanenko. Contin-
uous pseudo-labeling from the start. In The Eleventh International Conference on Learning Rep-
resentations, 2023. URL https://openreview.net/forum?id=m3twGT2bAug.

Rishi Bommasani, Drew A. Hudson, Ehsan Adeli, Russ B. Altman, Simran Arora, Sydney von Arx,
Michael S. Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, Erik Brynjolfsson,
Shyamal Buch, Dallas Card, Rodrigo Castellon, Niladri S. Chatterji, Annie S. Chen, Kathleen
Creel, Jared Quincy Davis, Dorottya Demszky, Chris Donahue, Moussa Doumbouya, Esin Dur-
mus, Stefano Ermon, John Etchemendy, Kawin Ethayarajh, Li Fei-Fei, Chelsea Finn, Trevor
Gale, Lauren Gillespie, Karan Goel, Noah D. Goodman, Shelby Grossman, Neel Guha, Tatsunori
Hashimoto, Peter Henderson, John Hewitt, Daniel E. Ho, Jenny Hong, Kyle Hsu, Jing Huang,
Thomas Icard, Saahil Jain, Dan Jurafsky, Pratyusha Kalluri, Siddharth Karamcheti, Geoff Keel-
ing, Fereshte Khani, Omar Khattab, Pang Wei Koh, Mark S. Krass, Ranjay Krishna, Rohith Ku-
ditipudi, and et al. On the opportunities and risks of foundation models. CoRR, abs/2108.07258,
2021. URL https://arxiv.org/abs/2108.07258.

Andy Brock, Soham De, Samuel L. Smith, and Karen Simonyan. High-performance large-scale
image recognition without normalization. In Marina Meila and Tong Zhang (eds.), Proceedings
of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual
Event, volume 139 of Proceedings of Machine Learning Research, pp. 1059-1071. PMLR, 2021.
URL http://proceedings.mlr.press/v139/brock21a.html.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by contrasting cluster assignments. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-
Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
70feb62b69f16e0238f741fab228fec2-Abstract.html.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Ar-
mand Joulin. Emerging properties in self-supervised vision transformers. CoRR, abs/2104.14294,
2021. URL https://arxiv.org/abs/2104.14294.

Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E. Hin-
ton. Big self-supervised models are strong semi-supervised learners. In Hugo Larochelle,

11

http://arxiv.org/abs/1607.06450
https://doi.org/10.48550/arXiv.2212.07525
https://doi.org/10.48550/arXiv.2212.07525
https://openreview.net/forum?id=m3twGT2bAug
https://arxiv.org/abs/2108.07258
http://proceedings.mlr.press/v139/brock21a.html
https://proceedings.neurips.cc/paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/70feb62b69f16e0238f741fab228fec2-Abstract.html
https://arxiv.org/abs/2104.14294

Marc’ Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
fcbc95ccdd551da181207¢c0c1400c655-Abstract.html.

Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised vi-
sion transformers. In 2021 IEEE/CVF International Conference on Computer Vision, ICCV
2021, Montreal, QC, Canada, October 10-17, 2021, pp. 9620-9629. IEEE, 2021. doi:
10.1109/ICCV48922.2021.00950. URL https://doi.org/10.1109/1ICCV48922.
2021.00950.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition
at scale. In 9th International Conference on Learning Representations, ICLR 2021, Virtual
Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=YicbFdNTTy.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. In Adam Tauman Kalai and Mehryar Mohri (eds.), COLT
2010 - The 23rd Conference on Learning Theory, Haifa, Israel, June 27-29, 2010, pp. 257
269. Omnipress, 2010. URL http://colt2010.haifa.il.ibm.com/papers/
COLT2010proceedings.pdf#page=265.

Abe Fetterman and Josh Albrecht. Understanding self-supervised
and contrastive learning with "bootstrap your own latent" (byol),
Aug 2020. URL https://generallyintelligent.ai/

understanding-self-supervised-contrastive-learning.html.

Priya Goyal, Piotr Dolldr, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch SGD: training im-
agenet in 1 hour. CoRR, abs/1706.02677, 2017. URL http://arxiv.org/abs/1706.
02677.

Alex Graves, Santiago Fernandez, Faustino Gomez, and Jiirgen Schmidhuber. Connectionist tem-
poral classification: labelling unsegmented sequence data with recurrent neural networks. In
Proceedings of the 23rd international conference on Machine learning, pp. 369-376, 2006.

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Boot-
strap your own latent - A new approach to self-supervised learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin (eds.),
Advances in Neural Information Processing Systems 33: Annual Conference on Neu-
ral Information Processing Systems 2020, NeurlPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
£3ada80d5c4ee70142b17b8192b2958e-Abstract.html.

Junxian He, Jiatao Gu, Jiajun Shen, and Marc’ Aurelio Ranzato. Revisiting self-training for neural
sequence generation. In International Conference on Learning Representations, 2020. URL
https://openreview.net/forum?id=SJgdnAVKDH.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In 2015 IEEE International Conference on
Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pp. 1026—1034. IEEE Com-
puter Society, 2015. doi: 10.1109/ICCV.2015.123. URL https://doi.org/10.1109/
ICCV.2015.123.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pp. 770-778. IEEE Computer Society, 2016a. doi:
10.1109/CVPR.2016.90. URL https://doi.org/10.1109/CVPR.2016.90.

12

https://proceedings.neurips.cc/paper/2020/hash/fcbc95ccdd551da181207c0c1400c655-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/fcbc95ccdd551da181207c0c1400c655-Abstract.html
https://doi.org/10.1109/ICCV48922.2021.00950
https://doi.org/10.1109/ICCV48922.2021.00950
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265
http://colt2010.haifa.il.ibm.com/papers/COLT2010proceedings.pdf#page=265
https://generallyintelligent.ai/understanding-self-supervised-contrastive-learning.html
https://generallyintelligent.ai/understanding-self-supervised-contrastive-learning.html
http://arxiv.org/abs/1706.02677
http://arxiv.org/abs/1706.02677
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f3ada80d5c4ee70142b17b8192b2958e-Abstract.html
https://openreview.net/forum?id=SJgdnAVKDH
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks. In Bastian Leibe, Jiri Matas, Nicu Sebe, and Max Welling (eds.), Computer Vi-
sion - ECCV 2016 - 14th European Conference, Amsterdam, The Netherlands, October 11-14,
2016, Proceedings, Part IV, volume 9908 of Lecture Notes in Computer Science, pp. 630-645.
Springer, 2016b. doi: 10.1007/978-3-319-46493-0_38. URL https://doi.org/10.
1007/978-3-319-46493-0_38.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollér, and Ross B. Girshick. Masked
autoencoders are scalable vision learners. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24, 2022, pp. 15979-15988.
IEEE, 2022. doi: 10.1109/CVPR52688.2022.01553. URL https://doi.org/10.1109/
CVPR52688.2022.01553.

Yosuke Higuchi, Niko Moritz, Jonathan Le Roux, and Takaaki Hori. Momentum pseudo-labeling:
Semi-supervised asr with continuously improving pseudo-labels. IEEE Journal of Selected Topics
in Signal Processing, 16(6):1424-1438, 2022.

Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot ensembles: Train 1, get M for free. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. Open-
Review.net, 2017. URL https://openreview.net/forum?id=BIYwwY911.

Zhouyuan Huo, Bin Gu, and Heng Huang. Large batch optimization for deep learning using
new complete layer-wise adaptive rate scaling. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial In-
telligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2021, Virtual Event, February 2-9, 2021, pp. 7883-7890. AAAI Press, 2021. URL
https://ojs.aaai.org/index.php/AAAIl/article/view/16962.

IEEE. Ieee standard for floating-point arithmetic. IEEE Std 754-2019 (Revision of IEEE 754-2008),
pp- 1-84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In Francis R. Bach and David M. Blei (eds.), Proceedings of the
32nd International Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015,
volume 37 of JMLR Workshop and Conference Proceedings, pp. 448—456. JIMLR.org, 2015. URL
http://proceedings.mlr.press/v37/ioffel5.html.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry P. Vetrov, and Andrew Gordon Wil-
son. Averaging weights leads to wider optima and better generalization. In Amir Globerson and
Ricardo Silva (eds.), Proceedings of the Thirty-Fourth Conference on Uncertainty in Artificial In-
telligence, UAI 2018, Monterey, California, USA, August 6-10, 2018, pp. 876—885. AUAI Press,
2018. URL http://auai.org/uai2018/proceedings/papers/313.pdf.

Stanislaw Jastrzebski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Ben-
gio, and Amos J. Storkey. Three factors influencing minima in SGD. CoRR, abs/1711.04623,
2017. URL http://arxiv.org/abs/1711.04623.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. CoRR, abs/2001.08361, 2020. URL https://arxiv.org/abs/2001.08361.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Leslie Kish. Survey Sampling, volume 59. Cambridge University Press, 1965. doi: 10.1017/
S0003055400132113.

Skanda Koppula, Yazhe Li, Evan Shelhamer, Andrew Jaegle, Nikhil Parthasarathy, Relja Arand-
jelovic, Jodo Carreira, and Olivier J. Hénaff. Where should I spend my flops? efficiency evalu-
ations of visual pre-training methods. CoRR, abs/2209.15589, 2022. doi: 10.48550/arXiv.2209.
15589. URL https://doi.org/10.48550/arXiv.2209.15589.

13

https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1007/978-3-319-46493-0_38
https://doi.org/10.1109/CVPR52688.2022.01553
https://doi.org/10.1109/CVPR52688.2022.01553
https://openreview.net/forum?id=BJYwwY9ll
https://ojs.aaai.org/index.php/AAAI/article/view/16962
http://proceedings.mlr.press/v37/ioffe15.html
http://auai.org/uai2018/proceedings/papers/313.pdf
http://arxiv.org/abs/1711.04623
https://arxiv.org/abs/2001.08361
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.2209.15589

Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. CoRR,
abs/1404.5997,2014. URL http://arxiv.org/abs/1404.5997.

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for advanced re-
search). 2014. URL http://www.cs.toronto.edu/~kriz/cifar. html.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the
loss landscape of neural nets. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle,
Kristen Grauman, Nicold Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural
Information Processing Systems 31: Annual Conference on Neural Information Process-
ing Systems 2018, NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 6391-
6401, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
a41b3bb3e6b050b6c9067c67£f663b915-Abstract.html.

Qianxiao Li, Cheng Tai, and E Weinan. Stochastic modified equations and dynamics of stochastic
gradient algorithms i: Mathematical foundations. The Journal of Machine Learning Research, 20
(1):1474-1520, 2019.

Zhiyuan Li, Sadhika Malladi, and Sanjeev Arora. On the validity of modeling SGD
with stochastic differential equations (sdes). In Marc’Aurelio Ranzato, Alina Beygelz-
imer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman Vaughan (eds.), Advances
in Neural Information Processing Systems 34: Annual Conference on Neural Informa-
tion Processing Systems 2021, NeurlPS 2021, December 6-14, 2021, virtual, pp. 12712—
12725, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
69£62956429865909921fa916d61c1f8-Abstract.html.

Tatiana Likhomanenko, Qiantong Xu, Jacob Kahn, Gabriel Synnaeve, and Ronan Collobert. slimipl:
Language-model-free iterative pseudo-labeling. Proc. Interspeech, 2021a.

Tatiana Likhomanenko, Qiantong Xu, Gabriel Synnaeve, Ronan Collobert, and Alex Rogozhnikov.
Cape: Encoding relative positions with continuous augmented positional embeddings. Advances
in Neural Information Processing Systems, 34, 2021b.

Tatiana Likhomanenko, Ronan Collobert, Navdeep Jaitly, and Samy Bengio. Continuous soft
pseudo-labeling in ASR. In I Can’t Believe It’s Not Better Workshop: Understanding Deep Learn-
ing Through Empirical Falsification, 2022. URL https://openreview.net/forum?
id=aoiqVW4ui51.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In Yoshua
Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL http:
//arxiv.org/abs/1509.02971.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International Con-
ference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. Open-
Review.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the
sdes and scaling rules for adaptive gradient algorithms. In NeurlPS, 2022.
URL http://papers.nips.cc/paper_files/paper/2022/hash/
32ac710102f0620d0f28d5d05a44fe08-Abstract-Conference.html.

Vimal Manohar, Tatiana Likhomanenko, Qiantong Xu, Wei-Ning Hsu, Ronan Collobert, Yatharth
Saraf, Geoffrey Zweig, and Abdelrahman Mohamed. Kaizen: Continuously improving teacher
using exponential moving average for semi-supervised speech recognition. In 2021 IEEE Auto-
matic Speech Recognition and Understanding Workshop (ASRU), pp. 518-525. IEEE, 2021.

Daisuke Niizumi, Daiki Takeuchi, Yasunori Ohishi, Noboru Harada, and Kunio Kashino. BYOL
for audio: Exploring pre-trained general-purpose audio representations. IEEE ACM Trans. Audio
Speech Lang. Process., 31:137-151, 2023. doi: 10.1109/TASLP.2022.3221007. URL https:
//doi.org/10.1109/TASLP.2022.3221007.

14

http://arxiv.org/abs/1404.5997
http://www.cs.toronto.edu/~kriz/cifar.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/a41b3bb3e6b050b6c9067c67f663b915-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/69f62956429865909921fa916d61c1f8-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/69f62956429865909921fa916d61c1f8-Abstract.html
https://openreview.net/forum?id=aoiqVW4ui51
https://openreview.net/forum?id=aoiqVW4ui51
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=Bkg6RiCqY7
http://papers.nips.cc/paper_files/paper/2022/hash/32ac710102f0620d0f28d5d05a44fe08-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/32ac710102f0620d0f28d5d05a44fe08-Abstract-Conference.html
https://doi.org/10.1109/TASLP.2022.3221007
https://doi.org/10.1109/TASLP.2022.3221007

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, Mahmoud As-
sran, Nicolas Ballas, Wojciech Galuba, Russell Howes, Po-Yao Huang, Shang-Wen Li, Ishan
Misra, Michael G. Rabbat, Vasu Sharma, Gabriel Synnaeve, Hu Xu, Hervé Jégou, Julien Mairal,
Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2: Learning robust visual fea-
tures without supervision. CoRR, abs/2304.07193, 2023. doi: 10.48550/arXiv.2304.07193. URL
https://doi.org/10.48550/arXiv.2304.07193.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. fairseq: A fast, extensible toolkit for sequence modeling. In Proceedings of
NAACL-HLT 2019: Demonstrations, 2019.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
based on public domain audio books. In 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 5206-5210. IEEE, 2015.

Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and
Quoc V Le. Specaugment: A simple data augmentation method for automatic speech recognition.
Proc. Interspeech 2019, pp. 2613-2617, 2019.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838-855, 1992. doi: 10.1137/0330046. URL
https://doi.org/10.1137/0330046.

Siyuan Qiao, Huiyu Wang, Chenxi Liu, Wei Shen, and Alan L. Yuille. Weight standardization.
CoRR, abs/1903.10520, 2019. URL http://arxiv.org/abs/1903.10520.

Pierre H. Richemond, Jean-Bastien Grill, Florent Altché, Corentin Tallec, Florian Strub, Andrew
Brock, Samuel L. Smith, Soham De, Razvan Pascanu, Bilal Piot, and Michal Valko. BYOL
works even without batch statistics. CoRR, abs/2010.10241, 2020. URL https://arxiv.
org/abs/2010.10241.

Pierre H. Richemond, Allison C. Tam, Yunhao Tang, Florian Strub, Bilal Piot, and Felix Hill.
The edge of orthogonality: A simple view of what makes BYOL tick. CoRR, abs/2302.04817,
2023. doi: 10.48550/arXiv.2302.04817. URL https://doi.org/10.48550/arXiv.
2302.04817.

David Ruppert. Efficient estimations from a slowly convergent robbins-monro process. 1988.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, and Li Fei-Fei. Imagenet large
scale visual recognition challenge. CoRR, abs/1409.0575,2014. URL http://arxiv.org/
abs/1409.0575.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position representa-
tions. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), pp.
464-468, 2018.

Samuel L. Smith and Quoc V. Le. A bayesian perspective on generalization and stochastic gradient
descent. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.
URL https://openreview.net/forum?id=BJij4ygO0Z.

Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. Don’t decay the learning rate,
increase the batch size. In 6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net,
2018. URL https://openreview.net/forum?id=B1Yy1BxCZ.

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raffel,
Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised
learning with consistency and confidence. Advances in neural information processing systems,
33:596-608, 2020.

15

https://doi.org/10.48550/arXiv.2304.07193
https://doi.org/10.1137/0330046
http://arxiv.org/abs/1903.10520
https://arxiv.org/abs/2010.10241
https://arxiv.org/abs/2010.10241
https://doi.org/10.48550/arXiv.2302.04817
https://doi.org/10.48550/arXiv.2302.04817
http://arxiv.org/abs/1409.0575
http://arxiv.org/abs/1409.0575
https://openreview.net/forum?id=BJij4yg0Z
https://openreview.net/forum?id=B1Yy1BxCZ

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R. Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, Agnieszka Kluska,
Aitor Lewkowycz, Akshat Agarwal, Alethea Power, Alex Ray, Alex Warstadt, Alexander W.
Kocurek, Ali Safaya, Ali Tazarv, Alice Xiang, Alicia Parrish, Allen Nie, Aman Hussain, Amanda
Askell, Amanda Dsouza, Ameet Rahane, Anantharaman S. Iyer, Anders Andreassen, Andrea
Santilli, Andreas Stuhlmiiller, Andrew M. Dai, Andrew La, Andrew K. Lampinen, Andy Zou,
Angela Jiang, Angelica Chen, Anh Vuong, Animesh Gupta, Anna Gottardi, Antonio Norelli,
Anu Venkatesh, Arash Gholamidavoodi, Arfa Tabassum, Arul Menezes, Arun Kirubarajan, Asher
Mullokandov, Ashish Sabharwal, Austin Herrick, Avia Efrat, Aykut Erdem, Ayla Karakas, and
et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language
models. CoRR, abs/2206.04615, 2022. doi: 10.48550/arXiv.2206.04615. URL https://
doi.org/10.48550/arXiv.2206.04615.

Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged con-
sistency targets improve semi-supervised deep learning results. In Isabelle Guyon, Ulrike von
Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference on
Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pp. 1195-1204, 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/68053af2923e00204c3ca7c6a3150cf7-Abstract.html.

Yuandong Tian, Xinlei Chen, and Surya Ganguli. Understanding self-supervised learning dynam-
ics without contrastive pairs. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, vol-
ume 139 of Proceedings of Machine Learning Research, pp. 10268-10278. PMLR, 2021. URL
http://proceedings.mlr.press/v139/tian21a.html.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26-31,
2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett (eds.), Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA,
pp- 5998-6008, 2017. URL https://proceedings.neurips.cc/paper/2017/
hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

Yuxin Wu and Kaiming He. Group normalization. In Vittorio Ferrari, Martial Hebert, Cristian
Sminchisescu, and Yair Weiss (eds.), Computer Vision - ECCV 2018 - 15th European Conference,
Munich, Germany, September 8-14, 2018, Proceedings, Part XIII, volume 11217 of Lecture Notes
in Computer Science, pp. 3—19. Springer, 2018. doi: 10.1007/978-3-030-01261-8_1. URL
https://doi.org/10.1007/978-3-030-01261-8_1.

Qiantong Xu, Tatiana Likhomanenko, Jacob Kahn, Awni Hannun, Gabriel Synnaeve, and Ronan
Collobert. Iterative pseudo-labeling for speech recognition. Proc. Interspeech 2020, pp. 1006—
1010, 2020.

Yang You, Igor Gitman, and Boris Ginsburg. Scaling SGD batch size to 32k for imagenet training.
CoRR, abs/1708.03888, 2017. URL http://arxiv.org/abs/1708.03888.

Yang You, Jing Li, Sashank J. Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xiao-
dan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for deep
learning: Training BERT in 76 minutes. In 8th International Conference on Learning Repre-
sentations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=Syx4wnEtvVH.

16

https://doi.org/10.48550/arXiv.2206.04615
https://doi.org/10.48550/arXiv.2206.04615
https://proceedings.neurips.cc/paper/2017/hash/68053af2923e00204c3ca7c6a3150cf7-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/68053af2923e00204c3ca7c6a3150cf7-Abstract.html
http://proceedings.mlr.press/v139/tian21a.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.1007/978-3-030-01261-8_1
http://arxiv.org/abs/1708.03888
https://openreview.net/forum?id=Syx4wnEtvH

Appendices

A Broader impact

B Limitations

C The scaling toolbox: practical methods for enabling systematic scaling

C.1
C2
C3
C4

The continuous time/SDE perspective,
Scaling rules for optimization oL
Commonly used values of hyperparameters at different batch sizes

Progressive scaling

D EMA approximation theorems with SDEs

D.1
D.2

SGD withmodel EMA
Adaptive gradient methods with model EMA

E Additional proofs

E.1
E.2

Iterationsof SGD+EMA L
Limiting behavior of Polyak-Ruppert averaging

F Additional details and results for Polyak-Ruppert averaging

F.1
F2
EF3

Noisy parabola
Image Classification e
Applying the EMA Scaling Rule to Batch Normalization

G Additional details and results for Automatic Speech Recognition (ASR)

G.1
G.2

Additional experimental settings and detailed metrics

Scaling to ¥ = 16 with Progressive Scaling

H Additional details and results for self-supervised image representation learning

H.1
H.2
H.3
H.4
H.5
H.6
H.7
H.8
H.9

Components of self-supervised learning
A ResNet-18 recipe for BYOL
A Vision Transformer recipe for BYOL
The role of Batch Normalization and Layer Normalization in BYOL with ViTs

Longer training duration with incremental Progressive Scaling
Building intuition around Progressive Scaling and momentum sensitivity
Compute usage for ViT BYOL investigation
ResNet-18 hyperparameter sensitivity analysis

ResNet-18 additional scaling analysis

H.10 Scaling a ResNet-50 BYOL using LARS and Progressive Scaling
H.11 Preventing collapse phenomena in DINO atscale

I Additional details on numerical stability

J Contributions

17

18

18

19
19
20
21
21

22
22
24

25
25
26

27
28
30
31

32
34
37

38
38
39
39
40
41
41
42
43
45
46
47

51

52

A Broader impact

This work shows how to adapt Machine Learning (ML) optimization in the presence of a model
Exponential Moving Average (EMA). There are a number of benefits to this:

1. Scaling rules democratize the training of ML models: they give ML researchers the ability to
replicate the optimization of large scale systems, even if those researchers do not have access
to i) significant parallel computational resources or ii) the technical tooling to do so.

2. Our EMA Scaling Rule lowers compute usage as it removes the necessity for a hyperparameter
search over momenta; in the case where our scaling assumptions hold, if we know the value
of the optimal momentum pg at some batch size B (for example, the momentum that gives the
best transfer performance), then the optimal value at another batch size B is exactly the one
given by the EMA Scaling Rule p = pf, for scaling k = B/B.

3. Our EMA Scaling Rule enables researchers to more quickly iterate through experimental ideas,
and opens up access to large-scale training (for example, larger models and larger datasets) for
Pseudo-Labeling and Self-Supervised Learning (SSL) techniques.

These points have potential negative consequences:

1. As our EMA Scaling Rule enables researchers to iterate the same experiments more quickly,
and perform large-scale training with EMA-based methods, this may encourage a greater num-
ber of experiments, or the training of larger models. Either of these possibilities leads to greater
energy consumption.

2. As the need to determine momentum hyperparameters has now been removed, researchers who
were previously discouraged from attempting to scale these methods due to an extra hyperpa-
rameter to tune may begin to perform such experiments, leading, once more, to greater energy
consumption.

The environmental impact of each of these two points may be significant.

B Limitations

The EMA Scaling Rule provides a recipe for producing training dynamics independent of the batch
size used in stochastic optimization. The technology underpinning it will not always give the desired
behavior, however.

The first issue occurs with the wording present in the EMA Scaling Rule: [...] and scale other
optimizers according to their own scaling rules (Definition 1.2):

1. This statement requires that the given Stochastic Differential Equation (SDE) approximation
we are using for the model optimizer is itself providing well-behaved scaling, that is, that in the
absence of a model EMA, the model optimization trajectories at the batch sizes B and kB, with
optimizer hyperparameters appropriately scaled, are close. In general we know this is not true.
First, we know that the SDE approximation for Stochastic Gradient Descent (SGD) breaks at a
given x due to discretization error (Li et al., 2021). Second, we know that if the gradient noise
is not sufficiently large, the SDE approximation for Adam does not exist (Malladi et al., 2022),
i.e. an SDE motivated scaling rule has no meaning.

2. This statement requires knowledge of how to scale the corresponding model optimizer. We
have principled ways to achieve this for SGD (Li et al., 2021), and for the adaptive optimiza-
tion methods RMSProp and Adam (Malladi et al., 2022). Empirically, a square-root scaling
law for LAMB (You et al., 2020) has been observed, however, it has not been derived formally.
Problematically, there is no known hyperparameter scaling law or SDE approximation known
for LARS (You et al., 2017), which has been used in Bootstrap Your Own Latent (BYOL)
(Grill et al., 2020) and many other large-scale training procedures for convolution-based archi-
tectures. Despite this, we are able to demonstrate in Appendix H.10 that a combination of the
EMA Scaling Rule and progressive scaling can match, or surpass baseline BYOL performance
at a batch size of 32,768 using LARS, indicating that although the theoretical guarantees may
not hold, there is still practical utility in the tools we provide in this work.

18

3. It may be the case that the optimal performance attainable by a given model setup exists at a
level of discretization/gradient noise where no SDE exists. In this case, SDE-derived scaling
rules can never be valid, and no scaling of this dynamics can be achieved with known tools.

The second issue is related to the case when the optimizer scaling rule is valid. In this case, the error
for the EMA Scaling Rule at finite learning rate ; at large x can be considerable. In cases where the
model EMA plays a role in the overall optimization, the error introduced by the EMA Scaling Rule
can break the preservation of model dynamics.

Put another way, an optimizer scaling rule and the EMA Scaling Rule each introduce their own dis-
cretization errors. In the case where EMA plays a role in optimization, as soon as the discretization
error of either the optimizer scaling rule or the EMA Scaling Rule is large, the error for the joint
optimization procedure is large. This is at least as bad as cases that do not use a model EMA during
the optimization process.

C The scaling toolbox: practical methods for enabling systematic scaling

There are many different components involved in preserving optimization dynamics at different
batch sizes. In this appendix we collect into a single place the different concepts and values that we
found useful in practice, in an attempt to make the practice of scaling as accessible as possible.

C.1 The continuous time/SDE perspective

Here we discuss the mindset difference required when trying to preserve training dynamics. In
ML we typically use stochastic optimization, leading us to think of the optimization in terms of
performing updates, or stepping the optimizer. This notion has become more common in the era of
large datasets, where it may be the case that we only see a fraction of the dataset during optimization.

For dynamics preservation under scaling, we suggest that it is simpler to consider the amount of data
seen by the training process, or alternatively, the amount of continuous time in the discretization of
SDEs view. The reason is the following. The SDE scaling rule results (Definition 1.2, Li et al.
(2019, 2021); Malladi et al. (2022)) follow from showing that different discretizations of the SDE
are close to that SDE, providing we appropriately scale hyperparameters (see Section 2.2). Each of

these discretizations shares the fotal continuous time T = 7 X ﬁiter“’ of the underlying SDE, but each
discretization has a different number of iterations Njtr = Niger /K.

This perspective is already adopted, perhaps by accident in some domains. For example, in Com-
puter Vision (CV), it is typical to compare model performance after optimization on ImageNetlk
after a number of epochs, whilst also specifing a learning rate warmup after a number of epochs.
This transforms the schedule into the form wait until the process meets [condition], where here
[condition] is when the process has seen sufficiently many samples.

More generally, we can specify any condition that is not a property of the discretization procedure
itself. Instead, the discretization procedure should be viewed as a numerical approximation method
for the SDE we are evolving, and the properties of that discretization process (like number of steps)
are not of specific interest in the world view where we do decouple optimization from the batch size.
A specific example of this more general case is present in Section 3.3, where for scaling ¥ > 2 we
wait until the pre-training Word Error Rate (WER) is sufficiently low.

There may be cases where one is working with a setup that is explicitly defined in terms of quantities
related to the discretization process. Indeed, the optimizer hyperparameters are examples of these,
and need to be scaled accordingly with k. The other typical example of this is conditions based on
the number of optimizer steps, rather than the number of epochs. In this case, these quantities should
be scaled to achieve the desired condition in the same amount of time, i.e. as above Njer = Niger/k,
where Nj.r is the number of iterations specified at the base batch size B. Concretely, if training is
specified in a number of steps, then doubling the batch size implies you should train for half the
number of steps.

10This is in the case of SGD, for RMSProp and Adam one should use T = 72 x ﬁiter (Malladi et al., 2022).

19

C.2 Scaling rules for optimization

For ease of reference, we collect all the scaling rules related to batch size modification we are aware
of. We begin with the most well-known, the SGD Scaling Rule (Definitions 2.2 and C.1).

Definition C.1 (SGD Scaling Rule). When running SGD (Definition 2.1) with batch size B = kB,
use a learning rate fj = kn (Krizhevsky, 2014; Goyal et al., 2017).

The SGD Scaling Rule is also known as the Linear Scaling Rule (LSR), although for clarity, this
work adopts the naming convention [Algorithm Name] Scaling Rule, which means all parameters of
those algorithms are appropriately scaled from batch size B to xB.

Next, we give the two scaling rules known for the adapative optimizers RMSProp (Tieleman et al.,
2012) and Adam (Kingma & Ba, 2015) in Definition C.2 and Definition C.3 respectively.
Definition C.2 (RMSProp Scaling Rule). When running RMSProp (Tieleman et al., 2012) with
batch size B = kB, use a learning rate fi = Vkn, beta coefficient f =1 — x X (1 - f), and adaptivity
parameter é = \% (Malladi et al., 2022).

Definition C.3 (Adam Scaling Rule). When running Adam (Kingma & Ba, 2015) with batch size
B = kB, use a learning rate fj = \xn, beta coefficients p; =1 -k X (1= p), fr =1 -k X (1= By),
and adaptivity parameter € = x/iE (Malladi et al., 2022).

Next, we present a contribution of this work, the EMA Scaling Rule (Definitions 1.2 and C.4), which
extends the above scaling rules to allow the presence of a model EMA which is able to contribute to
the overall optimization (see Appendices D and E.1 for derivations).

Definition C.4 (EMA Scaling Rule). When computing the EMA update (Definition 1.1) of a model

undergoing stochastic optimization with batch size B = kB, use a momentum p = p* and scale other
optimizers according to their own scaling rules.

Concretely, if we are using SGD in the presence of a model EMA, Definitions C.1 and C.4 state that
we should take 7j = kn and p = p* when scaling by ¥ = B/B.

The final scaling rule is for weight decay, and follows from the scaling logic discussed in Ap-
pendix C.1 and Krizhevsky (2014). If we take the weight decay regularization penalty A defined at

batch size B, what should the weight decay A be for batch size B = kB? For simplicity, consider k
updates of optimization of parameters 0, in the presence of weight decay only

Orsrc = Oppic—1 — 77/19t+1<—1 = (1 - 71/1) Orirc—1 = (1 - ’7/1)K 0;. (11)

Therefore, to match the effect of weight decay with a single iteration step, we need to match
1-hA=(1-nA)~. (12)
Solving for A and expanding around 5 = 0 gives

iZLLE;lQ—z%XKA+O@) (13)

n
This leads to the Weight Decay Scaling Rule (Definition C.5).

Definition C.5 (Weight Decay Scaling Rule). When using weight decay with batch size B = KB, use

a penalty term A= (kf/n) A, where 1) and n represent the scaled and unscaled learning rates of the
corresponding optimizer (Krizhevsky, 2014; Li et al., 2018; Loshchilov & Hutter, 2019).

The Weight Decay Scaling Rule implies that using linear scaling for the learning rate 7 then the
weight decay penalty is automatically scaled, and when using square-root scaling for the learning
rate (e.g. in the case of the Adam Scaling Rule (Definition C.3)) then the weight decay penalty
should also be scaled with a square-root as is proposed in Loshchilov & Hutter (2019).

Finally, we see that if the implementation of weight decay does not have an update scaled by the
learning rate, i.e. the update is 6,7 = (1 — 1) 0;, then the scaling rule is optimizer-independent, and
becomes linear for small weight decay, i.e. A = kA, and for arbitrary A takes the form A = 1—(1-21)*.

20

Table 2: Scaled learning rates 7 at different batch sizes B = kB given reference learning rates n defined at batch
size B. The reference values of each column are boldened. Note that this is only valid when there is a notion of
single sample. In the sequence learning setup (for example, in Section 3.3), the notion of batch size should be
appropriately replaced with the dynamic batch size, i.e. total sequence length.

i = kn [SGD] fi = Vkn [RMSProp, Adam]
B = 256 B=512 B=256 B = 4096

Batchsize B =01 5=03 p5=01 p5=10"3 p=48 p=10"3

32 0.0125 0.0375 0.00625 0.00035 0.42426 0.00009
64 0.025 0.075 0.0125 0.0005 0.6 0.00013
128 0.05 0.15 0.025 0.00071 0.84853 0.00018
256 0.1 0.3 0.05 0.001 1.2 0.00025
512 0.2 0.6 0.1 0.00141 1.69706 0.00035
1024 0.4 1.2 0.2 0.002 2.4 0.0005
2048 0.8 2.4 0.4 0.00283 3.39411 0.00071
4096 1.6 4.8 0.8 0.004 4.8 0.001
8192 3.2 9.6 1.6 0.00566 6.78823 0.00141
16384 6.4 19.2 3.2 0.008 9.6 0.002
32768 12.8 38.4 6.4 0.01131 13.57645 0.00283
65536 25.6 76.8 12.8 0.016 19.2 0.004

Table 3: Scaled EMA momenta jp = p* at different batch sizes B = kB given reference momenta p defined at
batch size B. The reference values of each column are boldened. Again in the sequence learning setup, batch
size should be appropriately replaced with a notion of sequence length.

B =256 B = 4096

Batch size B p=0999 p=0999 p=099 p=09% p=0992 p=099 p=0.97

32 0.99999 0.99987 0.99874 0.99997 0.99994 0.99992 0.99976
64 0.99997 0.99975 0.99749 0.99994 0.99987 0.99984 0.99952
128 0.99995 0.9995 0.99499 0.99987 0.99975 0.99969 0.99905
256 0.9999 0.999 0.99 0.99975 0.9995 0.99937 0.9981
512 0.9998 0.998 0.9801 0.9995 0.999 0.99874 0.9962
1024 0.9996 0.99601 0.9606 0.999 0.99799 0.99749 0.99241
2048 0.9992 0.99203 0.92274 0.998 0.99599 0.99499 0.98489
4096 0.9984 0.98412 0.85146 0.996 0.992 0.99 0.97
8192 0.9968 0.96849 0.72498 0.99202 0.98406 0.9801 0.9409
16384 0.99362 0.93798 0.5256 0.9841 0.96838 0.9606 0.88529
32768 0.98728 0.8798 0.27625 0.96844 0.93776 0.92274 0.78374
65536 0.97472 0.77405 0.07632 0.93788 0.8794 0.85146 0.61425

C.3 Commonly used values of hyperparameters at different batch sizes

In the literature it is common to give a base learning rate n defined at batch size 256, implicitly
using the SGD Scaling Rule, even when using the Adam optimizer. Because the scaling of other
optimization hyperparameters was not understood until recently, it is also common to just present
these for the experiment, e.g. the Adam betas and epsilon, and the EMA momentum, implicitly
defined at the scale of the experiment, for example at batch size 4096. One way to deal with this
in practice is to define a single reference batch size B at which all hyperparameters are defined, and
then scale from there. In this case, it is easiest to compute using linear scaling the learning rate at
the redefined base batch size i = K 1jorig, Where K = B/Byig, and then scale this new reference 7 as

f = xn, k = B/B, along with e.g. the momentum defined at B.

As this process can be slightly frustrating, we have provided tables of typical learning rates in Table 2
and momenta in Table 3.

C.4 Progressive scaling

In Section 3.4 we introduced Progressive Scaling (Definition 3.2) to test our hypothesis that early
in the BYOL training procedure, there are dynamics that are challenging to replicate at larger batch

21

Algorithm 1 Stochastic Gradient Descent with Progressive Scaling

Require: Base learning rate n, base momentum p for base batch size B
Require: Initial target model parameters 6 and model EMA parameters ¢
Require: Epochs E and schedule of batch sizes 8 = By, B, ..., Bg
Require: Loss function £

forein1,2...,Edo

B — Ble] > Get current batch size
x «— B/B > Compute scaling factor
N« Kkn > Get scaled learning rate
p— p~® > Get scaled momentum

forbin1,2...,floor(E/B) do)
Sample a minibatch of B samples X = {w(l), .. .,a:(B)}

0 — 0~ (7/B) Yyex VoL(x:6,0) > SGD Update
C—pL+(1-p)0 > EMA Update
end for
end for

sizes. To remove ambiguity, in Algorithm | we provide pseudo-code for how to use Progressive
Scaling.

In Algorithm 1, the prefactor of the SGD update could also have been written n/B, although an
equivalent use of the base momentum is not possible.

Finally, we outline how to extend Algorithm | to more complex setups, like those presented in
Section 3.4:

1. Optimizer scaling rules are used appropriately, for example the Adam scaling rule in case of
using the Adam optimizer to update parameters 0.

2. Schedules for hyperparameters are computed using the base hyperparameters, and are then
modified by application of the scaling law in epoch (outer) loop.
3. Schedules for hyperparameters at the step rather than epoch level can be achieved in practice

through recomputing the schedule and updating the notion of minibatch index appropriately
throughout training.

All of the above techniques are used in Section 3.4. In addition, scheduling batch sizes within epoch
is possible, providing one maintains a notion of computation within some fixed continuous time
Thxed- We did not investigate this scenario.

D EMA approximation theorems with SDEs

D.1 SGD with model EMA

We will now derive the EMA scaling rule when tracking model parameters and the model is trained
using SGD. We employ a strategy similar to Malladi et al. (2022), where we associate to each
iterative process a Stochastic Differential Equation (SDE). In order to control the distance between
the SDE and the discrete process, we use the tools from Li et al. (2019).

Definition D.1 (Polynomial growth, Definition 1 in (Li et al., 2019)). The set G is the set of con-
tinuous functions R — R with at most polynomial growth, i.e., for g € G there exists two scalars

K1, Ky > 0 such that for all © € R?, we have |g(x)| < 11 (1 + ||2|*?).

For an integer a > 0, G is the set of functions R — R that are a-times continuously differentiable
and such that all their derivatives up to order a are in G.

Similarly to Malladi et al. (2022), we use Noisy Gradient Oracle with Scale Parameter (NGOS) to
define the update rules on the parameters.

Definition D.2 (Noisy Gradient Oracle with Scale Parameter (NGOS), adaptation of (Malladi et al.,
2022)). A NGOS is a tuple G, = (f, 2, Zs). Given a noise scale parameter ¢ > 0, the NGOS G

22

takes as input the parameters 0 and outputs a random vector g = Vf(0,) + oe where Vf(0,() is
the gradient of f with respect to 0 at (0, (), and € is a random vector drawn from the distribution
Z5(8,) with zero mean and covariance %(0, ¢).

Note that in the above definition, the probability distribution Z, (8, {) is allowed to change with the
scale o, but its first two moments — its mean and its covariance — are fixed with . We have the
following theorem for model EMA under optimization with SGD:

Theorem D.1 (SDE for SGD + EMA). Consider the couple x; = (O, {.) where 0y are the iterates
of SGD with a NGOS (Definition D.2) and Ty, is an EMA of O, defined, starting from xo = x, by

Ok+1 = Ok — ngk, with gr = Vf(Ok, Cy) + o€k, and ex ~ Zs(Ok, Ty), (14)
Crr1 = PG+ (1= p)O . (15)
Define fy = (1 - p)/n, o9 = o1, and define the SDE for X; = (©,, Z;), starting from X, = x,, by
d®; = -Vf(0©y,Z;)dt + 0o X(Oy, Zt)%dW,, with W; a Wiener process (16)
dZt = ﬁo(@t - Zt)dt . (17)

Assume that f is continuously differentiable, with f € G* and i € G? (Definition D.1). Then, for
any time horizon T > 0 and test function g € G* , there exists a constant ¢ > 0 such that

max | [E[g(Xpi)] - Elg(xi)]| < e xn . (18)

Proof. The proof uses the same tools as in Li et al. (2019). Define A(6,¢{) = n(-Vf(6,{) +
o€, fo(0 — ¢)) with € ~ Z;(6,¢) the one-step update for the SGD + EMA update, such that
Xp41 = Xg + A(xg). We have the first two moments:

E[A8.0)] = n(-V£(8,C). fo(8 -) (19)
VMW£H=M4H%O ﬂ 0)

and the higher-order moments are O(5?). Similarly, let A(8, ¢) be the solution at time # of the SDE
defined by Equation 6 starting from Xy = (6, ¢). From Ito’s formula, we also obtain

E[A(8,Q)] = n(=Vf(8), (6 -) 1)

Vwan:wﬂﬂ%O ﬂ @2

and the higher-order moments are O(n?). Hence, the moments of the discrete iteration and of the
SDE match up to second order. Following the same proof technique as in Li et al. (2019) then leads
to the advertized theorem. O

This theorem is a simple adaptation of the results of Li et al. (2019). Intuitively, it is expected that
X; and x; are close since x is the Euler-Maruyama discretization of X; with learning rate 7. We
then have the corollary.

Corollary D.1.1 (Validity of the EMA Scaling Rule). Assume that f is continuously differentiable,
with f € G* and i € G Let GE, g‘,f the iterates of the Equation 5 with batch size B and hyper-
parameters n, p. Let GZB , §ZB be iterates with batch size kB, learning rate n determined by the SGD
Scaling Rule (Definition 2.2) and momentum determined by the EMA Scaling Rule, linear version
(Definition 1.2). Then, for any time horizon T > 0 and function g € G?, there exists a constant d > 0
such that

E[g(0B, , B)] -E[g(6y, <dxn . 23
k:O,r.I.l.,aL);/nJ| [9(Lk/xc)> Sk /i) | [9(Ok, G n (23)

Proof. The proof is similar to Malladi et al. (2022). Under the scaling rule, both x; = (0, ;) and
Xk = (6'[,]3 T §'f£ I J) have the same limiting SDE. Hence we have from the previous theorem
that for all test function g, we can find c, ¢’ such that

max |E[g(X,x)]-E[g(x <cxnand max |E[g(X,x)]-E[g(%x <c'xn. (24
e (Bl ~Elg(xu)]| < expand | max [Elg(X,0] ~Elg(yee)]l < ¢'x1. 24)

23

The triangle inequality then gives

ElgGuie))] - B < (c+c)xn. 25
k:OTi);/qJ' [9G k)] —Elg(xi)]l < (c+¢") X7 ©25)
Hence, taking d = ¢ + ¢’ gives the expected result. o

D.2 Adaptive gradient methods with model EMA

We now turn to the case where one uses an adaptive gradient method rather than SGD to train the
model. We follow derivations similar to those of Malladi et al. (2022), with an added EMA. Like
above, we consider that the loss function f also depends on the EMA tracking parameter {;,. We
begin with RMSProp with EMA, which iterates:

Vitl = YVi + (1- }/)gi, with gk = Vf(Qk, {,k) + o€, and €, ~ (0, §k), (26)
Ok = 0 — (Vi +6) 7! X g (27)
Crr = PG+ (1= p)Oi. (28)

Like in Malladi et al. (2022), we place ourselves in the high noise regime, in which the term gi in

Equation 26 is approximated by gi ~ o%diag(2 (0, €;)). We use the same scaling rules, with an
additional one for p:

Yo=(1=y)/n’, o9=o0mn, & =en and fy=(1-p)/n° (29)
and we let u = vi/c?. The equations for RMSProp with EMA then become, using only these new
variables and n:

Upesr — U = 17”0 (diag (2 (O, §)) — ug), (30)
O = Ok = —(Vur +€0) ™ (n°Vf(Ok, L) + 7€) (31)
Cre1 — Gk = ’IzﬂO(ek = Cr)- (32)
This formulation makes it clear that these iterations can be seen as the discretization of the SDE
dU; = yo(diag(Z(©;, Z;)) — Uy)dt, (33)
d0; = —(00\U; +) " (Vf (O, Z1)dt + 60%(0,, Z) 2 dWt) (34)
dz; = ﬁ0(®t — Z;)dt, (35)

with step size n2. Of course, we recover the SDE of Malladi et al. (2022) in the case where 8y = 0.
A formal proof of closeness between the iterates and the SDE trajectory is out of the scope of the
present paper since it would imply redoing much of the theoretical work developed in Malladi et al.
(2022). Still, the previous informal analysis hints that for RMSProp, the scaling rule in Equation 29
should be used. In other words, given a certain set of hyperparameters y,n and p, if the batch
size goes from B to B = x x B, the noise level becomes & = o/+/k, and keeping the quantities in
Equation 29 constant means that we should use as new hyperparameters

7=1-(1-y)xK, fi=npxVk andp=1-(1-p)xx .

The linear rule p = 1 — (1 — p) X k is at the first order equivalent to the exponential scaling rule
p = p*. Hence, even though the limiting SDE differs greatly from that of SGD, and even though the
scaling rule regarding the learning rate differs, we recover for the momentum term p the exact same
scaling rule as for SGD.

We finish the discussion with the case of Adam, which leads once again to the same rule as for SGD.
Adam with EMA tracking of the network parameters iterates

My = ﬁlmk + (l - ﬁl)gk, with gk = Vf(ek, §k) + o€k, and € ~ ZU(Qk, gk), (36)

Vit = Pavic + (1= Bo)gl (37)
Myt = My /(1 - E) (38)
Virr = Vier /(1= B (39)
Ok = Ok — (V¥ + &) ! X My (40)
Cka1 = PG+ (1= p)6 . 41

24

Here, we use the same minor modification of the iterations as in Malladi et al. (2022), where we use
v instead of v, in the denominator of the 0, update.

We consider the following scaling for the hyperparameters

c1=(1=p)/n% c2=(1=B)/n* oo=o0m, & =en, and o= (1-p)/n* (42)
and y;(t) = 1 — exp(—cit), y2(t) = 1 — exp(—c3t), and ux = v/c?. The SDE for Adam + EMA is
given by

aM; = e1 ((V(81,Z0) = Mp)dt +00%(01, Z0) 2w 43)

dU; = c;(diag(2(©;, Z,)) — Uy)dt (44)
t

i0, =20 a0 @

dZ; = Bo(©; — Zy)dt. (46)

This is once again the same SDE as in Malladi et al. (2022) with the added EMA term. Like
previously, this SDE hints at the fact that the scaling rule in eq. 42 should be used. In other words,
given a set of hyperparameters f1, i, 7, and p, if the batch size goes from B to k X B, then the noise
level becomes & = o/+/k and keeping quantities in eq. 42 constant means that we should use as new
hyperparameters

fi=1-(1—-p) Xk, Po=1-(1-P) XK, fi=nx+k andp=1—-(1-p) X«
We once again recover a linear rule for 1 — p which is equivalent to the exponential scaling rule
p = p¥ in the limit p — 0.

E Additional proofs

E.1 Iterations of SGD + EMA

Here we derive a critical component of the EMA Scaling Rule, the matrix equation of Equation 4
from which the EMA Scaling Rule (Definition 1.2) follows.

Theorem E.1 (Iterations of SGD + EMA). Assuming that gradients change slowly over iterations
of SGD (Definition 2.1) and EMA (Definition 1.1): Vo L(x;0¢1;,Cyj) = VoL(x;0:,C,) ~ g for
Jj = 1,2,...,x and representative gradient g, iterating over k independent minibatches produces
model states

04 10 -nl* [6 0, —nkg
G| =|1=p p O |G| =|p"C+(1-p")0:+0 (nxfp)|. (47)
g 0 0 1 g g
Proof. First note that for matrices of the form
1 0 ap,2
A=(l-a; a1 0|, (48)
0 0 1
their multiplication follows
1 0 ag: 1 0 by
AB=|1- a1 a4l 0 1- bl,l bl,l 0
0 0 1 0 0 1
1 0 ap2 + b()’z
=[l1-ay1biy ay1bin (1—au1) boz|, (49)
0 0 1
and
1 0 ap + b(),g 1 0 Co,2
ABC = |1-aj1byy a;;ibyy (1—ay)boz||1-c1 c1 O
0 0 1 0 0 1
1 0 Ao + bo2 + co2
=(l-aiabricin anibiicn (1—api) boa+ (1 —ay1bi1)coz| - (50)
0 0 1

25

By induction

1 0 K X ap,2
A =|1- a’f’l ay, d(aoz, a11,%) |, (51)
0 0 1
where
5 S M E I 52
,a1y,K) = 1- = - =1, #1.
(ao,z ar K) ao,2 ;(611,1) ap,2 (K 1_a1’1) oras; (52)
It follows that
1 0 -n1* 1 0 K7
1—p p 0| =|1=p" p* &(npx) (53)
0 0 1 0 0 1
where the EMA Scaling Rule error
1-p*
0 pox) = (=) (k= =~ = (=) (k =k +0(Bp)) =0+ 0(n X Bp), (54)
where 8, = 1 — p and the approximation is around p = 1. O

E.2 Limiting behavior of Polyak-Ruppert averaging

Here we sketch the asymptotic behavior of a target model 6 and its EMA . Let us assume that 6
converges to the stationary distribution lim;_,. 8; = 6%, 0 ~ p,(0). We are interested in statistical
properties of {* = lim; , {;, as this will formalize the notion of how the EMA depends on the a
time-horizon defined by its momentum p as discussed in Table 1.

As a warm-up, for n independent random variables X, . . ., X, we know that the sample mean x =
%(xl, Xa,...,%n) has the statistical properties
o2
E[x] =4, Var[x] = —, (55)
n

where p and o are the population mean and variance. This gives us an idea of what to expect. As we
will now show, the expectation of {* should have no time-horizon dependence, whereas the variance
of ¢* will depend on its time horizon (i.e. the number of samples it integrates over) which is defined
by p.

In the case of a weighted sum

£ = 3w, (56)
i=1
then if the x; are Independent and Identically Distributed (i.i.d.), then
n 1 n
BLx™] =) wiBlx] =nwp, W=) W 57)
i=1 =
and for the variance (Kish, 1965)
— — 1<
Var[x™] =n-w?.o? we == Z w2, o? = Var[x;]. (58)
n
i=1

We can verify that we reproduce the well-known result in Equation 55 in the case where all weights
are equal to % as follows

n 2 2
1 1 1
> (—) == = Var[gx™]=n- < o*= L. (59)
i=1 n n

=>W2: 2
n n

Vi:wiz

S|
S|

26

In the case of an exponential moving average we have

G =p G+ (1=p) 0 = p' L+ (1=p) Y 01y, (60)

i=0
Let’s consider the specific case where we are at iteration k which is sufficiently large that C and 6
have converged to their stationary distributions. From k, the iterations unfold as

t—k
o = p K G+ (1= p) Y 90, ©1)
i=0
We rearrange for terms in ¢
t—k A
G = p™ 7 G =(1=p) > p 0, (62)
i=0
and before proceeding to the final result, using n = t + 1 — k, we compute the convenient quantities
. 1 n-1 n
p=- p = (63)
n —P
— 1 ;1 p
2= 2 1,1 : 64
= Z(; P X T (64)
Taking expectation of Equation 62 and setting statistics to their stationary values, we have
(1= p"E[C] = (1= p) n pEL0'] = (1 - p") E[O], (65)
where we have used the result in Equation 57. It follows that for p # 1 we have
E[C] = E[67], (66)
independent of p. Finally, we can take the variance of Equation 62. First the left hand side
Var [{s41 — p" G| = Var [Graq] + pZ" Var [{i] = (1 + pZ") Var [{*] . 67)
Next the right hand side
n—-1 n-1 1-— 2n
Var (1= p) " p 0| = (1= p)* Var | 37 p' 0| = (1= p)* - | 72| - Var[0]. (68)
i=0 i=0 1-p?

Finally, equating left and right hand sizes and rearranging for Var[{*] gives

2n
1 —
Var[¢'] = 2 122y o] (69)
1+p" 1+p
In the limit t — oo, the momentum-dependent prefactor becomes
1-p" 1- 1- 1-

lim (p2 p) = P — lim Var [C*] = 2P Nar [67]. (70)
too \1+p%" 1+p 1+p t—o0 1+p

Equations 69 and 70 validate our intuition. When p — 0, then { behaves like 0 independent of T,
with their variance and expectation matching. When p > 0, the momentum-dependent prefactor
serves as an aggregator over the history when ¢ is sufficiently large compared to k, reducing the
variance Var[{*] but preserving its expectation. This formalizes the notion of time horizon discussed
in Table 1.

F Additional details and results for Polyak-Ruppert averaging

Additional background Polyak-Ruppert averaging (Definition 3.1) is a simplification of Stochas-
tic Weight Averaging (SWA) (Izmailov et al., 2018) which uses a more complex multi-cycle sched-
ule based weighting of the model parameters. Both Definition 3.1 and SWA present similar favor-
able properties like wider minima and better generalization (Izmailov et al., 2018). For example,
He et al. (2022) observed that a supervised ViT-H/14 overfits on ImageNetlk (Russakovsky et al.,
2014) without a model EMA, achieving an accuracy of 80.9%. Equipping a Polyak-Ruppert average
(p = 0.9999) alleviated overfitting and gave a 83.1% accuracy.

27

Organization In this appendix, we look at additional momenta for one-dimensional noisy
parabola, as well as extensions to D-dimensions (Appendix F.1), provide a more detailed view
of the results of Section 3.2 (Appendix F.2), and investigate the scenario where the EMA Scal-
ing Rule (Definition 1.2) is applied to batch normalization (loffe & Szegedy, 2015) coefficients
(Appendix F.3).

F.1 Noisy parabola

Additional one-dimensional examples First we consider additional one-dimensional examples,
investigating the effect of modifying the base momentum pg. We present pp = 0.99 in Figure 7, and
pB = 0.999 in Figure 8. The results for pg = 0.9999 are presented in main text in Figure 1.

N Scaling k =8 Scaling k¥ = 256 § 100

10 a 1.0 — 1

= T

1) =) \ =

:E 081 N S 2 —— EMA.p = 8

é‘ - R Lp=ps - R Lp=ps 505 EMA:g;g‘i g ,

< M0 — x=Bpspp — k=256p=pf E | — BMAp—pfes| B 107 — I:pi/—:::
— k=8,p=} —— K=256,p™~ Model e

E 0.41 KSR K PP = 00 = £

0.0 0.5 1.0 0.0 0.5 1.0 1 4 16 64 256 1024 < 1 4 16 64 2561024

Continuous Time Continuous Time Scaling Factor x Scaling Factor x

(a) Trajectory of the model EMA € under different (b) Choices for momentum (left) with corresponding ap-
scalings x, with pg = 0.99, ng = 1074, proximation errors (Equation 10) (right).

Figure 7: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (x = 1, black
dashed) to k = 8 (left) and x = 256 (right), with (p = pg, blue) and without (p = pp, red) the EMA Scaling Rule.
(b, left) The momentum according for different scaling rules and the empirically optimal p* (Equation 10). (b,
right) The approximation error (Equation 10) of trajectories in (b, left) and the target model (orange). Error for
p* is computed using a hold-out to mitigate overfitting.

Scaling Kk =8 Scaling Kk =256 5
A3 1.0 ——— & 100
= w Q L()()——-o——ii‘: ia}
2 : £
2 08 S S N, £ 075 £
8 == k2L p=pp | | === kMLp=ps s 7| —— EMAp=pp =
o NN >3 « 2 EMA, p = p E o>
< 0.61 —— K=8,p\=\p,, K=2 6,43\:;),;f g 0.50 EMA. p = p§ g 1074
= T K=8,p=Pn | K =256, p =g) Model S
K 04+ ‘ = 025 —— 1 & SN S S -
0.0 0.5 1.0 0.0 0.5 1.0 1 4 16 64 256 1024 < 1 4 16 64 256 1024
Continuous Time Continuous Time Scaling Factor k Scaling Factor k¥

(a) Trajectory of the model EMA ¢ under different (b) Choices for momentum (left) with corresponding ap-
scalings k, with pg = 0.999, ng = 1074, proximation errors (Equation 10) (right).

Figure 8: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (x = 1, black
dashed) to k = 8 (left) and k = 256 (right), with (p = pg, blue) and without (p = pp, red) the EMA Scaling Rule.
(b, left) The momentum according for different scaling rules and the empirically optimal p* (Equation 10). (b,
right) The approximation error (Equation 10) of trajectories in (b, left) and the target model (orange). Error for
p* is computed using a hold-out to mitigate overfitting.

As described by the scaling error term in Equation 54, the approximation error at a given « is higher
for lower momenta p. For a large range of scalings x, the EMA Scaling Rule and the optimal
momenta p* are consistent. In summary, we see the synthetic experiments validate the results of
Section 3.1 for a range of momenta p.

Examples in higher dimensions Our final use of the synthetic noisy parabola will consider an
extension to D dimensions. Consider the optimization of ® € R in a noisy parabola at the origin:

a b 2
LO=200 O =0-ng. ge=abiren e~ N(025E) 7
for curvature a > 0, scaled additive b > 0, and additive ¢ > 0 noise coefficients. The scaling factor

k in the covariance denominator implements the reduction in gradient noise as the scaling (i.e., the
batch size) increases (Jastrzebski et al., 2017). Let © € RP be optimized with SGD (Definition 2.1)

28

and let there be a Polyak-Ruppert average (Definition 3.1) { € RP with momentum p = 1 — f for 6.
We consider dimensionalities D = 2 (Figure 9), D = 16 (Figure 10), and D = 100 (Figure 11). We
observe no significant differences in the EMA scaling behavior as we vary dimensions.

~ Scaling Kk = 8 Scaling k¥ = 256 ‘g -
—1.0 1 —_—
\5 e Q.00 4oty |

£ 09 g 28 = _ 1

5§ | -t k=Lbchs - k=Lpeps £ 005 Bhs b= g

Zos] T Roseow || wemesNpl | E | — Bwapop \|F 07

S — Kk=8,p= p,,\ —— Kk=256,p= bg\’ S 0.90 Model %

T T L T T oy
Y 0.5 1.0 0.0 0.5 1.0 1 4 16 64 256 1024 < 1 4 16 64 256 1024

Continuous Time Continuous Time Scaling Factor k¥ Scaling Factor x

(a) Norm of the model EMA € under different
scalings k, with pg = 0.9999, np = 1074, D =2.

(b) Choices for momentum (left) with corresponding ap-
proximation errors (Equation 10) (right).

Figure 9: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (x = 1, black
dashed) to k = 8 (left) and k = 256 (right), with (p = pg, blue) and without (p = pp, red) the EMA Scaling Rule.
(b, left) The momentum according for different scaling rules and the empirically optimal p* (Equation 10). (b,
right) The approximation error (Equation 10) of trajectories in (b, left) and the target model (orange). Error for
p* is computed using a hold-out to mitigate overfitting.

« Scaling k = 8 Scaling x = 256 ‘g 109
— 1.0 B —————
N I Q1,00 pe—e—o—pmpy——— | K

E 0.9 i = _ =1

g - k=L - k=Lbem E095 Eﬁ:’g:g‘i §

p= -2
:<ZC 038 K=8,p =R | — k=256, p‘:;\;zb',‘ g —— EMA.p=pf .g 10
E K=8,p= pg‘\ — Kk=256,p= p);\{ S 0.90 Model é
0.0 0.5 1.0 0.0 0.5 1.0 1 4 16 64 256 1024 < 1 4 16 64 256 1024

Continuous Time Continuous Time Scaling Factor k¥ Scaling Factor k¥

(a) Norm of the model EMA ¢ under different
scalings x, with pg = 0.9999, ng = 1074, D = 16.

(b) Choices for momentum (left) with corresponding ap-
proximation errors (Equation 10) (right).

Figure 10: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (x = 1,
black dashed) to x = 8 (left) and x = 256 (right), with (p = pl’g, blue) and without (p = pp, red) the EMA
Scaling Rule. (b, left) The momentum according for different scaling rules and the empirically optimal p*
(Equation 10). (b, right) The approximation error (Equation 10) of trajectories in (b, left) and the target model
(orange). Error for p* is computed using a hold-out to mitigate overfitting.

Scaling Kk =8 Scaling Kk =256

Continuous Time

Continuous Time

Scaling Factor k

S

=10] 2 100
W ‘i\ . ; 1.00 oot ——— | @
= (=1 A
£ 09 < 1 S 2 —— EMA,p=p 2
S | T oR=LASA T R=ELPS s 50957 EmAp—p' £
Z 08 K:8,p:\g§ 1|— K:256,p%\p§ g — EMA:p:p,’;‘ g 1072
%f K=8,p=p5\ — ;c=256,p=bg\ S 0.90 Model %

< LN
0o 05 10 0.0 05 1.0 I 4 16 64 256 1024< 1 4 16 64 256 1024

Scaling Factor k

(a) Norm of the model EMA ¢ under different
scalings k, with pg = 0.9999, g = 1074, D = 100.

(b) Choices for momentum (left) with corresponding ap-
proximation errors (Equation 10) (right).

Figure 11: (a) We show the effect of scaling by comparing model EMA trajectories of the baseline (k = 1,
black dashed) to x = 8 (left) and x = 256 (right), with (p = pg, blue) and without (p = pp, red) the EMA
Scaling Rule. (b, left) The momentum according for different scaling rules and the empirically optimal p*
(Equation 10). (b, right) The approximation error (Equation 10) of trajectories in (b, left) and the target model
(orange). Error for p* is computed using a hold-out to mitigate overfitting.

Compute The compute usage for the noisy parabola experiments is relatively small, with each run
taking less than one minute on a single CPU, and so we do not detail this compute usage as we do
in the other experimental sections.

29

Table 4: Supervised ResNetv2-50 hyperparameters used in Polyak-Ruppert Averaging experiments.
Supervised ResNetv2-50

ImageNetlk Test Top-1 76.27 + 0.10%
ImageNetlk EMA Test Top-1 76.55 £+ 0.07%
Weight initialization kaiming_normal (relu)
Backbone normalization BatchNorm
Synchronized BatchNorm over replicas No
Learning rate schedule Multi step: x0.1 at [30, 60, 80] epochs
Learning rate warmup (epochs) 5
Learning rate minimum value 1x107°
Training duration (epochs) 90
Optimizer SGD + Momentum
SGD momentum 0.9
Optimizer scaling rule Linear

Base learning rate 0.4

Base batch size 1024

Base Polyak momentum 0.9999
Weight decay 1x1074
Weight decay scaling rule None
Weight decay skip bias Yes
Numerical precision bf16
Augmentation stack ImageNet
Label smoothing rate 0.1

F.2 Image Classification

Hyperparameters We present the base hyperparameters for our image experiments in Table 4.

Data For large scale vision evaluation, we use the ImageNetlk dataset (Russakovsky et al., 2014),
a widely used dataset containing approximately 1.2 million labeled images, distributed almost uni-
formly across 1000 different object classes, like animals, plants, and vehicles.

The images in ImageNetlk are are not consistent in resolution. To handle this, they are resized and
cropped to a standard size (in our case, 224 X 224), before further processing. This is part of the
standard ImageNet augmentation stack for convolutional networks mentioned in Table 4.

Compute usage The compute usage image classification Polyak-Ruppert averaging is summa-
rized in Table 5.

Table 5: Compute usage for image classification Polyak-Ruppert averaging in Figures 2 and 13. The three runs
for the batch size 1,024 baseline correspond to three seeds, and the nine runs for all other batch sizes correspond
to using and not using the EMA Scaling Rule shown in Figure 2, and its application to Batch Normalization
shown in Figure 13. All experiments conducted are using 80Gb A100s.

Batch Size GPUs Time (h) Compute/Run (GPUh) Runs Compute (GPUh)
512 8 353 282.4 9 2,541.6
1,024 8 17.1 137.0 3 410.9
2,048 8 13.3 106.7 9 960.6
4,096 8 42 33.5 9 301.9
8,192 16 2.8 44.8 9 403.6
All other compute, e.g. code development, runs with errors, and debugging 25,768.3
Total 30386.8

Additional results In Figure 12 we present a more detailed view of the results in Section 3.2. First,
we see that for all train metrics, model trajectories match, and that a learning rate step schedule after
warmup is present. As discussed in Figure 12, a gap in EMA Test Top-1 trajectories begins at scaling
K = 4, with a more pronounced effect visible at x = 8. From Figure 12 it is clear that the (non-EMA)

30

Test Top-1 performance trajectory is no longer matching at these scalings, demonstrating that the
problem is not due to a breakdown of the EMA Scaling Rule, but rather, that the model is overfitting
at larger batch sizes due to batch normalization (loffe & Szegedy, 2015).

Scaling x =1/2 Scaling Kk =2 Scaling Kk =4 Scaling Kk = 8

—— B=3512,p=pp —— B=2048,p =pj —— B=409,p =pj —— B=8192,p=pf
B=512,p=pg B=2048,p =pp B =4096, p =pp B=28192,p=pp

--=- B=1024,p =py --=- B=1024,p=py --=- B=1024,p=py --=- B=1024,p =pg

IS

Train Model Loss
(e

%
S

=N
=]

Train Top-1 (%)
8 &

=3

%
S

=
=)

Test Top-1 (%)
8 &

=3

%
S

=
S

[S)
S

=3

EMA Test Top-1 (%)
=
(=]

0 15 30 45 60 75 90 0 IS5 30 45 60 75 9 O 15 30 45 60 75 90 0 15 30 45 60 75 90
Train Epochs Train Epochs Train Epochs Train Epochs

Figure 12: ResNetv2-50 Polyak-Ruppert averaging on ImageNet 1k for different scalings k. The baseline model
(x = 1, black dashed) uses batch size 1024 and momentum pg = 0.9999, is scaled down to a batch size of 512
(left), and up to a batch size of 4096 (right) with (blue, p = pg) and without (red, p = pg) the EMA Scaling
Rule (Definition 1.2). Bands indicate the mean and standard deviation across three runs.

F.3 Applying the EMA Scaling Rule to Batch Normalization

In Section 3.2 and Appendix F.2, we investigated a range of scalings k, with and without applying the
EMA Scaling Rule to the Polyak momentum. In those experiments, we maintained Batch Normal-
ization (loffe & Szegedy, 2015) coefficients of ppn = 0.9 throughout'', i.e. the EMA Scaling Rule
is not applied. The running statistics of Batch Normalization are an EMA with values determined
by ppN and so it is reasonable to suspect we should apply the EMA Scaling Rule to pgy also.

In Figure 13 we investigate the effect of applying the EMA Scaling Rule to Batch Normalization
coefficients, using ppN = ppy. We observe that the Test Top-1 trajectories with the EMA Scaling
Rule applied are slightly closer to the reference trajectories for scalings k > 2 than those trajectories
without the EMA Scaling Rule. As the effect is not particularly large, at least in this setup, we do
pursue further ablating applications of the EMA Scaling Rule to batch normalization coefficients,
and always use pgN = 0.1 for Batch Normalization, independent of .

In many ML frameworks, this value is defined using Bp =1-p,ie. the default is 0.1 and corresponds to
PBN rather than 0.9 corresponding to ppN. We use pgN to maintain consistency across this work.

31

Scaling k =1/2

Scaling k =2

Scaling k =4

Scaling Kk =8

2%, — B=si2p=pr (1 | B=2048.p = pF () | B=409.p=p (1) | —— B=s12.p=p5 ()
| \ B=512,p=p§ | B=2048,p = p§ \ B =4096, p = pf i B=8192,p =pf
D4 L= B=1024,p =pp ll ===+ B=1024,p = pp | I B=1024,p =pp 4 - B=1024,p =pp
2\ | |)

2 \ \ \ \

\\ \\ \\ \\

B e e T O T N Attt B A D B

E ‘\ ‘\ ‘\ ‘\

Eol] T T~ T T T D TN
L I S N R ATV AT T
60 { { [/

U (e (e]
’4’ e Ve P

Train Top-1 (%)
8 &

=)

%
S

&)

E 60 ff,we" - = V:_jl =)

— n L aaid AITRX P el
/ /M /'f“ /fJ\/W

240 i
o !)
= [| {
2204 | { | |
SN i | /

0 1 1 1 I
~
1S53 B B e B B B oot e | T T ==
;',_ " /, /’, /, //,
S
= / / / /
= 40 7 / / i/
% II li ll /
= / / /
< 20 / / / //
= A A ,/ / /
4 01 - - | <

0 15 30 45 60 75 90 0 15 30 45 60 75 90 0 15 30 45 60 75 90 0 15 30 45 60 75 90
Train Epochs Train Epochs Train Epochs Train Epochs

Figure 13: ResNetv2-50 Polyak-Ruppert averaging on ImageNet1k for different scalings k. The baseline model
(x = 1, black dashed) uses batch size 1024 and momentum pg = 0.9999, is scaled down to a batch size of
512 (left), and up to a batch size of 4096 (right) with the EMA Scaling Rule applied to only model parameters
(blue, p = pf), and model parameters and buffers (orange, p = p (1)). Bands indicate the mean and standard
deviation across three runs.

G Additional details and results for Automatic Speech Recognition (ASR)

In this section we provide additional details for the speech recognition experiments in both the
supervised and semi-supervised case.

Data We use the LibriSpeech dataset (Panayotov et al., 2015) which is a dataset of audio-
transcription pairs. For supervised Polyak-Ruppert averaging experiments, we use train-clean-100
as training data, and for semi-supervised pseudo-labeling experiments, we use train-clean-100 as
the labeled and train-clean-360 and train-other-500 as the unlabeled data. The standard LibriSpeech
validation sets (dev-clean and dev-other) are used to tune all hyperparameters, as well as to select
the best models. Test sets (fest-clean and test-other) are only used for reporting final model per-
formance, measured in WER without an external language model. We maintain the original 16kHz
sampling rate, and compute log-mel filterbanks with 80 coefficients for a 25ms sliding window,
strided by 10ms, later normalized to zero mean and unit variance for each input sequence.

Acoustic model We employ a vanilla encoder-based only transformer model trained with the Con-
nectionist Temporal Classification (CTC) loss (Graves et al., 2006). We use the training configura-
tion from Likhomanenko et al. (2021a), which has three stages: i) 1D convolutions to perform strid-
ing (kernel of 7 with stride of 3); ii) a Transformer encoder with 36 layers, post-LayerNorm, four
attention heads, an embedding dimension of 768, an MLP dimension of 3072, a dropout frequency
of 0.3, and a layer drop frequency of 0.3; and iii) a linear layer to map to the target vocabulary'~.
To reduce model training time by a factor of approximately 2 — 3%, and to reduce memory footprint,

12The token set of this vocabulary consists of the 26 English alphabet letters augmented with the apostrophe
and a word boundary token.

32

Table 6: Hyperparameters summary for speech recognition task for supervised (left) and semi-supervised
pseudo-labeling (right) training with a vanilla transformer. The 0.3 — 0.1 in the dropout and layer drop rates
indicates that a rate of 0.3 is used during pre-training, and a rate of 0.1 is used during pseudo-labeling.

Supervised Pseudo-Labeling

Librispeech test-clean / test-other WER 7.8/19.1 4.8/11.5
Optimizer Adam Adam
Optimizer scaling rule Adam Adam
Base (1, f2) (0.995, 0.999) (0.995, 0.999)
Base learning rate 0.0001 0.0001
Base learning rate warmup (steps) 64k 64k
Learning rate schedule Fixed (no decay) Fixed (no decay)
Learning rate minimum value 0 0

Base training duration (steps) 400k 500k
Base batch size (dynamic) 8 X 290s 8 X 290s
Base teacher momentum 0.99995 0.9999
Weight decay None None
Numerical precision bf16 bf16
Augmentation stack SpecAug SpecAug
Dropout 0.3 0.3 — 0.1
Layer drop 0.3 0.3 —0.1
Gradient clipping 1 1
Labeled:unlabeled data ratio N/A 1:3

Base pre-training steps N/A 20k
Base start of EMA accumulation (steps) N/A 19k

we use CAPE positional embeddings (Likhomanenko et al., 2021b) instead of relative positional
embeddings (Shaw et al., 2018): both models perform similarly.

Training Here we discuss our training procedure for base batch size B = 8 x290s, which is adapted
from Likhomanenko et al. (2021a), and is summarized in Table 6. We use SpecAugment (Park et al.,
2019) activated after 5k steps of training: two frequency masks with frequency mask parameter
F = 30, ten time masks with maximum time-mask ratio p = 0.1 and time mask parameter T = 50 are
used; time warping is not used.

One difference in setup is we use the Adam optimizer, whereas Likhomanenko et al. (2021a) used
Adagrad (Duchi et al., 2010). Even though Adagrad can be viewed as a particular limit (; = 0 and
B2 — 1) of Adam (Kingma & Ba, 2015), we were unable to produce reasonable optimization in
practice when applying the Adam Scaling Rule of Malladi et al. (2022) in this limit. As a conse-
quence, we chose to work with the Adam optimizer, where its scaling rule has been shown to work
(Malladi et al., 2022), and we take f; = 0.995, B, = 0.999, and € = 10~8. We obtained similar results
for f; = 0.99. Finally, we use a linear learning rate warmup (64k steps) after which the learning rate
is kept constant until convergence. This performance can be improved further by using a step decay
schedule as shown in prior work. We also apply gradient clipping of 1, and do not use weight decay.

Pseudo-Labeling The pseudo-labeling process comprises of two stages: i) The pre-training phase,
where we train model on labeled data for 20k steps with model EMA accumulation starting after
19k steps; and ii) the pseudo-labeling phase, where we involve unlabeled data by generating pseudo-
labels from the model EMA (teacher) and provide them to the model (student) as if they were
ground-truth labels. Pseudo-labels are generated without any dropout applied to the teacher, and
no data augmentation is applied for the corresponding inputs. To produce the pseudo-label, we use
hard transcription (Definition G.1)

Definition G.1 (Hard Transcription). For a sequence of frames, select the most probable token
per frame, removing repetitions and the CTC blank token. For example, “h##eelll##ll###o0” is
transformed into “hello”, where “#” is the CTC blank token.

These hard transcriptions are then used as transcription for student optimization. We use a 1:3
proportion of labeled to unlabeled data as this was found to be optimal in Likhomanenko et al.
(2021a), and we decrease model dropout and layer drop rates to 0.1 after pre-training phase. As
we have access to the ground-truth labels on the data being treated as unlabeled, we can track

33

pseudo-label quality by computing pseudo-labels on this data, and compute the WER against their
ground-truth. Pseudo-label quality is the primary metric to evaluate progress on unlabeled data, as
loss on pseudo-labeled data is unreliable when a teacher model and pseudo-labels are evolving with
each time step.

Scaling of batch size Sequential data is typically processed using dynamic batching as it is more
computationally efficient than using a fixed number of sequences (Ott et al., 2019). In our work, we
use dynamic batching of ~290s audio per GPU. Moreover, for CTC we do not apply any additional
sequence normalization. We experimented with fixed batching, but did not observe any significant
differences in conclusions compared with the dynamic batching.

We note that dynamic batching is a more challenging setting for achieving systematic scaling, as the
number of independent sequences in any given batch may change, and the i.i.d. assumption does
not hold at the frame level. Despite these violations of the assumptions of Section 2.2, our results
demonstrate that the Adam Scaling Rule (Definition C.3, Malladi et al. (2022)) holds in the case of
dynamic batches, as does our EMA Scaling Rule (Definition [.2).

The base batch size is set to B = 8 X 290s, and in our experiments we scale down to batch size of
B = 2 X% 290s and up to batch size of B = 128 X 290s. The number of warmup and pre-training
steps, steps before SpecAugment is turn on and model EMA is accumulated are scaled according to
Appendix C.1.

Compute All experiments are done using A100 80GB 8GPU nodes with bf loat 16 precision
training. While for supervised training evaluation of different EMA decay values is done in parallel
during a single run, for pseudo-labeling every EMA decay value needs separate training. Final mod-
els training compute is detailed in Tables 7 and 8. Total compute, including e.g. code development,
runs with errors, and debugging, is 61k GPUh.

Table 7: Compute usage for supervised model for speech recognition task in Figure 14. Values include node
allocation times (typically a small % of corresponding total runtime), giving a practical estimate of reproduction
cost. All experiments conducted are using 80Gb A100s with fast interconnect.

Batch Size GPUs Time (h) Compute/Run (GPUh) Runs Compute (GPUh)

2 x 290s 2 222 444 1 222
4 x 290s 4 108 432 1 432
8 x 290s 8 64 512 1 512
16 x 290s 16 54 864 1 896
32 x 290s 32 37 1,184 1 1,184
Total 3,436

Table 8: Compute usage for continuous pseudo-labeling for the speech recognition task in Figure 16. Values
include node allocation times (typically a small % of corresponding total runtime), giving a practical estimate
of reproduction cost. All experiments conducted are using 80Gb A100s with fast interconnect.

Batch Size GPUs Time (h) Compute/Run (GPUh) Runs Compute (GPUh)

2 % 290s 2 225 550 2 1,110
4 % 290s 4 120 480 2 960
8 X 290s 8 72 576 1 576
16 x 290s 16 45 720 2 1,440
32 x 290s 32 33 1,056 4 4,224
64 x 290s 64 25 1,600 2 3,200
Total 11,510

G.1 Additional experimental settings and detailed metrics

We present detailed comparison between models trained with and without EMA Scaling Rule in Fig-
ures 14 and 15 for supervised training and in Figures 16 and 17 for semi-supervised training.

First, we observe that if the Adam Scaling Rule does not hold perfectly'* (there is a mismatch
between trajectories for the model before pseudo-labels are involved) the EMA Scaling Rule also

13See Malladi et al. (2022) for a discussion on scenarios that lead to a breakdown of the Adam Scaling Rule.

34

Scaling k =1/4 Scaling k =1/2 Scaling k =2 Scaling k =4
6001 [
Q \ \ \
2 4001 \ '\ \
g) \ \ \
& 2001 Y \ \ \

1004 y)
80 ! ‘I
‘ ‘ ‘ \
601 | \ i \
40 ‘\ k :

20 B — N N BB eSS RS PR DM s PRI SRS i NS

100

——— B=8x290s,p =ps
—— B=2x290s,p = pg
—— B=2x290s,p =p§

—== B=8x290s,p =ps
—— B=4x290s,p = pp
—— B=4x290s,p =p§

=== B=8x290s,p=pp
—— B=16x290s,p = pp
—— B=16x290s,p = p§

——= B=8x290s,p = py

) —— B=32x290s,p =pp

EMA test-other WER test-other WER

—— B=32x2905,p = pf
60
40
20 ==
0 i 2 3 40 1 2 3 40 1 2 3 40 1 2 3 4
Train Steps ~ x10° Train Steps ~ x10° Train Steps <107 Train Steps ~ x10°

Figure 14: Transformer Polyak-Ruppert averaging on LibriSpeech (trained on train-clean-100) with different
scalings k. The baseline (x = 1, black dashed) is trained with Adam and momentum pg = 0.99995 at a dynamic
batch size B = 8 X 290s, which corresponds to a single train step on the x-axis. We investigate dynamic batch
sizes down to B = 2 X 290s (left) and up to B = 32 X 290s (right), with (blue, p = pg), and without (red, p = pp)
the EMA Scaling Rule (model non-EMA is marked by orange). The Adam Scaling Rule (Malladi et al. (2022),
Definition C.3) is used throughout. For momentum pg = 0.9999 we observe similar trajectories for all models.

Scaling k =1/4 Scaling k =1/2 Scaling k =2 Scaling k =4
6001 [
[l [
ol \
\
— 4007 '\ \
g \\\ \ \\ “\
£ 200 _ C \ \\\
0
&z 100 y \
m] 1 I
= 801! \ !)
1 \
o} ‘ \ |)
= 601 i \ v
8 \ \ ‘\ ‘\
L 40 \ \ \
@ . N S
] e — i SR SO PO N N P U S N B i
20 — -] S ————————] || s s e
&
3 100 === B=8x290s,p =pp === B=8x290s,p =pp === B=8x290s,p=pp === B=8x290s,p =pp
5 80 —— B=2x290s,p =pp —— B=4x290s,p =pp —— B=16x290s,p = pp ‘|| —— B=32x290s,p =pp
S —— B=2x290s,p = pf —— B=4x290s,p = pf —— B=16x290s,p = p§ N\ —— B=32x290s,p =pj
Q@ 60)
<
17 ‘\
2 4
<
S 2
Moo 1 2 3 40 1 2 3 40 1 2 3 40 1 2 3 4
Train Steps ~~ x10° Train Steps ~ x10° Train Steps ~ x10° Train Steps ~ x10°

Figure 15: Transformer Polyak-Ruppert averaging on LibriSpeech (trained on train-clean-100) with different
scalings k. The baseline (x = 1, black dashed) is trained with Adam and momentum pg = 0.999 at a dynamic
batch size B = 8 X 290s, which corresponds to a single train step on the x-axis. We investigate dynamic batch
sizes down to B = 2 X 290s (left) and up to B = 32 X 290s (right), with (blue, p = pg), and without (red, p = pp)
the EMA Scaling Rule (model non-EMA is marked by orange). The Adam Scaling Rule (Malladi et al. (2022),
Definition C.3) is used throughout. If momentum pp is small and accumulation history is short we observe no
any significant difference between models which all are matching the reference trajectory despite scaling .

gives discrepancies with the reference trajectory, however they are negligible compared to models
trained without EMA Scaling Rule. For the semi-supervised training, to alleviate the difficulties with
a breakdown of the Adam Scaling Rule for large xk we postpone the pseudo-labeling process until
the model reaches similar WER as the baseline. This allows us to align the initial model conditions
for pseudo-labeling. In this scenario we are able to match the reference trajectory up to k = 8.

35

Scaling kK = 1/4

Scaling kK =1/2

Scaling k =2

Scaling k =4

Scaling Kk =8

2 600 —== B=8x290s,p = py —== B=8x290s,p = pp === B=8x290s,p = pg === B=8x290s,p = py === B=8x290s,p = py
S —— B=2x2905,p = pg —— B=4x290s,p = pg —— B=16%2905,p = py —— B=32x2905,p = pp —— B=64x2905,p = pp
g 400 —— B=2x2905,p = pf —— B=4x2905,p = pf —— B=16x2905,p = p§ —— B=32x2905,p = p§ —— B=64x2905,p = pf
&

=

3

£ 200

2

=

v

PL WER
O N =
S & & & 3

100

75

50

test-other WER

25

0 2 4 0 2 4 0 2 4 0 2 4 0 2 4

Train Steps x10° Train Steps x10° Train Steps x10° Train Steps x10° Train Steps x10°

Figure 16: Transformer pseudo-labeling on LibriSpeech (trained on train-clean-100 as labeled and the rest
of LibriSpeech as unlabeled) with different scalings k. The baseline (x = 1, black dashed) is trained with
Adam at a dynamic batch size of 8 X 290 seconds, which corresponds to a single train step on the x-axis. The
model EMA (teacher) is updated with momentum pg = 0.9999. We investigate dynamic batch sizes down to
B = 2 x 290s (left) and up to B = 64 X 290s (right), with (blue, p = pg) and without (red, p = pp) the EMA
Scaling Rule. The Adam Scaling Rule (Malladi et al. (2022), Definition C.3) is used throughout. For k < 2, we
start pseudo-labeling after 20k/x training steps; while for k > 2, we start when pre-training WER matches the
baseline WER (24k/k for x = 4 and 29k /«k for k = 8). For k = 4 we experimented with both variants: we start
pseudo-labeling after 20k/x (dashed) and when pre-training WER matches the baseline WER (solid, 24k/x).

2 Scaling xk =1/4 Scaling k =1/2 Scaling k =2
S
— 600 -—= B=8§x290s,p = ps ——= B=8x290s,p = py ——= B=8§x290s,p = ps
§ —— B=2x290s,p =pg —— B=4x290s,p =pg —— B=16x290s,p = pg
; 400 —— B=2x290s,p =p§ —— B=4x290s,p =p§ —— B=16x290s,p = pf
=}
2
"2 200
-
Q
8.
=
7}

80
24
& o0
= 40
=

20

0

100
24
g 80
~ 60
=
eq)' 40
@ 20
8

0

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

Train Steps ~ x10° Train Steps ~ x10° Train Steps ~ x10°

Figure 17: Transformer pseudo-labeling on LibriSpeech (using train-clean-100 as labeled) with different scal-
ings k. The baseline (x = 1, black dashed) is trained with Adam at a dynamic batch size of 8 X 290 seconds,
which corresponds to a single train step on the x-axis. The model EMA (teacher) is updated with momentum
pB = 0.999. We investigate dynamic batch sizes down to B = 2x 290s (left) and up to B = 16 X 290s (right), with
(blue, p = pg) and without (red, p = pp) the EMA Scaling Rule. The Adam Scaling Rule is used throughout.

We note that this result reveals that errors for the Adam Scaling Rule and the EMA Scaling Rule
are contributing, although the way in which they contribute is different, and one can dominate the
other. We observe in Figure 16 that if the initial conditions of the models are similar (attained by
using the same WER as a condition to begin pseudo-labeling) then the error from the EMA Scaling
Rule dominates over that of the Adam Scaling Rule, causing a divergence in training dynamics.

36

Second, we observe in practice that the EMA Scaling Rule holds for both fixed batching (a sequence
length in the batch can vary significantly) and for dynamic batching (when total number of frames
in the batch is fixed, though padding still is accounted to the this amount). This shows that EMA
Scaling Rule is applicable to sequential data too.

Third, we observe in Figures 15 and 17 that for smaller values of pp, scaling with or without
EMA Scaling Rule behave similarly, and reference trajectories match in the supervised and semi-
supervised cases. However, if the momentum is too large, the teacher moves slowly and is uninfor-
mative, whereas if the momentum is too low, the teacher and the student are effectively be the same
model, implying: i) the student will self-predict with high confidence, removing any benefits of dis-
tillation'*; and ii) training instability or model divergence will happen in the low-resource settings
(Likhomanenko et al., 2021a; Higuchi et al., 2022).

G.2 Scaling to x = 16 with Progressive Scaling

Finally, we aim to scale semi-supervised pseudo-labeling further to k = 16. In this case we observe
that Adam Scaling Rule does not hold in the pre-training phase and there is no model convergence.
To overcome this, we apply Progressive Scaling (Definition 3.2). We pre-train models on supervised
data with k¥ = 8 for 29k of reference steps (model EMA accumulation starts at 28k steps). We then
scale to k = 16 and begin pseudo-labeling. We see in Figure 18 that Progressive Scaling enables us
to scale pseudo-labeling to k = 16 with (middle) and without (left) the EMA Scaling Rule. Second,
models with the EMA Scaling Rule track the baseline much closer than models without the EMA
Scaling Rule, although a small gap is present. We further experimented with Progressive Scaling,
postponed the transition condition to the k = 16 until 75k reference steps. In Figure 18 (right), we
see this scaled model tracks the reference trajectory, and so using a combination of the EMA Scaling
Rule and Progressive Scaling, we are able to scale pseudo-labeling to k = 16, corresponding to a
dynamic batch size of 128 x 290s.

»x 104 Scaling k =8 — 16 Scaling Kk =8 — 16 Scaling k =8 — 16

IS

[

Learning Rate

1004 ——- B=8x290s,p = ps

=== B=8x290s,p =pp === B=8x290s,p =pg

5 B =64x290s,p = pp B=64x290s,p = pf B=64x2905,p = p
= “ —— B=64—128x290s,p = pp —— B=064—128x290s.p = pf —— B=64—128x290s,p = pjf
5 \ v
£ 501 M
@ \,
o .
g -
0
0 2 4 0 2 4 0 2 4

Train Steps x10° Train Steps x10° Train Steps x10°

Figure 18: Transformer pseudo-labeling on LibriSpeech (trained on train-clean-100 as labeled and the rest of
LibriSpeech as unlabeled) with different Progressive Scaling from k = 8 to k = 16 (xk = 8 — 16). The baseline
(x = 1, black dashed) is trained with Adam at a dynamic batch size of 8 x 290 seconds, which corresponds
to a single train step on the x-axis. The model EMA (feacher) is updated with momentum pg = 0.9999. The
scaling with ¥ = 8 is shown with lighter color for reference from Figure 16. We investigate dynamic batch
sizes progressively from B = 64 X 290s to B = 128 X 290s, with (blue, p = pg) and without (red, p = pp)
the EMA Scaling Rule. For reference (top) we show the learning rate schedule with Progressive Scaling. The
Adam Scaling Rule (Malladi et al. (2022), Definition C.3) is used throughout. Left and middle correspon to
Progressive Scaling with scale from k = 8 to ¥ = 16 at 29k steps, while right corresponds to 75k steps.

4 He et al. (2020) alleviated the problem with the proper amount of noise during student model training,
whilst Xu et al. (2020) used beam-search decoding with a language model.

37

H Additional details and results for self-supervised image representation
learning

Organization This appendix is structured into three sections. We first give an overview of our
chosen SSL method BYOL (Appendix H.1), our recipe for training BYOL using ResNet 18s (Ap-
pendix H.2), our recipe for training BYOL using Vision Transformers (ViTs) (Appendix H.3), abla-
tions of normalization approaches that lead to the development of this recipe (Appendix H.4), and
additional results corresponding to longer training duration (Appendix H.5) and further understand-
ing the impact of Progressive Scaling (Appendix H.6).

Second, we demonstrate that the EMA Scaling Rule combined with Progressive Scaling can scale
a ResNet-50 BYOL model trained with LARS to batch size 32,768 without performance drop,
demonstrating the empirical utility of the tools we provide outside of their theoretical validity (Ap-
pendix H.10).

Finally, we show that it is possible to systematically scale DINO (Caron et al., 2021) using a com-
bination of Progressive Scaling and the EMA Scaling Rule, providing a solution for researchers and
practitioners wanting to train DINO at scale.

H.1 Components of self-supervised learning

First, a key component of many SSL methods is the stop-gradient or StopGrad (Definition H.1).

Definition H.1 (Stop Gradient/StopGrad(-)). The stop-gradient operator StopGrad(-) prevents the
flow of gradient information
df (StopGrad(h(x; ®));0)
do
for all parametric functions h and f and for all parameters 0 and .

0 (72)

Applying a stop-gradient is sometimes called detaching in the literature. Now, we introduce the
update rule of our representative SSL method BYOL in Definition H.2.

Definition H.2 (BYOL Update). BYOL learns unsupervised features by minimizing the cosine dis-
tance between the predictions of a student backbone f(-;0) (typically a ResNet or Vision Trans-
former), projected through h(- ; ®) (typically a Multi-Layer Perceptron (MLP)), and the predictions
of an EMA teacher f(-;C) (Grill et al., 2020). The update for the parameters of BYOL is then

1
(Ora1, @101) = (O, 01) =0 X = 3" V(o) Lx:0n 00, T,) (73)
x€B
G =p 8+ (1= p) O (74)

with L(x;0:, 0 C,) = %cos [h(f(xl;et);a)t),StopGrad(f(xz; gt))] + (x1 © x3), (75)

where cos(a,b) = 1—a-b/(||al]| ||b||) is the cosine distance, and x, and x5 are two views of a single
variate x, often produced by augmentations, and x, <> x, denotes symmetrization over x; and x;.

As noted in Section 3.4,the BYOL EMA update (Equation 74) uses 0,4; instead of our analyzed 0,
(Equation 4). The effect upon the overall EMA update is O(n X ,) and so is captured by the EMA
Scaling Rule (Definition 1.2).

One more piece of technology typically employed in SSL is a tracking probe (Definition H.3) which
we will use to evaluate the performance of BYOL on downstream tasks of interest, for example,
image classification.

Definition H.3 (Tracking Probe/Linear Probe). When optimizing model parameters w; of an SSL
method, simultaneously optimize the parameters € of a probe model r(-;€) under a downstream
objective LY. For example, in classification, with data x and samples y

LD (x,y.0,.,) = ~log P(y|r(StopGrad(h(x; 1)); £)) (76)
L(mm” (X, y; et» Wy, gt’ gt) = L(X; ets Wy, ct) + L(d) (x’ y’ Wy, §[)> (77)

The is a probe for the teacher, which is typically the better choice due to Polyak-Ruppert averaging
effects (see Section 3.2). When the r is a linear model, the tracking probe is called a linear probe.

38

Table 9: BYOL ResNet-18 hyperparameters for CIFAR10

ResNet-18
Weight initialization kaiming_uniform (He et al, 2015)
Backbone normalization BatchNorm
Head normalization BatchNorm
Synchronized BatchNorm over replicas Yes
Learning rate schedule Single Cycle Cosine
Learning rate warmup (epochs) 20
Learning rate minimum value 0
Training duration (epochs) 100
Optimizer SGD
Optimizer scaling rule SGD
Optimizer momentum 0.9
Gradient clipping 0.1
Base learning rate 0.02
Base batch size 1024
Base teacher momentum 0.992
Weight decay 1x107°
Weight decay scaling rule None
Weight decay skip bias Yes
Numerical precision tf32
Augmentation stack BYOL CIFAR10

It is also typical to use a Batch Normalization layer without trainable affine terms before this linear
layer as in He et al. (2022) to stabilize probe training. In this case, the running statistics can be
absorbed into a definition of the linear layer weights and biases, and so this is still a linear probe,
although we will call this a pre-bn linear probe to remove ambiguity.

H.2 A ResNet-18 recipe for BYOL

Hyperparameters We present the base hyperparameters for training BYOL with a ResNet-18
backbone using SGD in Table 9. This recipe was developed by starting from a well-known BYOL
ResNet-50 recipe (Grill et al., 2020), adapting the input augmentations for CIFAR10, and performing
a search over learning rate choices for an SGD optimizer.

H.3 A Vision Transformer recipe for BYOL

Hyperparameters We present the base hyperparameters for training BYOL with a ViT-B/16 back-
bone in Table 10. This recipe was developed by starting from a well-known supervised ViT-B/16
recipe (He et al., 2022) and performing a search over weight decay and learning rate hyperparameter
choices. We find that BYOL performs well with heavy weight decay (A = 0.3) and a low learning
rate (n = 1073) at a base batch size B = 4096. The AdamW optimizer is used, and so for scaling to
other batch sizes B = kB we use the Adam Scaling Rule (Definition C.3)'° We use a pre-bn linear
probe as discussed in Appendix H.I. Finally, the performance of BYOL can be further improved
by employing multicrop (Caron et al., 2020) by ~ +2% in absolute test top-1 performance on Im-
ageNetlk compared to without multicrop, however, as this is not our focus, we omit this from the
presented recipe.

Additional background Achieving large scale SSL training with ViTs to large scale SSL train-
ing has been a long standing goal in the community. MoCo-v3 (Chen et al., 2021) enables the
use of ViTs with contrastive learning, but achieves this through modifications of the ViT training
procedures, including gradient freezing on the image patching layer, and re-introducing Batch Nor-
malization to post-attention MLP layers. Despite these modifications, MoCo-v3 was only trained up
to a batch size of 6144, where model performance begins to suffer (Chen et al., 2021). In Figure 6
we demonstrate that combining dynamic batch scaling (Appendix C.4) with the EMA Scaling Rule

15We note that Adam (Kingma & Ba, 2015) and AdamW (Loshchilov & Hutter, 2019) are equivalent in the
limit of zero weight decay, and that the Adam Scaling Rule (Definition C.3) was derived with zero weight decay
(Malladi et al., 2022).

39

Table 10: BYOL ViT-B/16 hyperparameters.

BYOL ViT-B/16
ImageNetlk Linear Probe Test Top-1 74.47% (Figure 19)
Weight initialization trunc_normal(.02)
Backbone normalization LayerNorm
Head normalization BatchNorm
Synchronized BatchNorm over replicas No
Learning rate schedule Single Cycle Cosine
Learning rate warmup (epochs) 40
Learning rate minimum value 1x107°
Training duration (epochs) 480
Optimizer AdamW
Optimizer scaling rule Adam
Base (1, f2) (0.9, 0.95)
Base learning rate 1x1073
Base batch size 4096
Base teacher momentum 0.99
Weight decay 0.3
Weight decay scaling rule None
Weight decay skip bias Yes
Numerical precision bf16
Augmentation stack BYOL (Grill et al., 2020)
Stochastic depth 0.1

(Definition 1.2) enables BYOL to be trained using ViTs to batch sizes of 24,576 without any drop
in performance compared to the reference batch size of 4096. We emphasize that the piecewise
transitions in the schedules are important for preserving training dynamics.

H.4 The role of Batch Normalization and Layer Normalization in BYOL with ViTs

x1073
2.5]
S i ---- BN,B=3072 1.000
il 081} — BN, B=24576
601 "o LNGB=3072 | 008 2.0
N —— LN,B=24576 | 5 °
2
R 501 0 0.6 £ 2
— & & 0.996 & 1.5
4,404 -] =)
2 = = £
= 301 e T 0.994 £ 10/
2 = 5 Q
F 20 3 -
027} E 0.992 0.5
10
01 0.0 0.990 0.0+
0 200 400 0 200 400 0 200 400 0 200 400
Train Epochs Train Epochs Train Epochs Train Epochs

Figure 19: BYOL ViT-B/16 on ImageNetlk for different scalings k. We present runs comparing LayerNorm
(blue) to BatchNorm (red) in the projection and prediction heads of BYOL ViT models for batch size 3072
(dashed) and 24,576 (solid) without the EMA Scaling Rule. x = 1 corresponds to B = 4096. In all scenarios
the transformer backbone only uses LayerNorm. We truncate the training of the large batch size LayerNorm
variant to preserve compute (indicated by X).

Here we compare the roles of Batch Normalization (BatchNorm, loffe & Szegedy (2015)) and Layer
Normalization (LayerNorm, Ba et al. (2016)) in the projection and prediction heads of BYOL (Grill
et al., 2020) using ViTs.

It has been observed that BatchNorm plays a critical role in BYOL predictor and projector dynam-
ics (Fetterman & Albrecht, 2020), and using either LayerNorm or no normalization significantly
decreases model performance. Subsequently, it was demonstrated (Richemond et al., 2020) that
competitive BYOL performance could be achieved through a combination of Group Normaliza-

40

tion (GroupNorm, Wu & He (2018)) and Weight Standardization (Qiao et al., 2019). Additionally,
Richemond et al. (2020) showed that if BatchNorm is used in the backbone, one can use LayerNorm
or no normalization in the predictor and projector without any performance drop.

In this work, we we show it is possible to train BYOL ViT using only LayerNorm across the back-
bone, projector and predictor (see Figure 19), decoupling BYOL'’s reliance on batch statistics, a
desirable trait for a representation learning algorithm (Brock et al., 2021). At batch size 3072, using
LayerNorm in the predictor and projector achieves competitive performance (74.10%), performing
slightly worse than using BatchNorm (74.47%). At the larger batch size of 24,576, runs perform
significantly worse as the EMA Scaling Rule was not applied.

H.5 Longer training duration with incremental Progressive Scaling

%1073
L e .l 1004 oy 25
e i -
70 : | _-r”
P ! 0.99{ ====~
601 0.611 £ 2.0
9 ! 0511 2 0%) \
50 51 =
il I B P S v z i £ 0974 - & 15 ~
2,401 B=61a4 | 204 S 2
2 i £ \ = 0.96 E
= 3011 B=916 | s34 5 / E o
S| B=12288 | & ! < 0.951 g .
Eoolt — B=15360 021 Ao 8 I
. . 4 N
i B=18432 \\ =05 0311 ~
1077 —— B=21504 0.1 LN W 0.93 ’,' .
! B =24576 T~ ' N
04 0.04 == 0924 0.0 =
0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500 0 100 200 300 400 500
Train Epochs Train Epochs Train Epochs Train Epochs

Figure 20: BYOL ViT-B/16 on ImageNetIk for different scalings x. The baseline model (x = 0.75, black dashed)
uses batch size 3072 and teacher momentum pg = 0.99. We increment the batch size by 3072 every 60 epochs
to a final batch size of 24,576 using Progressive Scaling (Definition 3.2).

Here we use the same base hyperparameters as Table 10, except that we train for 480 instead of
300 epochs. To mitigate the student impulse phenomena discussed in Section 3.4, in Figure 20 we
investigate increasing the batch size every 60 epochs using Progressive Scaling (Definition 3.2). We
observe that this more gradual procedure enables closer tracking of the baseline train loss trajec-
tory. Additionally, this procedure results in a scaled linear probe performance that outperforms the
baseline (75.64% compared to the baseline performance of 74.47%). The same procedure can be ap-
plied to the LayerNorm variant discussed in Appendix H.4, which produces a similar result (75.09%
compared to the baseline performance of 74.10%).

H.6 Building intuition around Progressive Scaling and momentum sensitivity

Our final BYOL ViT results are to help build intuition around Progressive Scaling (Definition 3.2),
as well as when the EMA Scaling Rule is most important. In Figure 21 we explore transition-
ing from the baseline batch size 4096 model to batch size 24,576 in a single transition after
60 epochs. After this transition, we continue training for 240 epochs for a range of momenta:
p €{0.8,0.9,0.95,0.97,0.9867,0.994, 0.999} without the EMA Scaling Rule.

We observe that after the transition, any 0.9 < p < 0.994 produces a linear probe performance that
matches or outperforms the baseline at the end of training. This indicates that after the initial training
period, BYOL becomes less sensitive to the choice of teacher momentum. Note that without the
initial 60 epochs of training with batch size 4096, all models, including those employing the EMA
Scaling Rule diverge (see B = 24, 576 in Figure 0).

We present an illustration for why this might happen in Figure 22. First, we see that using the EMA
Scaling Rule always keeps the model within the acceptable momentum region. We also wee that
not using the EMA Scaling Rule can keep the model within the acceptable momentum region for a
range of batch sizes, depending on how large wide in momenta the acceptable region is at the base
batch size. Finally, we see that the momentum value matters much more at low values of momenta

41

x1073

08 1.000 2357
70 T !
P 1]
A 0.74} 0.975
60 / I 2.0
1
/ 061} z 0.950
~AS501 7
Q | ! = QL
s i 20511 g 0.925 315
404! S g
&] =l S 0.900 2
e | ---- Baseline £ 04dh = g
= 30| 1 — p=0800 £ \ 5 10 7~
Z i &= \ < 0.875 o HIRN
= ! p =0.900 0311 g — N
1
201 " — p=0.950 \‘\ & 0.850 ’| \
! p =0.970 024 > \ | 0.54 1 \\
104} —— p=0987 SN 0.825 i Y
| P =09 0.1 ! .
0y’ 2 =099 0.800 001" -
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Train Epochs Train Epochs Train Epochs Train Epochs

Figure 21: BYOL ViT-B/16 on ImageNetlk for different momenta p. The baseline model (p = 0.99, black

dashed) uses batch size 4096. At the 60th epoch we apply Progressive Scaling (Definition 3.2) and transition
to batch size 24576. We train for a further 240 epochs without EMA scaling for a range of momenta: p €

{0.9,0.95,0.97,0.9867,0.994}.

(the acceptable momentum region shrinks), whereas at large momenta, this region of acceptability
widens.

1.00

<
Nel
G

Momentum
(=)
o
(=)

°
o0
o

\ y

\ \
128 256 512 1024 2048 4096
Batch Size

0.80

Figure 22: A hypothetical scenario where there is an upper and lower limit for momenta qualitatively leading
to the same result. We assume at base batch size B = 1024 there is an upper (pmax, black dashdot) and lower
(Pmin» black dashed) limit for valid momenta. We show what happens if we start with pg = 0.95 at a batch size
of 4096, and scale with (p = pf, blue) and without (p = pg, red) the EMA Scaling Rule.

H.7 Compute usage for ViT BYOL investigation

We now summarize the compute usage for the BYOL ViT experiments. First we detail cost of
reproducing Figure 6 in Table 11, Figure 19 in Table 12, and Figure 20 in Table 13.

Table 11: Compute usage for baseline ViT BYOL investigation in Figure 6. Values include node allocation
times (typically a small % of corresponding total runtime), giving a practical estimate of reproduction cost. All
experiments conducted are using 80Gb A100s, and experiments indicated by (f) have a faster interconnect.

Batch Size GPUs Time (h) Compute/Run (GPUh) Runs Compute (GPUh)

4,096 32 16.6 5314 2 1,062.7
8,192 48 14.1 678.0 2 1,356.1
16,384 96 8.3 800.3 2 1,600.6
24,576 128 6.6 850.1 4 3,400.4
32,7687 176 4.1 721.7 2 1,443.4
Total 8,863.1

42

Table 12: Compute usage for ViT BYOL investigation into BatchNorm and LayerNorm variants in Figure 19.
Values include node allocation times (typically a small % of corresponding total runtime), giving a practical
estimate of reproduction cost. All experiments conducted are using 80Gb A100s, and were run for 480 epochs,
except those indicated by () were truncated early (see Figure 19 for more details).

Batch Size Normalization ~GPUs Time (h) Compute (GPUh)

3,072 BatchNorm 16 479 766.0
3,072 LayerNorm 16 48.0 768.7
24,576 BatchNorm 128 14.8 1900.4

24,576* LayerNorm 128 35 451.1
Total 3,886.2

Table 13: Compute usage for ViT BYOL investigation into incremental scaling in Figure 20. Values include
node allocation times (typically a small % of corresponding total runtime), giving a practical estimate of re-
production cost. All experiments conducted are using 80Gb A100s for 60 epochs. Stage O corresponding to
the baseline in Figure 20 is the run detailed in the first row of Table 12, using a batch size of 3,072, Batch
Normalization, and 16 GPUs. Computing only the first 60 epochs of stage O corresponds to approximately
127.7 GPUh, which would bring the total cost of Figure 20 to 1,432.9 GPUh.

Stage Batch Size GPUs Time (h) Compute (GPUh)

1 6,144 32 35 113.0
2 9,216 48 3.1 149.8
3 12,288 64 2.8 176.0
4 15,360 80 23 186.5
5 18,432 96 2.1 202.9
6 21,504 112 2.1 235.8
7 24,576 128 1.9 241.3
Total 1,305.2

Next, the cost of a single momentum ablation presented in Figure 21 is 240 epochs at batch size
24,576, which is ~ 240/480 x 1900.4 GPUh = 950.2 GPUh, giving a total cost over seven runs of
6651.4 GPUh.

Finally, providing a full view of the investigations carried out for the ViT BYOL is given in Table 14.

Table 14: Total compute usage for ViT BYOL investigations.

Compute (GPUh)
Baselines (Figure 6 and Table 11) 8,863.1
BatchNorm and LayerNorm (Figure 19 and Table 12) 3,886.2
Incremental scaling (Figure 20 and Table 13) 1,305.2
Momentum ablations (Figure 21) 6,651.4
All other compute, e.g. code development, runs with errors, and debugging 84,984.1
Total 105,690.0

H.8 ResNet-18 hyperparameter sensitivity analysis

To demonstrate that the EMA Scaling Rule works for a broad range of optimization hyperparameters
(i.e. beyond those presented in Figure 5 and Section 3.4), we provide a sensitivity analysis for base
teacher momentum pp and base learning rate np in the challenging setting of BYOL.

Base teacher momentum In Figure 23 we show the effect of changing the base teacher momen-
tum pg, defined at batch size 1024. The EMA Scaling Rule is robust to modifications of momentum
down to pg = 0.946 in this particular setting. Below pg ~ 0.946, matching is poor, although the
smallest momentum in this setting corresponds to 0.841* ~ 0.5, which is a particularly small teacher
momentum, and is unlike to provide utility over the using the target model (see Appendix E.2).

43

=
G

Scaling k =4

Scaling k =2

Scaling k =4

Scaling k =2

[
=]

—— B=2048,p=pj}
—— B=2048,p =pp
=== B=1024,p =pp

Test Top-1 (%)
[o]

=]

HE

—— B=409,p =pf
—— B=4096,p = pp
=== B=1024,p =pp

Test Top-1 (%)
™~ W -
wn (=} W

(=]

y ol

—— B=2048,p =pf
—— B=2048,p =pp
=== B=1024,p =pp

—— B=4096,p =pf
—— B=4096,p =pg
=== B=1024,p =pp

g
o

Train Loss
(=]
S

o
=N

Train Loss
(=]
'

0.2 0.2 -
0 25 50 75 1000 25 50 75 100 0 25 50 75 1000 25 50 75 100
Train Epochs Train Epochs Train Epochs Train Epochs
(a) pp = 0.841 (b) pp = 0.946
Scaling k =2 Scaling k =4 Scaling k =2 Scaling k =4

=
S

v
=]

—— B=2048,p=pj
—— B=2048,p =pp
=== B=1024,p =pp

Test Top-1 (%)
~
(=} W

y i

—— B=4096, p =pj
—— B =409, p =pg
===+ B=1024,p =pp

=
G

%)
=)

Test Top-1 (%)
o B

—— B=2048,p =pf
—— B=2048,p =pz
=== B=1024,p =pp

—— B=4096,p =pj
—— B=4096,p =ps
=== B=1024,p =pp

5
N

Train Loss
(=]
'S

o
N

Train Loss
(=)
'S

0.2 0.2
0 25 50 75 1000 25 50 75 100 0 25 50 75 1000 25 50 75 100
Train Epochs Train Epochs Train Epochs Train Epochs
(c) pp =0.974 (d) pp = 0.987
Scaling k =2 Scaling k =4 Scaling k =2 Scaling k =4
75 75
S 1S3
=50 50
— —
9 o
22 —— B=2048,p =p§ —— B=4096,p = p§ 22 —— B=2048,p =p§ —— B =409, p = p§
A —— B=2048,p =pp —— B=4096, p =pp © —— B=2048,p =pp —— B=4096, p =pp
g 0 ===+ B=1024,p =pp -==- B=1024,p =pp # 0 -==- B=1024,p =pp -==+ B=1024,p =pp

o
o

Train Loss
(=]
IS

o
=N

Train Loss
(=]
IS

0.2 0.2
0 25 50 75 1000 25 50 75 100 0 25 50 75 1000 25 50 75 100
Train Epochs Train Epochs Train Epochs Train Epochs
(e) pg = 0.992 (f) pp = 0.997

Figure 23: ResNet-18 BYOL on CIFARI0 teacher momentum sensitivity (ng = 0.08) for scalings x € {2,4} and
base teacher momenta pg € {0.841,0.946,0.974, 0.987,0.992,0.997} defined at k = 1. The baseline (x = 1, black
dashed) uses batch size 1024, and is scaled from batch size 2048 (left) to 4096 (right) with (blue, p = pg) and
without (red, p = pg) the EMA Scaling Rule. Bands indicate mean and standard deviation across three runs.

Base learning rate In Figure 24 we show the effect of changing the base learning rate 5p, defined
at batch size 1024. The EMA Scaling Rule is robust over a wide range of learning rates. At the

largest learning rate np = 0.5 matching starts to become poor at scaling k = 4.

44

75 Scaling k =2 Scaling k =4 2 Scaling k =2 Scaling k =4
S S
:SO :50
&, I e & W e
22 - B=2048, p = pf - B =4096, p = pf L2 /— B =2048, p = pf /— B =4096, p = pff
- —— B=2048,p =pp —— B=4096,p = pp - —— B=2048,p =pp —— B=4096,p =pp
12} @
ﬁ 0 === B=1024,p =pp === B=1024,p =pp ﬁ 0 === B=1024,p =pp === B=1024,p =pp

g
o

Train Loss
(=]
E

o
=N

Train Loss
(=]
'

0.2 0.2
0 25 50 75 1000 25 50 75 100 0 25 50 75 1000 25 50 75 100
Train Epochs Train Epochs Train Epochs Train Epochs
(a) yg =0.01 (b) ng =0.02
Scaling k =2 Scaling k =4 Scaling k =2 Scaling k =4

Test Top-1 (%)
~ wn ~
w (=) W

=]

5
N

Train Loss
(=]
S

pm———s

—— B=2048,p=pj
—— B=2048,p =pp
=== B=1024,p =pp

—— B=4096, p =pj
—— B =409, p =pg
===+ B=1024,p =pp

Test Top-1 (%)
[) wn ~
wn o wn

=)

—— B=2048,p =pf
—— B=2048,p =pz
=== B=1024,p =pp

—— B=4096,p =pj
—— B=4096,p =ps
=== B=1024,p =pp

o
N

Train Loss
(=)
'S

0.2 0.2
0 25 50 75 100 0 2550 75 100 0 2550 75 100 0 25 50 75 100
Train Epochs Train Epochs Train Epochs Train Epochs
(c) np = 0.04 (d)np =0.15
Scaling k =2 Scaling k =4 Scaling k =2 Scaling k =4
75 75
S 1S3
=50 =50
a a
22 —— B=2048,p =p§ —— B=4096,p = p§ 22 —— B=2048,p =p§ —— B =409, p = p§
A —— B=2048,p =pp —— B=4096, p =pp © —— B=2048,p =pp —— B=4096, p =pp
@0 == B=1024,p=pp === B=1024,p =pp &0 ===+ B=1024,p=pp === B=1024,p =pp

o
o
o
=N

Train Loss
(=]
s

Train Loss
(=]
IS

0.2 0.2
0 25 50 75 1000 25 50 75 100 0 25 50 75 1000 25 50 75 100
Train Epochs Train Epochs Train Epochs Train Epochs
(e)np =0.2 (H)ng =05

Figure 24: ResNet-18 BYOL on CIFARIO learning rate sensitivity (pp = 0.992) for scalings x € {2,4} and base
learning rates ng € {0.01,0.02,0.04,0.15,0.20,0.50} defined at x = 1. The baseline (x = 1, black dashed) uses
batch size 1024, and is scaled from batch size 2048 (left) to 4096 (right) with (blue, p = pg) and without (red,
p = pp) the EMA Scaling Rule. Bands indicate mean and standard deviation across three runs.

H.9 ResNet-18 additional scaling analysis

To demonstrate that the EMA Scaling Rule works for a broad range of scalings « (i.e. beyond those
presented in Figure 5 and Section 3.4), we investigate scaling down to k = 1/8 in Figure 25. We
see that the EMA Scaling Rule works well down to the small batch size of 128, although matching
is not perfect. We suspect this is due to the presence of Batch Normalization layers in the ResNet-
18 architecture, which underperform at small batch sizes (Ioffe & Szegedy, 2015). The synthetic
analysis of Section 3.1 instead demonstrated the EMA Scaling Rule holding for scalings spanning
factors of k that differ by 1024, with scaling error insensitive to the value of k for sufficiently low «
(see Figure 1b).

45

Scaling k =1/8 Scaling k =1/4 Scaling k =1/2

~
[

~

=

501

n 4

Y ’

e» —— B=128,p=pf —— B=256,p=pk —— B=512,p=pf
2 —— B=128,p=p3 —— B=256,p =pp —— B=512,p=pp
20

=== B=1024,p=pp === B=1024,p=pp === B=1024,p=pp

g
=N

Train Loss
(=)
»

o
o

0 25 50 75 1000 25 50 75 1000 25 50 75 100
Train Epochs Train Epochs Train Epochs

Figure 25: ResNet-18 BYOL on CIFARIO lower scaling analysis (ng = 0.08, pgp = 0.992) for scalings k €
{1/8,1/4,1/2}. The baseline (x = 1, black dashed) uses batch size 1024, and is scaled from batch size 128
(left) to 512 (right) with (blue, p = pg) and without (red, p = pg) the EMA Scaling Rule. Bands indicate mean
and standard deviation across three runs.

H.10 Scaling a ResNet-50 BYOL using LARS and Progressive Scaling

Here we investigate whether Progressive Scaling and the EMA Scaling Rule can be used in practice
where there is no known optimizer SDE approximation. We use the default 300 epoch configuration
for BYOL (Grill et al., 2020) in Figure 26. We see that although trajectories during training do not
match, we are able to match or surpass the linear probe performance of the BYOL baseline at the
larger batch size if 32,768. This indicates that the contributions of our work have practical utility
beyond the theoretical constraints.

The compute usage for the BYOL ResNet using LARS is detailed in Table 15.

Table 15: Compute usage for ResNet 50 LARS investigation in Figure 26. Values include node allocation
times (typically a small % of corresponding total runtime), giving a practical estimate of reproduction cost. All
experiments conducted are using 80Gb A100s.

Batch Size GPUs Time (h) Compute (GPUh)
4,096 — 32,768 (120 Epochs) 128 14.1 1809.8
4,096 — 32,768 (60 Epochs) 128 129 1655.9
4,096 16 32.8 5249
All other compute, e.g. code development, runs with errors, and debugging 17,654.6
Total 21645.2

46

Progressive Scaling for 60 Epochs Progressive Scaling for 120 Epochs

=
(=}

N
=}

]
(=}

—— B =4096 — 32,768 (60 Epochs) —— B=4096 — 32,768 (120 Epochs)
---- B=4096 --— B=409

Test Top-1 (%)

(=1

)
3
(=}

Param Norm
(98]
(=]
2

)
193
(=}

I o
IS o

Teacher STD
o

o
N

N
~

o
o

=
S

g
)
3

o
©
N

Teacher Momentum Train Loss

[]
(=]

1S

Learning Rate

(=

w
N
=
=N
4}

16384+

Batch Size

8192
40967 T T — T T T ___\ _____ T T T — T T T T T
0 50 100 150 200 250 300 O 50 100 150 200 250 300

Train Epochs Train Epochs

Figure 26: ResNet50 BYOL on ImageNet1k using LARS for different configurations of progressive scaling. The
baseline (black dashed) uses batch size 4096 and momentum pg = 0.99. We consider progressive scaling (blue)
smoothly from epoch 60 for 60 epochs (left) and 120 epochs (right) up until batch size 32,768, scaling the
learning rate linearly, and applying the EMA Scaling Rule.

H.11 Preventing collapse phenomena in DINO at scale

Until now, our representatives SSL method has been BYOL for reasons discussed in Section 3.4.
Here, we will turn our attention to DIstillation with NO labels (DINO) (Caron et al., 2021), which
has the update rule presented in Definition H.4.

Definition H.4 (DINO Update). DINO learns unsupervised features by matching predictions over
emergent pseudo-labels of a student backbone and head f (- ;0) to those of an EMA teacher f(-;¢)
through a cross-entropy guided distillation procedure. DINO has a additional centering procedure,
which is a form of batch normalization with momentum p, = 0.9 which we do not scale using the

47

Table 16: DINO ViT-B/16 Training hyperparameters.

DINO ViT-B/16
CIFAR10 Linear Probe Top-1 (pg = 0.996) 85.38%
CIFARI10 Linear Probe Top-1 (pg = 0.992) 86.96%
Weight initialization trunc_normal(.02)
Normalization Layer Norm
Learning rate schedule Single Cycle Cosine
Learning rate warmup (epochs) 50
Learning rate minimum value 1x107°
Training duration (epochs) 280
Optimizer AdamW
Optimizer scaling rule Adam
Base (61, f2) (0.9, 0.95)
Base learning rate 3x 1074
Base batch size (B) 1024
Base teacher momentum (pp) 0.992 or 0.996
Base weight decay 0.04
Weight decay scaling rule Linear
Weight decay skip bias Yes
Center Momentum 0.9
Center Momentum Scaling Rule None
Precision bf16
Augmentation stack DINO multi-crop (Caron et al., 2020)

EMA Scaling Rule. The update for the parameters of DINO is

1
Ot =0~ % = > VoL (x:0npvcr) (78)
x€eB
G =P8+ (1=p) 01y (79)
Cre1 = pe €t + (1= pe) ExC(x") (80)
Wlth L(x, et; cp ct) = H(f(XI, et)s f(x2> gt) - cf) + (xl Ad xz): (81)
where H(a,b) = — an/lzl pm(a) log pm(b) is the cross-entropy between categorical distributions

over M (emergent pseudo-)classes given logits a,b € RM, x; and x, are two views of a single
variate x, often produced by augmentations, and x; < x, denotes symmetrization over x; and xs.

In practice, DINO employs multi-crop (Caron et al., 2021). We omit this detail for clarity of presen-
tation, although we do use multi-crop in the experiments that follow.

Our interest DINO is due to the difficulty in its optimization'®, and in particular, preventing collapse
phenomena in DINO at batch sizes above 1024, which is an open research problem. In this section,
we will show that a combination of the EMA Scaling Rule (Definition 1.2) and Progressive Scaling
(Definition 3.2) enable training of DINO beyond batch size 1024 without sacrificing performance.

Hyperparameters Base hyperparameters are presented in Table 16.

Results In Figures 27 and 28 we show the results obtained training DINO on CIFAR-10 with
p = 0.996 and pp = 0.992 respectively at the reference batch size of 1024. We employ smooth
Progressive Scaling (Definition 3.2) between epochs 120 and 180.

At batch size 2048, the training loss matches the reference only when the EMA Scaling Rule is
applied, whereas the run without the scaling rule diverges from the reference. The impact of this
divergence is emphasized as we consider the larger batch size of 4096. Here. there is also a gap with
the EMA Scaling Rule, however is approximately three times smaller than the gap without the EMA
Scaling Rule.

16For an example, see https://github.com/facebookresearch/dino/issues/43#
issuecomment-881453515.

48

https://github.com/facebookresearch/dino/issues/43#issuecomment-881453515
https://github.com/facebookresearch/dino/issues/43#issuecomment-881453515

Additionally, we observe that using pg = 0.992 yields higher Top-1 accuracy over pg = 0.996, and
in our experiments, using the EMA Scaling Rule always performs better in terms of linear probe
performance than not using the scaling rule.

111

10

Train Loss
e

Progressive Scaling Kk =2 Progressive Scaling Kk =3 Progressive Scaling k =4

—_
R 751

N—

7 501

o

]

B25yf - B=1024,p=pg | [-~ B=1024,p=pp | [-~ B=1024,p =pg
17 —— B=12048,p =pp —— B=3072,p=pp —— B=4096,p = pp
2 0

—— B=2048,p =pj§

—— B=3072,p =p§

—— B=4096,p = pj

0 100 200

Train Epochs

100 200
Train Epochs

100 200
Train Epochs

Figure 27: DINO ViT-B/16 on CIFAR-10 for different scalings x and base teacher momentum pg = 0.996. The
baseline model (x = 1, black dashed) uses batch size 1024 and center momentum p. = 0.9, and is scaled up
from batch size 2048 (left) to 4096 (right) with (blue, p = pg) and without (red, p = pg) the EMA Scaling
Rule. Between epochs 100 and 180 we scale the batch size using progressive scaling (Definition 3.2).

Progressive Scaling Kk =2 Progressive Scaling kK =3 Progressive Scaling k =4

~
® 751
N—
< 50+
&
E25q - B=1024,p=pg | [- B=1024,p=ps | [- B=1024,p=pp
% —— B=2048,p =pp —— B=3072,p =pp —— B=4096,p =pp
= 01 —— B=2048,p = p§ —— B=3072,p=pk —— B=4096,p = p§
2 10
S}
=
: N N,
§ 81 \\\ \‘\
H _\\ ‘\‘_\\
61 | | | | | RN | | R ET PN
0 100 200 0 100 200 100 200
Train Epochs Train Epochs Train Epochs

Figure 28: DINO ViT-B/16 on CIFAR-10 for different scalings x and base teacher momentum pg = 0.992. The

baseline model (x = 1, black dashed) uses batch size 1024 and center momentum p. = 0.9, and is scaled up
from batch size 2048 (left) to 4096 (right) with (blue, p = pg) and without (red, p = pg) the EMA Scaling
Rule. Between epochs 100 and 180 we scale the batch size using progressive scaling (Definition 3.2).

49

In Figure 29 we show how the hyperparameters p, B and learning rate change with the progressive
scaling in Definition 3.2.

x10~*
‘q 10009 P e S s+—N T B=1024p=pp
= L | \‘\ B=2048,p = pp
5 0995 /i @ | £ 41 \\\ B=12048,p = pk
s Q30001 [T & ; \\\\ B=3072,p = pg
g 0.990 = _%‘) . Q\‘ B=13072,p = p§
< £ A\ B =4096,p =

= (.85, £ 2000 57 R B 4096’p -
,f'::> o 3, \\\\‘ = P = Pp
g 09801/ \‘\\
= 1000 ===t -——-——— 01 -

0 200 0 200 0 200

Train Epochs Train Epochs Train Epochs

Figure 29: DINO ViT-B/16 on CIFAR-10 for different scalings k and base teacher momentum pg = 0.992. We
show how the hyperparameters p, B and learning rate change with the Progressive Scaling in Definition 3.2.
These hyperparameters correspond to the training runs in Figure 28. Those for Figure 27 are identical, with the
exception of p that starts at 0.996 instead of 0.992.

We also attempted to use a sharp batch size transition (Figures 30 and 31), which leads to the
collapse pheonomena observed in prior work. This collapse happens with and without the EMA
Scaling Rule. We suspect this is due to dynamics specific to DINO’s early phase that are even more
challenging to replicate under discretization than those of BYOL.

Progressive Scaling K =2 Progressive Scaling Kk =3 Progressive Scaling k =4

~
L 751
N
501
&
= 254 = B=1024,p = pp i B=1024,p = pp i B=1024,p = pp
‘%‘ —— B=2048,p =pp —— B=3072,p =pp —— B=4096,p = pp
= 01 —— B=2048,p =pj] —— B=3072,p=pj] —— B=4096,p =pg
w 104"
wn
)
—
=
Z 8
F
0 100 200 0 100 200 0 100 200
Train Epochs Train Epochs Train Epochs

Figure 30: DINO ViT-B/16 on CIFAR-10 for different scalings x and base teacher momentum pg = 0.992. The
baseline model (x = 1, black dashed) uses batch size 1024 and center momentum p. = 0.9, and is scaled up
from batch size 2048 (left) to 4096 (right) with (blue, p = pg) and without (red, p = pp) the EMA Scaling
Rule. Progressive Scaling is employed with a sharp transition at epoch 100, leading to a collapse phenomenon.

50

~ 4 . —— p— j—
3 1.000 ,/,/f 40001 'l 34 !\ B=1024,p =pp
; J M\ B=2048,p = ps
£ 0.9981 A S P]) SR\ - T
2 Y, _ / = Vi B =2048,p = pX
8 0.996 1 II q[_q) 3000 1 ',' M 2 \‘ ,‘\\ B= 3072/p =P
g J/ A / z B=3072,p = p
S 0.994 /1 f = 2000 :’ g B =4096,p = pp
H 5 20001 fi S 1 = =p§
20992 ¢ y M ! 9 B =4096,p = pf
2 |
= 0-9901 v 1000 =t === 2= —- 01
0 200 0 200 0 200
Train Epochs Train Epochs Train Epochs

Figure 31: DINO ViT-B/16 on CIFAR-10 with pg = 0.992 and a sharp transition in batch size at epoch 100.
We show how the hyperparameters p, B and learning rate change with sudden scaling. These hyperparameters

correspond to the training runs in Figure 30.

Compute The compute usage for the DINO investigations is detailed in Table 17.

Table 17: Compute usage for DINO investigations. Values include node allocation times (typically a small %
of corresponding total runtime), giving a practical estimate of reproduction cost. All experiments conducted

are using 80Gb A100s.

Batch Size GPUs Time (h) Compute/Run (GPUh) Runs Compute (GPUh)
1,024 24 6.8 163.5 2 327.0
1,024 — 2,048 40 4.6 182.4 1 182.4
1,024 — 3,072 48 4.0 189.9 1 189.9
1,024 — 4,096 64 3.3 212.3 1 212.3
1,024 — 2,048 (100 Epochs) 40 4.8 190.6 4 762.3
1,024 — 3,072 (100 Epochs) 48 4.0 192.5 4 769.9
1,024 — 4,096 (100 Epochs) 64 3.6 232.1 4 928.2
All other compute, e.g. code development, runs with errors, and debugging 38239.2
41,611.1

Total

Our results in this section show it is possible to scale DINO to large batch sizes without sacrificing
performance by using both the EMA Scaling Rule and Progressive Scaling, providing the batch size

schedule of Progressive Scaling is not sudden.

I Additional details on numerical stability

A general analysis of overflow and underflow of the EMA Update (Definition 1.1) or EMA Scaling
Rule (Definition 1.2) for different momenta p, particularly for IEE-754 floating point values, is
beyond the scope of this work due to non-linearity from mechanisms like gradual underflow (IEEE,
2019).

In our setting, do not suffer from practical overflow or underflow issues through exponentiation when
applying the EMA Scaling Rule, as FP3 2 precision allows a maximum p = 1—¢, or minimum p = ¢
with £ ~ 1.2 x 1077, Take self-supervised image representation learning (Section 3.4) as a baseline,
with k¥ = 1 corresponding to batch size B = 4096 with momentum pp = 0.996. The maximum value
of p corresponds to scaling k = log(pg)/log(e) ~ 1/(32K), give a batch size less than one, while the

minimum value of p corresponds to scaling x = log(pp)/log(1—¢) ~ 4K, giving a batch size B ~ 8M
which is beyond current hardware feasibility, and beyond the breakdown of known optimizer scaling

rules (Li et al., 2021).
To examine how momentum may induce numerical errors in practice during training, we train a
linear regression model with a Polyak-Ruppert average Definition 3.1, and and track the difference

between FP32 model weights and weights in i) BF16; ii) FP16; and iii) a second FP32 run,
which act as a proxy for overflow and underflow. In Figure 32 we plot these differences using

51

o xi02Scaling k=1 Scaling kK =8

Q.

> 6 1

% —— Target at bf16
Sy EMA at bf16
I 4 —— Target at £p16

o EMA at £p16

&.N 2 — Target at £p32
< x EMA at £p32
5 0 : : : ‘
g 099 0.999 0.9999 0.99999 0.99 0.999 0.9999 0.99999

Momentum p Momentum p

Figure 32: Numerical precision of target and EMA networks compared to an FP3 2 reference on a regression
task for a range of momenta.

the maximum absolute difference between model parameters, where the maximum is taken over
individual weights

MaxAbsDiff(dtype) = mfz’ilx Orr3z — Hl.dtype , (82)
=

where P is the number of parameters in the model. We observe that when model weights and EMA
weights are FP16 (never done in practice), an increasing variance happens for FP16 as the value of
the momentum p approaches 0.99999, whereas BF16 and FP3 2 are stable. We stress that all exper-
iments presented in the paper store weights for target model and EMA in FP32 and use automatic-
mixed precision to cast them to BF16 during training, and so do not encounter momentum-induced
overflow or underflow.

J Contributions

All authors contributed to writing this paper, designing the experiments, discussing results at each
stage of the project.

Preliminary work Derivation of the EMA Scaling Rule with learning rate z = 0, initial synthetic
and self-supervised ImageNet1k experiments done by Dan Busbridge.

EMA scaling rules for constant gradients Original proof of Equation 4 and the form of (#, p, k)
in Equation 54 done by Eeshan Gunesh Dhekane. Final proof presented in Appendix E.l done by
Dan Busbridge, verified by Eeshan Gunesh Dhekane and Pierre Ablin.

EMA approximation theorems with SDEs Proofs of validity of EMA Scaling Rule in the SDE
limit presented in Section 2.2 and Appendix D done by Pierre Ablin.

Polyak-Ruppert averaging in a simple setting Design of noisy parabola setting of Section 3.1
and initial experiments done by Russ Webb. Design of p*-optimality search (Equation 10), final
experiments and analysis of Section 3.1 and Appendix F.1 done by Dan Busbridge.

Polyak-Ruppert averaging on image classification ResNetv2-50 reproduction (Table 4) and
baseline momentum identification done by Jason Ramapuram. Final ImageNetlk experiments and
analysis of Section 3.2 and Appendices F.2 and F.3 done by Dan Busbridge.

Automatic speech recognition Experiments and analysis of automatic speech recognition us-
ing Polyak-Ruppert averaging (Section 3.2) and continuous pseudo-labeling (Section 3.3 and Ap-
pendix G), as well as design choice of a seed model to start pseudo-labeling (aligning quality of
the seed models for different batch size settings before pseudo-labeling process) done by Tatiana
Likhomanenko.

Self-supervised image representation learning BYOL ResNet-18 recipe (Table 9) and experi-
ments on CIFAR10 using SGD (Figure 5), and BYOL ResNet-50 experiments using LARS (Ap-
pendix H.10) done by Dan Busbridge. BYOL ResNet 50 baseline implementation and BYOL ViT

52

recipe (Table 10) done by Jason Ramapuram. BYOL ViT exploratory ablations done by Eeshan
Gunesh Dhekane and Jason Ramapuram. All final BYOL ViT experiments and analysis (Figure 6
and Appendices H.4 to H.6) done by Jason Ramapuram. Baseline DINO reproduction done by Dan
Busbridge. DINO experiments and analysis (Appendix H.11) done by Xavier Suau Cuadros.

Progressive Scaling Progressive Scaling (Definition 3.2 and Algorithm 1) is proposed by Dan
Busbridge based on discussions with Xavier Suau Cuadros, Tatiana Likhomanenko, Jason Ramapu-
ram, Russ Webb, and the authors of Malladi et al. (2022). Adaptation of progressive scaling to semi-
supervised learning in automatic speech recognition (Appendix G.2) done by Tatiana Likhoma-
nenko, and to self-supervised learning in vision done by Dan Busbridge and Jason Ramapuram for
BYOL (Figures 5 and 6 and Appendices H.4, H.5 and H.10) and Xavier Suau Cuadros for DINO
(Appendix H.11).

Limiting behavior of Polyak-Ruppert averaging Original proof of limiting behavior of Polyak-
Ruppert averaging done by Eeshan Gunesh Dhekane. Final proof presented in Appendix E.2 done
by Dan Busbridge, verified by Eeshan Gunesh Dhekane.

Numerical stability analysis Polyak-Ruppert experiment (Figure 32) using linear regression for
various floating point precisions done by Jason Ramapuram.

Implementation details Investigations carried out in two distributed, scalable frameworks: Jax
for automatic speech recognition experiments, done by Tatiana Likhomanenko; and PyTorch for all
remaining investigations, done by Dan Busbridge, Xavier Suau Cuadros, Eeshan Gunesh Dhekane,
Jason Ramapuram and Russ Webb. Initial implementation of progressive scaling experiments for
incremental-style strategies (e.g. Appendix H.5) showing feasibility done by Jason Ramapuram,
and subsequent progressive scaling implementations for smooth strategies (e.g. Appendices H.10
and H.11) done by Dan Busbridge and Xavier Suau Cuadros.

53

	Introduction
	The EMA Scaling Rule
	Background and an informal discussion of scaling rules
	The EMA Scaling Rule through the lens of stochastic differential equations

	Experiments
	Polyak-Ruppert averaging in a simple setting
	Supervised learning on real data with Polyak-Ruppert averaging
	Semi-supervised speech recognition via pseudo-labeling
	Self-supervised image representation learning

	Related work
	Conclusion
	Acknowledgements
	Broader impact
	Limitations
	The scaling toolbox: practical methods for enabling systematic scaling
	The continuous time/SDE perspective
	Scaling rules for optimization
	Commonly used values of hyperparameters at different batch sizes
	Progressive scaling

	EMA approximation theorems with SDEs
	SGD with model EMA
	Adaptive gradient methods with model EMA

	Additional proofs
	Iterations of SGD + EMA
	Limiting behavior of Polyak-Ruppert averaging

	Additional details and results for Polyak-Ruppert averaging
	Noisy parabola
	Image Classification
	Applying the EMA Scaling Rule to Batch Normalization

	Additional details and results for Automatic Speech Recognition (ASR)
	Additional experimental settings and detailed metrics
	Scaling to =16 with Progressive Scaling

	Additional details and results for self-supervised image representation learning
	Components of self-supervised learning
	A ResNet-18 recipe for BYOL
	A Vision Transformer recipe for BYOL
	The role of Batch Normalization and Layer Normalization in BYOL with ViTs
	Longer training duration with incremental Progressive Scaling
	Building intuition around Progressive Scaling and momentum sensitivity
	Compute usage for ViT BYOL investigation
	ResNet-18 hyperparameter sensitivity analysis
	ResNet-18 additional scaling analysis
	Scaling a ResNet-50 BYOL using LARS and Progressive Scaling
	Preventing collapse phenomena in DINO at scale

	Additional details on numerical stability
	Contributions

