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ABSTRACT

In this paper, we study a class of non-convex optimization problems known as
multi-affine quadratic equality constrained problems, which appear in various
applications–from generating feasible force trajectories in robotic locomotion and
manipulation to training neural networks. Although these problems are generally
non-convex, they exhibit convexity or related properties when all variables except
one are fixed. Under mild assumptions, we prove that the alternating direction
method of multipliers (ADMM) converges when applied to this class of problems.
Furthermore, when the "degree" of non-convexity in the constraints remains within
certain bounds, we show that ADMM achieves a linear convergence rate. We
validate our theoretical results through practical examples in robotic locomotion.

1 INTRODUCTION

Non-convex optimization serves as a fundamental concept in modern machine learning, such as
reinforcement learning Xu et al. (2021); Wang et al. (2024) and large language models Ling et al.
(2024); Kou et al. (2024). The non-convexity in these applications may arise from the objective
function, the constraint set, or both. Finding a solution to a non-convex problem is, in general, NP-
hard Krentel (1986). As a step to manage this complexity, a common practice is to study problems
with additional structural assumptions under which particular solvers, such as gradient-based methods,
are guaranteed to converge to an optimizer. Subsequently, various relaxations of the objective and/or
constraints have been proposed to transform the original problem into a more tractable problem. For
instance, the objective function has been studied under assumptions such as weak strong convexity
Liu et al. (2014), restricted secant inequality Zhang & Yin (2013), error bound Cannelli et al. (2020),
and quadratic growth Rebjock & Boumal (2024). On the other hand, optimization problems with
various types of non-linear constraints have been investigated, such as quadratically constrained
quadratic programs (QCQP) Bao et al. (2011); Elloumi & Lambert (2019), geometric programming
(GP) Boyd et al. (2007); Xu (2014), mixed-integer nonlinear programming (MINLP) Lee & Leyffer
(2011); Sahinidis (2019), and equilibrium constraints problem Yuan & Ghanem (2016); Su (2023).

Recently, there has been growing interest in analyzing non-convex optimization problems with specific
block structures, driven by their broad range of applications. Although such problems are generally
non-convex, they often exhibit convexity or related properties when all but one block of variables is
fixed. Various structural properties of these problems have been studied, including multi-convexity in
minimization settings Xu & Yin (2013); Shen et al. (2017); Lyu (2024), PL-strongly concave Guo et al.
(2023), and PL-PL Daskalakis et al. (2020); Chen et al. (2022) in min-max formulations. Motivated
by two well-known applications in robotics, in this work, we study multi-affine equality-constrained
optimization problems (see Problem in equation 1).

In particular, locomotion and manipulation problems in robotics (Figure 1) involve intermittent contact
interactions with the world. Due to the hybrid nature of these interactions, generating dynamically-
consistent trajectories for such systems leads to a set of non-convex problems, which remains an
open challenge. In general, the problem of planning through contact is handled in two ways; contact-
implicit and contact-explicit. The first approach directly incorporates the complementarity constraints
arising from the contacts, either by relaxing them within the problem formulation Tassa et al. (2012)
or at the solver level Posa et al. (2014). While this approach has recently shown considerable promise
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Figure 1: Examples of locomotion and manipulation settings, (left) Solo Grimminger et al. (2020)
and (right) Trifinger Wüthrich et al. (2020)

in practice Kim et al. (2023); Aydinoglu et al. (2024); Le Cleac’h et al. (2024), providing convergence
guarantees remains an open problem due to the presence of multiple sources of non-convexity. The
second approach handles contact in the trajectory optimization problem by casting it as a mixed-
integer optimization Deits & Tedrake (2014); Toussaint et al. (2018). In this approach, the hybrid
nature of interaction is explicitly taken into account with integer variables, and thus, a combinatorial
search is required to decide over the integer decision variables, while the continuous trajectory
optimization problem ensures the kinematic and dynamic feasibility of the problem. This approach
has also shown great success in recent years in both locomotion Ponton et al. (2021); Taouil et al.
(2024); Aceituno-Cabezas et al. (2017) and contact-rich manipulation tasks Hogan & Rodriguez
(2020); Toussaint et al. (2022); Zhu et al. (2023).

The optimization problem in the contact-explicit setting exhibits additional interesting structure. In
particular, the dynamics can be decomposed into underactuated and actuated components Wieber
(2006). This implies that, to generate a feasible force trajectory, the kinematics can be abstracted
away. Assuming the robot can produce any desired contact force, it is sufficient to consider only
the Newton-Euler dynamics to generate dynamically consistent trajectories for the robot’s center of
mass (CoM) in locomotion and for the object’s CoM in manipulation. Interestingly, in this setting,
the non-convexity in the dynamics has a special form, namely it is multi-affine Herzog et al. (2016).
This renders the trajectory optimization problem a multi-affine equality-constrained optimization
problem. These types of problems also appear in other applications such as matrix factorization Luo
et al. (2020); Choquette-Choo et al. (2023), graph theory, and neural network training process Taylor
et al. (2016); Zeng et al. (2021).

Recent work has exploited this structure to solve the problem using methods such as block coordinate
descent Shah et al. (2021) and the alternating direction method of multipliers (ADMM) Meduri
et al. (2023). In constrained optimization problems with linearly separable constraints, ADMM is
an efficient and reliable algorithm Lin et al. (2015a); Deng et al. (2017); Yashtini (2021). Notably,
its variants are driving the success of many machine learning applications involving optimization
problems with linear constraints and convex objectives Shi et al. (2014); Nishihara et al. (2015);
Khatana & Salapaka (2022) as well as those with non-convex objectives Boţ & Nguyen (2020);
Kong & Monteiro (2024); Wang et al. (2019); Li et al. (2024); Yuan (2025). However, not all of
these works provide convergence guarantees, and those that do either rely on additional assumptions
or establish weaker forms of convergence. For instance, Boţ & Nguyen (2020) considered the
problem min f(x) + ϕ(z) subject to Ax = z, where ϕ is proper and lower semicontinuous (LSC),
h is differentiable and L-smooth. They proved last-iterate convergence to a KKT point under the
KL property (see Definition 2.5) and assuming access to a proximal solver, i.e., argminz{ϕ(z) +
⟨yk, Axk − z⟩ + r

2∥Axk − z∥2 + 1
2∥z − zk∥2}. A similar assumption is made by Yuan (2025).

However, this requirement is quite restrictive when g is nonconvex and the constraints are nonlinear.
In fact, their guarantees no longer hold when the constraint set includes nonlinear relations, such as
{x1x2 + x3 + z = 0}. The next table presents a comparison of existing ADMM approaches.

Naturally, it is important to understand the limitations of ADMM in settings with nonlinear constraints,
such as multi-affine equality-constrained Wang et al. (2019); Zhang et al. (2023); Barber & Sidky
(2024). In such problems, Gao et al. (2020) investigated the convergence properties of ADMM
under the strict set of assumptions for the objective function (it has to be independent of certain
variables). However, they fail to show any explicit convergence rate, which is crucial for applications
like trajectory planning in robotics, where solutions must be computed within a short time slot with
predefined accuracy. This leads to a key question that we seek to address in this study.
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Ref. Blocks Objective Assumptions Constraints Convergence
Boţ & Nguyen
(2020)

=2 f(x) + ϕ(z) f : smooth, ϕ: LSC
(KL)

Linear Last iterate

Wang et al.
(2019)

≥ 2 f(x)+
∑n

i=1 Ii(xi)+ϕ(z) f : smooth, ϕ: smooth
(KL)

Linear Avg. iterate

Li et al.
(2024)

=2 f(x) + ϕ(z) f : smooth, ϕ: convex,
smooth

Convex,
bounded

Best iterate

Yuan (2025) ≥ 2 ∑n
i=1 fi(xi) + Ii(xi) fi: smooth, bounded

derivative
Linear Avg. iterate

Our Work ≥ 2 f(x) +
∑n

i=1 Ii(xi) +
ϕ(z)

f : smooth, ϕ: smooth Multi-affine,
unbounded

Last iterate

What convergence rate can be guaranteed for ADMM when applied to optimization problems
with multi-affine quadratic equality constraints?

Previous works have shown that a linear convergence rate is achievable in linearly constrained
problems with a strongly convex objective Lin et al. (2015b); Cai et al. (2017); Lin et al. (2018). On
the other hand, it is straightforward to see that the multi-affine quadratic constraints gradually reduce
to linear constraints as the non-convex coefficients vanish (i.e., {Ci} → 0 in equation 2). Thus, in the
extreme case when all the non-convex coefficients are zero, linear convergence is ensured. However,
our empirical results indicate that a linear convergence rate remains attainable even when the nonlinear
quadratic components are present. This observation motivates our next research question.

If the effect of non-convexity in the constraint is small enough, does the linear convergence of
ADMM when applied to the problem in 1 still hold?

In this paper, we provide positive answers to both of the questions raised above. More precisely,
when the norm of the non-convex coefficients (i.e., {∥Ci∥}) is sufficiently small relative to the norms
of the linear components in the constraint set, ADMM achieves a linear convergence rate. Otherwise,
under certain mild assumptions, we show that the convergence rate is sub-linear. In addition, we
validate our theoretical findings through several practical experiments in robotic applications.

2 PROBLEM SETTING

Notations: Throughout this work, we denote ∥B∥ and ∥a∥ as the spectral norm of matrix B and the
Euclidean norm of vector a, respectively and denote the smallest eigenvalue of B by λmin(B). We
use xi and x−i to denote the i-th entry of the vector x and all entries except the i-th entry, respectively.
We denote [xi, xi+1, · · · , xj ] by xi:j when j ≥ i and the empty set when j < i. The partial derivative
of function f(x) with respect to the variables in its i-th block is denoted as ∇if(x) :=

∂
∂xi

f(xi, x−i)

and the full gradient is denoted as ∇f(x). The general sub-gradient of f at x is denoted by ∂f(x).
The exterior product between vectors a and b is a × b. The set of all functions that are n-th order
differentiable is Cn. The ball centered at x with radius r is B(x; r). The distance between a point
x and a closed set S is given by dist(x, S) := infs∈S ∥s − x∥. λmin(A) and λ+

min(A) denote the
minimum eigenvalue and the minimum positive eigenvalue of A, respectively.

Definitions and Assumption: In this work, we consider the following multi-affine quadratic equality
constrained problem:

min
x,z

F (x) + ϕ(z), s.t. A(x) +Qz = 0, (1)

where x = (x1, · · · , xn)
T ∈ Rnx is partitioned into n blocks, with each block xi ∈ Rni . Q is a

matrix in Rnc×nz , and z is a vector in Rnz . Function A(x) is a multi-affine quadratic operator.
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Definition 2.1. Function A(·) : Rnx → Rnc is called a multi-affine quadratic operator when
for each i ∈ {1, ..., nc}, there exist Ci ∈ Rnx×nx , di ∈ Rnx , and ei ∈ R such

(A(x))i :=
xTCix

2
+ dTi x+ ei. (2)

Moreover, A(xj ;x−j) is an affine function for xj when x−j are fixed, ∀x−j , j ∈ [n].

Note that the set of constraints in equation 1 comprises the linear ones and encompasses a much
broader class in nonlinear settings. It also appears in various applications such as the locomotion and
manipulation problems in robotics, matrix factorization, and neural network training process. We
provide a simple example of the multi-affine quadratic equality constrained problem.

Example 2.2. Consider the following problem

min
x,z

x2
1 + x2

2 + z21 + z22 , s.t. x1x2 + x1 + 1 + z1 = 0, −x1x2 + x2 + 1 + z2 = 0.

This problem can be reformulated in the form of equation 1 by considering Q to be the identity matrix,
F (x) := x2

1 + x2
2, ϕ(z) := z21 + z22 , and

C1 =

[
0 1

1 0

]
, C2 =

[
0 −1

−1 0

]
, d1 =

[
1

0

]
, d2 =

[
0

1

]
, e1 = 1, e2 = 1.

The next set of assumptions are made to restrict the objective function in equation 1. Namely, we
assume that the function F (x) can be decomposed into a C2 strongly convex function and a group of
indicator functions that are block-separable.

Assumption 2.3. F (x) is subanalytic (see Appendix A for formal definition) and can be written as
f(x) +

∑n
i=1Ii(xi), where f(x) is C2, µf -strongly convex with x⋆

f denoting its minimizer and Ii(·)
is the indicator function of a convex and closed set Xi⊆Rni . Function ϕ(z) is also C2, µz-strongly
convex with its minimizer at ϕ⋆

z .

We refer to the indicators as block-separable because they take the form
∑

i Ii(xi) instead of
I(x1, ..., xn). The key distinction is that, in the block-separable case, each block of x must belong to
a specific convex and closed set. Note that this is not a restrictive assumption for a wide range of
problems in robotics, optimal control, and related areas, as the objective functions in these applications
typically represent quadratic costs, often combined with indicator functions to enforce safe regimes
for the control variables x. Moreover, separable non-smooth functions have been frequently assumed
in numerous works such as Lin et al. (2016); Deng et al. (2017); Yang et al. (2022).

Definition 2.4. Function g(·) : Rm → R is called L-smooth when there exists L > 0 such that

∥∇g(x)−∇g(x′)∥ ≤ L∥x− x′∥, ∀x, x′ ∈ Rm.

Note that the indicator functions {Ii(·)} may not be smooth.

Definition 2.5. Function g(·) : Rm →R ∪ {∞} is said to have the α-PL property, where α ∈ (1, 2],
if there exist η ∈ (0,∞] and C > 0, such that for all x with |g(x)− g(x⋆)| ≤ η, where x∗ is a point
for which 0 ∈ ∂g(x⋆), we have(

dist(∂g(x), 0)
)α ≥ C|g(x)− g(x⋆)|.

It is important to note that when a function is subanalytic and lower semi-continuous then there exists
an α such that it has also the α-PL property, which is well-known in the non-convex optimization
literature Frankel et al. (2015); Bento et al. (2024). Furthermore, it has been shown by Fatkhullin
et al. (2022); Li et al. (2023) that under some mild conditions, the α-PL property guarantees that the
iterates of gradient-based algorithms such as gradient descent (GD) or stochastic GD converge to the
optimizer with an explicit convergence rate. In the next section, by showing the α-PL property for
different scenarios, we could establish the convergence rate of the ADMM.

Assumption 2.6. Matrix Q ∈ Rnc×nz is full row rank.
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This assumption is weaker than the one made in Nishihara et al. (2015); Deng et al. (2017), where
Q is required to have full column rank. The full column rank can be replaced by a non-singularity
assumption as one can reform the constraints to QTA(x)+QTQz = 0 in which QTQ is non-singular
when Q is full column rank. However, this reformulation is not possible when Q is full row rank.
Assumption 2.6 is crucial for establishing the convergence of ADMM, as demonstrated by the
example below, where its violation leads to failure of the algorithm.

Algorithm: To solve equation 1, we consider the augmented Lagrangian ADMM, introducing a dual
variable w ∈ Rnz and a quadratic penalty term for the constraints with the coefficient ρ. This results
in the following Lagrangian function.
Definition 2.7. The corresponding augmented Lagrangian of equation 1 is given by

L(x, z, w) := F (x) + ϕ(z) + ⟨w,A(x) +Qz⟩+ ρ

2
∥A(x) +Qz∥2, (3)

where ρ > 0 is the penalty parameter.

Algorithm 1 ADMM
Require: (x0

1, . . . , x
0
n), z

0, w0, ρ
for k = 0, 1, 2, . . . do

for i = 1, . . . , n do
xk+1
i ∈ argminxi

L(xk+1
1:i−1, xi, x

k
i+1:n, z

k, wk)
end for
zk+1 ∈ argminz L(x

k+1, z, wk)
wk+1 = wk + ρ(A(xk+1) +Qzk+1)

end for

ADMM is a powerful algorithm that can it-
eratively find a stationary point of the above
Lagrangian function. Algorithm 1 summa-
rizes the steps of this algorithm. At each
iteration, it sequentially updates the current
estimate by minimizing the augmented La-
grangian with respect to the variables in
block xi, i ∈ {1, ..., n}, and z when all
other blocks are fixed at their current esti-
mates. Afterwards, the dual variable w is
updated depending on how much the con-
straints are violated. It is important to note
that the minimization sub-problems for updating each block are derived by fixing all other blocks.
This results in an augmented Lagrangian corresponding to a linearly constrained problem, which is
tractable and can be solved efficiently Lin et al. (2015b; 2018).

To show the importance of Assumption 2.6 consider the following example in which this assumption
is violated while other aforementioned assumptions hold but the ADMM fails to converge to a feasible
solution. Therefore, Assumption 2.6 is indispensable.
Example 2.8. Gao et al. (2020) Consider the following problem which is of the form of equation 1,

min
x,y

x2 + y2, s.t. xy = 1.

With an arbitrary initial point of the form
(
x0, 0, w0

)
, the ADMM’s iterates will satisfy

(
xk, yk

)
→

(0, 0) and wk → −∞. Note that the limit point violates the constraint.

3 THEORETICAL RESULTS

Herein, we present our theoretical guarantees for ADMM when applied to Problem equation 1. In
particular, the following theorem demonstrates that, under the stated assumptions, ADMM converges
and establishes key properties of the limit point.

Theorem 3.1. Suppose that Assumption 2.3 and Assumption 2.6 hold. If ϕ is Lϕ-smooth, then
ADMM in 1 with sufficiently large ρ converges with at least sublinear convergence rate to a
stationary point (x⋆, z⋆, w⋆) of the augmented Lagrangian, i.e.,

L(xk, zk, wk)− L(x⋆, z⋆, w⋆) ∈ o(1/k),

where x⋆ = (x⋆
1, ..., x

⋆
n) and for all i,

x⋆
i ∈ arg min

xi∈Rni
f(xi, x

⋆
−i) + Ii(xi), s.t. A(xi, x

⋆
−i) +Qz⋆ = 0,

and z⋆ is given by z⋆ ∈ argminz∈Rnz ϕ(z), such that A(x⋆) +Qz = 0.

5
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This result shows that the limit point (x⋆, z⋆) satisfies properties analogous to those of a Nash
equilibrium point: that is, when all blocks except one are fixed at their limit values (e.g., (x⋆

−i, z
⋆)),

the objective function is optimized with respect to the remaining block (e.g., xi). Previously, Gao
et al. (2020) showed the convergence of ADMM but without providing any convergence rate. In
addition, their result requires stronger assumptions, such as f needs to be independent of certain
variables, which is not needed in Theorem 3.1.

Next, we show that under additional assumptions such as the second-order differentiability of the
Lagrangian at the limiting point and a sufficiently small degree of non-convexity, a linear convergence
rate for ADMM when applied to equation 1 can be guaranteed. The degree of non-linearity is
characterized by the relation between matrix Q (the coefficient of the linear term in the constraints)
and matrices {Ci} (the coefficients of the non-linear term).

Theorem 3.2. Suppose that the assumptions of Theorem 3.1 hold. Moreover, let f be Lf -smooth
and L(x, z, w) is second-order differentiable at the limit point (x⋆, z⋆, w⋆). When matrix Q
satisfies

∥C∥ ∈ O
(
∥(QQT )−1Q∥−1 ·min

{
m1,m2(λmin(QQT ))

1
2 ,m3(λmin(QQT ))

1
4 ∥(QQT )−1Q∥

1
2

})
,

(4)
where ∥C∥ := maxi ∥Ci∥ and constants {mi ≥ 0} depending on problem’s parameters e.g.,
Lf , µf , ... then, there exists c1 > 1 such that the iterates of Algorithm 1 satisfy

L(xk, zk, wk)− L(x⋆, z⋆, w⋆) ∈ O(c−k
1 ).

Furthermore, (x⋆, z⋆) is a local minimum of the problem equation 1.

Previous results by Lin et al. (2015b) on the performance of ADMM when applied to problems with
linear constraints can be viewed as a special case of Theorem 3.2. Namely, when ∥C∥ = 0, the
constraints in equation 1 reduce to linear constraints and subsequently, Equation (4) holds. Thus,
according to the above result, the linear convergence of Lagrangian holds, which has been proved in
the literature. In addition, Theorem 3.2 implies that even if nonlinear terms in the constraints exist, as
long as ∥C∥ is small enough, the linear convergence is still preserved.

It is important to emphasize that the above result requires differentiability of the Lagrangian at the
limit point, which may not be valid in certain problems. Next, we replace this assumption with an
additional minor assumption on the constraints for xis. Namely, we assume that they belong to some
polyhedrals (see Appendix A). These types of constraints are common in various practical problems.

Theorem 3.3. Under the assumptions of Theorem 3.1, when matrix Q satisfies equation 4 and
{Ii} are the indicator functions of some polyhedral, then, the iterates of ADMM satisfy

L(xk, zk, wk)− min
(x,z)∈B(xk,zk;r)

L(x, z, wk) ∈ O(c−k
2 ),

where c2 > 1 and r > 0 are constant. Furthermore, limk→∞(xk, zk) = (x⋆, z⋆) is a local
minimum of problem equation 1.

Approximated ADMM: The algorithm in 1 is required to solve a series of sub-problems at each
iteration in order to update {xi} and z. The results presented in the previous section are established
under the assumption that these sub-problems are solved exactly. Although each sub-problem is
strongly convex and efficiently solvable via gradient methods, it remains unclear whether the previous
convergence rates hold under inexact solutions. In Appendix D.1, we introduce an approximated-
ADMM and provide its convergence guarantees.

4 APPLICATION IN ROBOTICS

In the locomotion problem, the robot’s centroidal momentum dynamics are considered (Viereck &
Righetti, 2021; Meduri et al., 2023). The location, velocity, and angular momentum generated around
the center of mass (CoM) are denoted by c, ċ, and k. We aim to optimize the objective function
subject to the physics constraints, i.e., Newton-Euler equations. By discretizing the Newton-Euler

6
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equations, the optimal control problem for locomotion can be written in the following unified way.

min
c,ċ,k,f

T−1∑
i=0

ϕt(ci, ċi,ki, fi) + ϕT (cT , ċT ,kT ), (5)

s.t. ci+1 = ci + ċi∆t, ċi+1 = ċi +

N∑
j=1

fji
m
∆t+ g∆t, ċ0 = ċinit, c0 = cinit,

ki+1 = ki +

N∑
j=1

(rji − ci)× f ji ∆t, k0 = kinit, f ji ∈ Ωj
i , ∀i, j,

where ∆t is the time discretization, subscript i stands for time index, T being the last one. Superscript
j specifies the index of the end-effector in contact with the environment, and N is the number of
the end-effector. Variables ci, ċi,ki, f

j
i denote the location, speed, angular momentum of the center

of mass and the friction force at j-th contact at i-th discretization. The location of the end-effector
in contact r is known. The initial conditions for the CoM are given by cinit, ċinit,kinit. Function ϕt

represents the running cost, ϕT is the terminal cost, and the friction f ji is constrained to lie within a
safe region Ωj

i , which we assume it is cone and use polyhedral approximation to represent it. Note
that this is a multi-affine equality constraint due to the term c× f in the angular momentum dynamics.

Next, we reformulate the problem into the form of equation 1 and apply the previous results to derive
the ADMM convergence rate. First, notice that the variables ci and ċi can be rewritten as functions
of f = {fi}. See Appendix C for details. Second, by defining a new set of variables k′ = {k′

i} as
k′

i+1 := ki+1 − ki for i ≥ 0 and k′
0 := kinit and assuming that the running and terminal costs can

be decomposed into f(f) + ϕ(k′), we obtain the following equivalent problem.

min
k′,f

f(f) + ϕ(k′) +

T∑
i=0

Ii(fi), (6)

s.t. k′
0 = kinit, k′

1 =

N∑
j=1

((
rj0 − cinit

)
× f j0

)
∆t, k′

2 =

N∑
j=1

((
rj1 − cinit − ċinit ∆t

)
× f j1

)
∆t,

k′
i+1 =

N∑
j=1

((
rji − cinit − ċinit i(∆t)−

i−2∑
i′=0

(i−1−i′)(

N∑
l=1

f li′

m
+ g)(∆t)2

)
× f ji

)
∆t, i ≥ 2,

Problem in equation 6 has the same form as in equation 1. This can be seen by defining z and x in
equation 1 to be z := [k′

0,k
′
1, · · · ,k′

T ]
T and x := [x0, · · · , xT ]

T , where xi := [f1i , · · · , fNi ]. By
denoting the corresponding Lagrangian function of the above problem as L(f ,k′, w) = L(x, z, w),
we can apply the results from the previous section.
Corollary 4.1. Under the assumptions of Theorem 3.1 with sufficiently large ρ, the iterates of the
ADMM applied to the problem in equation 6 satisfy L(xk, zk, wk)− L(x⋆, z⋆, w⋆) ∈ o(1/k).

We also extend the result of Theorem 3.2 to the locomotion problem for which we require that the
blocks of the initial point x0, the global minimizer of f(x) and ϕ(z), x⋆

f and ϕ⋆
z are all bounded, i.e.,

∥x0∥2, ∥x⋆
f∥2 ∈ O(nx), ∥z⋆ϕ∥2 ∈ O(nz). (7)

This requirement holds in almost all physical problems. Note that equation 6 is a multi-affine quadratic
constrained problem with the nonlinear term proportional to (∆t)3. As ∆t → 0, the nonlinear term
decays and subsequently, the linear convergence is guaranteed according to Theorem 3.2.

Corollary 4.2. Under the assumptions of Corollary 4.1, if equation 7 holds and L(x, z, w) is
second-order differentiable at the limit point (x⋆, z⋆, w⋆), then there exists c3 > 1 and t0 > 0,
such that the iterates of the ADMM applied to the problem in equation 6 with ∆t ≤ t0 satisfy

L(xk, zk, wk)− L(x⋆, z⋆, w⋆) ∈ O(c−k
3 ),

Furthermore, (x⋆, z⋆) is a local minimum of problem 6.

In Appendix E, we further extend the result of Theorem 3.3 to the locomotion problem when L is not
second-order differentiable at (x⋆, z⋆, w⋆) and show that linear convergence remains achievable.
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Figure 4: Left: convex objective with multi-affine constraint. Center: convex objective with linear
constraint. Right: nonconvex objective with linear constraint
5 EXPERIMENTS

In this section, we first present a toy example to study the effect of the multi-affine constraint on the
convergence rate of the ADMM. Next, we apply the ADMM algorithm to simplified 2D example of
locomotion and dynamic locomotion.

Effect of multi-affine quadratic constraint on the convergence rate: Recall that the con-
straint set of the problem in (1) consists of two parts: the multi-affine quadratic operator
A(·), and the linear part represented by Q. According to Theorems 3.2 and 3.3, when
the linearity in the constraint becomes dominant, it results in a linear convergence rate.

Figure 2: Performance of the ADMM under
the effect of nonlinearity.

To study the effect of linearity in the constraint on the
ADMM’s convergence, we consider the following,

min
{xi},z

µx

2
(x2

1 + x2
2 + x2

3 + x2
4) +

µz

2
z2,

s.t. x1x2 − x3x4 + qz + 1 = 0.

In this problem, the effect of non-linearity is quan-
tified by the coefficient q. As q becomes larger,
it ensures the convergence rate is linear. Condi-
tion in (4) suggests q ≥ 10 to ensure linear con-
vergence. This is illustrated in Figure 2, showing
the convergence results of ADMM under different q.

Comparison with Existing Methods: To further
demonstrate the effectiveness of our method, we conduct a comparative study against PADMM of
Yashtini (2021) and IPDS-ADMM of Yuan (2025) under three scenarios: (i) convex objective with
multi-affine constraints, (ii) convex objective with linear constraints, and (iii) nonconvex objective
with linear constraints. As illustrated in Figure 4, our algorithm achieves superior performance when
the constraints are nonlinear while comparable performance in other settings. This highlights the
robustness and the efficiency of our approach beyond the convex setting.

Figure 3: Mean and standard deviation of
dynamic violation values over optimization
iterations. Results are shown for three differ-
ent time discretizations. The x-axis shows the
iteration number k.

2D Locomotion problem: Figure 5 depicts a 2D
locomotion problem in which the goal is to achieve
smooth walking behaviors, potentially involving vary-
ing step lengths at different time steps. To demon-
strate the performance of the ADMM algorithm for
finding the optimal trajectories, i.e., {fi,ki}, we con-
sidered this 2D version of the optimal control prob-
lem in equation 5.

In this experiment, we selected a set of parame-
ters that are close to a realistic application, namely,
we set m = 2 kg (small-size robot in Grimminger
et al. (2020)). We used the cost terms fi(fi) =
1
2

∑T
i=0 ∥fi∥2 + Ii(fi), and ϕ(z) = 5

∑T
i=0 ∥k′i∥2.

The constraints on f are designed to ensure that the
center of mass remains within a specified target area.

Figure 5(center) illustrates the convergence rate for different discretization time values ∆t. Note that
the y-axis is on the log scale. As suggested by the result of Corollary 4.2, for small enough ∆t, linear
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Figure 5: Left: Schematic of a 2D locomotion problem. The robot has two contacts with friction f1
and f2. The location and angular momentum are c and k. Center: Performance of the ADMM for
different ∆t. Right: Convergence rate of the ADMM for the 2D problem with random initialization.

Figure 6: Snapshots of the robot experiments. The top row shows a humanoid robot performing a
vertical jump. The bottom row illustrates a quadruped robot executing a bounding gait. In both cases,
centroidal trajectories and forces are found using equation 5, and then a kinematic optimization tracks
the planned centroidal trajectory.

convergence is guaranteed by the ADMM. While ∆t = 0.005 sec as suggested by Corollary 4.2,
our empirical results in Fig. 5 indicate that the bound provided in the corollary is conservative. In
practice, ADMM exhibits a linear convergence rate even for significantly larger values of ∆t. As
shown in Fig. 5(right), ADMM consistently converges linearly regardless of the initial configuration.

Dynamic locomotion problem: Figure 6 depicts dynamic motions executed on a humanoid and
quadrupedal robot. These motions can be described by a fixed contact sequence and transition times,
which can be used to formulate equation 5. The resulting CoM trajectory (c, ċ,k) can then be tracked
via a kinematics optimization in order be applied on a robotic system as depicted in the figure.

In this experiment, we show successful transfer of the centroidal trajectories found using equation 5
or its equivalent in equation 6 via Algorithm 1 to high-dimensional robotics systems. The kinematics
optimization is executed using an open source implementation of Differential Dynamic Programming
(DDP) Mastalli et al. (2020). We report the centroidal dynamics constraint violation per iteration
of Algorithm 1 for the jumping motion of the humanoid for three different discretization values ∆t.
The results are depicted in Figure 3, displaying the mean and standard deviation for each ∆t over 10
trials with randomized initial conditions.

6 CONCLUSION

In this paper, we provided theoretical guarantees for the convergence rate of ADMM when applied
to a class of multi-affine quadratic equality-constrained problems. We proved that the sublinear
convergence of the Lagrangian always holds, and every block of the limit point is the optimal solution
when other blocks are fixed. We further proved that when the degree of non-convexity, measured
by ∥C∥, is small enough, the convergence will be linear. In addition, the limit point is a local
minimum of the problem. Moreover, we applied our result to the locomotion problem in robotics.
Our experimental results validated the correctness and robustness of our theorem. In the future, we
plan to extend our results with higher-order non-linearity in the constraints and perform an extensive
experiment on real-world applications.

9
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7 REPRODUCIBILITY STATEMENT

The main paper specifies the problem formulation (Section 2) and theoretical guarantees (Section
3). Details of the algorithm, assumptions, and proofs are provided in the appendix. The robotics
application (Section 4) and experiments (Section 5) are described with sufficient information for
implementation, and additional details are included in the appendix and the supplementary material.
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Appendix

A TECHNICAL DEFINITIONS AND LEMMAS

Definition A.1. Let f : Rn → R ∪ {∞} and x ∈ dom(f) . A vector v is a regular subgradient of f
at x, indicated by v ∈ ∂̂f(x), if f(y) ≥ f(x) + ⟨v, y − x⟩+ o(∥y − x∥) for all y ∈ Rn. A vector v
is a general subgradient, indicated by v ∈ ∂f(x), if there exist sequences xn → x and vn → v with
f (xn) → f(x) and vn ∈ ∂̂f (xn).

Definition A.2 (Subanalytic set). A subset V ⊂ Rn is called subanalytic if for every point x ∈ Rn

there exist
- an open neighborhood U ⊂ Rn of x,
- a real-analytic manifold M of dimension n+m,
- a relatively compact semianalytic set S ⊂ M ,
and a real-analytic projection map π : M → Rn such that V ∩ U = π

(
S
)
∩ U.

Definition A.3 (Subanalytic function). Let U ⊂ Rn be open. An extended-real-valued function
f : U −→ R ∪ {±∞} is called subanalytic if its graph Γf =

{
(x, y) ∈ U × R : y = f(x)

}
is a

subanalytic subset of Rn+1.

Definition A.4. A polyhedral set is a set which can be expressed as the intersection of a finite set of
closed half-spaces, i.e., {x ∈ Rn|Ax ≤ b} as for some matrix A ∈ Rm×n and vector b ∈ Rm.

Lemma A.5. Rockafellar & Wets (2009) If f = g + f0 with g finite at x̄ and f0 smooth on a
neighborhood of x, then ∂f(x) = ∂g(x) +∇f0(x).

Lemma A.6. Rockafellar & Wets (2009) For any proper, convex function f : Rn → R and any point
x̄ ∈ dom f , one has

∂f(x̄) = {v | f(x) ≥ f(x̄) + ⟨v, x− x̄⟩ for all x}.
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Lemma A.7 (Gao et al. (2020)). Let h be a µ-strongly convex and L-smooth function, A be a
linear map of x, and C be a closed and convex set. Let b1, b2 ∈ Im(A), and consider the sets
U1 = {x : Ax+ b1 ∈ C} and U2 = {x : Ax+ b2 ∈ C}, which we assume to be nonempty. Let
x∗ = argmin {h(x) : x ∈ U1} and y∗ = argmin{h(y) : y ∈ U2}. Then, there exists a constant γ,
depending on µ, L and A but independent of C, such that ∥x∗ − y∗∥ ≤ γ ∥b2 − b1∥.

Theorem A.8 (Bolte et al. (2007)). Assume that f : Rn → R ∪ {+∞} is a lower semi-continuous
globally sub-analytic function and f (x0) = 0, where 0 ∈ ∂f(x0). Then, there exist δ > 0 and
θ ∈ [0, 1) such that for all x ∈ |f |−1(0, δ), we have

|f(x)|θ ≤ ρ ∥x∗∥ , for all x∗ ∈ ∂f(x).

Lemma A.9 (Inverse Function Theorem Clarke (1976)). Let u0 ∈ X and h0 ∈ Y such that
g (u0) = h0 and suppose that there exists a neighborhood U0 ⊂ X of u0 such that 1) g ∈ C1 for all
the point in U0; 2) dg (u0) is invertible. Then, there exist neighborhoods U ⊂ U0 of u0 and V ⊂ Y
of h0, such that the equation g(u) = h has a unique solution in U , for all h ∈ V .

Definition A.10 (Feehan (2019)). Let d ≥ 1 be an integer, U ⊂ Kd be an open subset, E : U → K
be a C2 function, and Crit(E) := {x ∈ U : ∇E(x) = 0}. We say that E is Morse-Bott at a point
x∞ ∈ Crit(E) if 1) Crit(E) is a C2 sub-manifold of U , and 2) Tx∞ Crit(E) = Ker∇2E (x∞),
where Tx Crit(E) is the tangent space to Crit(E) at a point x ∈ Crit(E).

Theorem A.11. Feehan (2019) Let d ≥ 1 be an integer and U ⊂ Kd an open subset. If E : U → K
is a Morse-Bott function, then there are constants C ∈ (0,∞) and σ0 ∈ (0, 1] such that

∥∇E(x)∥ ≥ C0 |E(x)− E (x∞)|1/2 , for all x ∈ B (x∞;σ) .

B ADDITIONAL EXPERIMENT DETAILS

The details of the problem in the comparison section are presented here. In that experiment, we
consider the following problems and used three different optimizer including our ADMM and
illustrated their convergence rates in Figure 4.

1. Convex objective with multi-affine constraints:

min
{xi},z

µx

2
(x2

1 + x2
2 + x2

3 + x2
4) +

µz

2
z2, s.t. x1x2 − x3x4 + 1.5z + 1 = 0.

2. Convex objective with linear constraints:

min
{xi},z

µx

2
(x2

1 + x2
2) +

µz

2
z2, s.t. x1 + x2 + z + 1 = 0.

3. Non-convex objective with linear constraints:

min
{xi},z

µx

2
(x2

1 + 4 sin2(x1) + x2
2) +

µz

2
z2, s.t. x1 + x2 + z + 1 = 0.

C DERIVATIONS OF THE LOCOMOTION PROBLEM

Notice that the variables ci and ċi for i ≥ 2 in Problem equation 5 can be rewritten as functions of
f = {fi}, as

ci(f) = cinit + ċinit i(∆t) +

i−2∑
i′=0

(i− 1− i′)
( N∑

j=1

f ji′

m
+ g

)
(∆t)2,

ċi(f) = ċinit +

i−1∑
i′=0

N∑
j=1

( fji′
m

+ g
)
(∆t).
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D PROOFS OF THEOREMS IN SECTION 3

PROOF OF THEOREM 3.1

The proof consists of three main parts: i) to show that {L(xk, zk, wk)} is decreasing, ii) to show that
the sequence {xk, zk, wk} is bounded and has a limit point, and iii) to use the α-PL property for
establishing the convergence rate.

i) L(xk, zk, wk) is decreasing: From Assumption 2.3, f is strongly convex for each blocks i, we get

f(xk+1
1:i−1, x

k
i:n)− f(xk+1

1:i , xk
i+1:n) ≥ ⟨∇if(x

k+1
1:i , xk

i+1:n), x
k+1
i − xk

i ⟩+
µf

2
∥xk+1

i − xk
i ∥2. (8)

Furthermore, since Ii is convex, Lemma A.6 implies

Ii(x
k+1
i ) ≥ Ii(x

k
i ) + ⟨v, xk+1

i − xk
i ⟩, (9)

for all v ∈ ∂Ii(x
t
i). As xk+1

i ∈ argminL(xk+1
1:i−1, xi, x

k
i+1:n, z

k, wk), the subgradient at xk+1
i satisfies

0 ∈ ∂L(xk+1
1:i , xk

i+1:n, z
k, wk),

=⇒ 0 ∈ ∂I(xk+1
i ) +∇if(x

k+1
1:i , xk

i+1:n) +∇iA(xk+1
1:i , xk

i+1:n)w
k

+ ρ∇iA(xk+1
1:i , xk

i+1:n)(A(xk+1
1:i , xk

i+1:n) +Qzk),

=⇒ −∇if(x
k+1
1:i , xk

i+1:n)−∇iA(xk+1
1:i , xk

i+1:n)(w
k + ρ(A(xk+1

1:i , xk
i+1:n) +Qzk)) ∈ ∂I(xk+1

i ).
(10)

where the second line holds from the fact that f(x)+⟨w,A(x)+Qz⟩+ ρ
2∥A(x)+Qz∥2 is first-order

differentiable and 8.8(c) of Rockafellar & Wets (2009). On the other hand, we have

L(xk+1
1:i−1, x

k
i:n, z

k, wk)− L(xk+1
1:i , xk

i+1:n, z
k, wk)

= f(xk+1
1:i−1, x

k
i:n)− f(xk+1

1:i , xk
i+1:n) + Ii(x

k
i )− Ii(x

k+1
i ) + ⟨wk, A(xk+1

1:i−1, x
k
i:n)−A(xk+1

1:i , xk
i+1:n)⟩

+
ρ

2
(∥A(xk+1

1:i−1, x
k
i:n) +Qzk∥2 − ∥A(xk+1

1:i , xk
i+1:n) +Qzk∥2)

= f(xk+1
1:i−1, x

k
i:n)− f(xk+1

1:i , xk
i+1:n) + Ii(x

k
i )− Ii(x

k+1
i ) + ⟨wk, A(xk+1

1:i−1, x
k
i:n)−A(xk+1

1:i , xk
i+1:n)⟩

+
ρ

2
∥A(xk+1

1:i−1, x
k
i:n)−A(xk+1

1:i , xk
i+1:n)∥2 + ρ⟨A(xk+1

1:i−1, x
k
i:n)−A(xk+1

1:i , xk
i+1:n), A(x

k+1
1:i , xk

i+1:n) +Qzk⟩

= f(xk+1
1:i−1, x

k
i:n)− f(xk+1

1:i , xk
i+1:n) + Ii(x

k
i )− Ii(x

k+1
i ) +

ρ

2
∥A(xk+1

1:i−1, x
k
i:n)−A(xk+1

1:i , xk
i+1:n)∥2,

+ ⟨wk + ρ(A(xk+1
1:i , xk

i+1:n) +Qzk), A(xk+1
1:i−1, x

k
i:n)−A(xk+1

1:i , xk
i+1:n)⟩

= f(xk+1
1:i−1, x

k
i:n)− f(xk+1

1:i , xk
i+1:n) + Ii(x

k
i )− Ii(x

k+1
i ) +

ρ

2
∥A(xk+1

1:i−1, x
k
i:n)−A(xk+1

1:i , xk
i+1:n)∥2,

+ (xk
i − xk+1

i )T∇iA(xk
1:i+1, x

k
i+1:n)(w

k + ρ(A(xk+1
1:i , xk

i+1:n) +Qzk))

= f(xk+1
1:i−1, x

k
i:n)− f(xk+1

1:i , xk
i+1:n) + Ii(x

k
i )− Ii(x

k+1
i ) +

ρ

2
∥A(xk+1

1:i−1, x
k
i:n)−A(xk+1

1:i , xk
i+1:n)∥2,

+ (xk
i − xk+1

i )T (−v −∇if(x
k+1
1:i , xk

i+1:n))

= f(xk+1
1:i−1, x

k
i:n)− f(xk+1

1:i , xk
i+1:n)− ⟨∇if(x

k+1
1:i , xk

i+1:n), x
k
i − xk+1

i ⟩

+ Ii(x
k
i )− Ii(x

k+1
i )− ⟨v, xk

i − xk+1
i ⟩+ ρ

2
∥A(xk+1

1:i , xk
i+1:n)−A(xk+1

1:i−1, x
k
i:n)∥2.

where v ∈ ∂I(xk+1
i ). The second equality is due to ∥V1 − V3∥2 − ∥V2 − V3∥2 = ∥V2 − V3∥2 +

2⟨V1 − V2, V2 − V3⟩, for all the vectors V1, V2 and V3. The fourth equality holds since A(xi, x−i) is
an affine function for xi when x−i is fixed. We apply the Equation (10) at the fifth equality.
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Consider the convexity property of f and Ii from Equation (8), Equation (9), the difference of
Lagrangian can be further lower-bounded as

L(xk+1
1:i−1, x

k
i:n, z

k, wk)− L(xk+1
1:i , xk

i+1:n, z
k, wk)

= f(xk+1
1:i−1, x

k
i:n)− f(xk+1

1:i , xk
i+1:n)− ⟨∇if(x

k+1
1:i , xk

i+1:n), x
k
i − xk+1

i ⟩

+ Ii(x
k
i )− Ii(x

k+1
i )− ⟨v, xk

i − xk+1
i ⟩+ ρ

2
∥A(xk+1

1:i , xk
i+1:n)−A(xk+1

1:i−1, x
k
i:n)∥2

≥ f(xk+1
1:i−1, x

k
i:n)− f(xk+1

1:i , xk
i+1:n)− ⟨∇if(x

k+1
1:i , xk

i+1:n), x
k
i − xk+1

i ⟩
+ Ii(x

k
i )− Ii(x

k+1
i )− ⟨v, xk

i − xk+1
i ⟩

≥ µf

2
∥xk+1

i − xk
i ∥2.

Adding up the above inequality for all the blocks, the difference of Lagrangian between (xk, zk, wk)
and (xk+1, zk, wk) can be lower-bounded,

L(xk, zk, wk)− L(xk+1, zk, wk) ≥ µf

2
∥xk+1 − xk∥2. (11)

From the strong convexity of ϕ(z), the partial Hessian of Lagrangian on variable z is

∇2
zzL(x, z, w) = ∇2

zzϕ(z) + ρQTQ ⪰ µϕI,

which indicates the Lagrangian is µϕ-strongly convex at z. As zk+1 ∈ argminzL(x
k+1, z, wk) and

the strong-convexity of Lagrangian at z, the difference of Lagrangian between (xk+1, zk, wk) and
(xk+1, zk+1, wk) can be lower-bounded,

L(xk+1, zk, wk)− L(xk+1, zk+1, wk) ≥ µϕ

2
∥zk − zk+1∥2. (12)

From the update rule on z and w, the partial derivative on z at (xk+1, zk+1, wk) satisfies,

0 = ∇zL(x
k+1, zk+1, wk) = ∇ϕ(zk+1)+QTwk+ρQT (A(xk+1)+Qzk+1) = ∇ϕ(zk+1)+QTwk+1.

which indicates QTwk = −∇ϕ(zk) if k ≥ 1. In addition, from the setting that QTw0 = −∇ϕ(z0),
we have QTwk = −∇ϕ(zk) for all k ≥ 0. Therefore, for all k, we get

∥wk+1 − wk∥2 ≤ ∥QTwk+1 −QTwk∥2

λ+
min(Q

TQ)
=

∥∇ϕ(zk+1)−∇ϕ(zk)∥2

λ+
min(Q

TQ)
≤

L2
ϕ∥zk+1 − zk∥2

λ+
min(Q

TQ)
. (13)

After updating w, the Lagrangian between (xk+1, zk+1, wk) and (xk+1, zk+1, wk+1) is lower-
bounded by

L(xk+1, zk+1, wk)− L(xk+1, zk+1, wk+1) = ⟨wk − wk+1, A(xk+1) +Qzk+1⟩

= −1

ρ
∥wk+1 − wk∥2 ≥ −

L2
ϕ∥zk+1 − zk∥2

ρλ+
min(Q

TQ)
.

(14)

where the inequality is due to Equation (13). As a result, from Equation (11), Equation (12) and
Equation (14), the difference of Lagrangian between (xk, zk, wk) and (xk+1, zk+1, wk+1) satisfies

L(xk, zk, wk)− L(xk+1, zk+1, wk+1)

≥ µf

2
∥xk+1 − xk∥2 + (

µϕ

2
−

L2
ϕ

ρλ+
min(Q

TQ)
)∥zk+1 − zk∥2,

≥ µf

2
∥xk+1 − xk∥2 + µϕ

4
∥zk+1 − zk∥2.

≥ µf

2
∥xk+1 − xk∥2 + µϕ

8
∥zk+1 − zk∥2 + µϕλ

+
min(Q

TQ)

8L2
ϕ

∥wk+1 − wk∥2,∀k.

(15)

where we apply ρ ≥ 4L2
ϕ

µϕλ
+
min(Q

TQ)
in the second inequality. In consequence, {Lk}+∞

k=0 is decreasing.
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ii) (xk, zk, wk) is bounded: For these iterate, by denoting z̃k ∈ argmin{ϕ(z)|A(xk) +Qz = 0},
we have

L(xk, zk, wk) = f(xk) + ϕ(zk) + ⟨wk, A(xk) +Qzk⟩+ ρ

2
∥A(xk) +Qzk∥2,

= f(xk) + ϕ(zk) + ⟨wk, Q(zk − z̃k)⟩+ ρ

2
∥A(xk) +Qzk∥2,

= f(xk) + ϕ(zk) + ⟨∇ϕ(zk), z̃k − zk⟩+ ρ

2
∥A(xk) +Qzk∥2,

= f(xk) + ϕ(z̃k) + ϕ(zk)− ϕ(z̃k) + ⟨∇ϕ(zk), z̃k − zk⟩+ ρ

2
∥A(xk) +Qzk∥2,

≥ f(xk) + ϕ(z̃k)− Lϕ

2
∥zk − z̃k∥2 + ρ

2
∥A(xk) +Qzk∥2.

(16)
where the third line comes from ∇ϕ(zk)+QTwk = 0, the fourth line is due to the Lipschitz gradient
of ϕ. Now, consider any z′ such that −Qzk +Qz′ = 0, then

L(xk+1, z′, wk)− L(xk+1, zk, wk) = ϕ(z′)− ϕ(zk).

Since zk ∈ argminL(xk+1, z, wk), from the equation above, we get ϕ(zk) ≤ ϕ(z′). In words,
zk ∈ argmin{ϕ(z)| −Qzk +Qz = 0}, ∀k ≥ 1. Notice that z̃k ∈ argmin{ϕ(z)|A(xk) +Qz = 0}
and ϕ(z) is strongly convex and smooth, from Lemma A.7, Equation (16) can be further lower-
bounded when ρ is large enough,

L(xk, zk, wk) ≥ f(xk) + ϕ(z̃k)− Lϕ

2
∥zk − z̃k∥2 + ρ

2
∥Q(zk − z̃k)∥2,

≥ f(xk) + ϕ(z̃k) + (
ρ

2
− γLϕ

2
)∥A(xk) +Qzk∥2,

≥ f(xk) + ϕ(z̃k),

≥ f(x⋆
f ) + ϕ(z⋆ϕ) +

µf

2
∥xk − x⋆

f∥2 +
µϕ

2
∥z̃k − z⋆ϕ∥2.

(17)

when k ≥ 1, where γ > 0 only depends on Lϕ, µϕ and Q.

The last line of Equation (17) and {L(xk, zk, wk)} being decreasing indicate {xk} and {z̃k} are
bounded. In addition, from the Equation (17), ∥z̃k − zk∥2 can be upper-bounded as

∥z̃k − zk∥2 ≤ 2

ρ− γLϕ
(L(xk, zk, wk)− f(xk)− ϕ(z̃k)),

≤ 2

ρ− γLϕ
(L(x0, z0, w0)− f(x⋆

f )− ϕ(z⋆ϕ)).

This implies that {zk} is bounded sequence as well.

As Q is full row rank, QQT is positive definite matrix. From the update rules of w, we know that
QTwk = −∇ϕ(zk). Thus,

∥wk∥ = ∥(QQT )−1Q∇ϕ(zk)∥
≤ ∥(QQT )−1Q∥ · ∥∇ϕ(zk)−∇ϕ(z⋆ϕ)∥
≤ ∥(QQT )−1Q∥ · ∥∇ϕ(zk)−∇ϕ(z⋆ϕ)∥ ≤ Lϕ∥(QQT )−1Q∥ · ∥zk − z⋆ϕ∥.

As {zk} is bounded, {wk} will be bounded. Hence, {xk, zk, wk} is bounded and a limit point exists.

From the definition of L(xk+1, zk+1, wk+1), its subgradient at xi in (k + 1)-th iteration is

∂iL(x
k+1, zk+1, wk+1) = ∂Ii(x

k+1
i ) +∇if(x

k+1) +∇iA(xk+1)wk+1

+ ρ∇iA(xk+1)(A(xk+1) +Qzk+1).

From Equation (10), we have −∇if(x
k+1
1:i , xk

i+1:n)−∇iA(xk+1
1:i , xk

i+1:n)(w
k+ρ(A(xk+1

1:i , xk
i+1:n)+

Qzk)) ∈ ∂I(xk+1
i ), thus, according to the above equation, vk+1

i ∈ ∂iL(x
k+1, zk+1, wk+1) can be

written as follows.
vk+1
i = −∇if(x

k+1
1:i , xk

i+1:n)−∇iA(xk+1
1:i , xk

i+1:n)(w
k + ρ(A(xk+1

1:i , xk
i+1:n) +Qzk))

+∇if(x
k+1) +∇iA(xk+1)wk+1 + ρ∇iA(xk+1)(A(xk+1) +Qzk+1)
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Using algebraic manipulations, we can obtain

vk+1
i = ∇if(x

k+1)−∇if(x
k+1
1:i , xk

i+1:n) + (∇iA(xk+1)−∇iA(xk+1
1:i , xk

i+1:n))w
k+1

+∇iA(xk+1
1:i , xk

i+1:n)(w
k+1 − wk) + ρ(∇iA(xk+1)−∇A(xk+1

1:i , xk
i+1:n))A(xk+1)

+ ρ∇iA(xk+1
1:i , xk

i+1:n)(A(xk+1)−A(xk+1
1:i , xk

i+1:n))

+ ρ(∇iA(xk+1)−∇A(xk+1
1:i , xk

i+1:n))Qzk+1 + ρ∇iA(xk+1
1:i , xk

i+1:n)Q(zk+1 − zk).
(18)

By applying Equation (15), and the fact that {Lk} is lower bounded from Equation (17), the norm of
the difference between two iterates converge to 0, i.e.

lim
k→+∞

∥xk+1 − xk∥ = 0, lim
k→+∞

∥zk+1 − zk∥ = 0, lim
k→+∞

∥wk+1 − wk∥ = 0. (19)

Because {xk} is bounded and {∇iA(xk)} is multi-affine with respect to xk, then {∇iA(xk)} is
bounded as well. From Equation (19), the limit of {vki } goes to the zero vector for all the blocks i,
i.e.,

lim
k→+∞

vki = 0 ∈ ∂iL(x
k, zk, wk).

For the variables w and z, applying the update rule indicates

∇wL(x
k+1, zk+1, wk+1) = A(xk+1) +Qzk+1 =

1

ρ
(wk+1 − wk),

and
∇zL(x

k+1, zk+1, wk+1) = ∇ϕ(zk+1) +QTwk+1 + ρQT (A(xk+1) +Qzk+1),

= ρQT (A(xk+1) +Qzk+1) = QT (wk+1 − wk).

Therefore, by applying Equation (19), the limit of the partial gradient limk→+∞ ∇zL(x
k, zk, wk) =

0 and limk→+∞ ∇wL(x
k, zk, wk) = 0. Overall, there exists vk ∈ ∂L(xk, zk, wk) such that

limk→+∞ vk = 0. As the limit point (x⋆, z⋆, w⋆) exists and 0 ∈ ∂L(x⋆, z⋆, w⋆), then (x⋆, z⋆, w⋆)
is a constrained stationary point.

On the other hand, since, the following problems are convex with affine constraints on xi and z,
respectively

min
xi

{f(xi, x
⋆
−i) + Ii(xi) : A(xi, x

⋆
−i) +Q(z⋆) = 0},

min
z

{ϕ(z) : A(x⋆) +Qz = 0},

they both satisfy the strong duality condition and thus (x⋆, z⋆, w⋆) is also the global optimum of
these problems. This finishes the first part of the proof.

iii) Establishing the convergence rate: Note that Ii(xi) is an indicator function of a closed semi-
algebraic set. Subsequently, L is a lower semi-continuous and sub-analytic function. Thus, applying
Theorem A.8 to the function L(x, z, w)−L(x⋆, z⋆, w⋆) shows that there exits 1 < α ≤ 2 and η > 0
such that it satisfies the α-PL property,

(dist(0, ∂L(x, z, w)))α ≥ c(L(x, z, w)− L(x⋆, z⋆, w⋆))

whenever |L(x, z, w)− L(x⋆, z⋆, w⋆)| ≤ η.

On the other hand, from Equation (15), there exists positive constants a such that

L(xk+1, zk+1, wk+1)−L(xk, zk, wk) ≤ −a(∥xk+1−xk∥2+∥zk+1−zk∥2+∥wk+1−wk∥2). (20)

Moreover, from Equation (18) and the fact that {xk, zk, wk} is bounded, the norm of the subgradient
is also upper-bounded the distance between two iterates, i.e.,

∥vk+1∥ ≤ b
√
∥xk+1 − xk∥2 + ∥zk+1 − zk∥2 + ∥wk+1 − wk∥2, (21)

where b > 0. Therefore, by applying Equation (20) and Equation (21), the following inequality holds,

L(xk+1, zk+1, wk+1)− L(xk, zk, wk) ≤ − a

b2
∥vk+1∥2 ≤ − a

b2
dist

(
0, ∂L(xk+1, zk+1, wk+1)

)2
.

(22)
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From the α-PL property, we obtain

L(xk+1, zk+1, wk+1)− L(xk, zk, wk) ≤ −ac2/α

b2

(
L(xk+1, zk+1, wk+1)− L(x⋆, z⋆, w⋆)

)2/α
.

whenever |L(xk+1, zk+1, wk+1)− L(x⋆, z⋆, w⋆)| ≤ η. Then, from Theorem 1 and 2 of Bento et al.
(2024), we have

L(xk, zk, wk)− L(x⋆, z⋆, w⋆) ∈ O(k−
α

2−α ) ⊆ o

(
1

k

)
.

Moreover, the iterates converges to the limit point, i.e., limk→+∞(xk, zk, wk) = (x⋆, z⋆, w⋆). From
Theorem 3 of Bento et al. (2024), the convergence rate of (xk, zk, wk) is

∥(xk, zk, wk)− (x⋆, z⋆, w⋆)∥ ∈ O(k−
α−1
2−α ).

PROOF OF THEOREM 3.2

As Lagrangian is second-order differentiable at (x⋆, z⋆, w⋆), we have F (x) = f(x), ∀x ∈ B(x⋆; r),
where r > 0. In words, there exists a neighborhood of (x⋆, z⋆, w⋆) which belongs to the constraint
set, i.e., indicator functions are all zero for the points in that neighborhood. Recall the Lagrangian
function,

L(x, z, w) = f(x)+ϕ(z)+

nc∑
i=1

wi(
xTCix

2
+dTi x+ei+qTi z)+

ρ

2

nc∑
i=1

(
xTCix

2
+dTi x+ei+qTi z)

2.

Under Assumption 2.6, Assumption 2.3 and smoothness, we have LfI ⪰ ∇2f(x) ⪰ µfI , LϕI ⪰
∇2ϕ(z) ⪰ µϕI and QT =

[
q1, · · · , qn

]
is full column rank. The constrained stationary point

satisfies

∇zL(x
⋆, z⋆, w⋆) = ∇ϕ(z⋆) +QTw⋆ = 0. (23)

Next, we compute the Hessian of the Lagrangian at the stationary point (x⋆, z⋆, w⋆) and show that
if it is invertible then the convergence rate will be linear. To this end, applying Equation (23), the
Hessian at (x⋆, z⋆, w⋆) can be represented as follows

∇2f(x⋆) +
∑

i w
⋆
i Ci 0nx×nz C1x

⋆ + d1 · · · Cnx
⋆ + dn

0nz×nx ∇2ϕ(z⋆) q1 · · · qn
(C1x

⋆ + d1)
T qT1 0 · · · 0

...
...

...
. . .

...
(Cnx

⋆ + dn)
T qTn 0 · · · 0

+ ρ

nc∑
i=1

Hi,

where

Hi =


Cix

⋆ + di
qi
0
...
0


[
(Cix

⋆ + di)
T qTi 0 · · · 0

]
.

As a result, the kernel of the Hessian at (x⋆, z⋆, w⋆) is equivalent to the kernel of the matrix in the
first term. Which is invertible when the following matrix is invertible.

∇2f(x⋆)+
∑
i

w⋆
i Ci−

[
0nx×nz C1x

⋆ + d1, · · · , Cnx
⋆ + dn

] [∇2ϕ(z⋆) QT

Q 0n×n

]−1


0nz×nx

(C1x
⋆ + d1)

T

...
(Cnx

⋆ + dn)
T

 .
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Note that

[
∇2ϕ(z⋆) QT

Q 0n×n

]−1

exists given that Q is full row rank.

∇2f(x⋆) +
∑
i

w⋆
i Ci +

[
C1x

⋆ + d1, · · · , Cnx
⋆ + dn

]
(Q(∇2ϕ(z⋆))−1QT )−1


(C1x

⋆ + d1)
T

...
(Cnx

⋆ + dn)
T

 . (24)

Without loss of generality, we can assume Ii(x
0
i ) = 0 ∀i. As L(xt, zt, wt) is decreasing over t if ρ

is large enough, by selecting (z0, w0) such that A(x0) +Qz0 = 0 and QTw0 = −∇ϕ(z0), strong
convexity and smoothness of f and ϕ imply

f(x⋆
f ) + ϕ(z⋆ϕ) + Lf (∥x⋆

f∥2 + ∥x0∥2) + Lϕ(∥z⋆ϕ∥2 + ∥z0∥2)

≥ f(x⋆
f ) + ϕ(z⋆ϕ) +

Lf

2
∥x⋆

f − x0∥2 + Lϕ

2
∥z⋆ϕ − z0∥2

≥ f(x0) + ϕ(z0) = L(x0, z0, w0)

≥ L(x⋆, z⋆, w⋆) = f(x⋆) + ϕ(z⋆)

≥ f(x⋆
f ) + ϕ(z⋆ϕ) +

µf

2
∥x⋆ − x⋆

f∥2 +
µϕ

2
∥z⋆ − z⋆ϕ∥2.

In the above expression, the first inequality is due to a2 + b2 ≥ (a− b)2/2, the second inequality is
due to the smoothness of f and ϕ, the third inequality is because L(xk, zk, wk) is decreasing over k,
and the last inequality is due to strong convexity of f and ϕ.

The above expression implies
µf

2
∥x⋆ − x⋆

f∥2 +
µϕ

2
∥z⋆ − z⋆ϕ∥2 ≤ Lf (∥x⋆

f∥2 + ∥x0∥2) + Lϕ(∥z⋆ϕ∥2 + ∥z0∥2),

which provides upper bounds for ∥x⋆ − x⋆
f∥2 and ∥z⋆ − z⋆ϕ∥2, i.e.,

∥x⋆ − x⋆
f∥2 ∈ O

(
Lf

µf
(∥x⋆

f∥2 + ∥x0∥2) + Lϕ

µf
(∥z⋆ϕ∥2 + ∥z0∥2)

)
. (25)

and

∥z⋆ − z⋆ϕ∥2 ∈ O
(
Lf

µϕ
(∥x⋆

f∥2 + ∥x0∥2) + Lϕ

µϕ
(∥z⋆ϕ∥2 + ∥z0∥2)

)
. (26)

They also give upper bound for ∥x⋆ − x⋆
f∥ and ∥z⋆ − z⋆ϕ∥, i.e.,

∥x⋆ − x⋆
f∥ ∈ O

(√
Lf

µf
(∥x⋆

f∥+ ∥x0∥) +

√
Lϕ

µf
(∥z⋆ϕ∥+ ∥z0∥)

)
, (27)

and

∥z⋆ − z⋆ϕ∥ ∈ O

(√
Lf

µϕ
(∥x⋆

f∥+ ∥x0∥) +

√
Lϕ

µϕ
(∥z⋆ϕ∥+ ∥z0∥)

)
. (28)

From the first Equation of equation 23 and the fact that Q is full row rank, an upper bound of ∥w⋆∥
will be

∥w⋆∥ = ∥(QQT )−1Q∇ϕ(z⋆)∥ ≤ ∥(QQT )−1Q∥ · ∥ϕ(z⋆)∥
= ∥(QQT )−1Q∥ · ∥ϕ(z⋆)− ϕ(z⋆ϕ)∥
≤ Lϕ∥(QQT )−1Q∥∥z⋆ − z⋆ϕ∥

∈ O
(
∥(QQT )−1Q∥Lϕ

(√Lf

µϕ
(∥x⋆

f∥+ ∥x0∥) +

√
Lϕ

µϕ
(∥z⋆ϕ∥+ ∥z0∥)

))
.

(29)

By the definition of A(x), we have

∥A(x0)∥2 =

nc∑
i=1

(1
2
(x0)TCix

0 + dTi x
0 + ei

)2
∈ O

(
nc(∥x0∥4∥C∥2 + ∥x0∥2∥d∥2 + ∥e∥2)

)
,
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where ∥C∥ := maxi ∥Ci∥, ∥d∥ := maxi ∥di∥ and ∥e∥ := maxi |ei|. Consequently,

∥A(x0)∥ ∈ O
(√

nc(∥x0∥2∥C∥+ ∥x0∥∥d∥+ ∥e∥)
)
. (30)

Notice that A(x0) +Qz0 = 0 and Q is full row rank, then z0 = −Q+A(x0) + v, where Q+ is the
Moore-Penrose pseudo-inverse and v ∈ ker(Q). Thus, there exists z0 such that

∥z0∥ = ∥Q+A(x0)∥ ≤ ∥Q+∥∥A(x0)∥ =
1√

λmin(QQT )
∥A(x0)∥.

From the bound of ∥A(x0)∥ in Equation (30), ∥z0∥ can be upper bounded as

∥z0∥ ≤ 1√
λmin(QQT )

∥A(x0)∥ ∈ O
(√ nc

λmin(QQT )
(∥x0∥2∥C∥+ ∥x0∥∥d∥+ ∥e∥)

)
. (31)

From Equation (29) and Equation (31), an upper bound of ∥w⋆∥ can be rewritten as

O

(
∥(QQT )−1Q∥Lϕ

(√Lf

µϕ
(∥x⋆

f∥+ ∥x0∥) +

√
Lϕ

µϕ

(
∥z⋆ϕ∥+

√
nc

λmin(QQT )
(∥x0∥2∥C∥+ ∥x0∥∥d∥+ ∥e∥)

)))
.

In addition, as ∥
∑nc

i=1 w
⋆
iCi∥ ∈ O

(√
nc∥w⋆∥∥C∥

)
, it can be bounded as follows

O

(
∥(QQT )−1Q∥

√
ncLϕ∥C∥

(√Lf

µϕ
(∥x⋆

f∥+ ∥x0∥)

+

√
Lϕ

µϕ

(
∥z⋆ϕ∥+

√
nc

λmin(QQT )
(∥x0∥2∥C∥+ ∥x0∥∥d∥+ ∥e∥)

)))
.

(32)

Note that since f is µf -strongly convex, if ∥
∑n

i=1 w
⋆
iCi∥ < µf , then the matrix in Equation (24)

will be positive definite. So the Hessian at the stationary point is invertible. This can be ensured by
letting each of the above terms to be O(µf ), i.e.,

∥(QQT )−1Q∥
√
ncLϕ∥C∥

(√Lf

µϕ
(∥x⋆

f∥+ ∥x0∥) +

√
Lϕ

µϕ
∥z⋆ϕ∥

)
∈ O(µf ),

∥(QQT )−1Q∥∥C∥

√
L3

ϕ

µϕ

√
n2
c

λmin(QQT )
(∥x0∥∥d∥+ ∥e∥) ∈ O(µf ),

∥(QQT )−1Q∥∥C∥2
√

L3
ϕ

µϕ

√
n2
c

λmin(QQT )
∥x0∥2 ∈ O(µf ).

(33)

The above inequalities lead to the following condition.

∥C∥ ∈ O

min
{ µf

√
µϕ

√
ncLϕ

(√
Lf (∥x⋆

f∥+ ∥x0∥) +
√

Lϕ∥z⋆ϕ∥
)∥(QQT )−1Q∥−1,

µf
√
µϕ√

L3
ϕn

2
c(∥x0∥∥d∥+ ∥e∥)

(λmin(QQT ))1/2∥(QQT )−1Q∥−1 ,

( µf
√
µϕ√

L3
ϕn

2
c∥x0∥2

)1/2
(λmin(QQT ))1/4∥(QQT )−1Q∥−1/2

} .

(34)

By defining

m1 :=
µf

√
µϕ

√
ncLϕ

(√
Lf (∥x⋆

f∥+ ∥x0∥) +
√

Lϕ∥z⋆ϕ∥
) ,

m2 :=
µf

√
µϕ√

L3
ϕn

2
c(∥x0∥∥d∥+ ∥e∥)

,

m3 :=
( µf

√
µϕ√

L3
ϕn

2
c∥x0∥2

)1/2
,
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we obtain the condition in Equation (4).

If Equation (34) is satisfied, the stationary point is non-degenerate (meaning that the Hessian is
invertible at that point). In consequence, the stationary point is also isolated. This can be seen
by applying the Local Inversion Theorem presented in Lemma A.9 using u0 = (x⋆, z⋆, w⋆) and
g = ∇L. This lemma implies that every stationary point of the Lagrangian function is isolated if it is
non-degenerate. As a result, if Equation (34) holds,

ker∇2f(x̃) = Tx̃S = {0},

where x̃ is a stationary point, S is the set of stationary points, and Tx̃S is the tangent space of S at x̃.
Therefore, according to Definition A.10 and Theorem A.11, the Lagrangian is a Morse-Bott function,
and it satisfies the α-PL inequality around every stationary point with α = 1/2, i.e.,

Theorem D.1. Suppose that the Equation (4) holds, then for every stationary point (x⋆, z⋆, w⋆) of L
such that L is second order differentiable at this point, there exists constants C and r > 0, s.t.

∥∇L(x, z, w)∥2 ≥ C|L(x, z, w)− L(x⋆, z⋆, w⋆)|, ∀(x, z, w) ∈ B(x⋆, z⋆, w⋆; r).

From Equation (22) and the above result, for k large enough so that (xk, zk, wk) ∈ B(x⋆, z⋆, w⋆; r),
we have

L(xk+1, zk+1, wk+1)− L(xk, zk, wk) ≤ −aC

b2
(
L(xk+1, zk+1, wk+1)− L(x⋆, z⋆, w⋆)

)
,

=⇒ L(xk+1, zk+1, wk+1)− L(x⋆, z⋆, w⋆) ≤
(
1 +

aC

b2

)−1

(L(xk, zk, wk)− L(x⋆, z⋆, w⋆)),

=⇒ L(xk, zk, wk)− L(x⋆, z⋆, w⋆) = O(c−k),

where c := (1 + aC
b2 ) > 1. From Theorem 3 of Bento et al. (2024), the convergence of iterates

(xk, zk, wk) is

∥xk − x⋆∥2 + ∥zk − z⋆∥2 + ∥wk − w⋆∥2 ∈ O(c−k).

Lastly, consider the second partial derivative of the Lagrangian with respect to x and z at (x⋆, z⋆, w⋆),[
∇2f(x⋆) +

∑
i w

⋆
iCi 0

0 ∇2ϕ(z⋆)

]
≻ 0.

From proposition 3.3.2 of Bertsekas (1997), the second-order sufficiency condition is satisfied and
thus, the point (x⋆, z⋆) is the local minimum of the problem 1.

As a corollary of Theorem 3.2, if the limiting point is of the form (x⋆, z⋆,0), then the linear
convergence rate of the ADMM is ensured, i.e.,

Corollary D.2. Under the assumptions of Theorem 3.1, if the iterates of the ADMM converge to
(x⋆, z⋆, w⋆) with w⋆ = 0, then, there is c1 > 1 such that

L(xk, zk, wk)− L(x⋆, z⋆, w⋆) ∈ O(c−k
1 ).

Proof. When w⋆
i = 0, ∀i, the Equation equation 24 will become

∇2f(x⋆) +
[
C1x

⋆ + d1, · · · , Cnx
⋆ + dn

]
(Q(∇2ϕ(z⋆))−1QT )−1


(C1x

⋆ + d1)
T

...
(Cnx

⋆ + dn)
T

 ≻ 0.

and consequently, the Hessian of the Lagrangian at the stationary point will be invertible. The rest of
the proof is similar to the proof of Theorem 3.2.
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PROOF OF THEOREM 3.3

Suppose that the constraint sets for Xis are polyhedrals. From Equation (13), Equation (20) and
Equation (21), there exist v ∈ ∂x,zL(x

k+1, zk+1, wk+1), and positive constants a and b, such that

L(xk+1, zk+1, wk+1)− L(xk, zk, wk) ≤ −a(∥xk+1 − xk∥2 + ∥zk+1 − zk∥2),
∥v∥2 ≤ b(∥xk+1 − xk∥2 + ∥zk+1 − zk∥2).

This results in

L(xk+1, zk+1, wk+1)− L(xk, zk, wk) ≤ −a

b
∥v∥2 ≤ −a

b
min

s∈∂x,zL(xk+1,zk+1,wk+1)
∥s∥2. (35)

Consider the function L̃ s.t. L(x, z, w) = L̃(x, z, w) +
∑n

i=1 Ii(xi). Then, when w is fixed, the
second-order derivative of L̃ is[

∇2f(x⋆) +
∑

i w
⋆
iCi 0

0 ∇2ϕ(z⋆)

]
.

To ensure that at the constrained stationary point (x⋆, z⋆, w⋆), the above matrix is positive definite, we
require that ∇2f(x⋆)+

∑n
i=1 w

⋆
iCi ≻ 0. Notice that at the constrained stationary point, Equation (23)

still holds. According to the proof of Theorem 3.2, when equation 34 holds, then ∇2f(x⋆) +∑n
i=1 w

⋆
iCi ≻ 0, and the Hessian of L̃ is positive definite. Consequently, the function L̃(x, z, w)

is locally strongly convex with respect to (x, z), ∀(x, z) ∈ B(x⋆, z⋆; r′) and ∀w ∈ B(w⋆, r′′), for
some r′ > 0 and r′′ > 0. Since dom(L) is polyhedral, and L(x, z, w) = L̃(x, z, w) +

∑n
i=1 Ii(xi),

according to the results in Appendix F of Karimi et al. (2016), the α-PL inequality holds for α = 2,
i.e.,

min
s∈∂x,zL(x,z,w)

∥s∥2 ≥ 2µ
(
L(x, z, w)− min

(x,z)∈B(x⋆,z⋆;r′)
L(x, z, w)

)
,

∀(x, z) ∈ B(x⋆, z⋆; r′) and ∀w ∈ B(w⋆, r′′).

On the other hand, since (xk, zk, wk) → (x⋆, z⋆, w⋆), for k that is large enough, i.e. k ≥ K,
there exists r > 0 such that B(xk, zk; r) ⊆ B(xK , zK ; 2r), B(xk, zk; 2r) ⊆ B(x⋆, z⋆; r′) and
wk ∈ B(w⋆, r′′). As a result,

min
s∈∂x,zL(xk,zk,w)

∥s∥2 ≥ 2µ(L(xk, zk, w)− min
(x,z)∈B(x⋆,z⋆;r′)

L(x, z, w)),

≥ 2µ(L(xk, zk, w)− min
(x,z)∈B(xk,zk;2r)

L(x, z, w)), k ≥ K.

Combining the above inequality with equation 35 yields that there exists C1 > 0 such that for k ≥ K,

L(xk+1, zk+1, wk+1)−L(xk, zk, wk) ≤ −C1

(
L(xk+1, zk+1, wk+1)− min

(x,z)∈B(xK ,zK ;2r)
L(x, z, wk+1)

)
.

Note that due to the update rule in Algorithm 1, for every x and z, we have L(x, z, wk+1) −
L(x, z, wk) = ρ∥A(x) +Qz∥2 ≥ 0, and consequently,

min
(x,z)∈B(xK ,zK ;2r)

L(x, z, wk+1) ≥ min
(x,z)∈B(xK ,zK ;2r)

L(x, z, wk).

As a result, for k ≥ K, the following inequality, obtained from the previous two inequalities, holds

(1+C1)
(
L(xk+1, zk+1, wk+1)− min

(x,z)∈B(xK ,zK ;2r)
L(x, z, wk+1)

)
≤ L(xk, zk, wk)− min

(x,z)∈B(xK ,zK ;2r)
L(x, z, wk).

This implies

L(xk, zk, wk)− min
(x,z)∈B(xK ,zK ;2r)

L(x, z, wk) ≤ (1+C1)
−(k−K)

(
L(xK , zK , wK)− min

(x,z)∈B(xK ,zK ;2r)
L(x, z, wK)

)
.

(36)

As B(xk, zk; r) ⊆ B(xK , zK ; 2r), from Equation (36), the linear convergence of L(xk, zk, wk)−
min(x,z)∈B(xk,zk;r) L(x, z, w

k) can be ensured, i.e., let c2 := 1 + C1, then
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L(xk, zk, wk)− min
(x,z)∈B(xk,zk;r)

L(x, z, wk) ≤ L(xk, zk, wk)− min
(x,z)∈B(xK ,zK ;2r)

L(x, z, wk),

≤ (1 + C1)
−(k−K)

(
L(xK , zK , wK)− min

(x,z)∈B(xK ,zK ;2r)
L(x, z, wK)

)
∈ O(c−k

2 ).

To prove that (x∗, z∗) is a local minimum, notice that as k goes to infinity, (xk, zk, wk) →
(x⋆, z⋆, w⋆), Ii(x⋆

i ) = 0,∀i and Equation (36) implies that for all (x, z) ∈ B(x⋆, z⋆; r)

F (x⋆) + ϕ(z⋆) = f(x⋆) + ϕ(z⋆) = L(x⋆, z⋆, w⋆) = min
(x,z)∈B(x⋆,z⋆;r)

L(x, z, w⋆) ≤ L(x, z, w⋆).

For all the points (x, z) ∈ B(x⋆, z⋆; r) satisfying A(x) +Qz = 0, F (x) + ϕ(z) can be bounded as

F (x⋆) + ϕ(z⋆) = min
(x,z)∈B(x⋆,z⋆;r)

L(x, z, w⋆) ≤ L(x, z, w⋆) = F (x) + ϕ(z).

And thus (x⋆, z⋆) is a local minimum of problem equation 1.

D.1 APPROXIMATED ADMM

Consider the following algorithm.

Algorithm 2 Approximated-ADMM
Require: (x0

1, . . . , x
0
n), z

0, w0, ρ
for k = 0, 1, 2, . . . do

for i = 1, . . . , n do
xk+1
i ≈ argminxi

L(xk+1
1:i−1, xi, x

k
i+1:n, z

k, wk)
end for
zk+1 ≈ argminz L(x

k+1, z, wk)
wk+1 = wk + ρ(A(xk+1) +Qzk+1)

end for

Theorem D.3. Under the assumptions of Theorem 3.2, if the Approximated ADMM in 2 is applied to
Problem 1, and the following condition are satisfied,
P1: the iterates pk := (xk, zk, wk) are bounded, and L(pk) = L(xk, zk, wk) is lower bounded,
P2: there is a constant C1 > 0 such that for all sufficiently large k,

L(xk, zk, wk)− L(xk+1, zk+1, wk+1) ≥ C1∥pk+1 − pk∥2.

P3: and there exists dk+1 ∈ ∂L(xk+1, zk+1, wk+1) and C2 > 0 such that for all sufficiently large k,

∥dk+1∥ ≤ C2∥pk+1 − pk∥.
Then, the convergence results of Theorem 3.1, Theorem 3.2 and Theorem 3.3 remain valid under their
respective additional assumptions.

Proof. Remind that these presented conditions in this theorem are the key element to prove Theo-
rem 3.1. In exact ADMM, the condition P2 and P3 are satisfied in Equation (15) and Equation (21).
Conditions P2 and P3 imply that there exists dk ∈ ∂L(xk, zk, wk) such that

L(xk+1, zk+1, wk+1)− L(xk, zk, wk) ≤ −C1(∥xk+1 − xk∥2 + ∥zk+1 − zk∥2 + ∥wk+1 − wk∥2)

≤ −C1

C2
2

∥dk+1∥2 ≤ −C1

C2
2

(dist(0, ∂L(xk+1, zk+1, wk+1)))2,

which is precisely the Equation (22) in the Proof of Theorem 3.1. From condition P1 and P2, the
Lagrangian L(xk, zk, wk) is lower bounded and non-increasing, which indicates L(pk) converges as
k goes to infinity. Then, from P2, we know,

∥xk+1 − xk∥ → 0, ∥zk+1 − zk∥ → 0, ∥wk+1 − wk∥ → 0.

Based on P1, the iterates (xk, zk, wk) are bounded, thus, the limit point exists. The rest of the proof
is identical with the proof of Theorem 3.1.
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E PROOFS OF SECTION 4

Corollary E.1. Under the assumptions of Corollary 4.1, if the iterates of the ADMM applied to the
problem in 6 converge to (x⋆, z⋆, w⋆) with w⋆ = 0, then the Lagrangian converge linearly, i.e., there
exists c4 > 1 such that

L(xk, zk, wk)− L(x⋆, z⋆, w⋆) ≤ O(c−k
4 ),

Corollary E.2. Under the assumptions of Corollary 4.2, if Iis are the indicator functions of some
polyhedrals, then,

L(xk, zk, wk)− min
(x,z)∈B(xk,zk;r)

L(x, z, wk) ∈ O(c−k
5 ),

where c5 > 1 and r > 0. Furthermore, (x⋆, z⋆) is the local minimum of problem equation 6.

PROOFS OF COROLLARY 4.1, COROLLARY E.1, COROLLARY 4.2 AND COROLLARY E.2

In this setting, the corresponding objective functions will be

F (x) := f(x) +

T∑
i=0

Ii(xi), ϕ(z) :=

T∑
i=1

ϕ(k′),

f(x) := f(f), Ii(xi) :=

N∑
j=1

IW (f ji ).

The corresponding multi-affine quadratic constraints of the locomotion problem is A(x) +Qz = 0
in which Q is the identity matrix and

A(x) :=


kinit

A1(f)
...

AT (f)

 ,

in which

Ai(f) :=

N∑
j=1

((
rji − cinit − ċinit i(∆t)−

i−2∑
i′=0

(i− 1− i′)(

N∑
l=1

f li′

m
+ g)(∆t)2

)
× f ji

)
∆t, for i ≥ 2.

From the robotic problem in Equation (6), we have Ci = 0 in A1
2 and A2

2. For Ai
2, i ≥ 3, Ci is

actually a sparse matrix. If we consider rtj as a constant, then

k′
i+1 = ki+1 − ki =

N∑
j=1

((
rji − cinit − ċinit i(∆t)−

i−2∑
i′=0

(i− 1− i′)(

N∑
l=1

f li′

m
+ g)(∆t)2

)
× f ji

)
∆t

=

N∑
j=1

((
rji − cinit − ċinit i(∆t)−

i−2∑
i′=0

(i− 1− i′)g(∆t)2
)

× f ji

)
∆t

−
N∑

j=1

i−2∑
i′=0

N∑
l=1

(i− 1− i′)
f li′ × f ji

m
(∆t)3

= Affine Terms onX−
N∑

j=1

i−2∑
i′=0

N∑
l=1

(i− 1− i′)
f li′ × f ji

m
(∆t)3

= Affine Terms onX−
N∑

j=1

i−2∑
i′=0

N∑
l=1

(∆t)3

m
(i− 1− i′)

 f l
i′,yf

j
i,z − f l

i′,zf
j
i,y

−f l
i′,xf

j
i,z + f l

i′,zf
j
i,x

f l
i′,xf

j
i,y − f l

i′,yf
j
i,x


= Affine Terms onX−

N∑
j=1

N∑
l=1

(∆t)3

m


1
2
fT
∑t−2

i′=0 C
j,l
i′,y,i,zf

1
2
fT
∑t−2

i′=0 C
j,l
i′,x,i,zf

1
2
fT
∑t−2

i′=0 C
j,l
i′,x,i,yf .


(37)
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where Cj,l
i′,y,i,z , Cj,l

i′,x,i,z and Cj,l
i′,x,i,y only have 4 non-zero element with its number equals to

i − 1 − i′ or −(i − 1 − i′) at (i′x1
, ix2), (ix2 , i

′
x1
), (i′x2

, ix1) and (ix1 , i
′
x2
), where (x1, x2) ∈

{(x, y), (x, z), (y, z)}. As a result

∥
i−2∑
i′=0

Cj,l
i′,x1,i,x2

∥ ≤ ∥
i−2∑
i′=0

Cj,l
i′,x1,i,x2

∥F =

√√√√ i−2∑
i′=0

4(i− 1− i′)2 ≤ 2i3/2.

In addition,

∥Ci∥ = ∥
N∑

j=1

i−2∑
i′=0

N∑
l=1

(∆t)3

2m
Cj,l

i′,x1,i,x2
∥ ≤

N∑
j=1

N∑
l=1

(∆t)3

2m
∥

i−2∑
i′=0

Cj,l
i′,x1,i,x2

∥

≤
N∑

j=1

N∑
l=1

2i3/2(∆t)3

2m
≤

N∑
j=1

N∑
l=1

2T 3/2(∆t)3

2m

≤ N22T 3/2(∆t)3

2m
∈ O

(
N2T 3/2(∆t)3

m

)
.

and Ci ∈ Rn×n, where nx = Nnz = Nnc = 3N(T + 1).

If we can seeking a solution on the time interval [0, Ttotal] and we split it into T discretization, then
T = Ttotal

∆t . In consequence,

nx = Nnz = Nnc = 3N

(
Ttotal

∆t
+ 1

)
= Θ

(
N

Ttotal

∆t

)
. (38)

and

∥C∥ = max
i

∥Ci∥ ∈ O
(
N2(Ttotal)

3/2(∆t)3/2

m

)
. (39)

For di, by denoting aji = rji − cinit − ċinit i(∆t)−
∑i−2

i′=0(i− 1− i′)g(∆t)2, notice that,

N∑
j=1

((
rji − cinit − ċinit i(∆t)−

i−2∑
i′=0

(i− 1− i′)g(∆t)2
)

× f ji

)
∆t =

N∑
j=1

(
aj
i × f ji

)
∆t

=
N∑

j=1

 aj
i,yf

j
i,z − aj

i,zf
j
i,y

−aj
i,xf

j
i,z + aj

i,zf
j
i,x

aj
i,xf

j
i,y − aj

i,yf
j
i,x

∆t

and

|aj
i,z| = |rji,z − cinit ,z − ċinit ,zt(∆t)−

i−2∑
i′=0

(i− 1− i′)gz(∆t)2|

≤ |rji,z|+ |cinit ,z|+ |ċinit ,zi(∆t)|+ |
i−2∑
i′=0

(i− 1− i′)gz(∆t)2|

≤ |rji,z|+ |cinit ,z|+ |ċinit ,zT (∆t)|+ |
T−2∑
i′=0

(i− 1− i′)gz(∆t)2|

≤ |rji,z|+ |cinit ,z|+ |ċinit ,zTtotal|+ |1
2
gzT

2
total| ∈ O(T 2

total).

The bound is same for |ajt,x| and |ajt,y|. As a result, by choosing x1, x2 ∈ {x, y, z},

∥di∥ ≤
√
|aji,x1

|2 + |aji,x2
|2N∆t ∈ O(NT 2

total∆t). (40)
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Figure 7: The result of friction and its friction cone.

From Equation (38), Equation (39), Equation (40), Equation (7), ∥e∥ = 0 and Q = I , Equation (34)
suffices to require

N2(Ttotal)
3/2(∆t)3/2

m
∈ O

min
{ µf

√
µϕ√

Ttotal
∆t

Lϕ

(√
Lf

√
N Ttotal

∆t
+
√

Lϕ

√
Ttotal
∆t

) ,

µf
√
µϕ√

L3
ϕ

Ttotal
∆t

√
N Ttotal

∆t
NT 2

total∆t
,

(
µf

√
µϕ

L
3/2
ϕ N Ttotal

∆t
N Ttotal

∆t

)1/2 } ,

which is equivalent to

∆t ∈ O

{
µ2
fµϕm

2

L2
ϕ(Lf + Lϕ)N6T 5

total

,
µf

√
µϕm

L
3/2
ϕ N7/2T 5

total

,
µf

√
µϕm

2

L
3/2
ϕ N6T 5

total

}
. (41)

Once the Equation (41) holds, the Equation (4) is satisfied, and the conclusion from the proof of
Corollary D.2, Theorem 3.2, Theorem 3.3 follows.

F ADDITIONAL EXPERIMENTS INFORMATION

The simulations are done on a normal laptop with Intel(R) Core(TM) i5-1235U with 16GB of
memory.

In the 2D locomotion problem, the horizontal location of the end-effector rx is switched to rx +D
after M∆t time steps, where D and M can be chosen randomly for each step to increase the
variability in the motion. The frictions are constrained so that the horizontal location of CoM cx
satisfies −0.15m ≤ cx ≤ 0.15m, and vertical location of CoM cz satisfies 0.15m ≤ cz ≤ 0.25m
distance from the stance foot to the CoM. All the other details can be found in the code in the
supplementary material.

Additionally, Fig. 7 confirms that the friction cone constraints are satisfied throughout the optimization
process.

G LIMITATION

Our theoretical analysis only establishes convergence of the ADMM for the quadratic constraint
problem. The convergence analysis for the higher-order constraints needs further investigation.
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