

LAST-ITERATE CONVERGENCE OF ADMM ON MULTI-AFFINE QUADRATIC EQUALITY CONSTRAINED PROBLEM

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 In this paper, we study a class of non-convex optimization problems known as
 014 multi-affine quadratic equality constrained problems, which appear in various
 015 applications—from generating feasible force trajectories in robotic locomotion and
 016 manipulation to training neural networks. Although these problems are generally
 017 non-convex, they exhibit convexity or related properties when all variables except
 018 one are fixed. Under mild assumptions, we prove that the alternating direction
 019 method of multipliers (ADMM) converges when applied to this class of problems.
 020 Furthermore, when the "degree" of non-convexity in the constraints remains within
 021 certain bounds, we show that ADMM achieves a linear convergence rate. We
 022 validate our theoretical results through practical examples in robotic locomotion.

1 INTRODUCTION

026 Non-convex optimization serves as a fundamental concept in modern machine learning, such as
 027 reinforcement learning Xu et al. (2021); Wang et al. (2024) and large language models Ling et al.
 028 (2024); Kou et al. (2024). The non-convexity in these applications may arise from the objective
 029 function, the constraint set, or both. Finding a solution to a non-convex problem is, in general, NP-
 030 hard Krentel (1986). As a step to manage this complexity, a common practice is to study problems
 031 with additional structural assumptions under which particular solvers, such as gradient-based methods,
 032 are guaranteed to converge to an optimizer. Subsequently, various relaxations of the objective and/or
 033 constraints have been proposed to transform the original problem into a more tractable problem. For
 034 instance, the objective function has been studied under assumptions such as weak strong convexity
 035 Liu et al. (2014), restricted secant inequality Zhang & Yin (2013), error bound Cannelli et al. (2020),
 036 and quadratic growth Rebock & Boumal (2024). On the other hand, optimization problems with
 037 various types of non-linear constraints have been investigated, such as quadratically constrained
 038 quadratic programs (QCQP) Bao et al. (2011); Elloumi & Lambert (2019), geometric programming
 039 (GP) Boyd et al. (2007); Xu (2014), mixed-integer nonlinear programming (MINLP) Lee & Leyffer
 (2011); Sahinidis (2019), and equilibrium constraints problem Yuan & Ghanem (2016); Su (2023).

040 Recently, there has been growing interest in analyzing non-convex optimization problems with specific
 041 block structures, driven by their broad range of applications. Although such problems are generally
 042 non-convex, they often exhibit convexity or related properties when all but one block of variables is
 043 fixed. Various structural properties of these problems have been studied, including multi-convexity in
 044 minimization settings Xu & Yin (2013); Shen et al. (2017); Lyu (2024), PL-strongly concave Guo et al.
 045 (2023), and PL-PL Daskalakis et al. (2020); Chen et al. (2022) in min-max formulations. Motivated
 046 by two well-known applications in robotics, in this work, we study multi-affine equality-constrained
 047 optimization problems (see Problem in equation 1).

048 In particular, locomotion and manipulation problems in robotics (Figure 1) involve intermittent contact
 049 interactions with the world. Due to the hybrid nature of these interactions, generating dynamically-
 050 consistent trajectories for such systems leads to a set of non-convex problems, which remains an
 051 open challenge. In general, the problem of planning through contact is handled in two ways; contact-
 052 implicit and contact-explicit. The first approach directly incorporates the complementarity constraints
 053 arising from the contacts, either by relaxing them within the problem formulation Tassa et al. (2012)
 or at the solver level Posa et al. (2014). While this approach has recently shown considerable promise

Figure 1: Examples of locomotion and manipulation settings, (left) Solo Grimminger et al. (2020) and (right) Trifinger Wüthrich et al. (2020)

in practice Kim et al. (2023); Aydinoglu et al. (2024); Le Cleac'h et al. (2024), providing convergence guarantees remains an open problem due to the presence of multiple sources of non-convexity. The second approach handles contact in the trajectory optimization problem by casting it as a mixed-integer optimization Deits & Tedrake (2014); Toussaint et al. (2018). In this approach, the hybrid nature of interaction is explicitly taken into account with integer variables, and thus, a combinatorial search is required to decide over the integer decision variables, while the continuous trajectory optimization problem ensures the kinematic and dynamic feasibility of the problem. This approach has also shown great success in recent years in both locomotion Ponton et al. (2021); Taouil et al. (2024); Aceituno-Cabezas et al. (2017) and contact-rich manipulation tasks Hogan & Rodriguez (2020); Toussaint et al. (2022); Zhu et al. (2023).

The optimization problem in the contact-explicit setting exhibits additional interesting structure. In particular, the dynamics can be decomposed into underactuated and actuated components Wieber (2006). This implies that, to generate a feasible force trajectory, the kinematics can be abstracted away. Assuming the robot can produce any desired contact force, it is sufficient to consider only the Newton-Euler dynamics to generate dynamically consistent trajectories for the robot’s center of mass (CoM) in locomotion and for the object’s CoM in manipulation. Interestingly, in this setting, the non-convexity in the dynamics has a special form, namely it is multi-affine Herzog et al. (2016). This renders the trajectory optimization problem a multi-affine equality-constrained optimization problem. These types of problems also appear in other applications such as matrix factorization Luo et al. (2020); Choquette-Choo et al. (2023), graph theory, and neural network training process Taylor et al. (2016); Zeng et al. (2021).

Recent work has exploited this structure to solve the problem using methods such as block coordinate descent Shah et al. (2021) and the alternating direction method of multipliers (ADMM) Meduri et al. (2023). In constrained optimization problems with linearly separable constraints, ADMM is an efficient and reliable algorithm Lin et al. (2015a); Deng et al. (2017); Yashtini (2021). Notably, its variants are driving the success of many machine learning applications involving optimization problems with linear constraints and convex objectives Shi et al. (2014); Nishihara et al. (2015); Khatana & Salapaka (2022) as well as those with non-convex objectives Bȯ & Nguyen (2020); Kong & Monteiro (2024); Wang et al. (2019); Li et al. (2024); Yuan (2025). However, not all of these works provide convergence guarantees, and those that do either rely on additional assumptions or establish weaker forms of convergence. For instance, Bȯ & Nguyen (2020) considered the problem $\min f(x) + \phi(z)$ subject to $Ax = z$, where ϕ is proper and lower semicontinuous (LSC), h is differentiable and L -smooth. They proved last-iterate convergence to a KKT point under the KL property (see Definition 2.5) and assuming access to a proximal solver, i.e., $\arg \min_z \{\phi(z) + \langle y^k, Ax^k - z \rangle + \frac{r}{2} \|Ax^k - z\|^2 + \frac{1}{2} \|z - z^k\|^2\}$. A similar assumption is made by Yuan (2025). However, this requirement is quite restrictive when g is nonconvex and the constraints are nonlinear. In fact, their guarantees no longer hold when the constraint set includes nonlinear relations, such as $\{x_1x_2 + x_3 + z = 0\}$. The next table presents a comparison of existing ADMM approaches.

Naturally, it is important to understand the limitations of ADMM in settings with nonlinear constraints, such as multi-affine equality-constrained Wang et al. (2019); Zhang et al. (2023); Barber & Sidky (2024). El Bourkhissi & Necoara (2025) studied general nonlinear equality-constrained nonconvex optimization but imposed additional structural assumptions to ensure regularity, such as full column rank of the constraint Jacobian. They also relied on backtracking strategies to solve each subproblem. Furthermore, they established convergence rates under the assumption that the objective satisfies the α -PL property. Li & Yuan (2025) focused on proximal ADMM methods for general nonlinear

108

109

Table 1: Comparison with previous work

Ref.	Blocks	Objective	Assumptions	Constraints	Convergence
Bȯ & Nguyen (2020)	=2	$f(x) + \phi(z)$	f : smooth, ϕ : LSC	Linear	Last iterate assuming α -PL
Wang et al. (2019)	≥ 2	$f(x) + \sum_{i=1}^n I_i(x_i) + \phi(z)$	f : smooth, ϕ : smooth $f + \phi$: coercive	Linear	Avg. iterate
Li et al. (2024)	=2	$f(x) + \phi(z)$	f : smooth, ϕ : convex, non-smooth	Convex, bounded	Best iterate
Yuan (2025)	≥ 2	$\sum_{i=1}^n f_i(x_i) + h_i(x_i)$	f_i : smooth, bounded derivative, h_i : non-smooth, h_n : convex	Linear	Avg. iterate
Our Work	≥ 2	$f(x) + \sum_{i=1}^n I_i(x_i) + \phi(z)$	f : strongly convex, smooth, ϕ : strongly convex, smooth	Multi-affine, unbounded	Last iterate

123 dynamics constraints. However, they only provide the best-iterate convergence between two iterates
 124 and fail to provide convergence rate related to the stationary point. In problems with multi-affine
 125 constraints, Gao et al. (2020) investigated the convergence properties of ADMM under the strict set of
 126 assumptions for the objective function (it has to be independent of certain variables). However, they
 127 fail to show any explicit convergence rate, which is crucial for applications like trajectory planning in
 128 robotics, where solutions must be computed within a short time slot with predefined accuracy. This
 129 leads to a key question that we seek to address in this study.

130 *What convergence rate can be guaranteed for ADMM when applied to optimization problems
 131 with multi-affine quadratic equality constraints?*

132 Previous works have shown that a linear convergence rate is achievable in linearly constrained
 133 problems with a strongly convex objective Lin et al. (2015b); Cai et al. (2017); Lin et al. (2018). On
 134 the other hand, it is straightforward to see that the multi-affine quadratic constraints gradually reduce
 135 to linear constraints as the non-convex coefficients vanish (i.e., $\{C_i\} \rightarrow 0$ in equation 2). Thus, in the
 136 extreme case when all the non-convex coefficients are zero, linear convergence is ensured. However,
 137 our empirical results indicate that a linear convergence rate remains attainable even when the nonlinear
 138 quadratic components are present. This observation motivates our next research question.

140 *If the effect of non-convexity in the constraint is small enough, does the linear convergence of
 141 ADMM when applied to the problem in 1 still hold?*

142 In this paper, we provide positive answers to both of the questions raised above. More precisely,
 143 when the norm of the non-convex coefficients (i.e., $\{\|C_i\|\}$) is sufficiently small relative to the norms
 144 of the linear components in the constraint set, ADMM achieves a linear convergence rate. Otherwise,
 145 under certain mild assumptions, we show that the convergence rate is sub-linear. In addition, we
 146 validate our theoretical findings through several practical experiments in robotic applications.

147 2 PROBLEM SETTING

148 **Notations:** Throughout this work, we denote $\|B\|$ and $\|a\|$ as the spectral norm of matrix B and the
 149 Euclidean norm of vector a , respectively and denote the smallest eigenvalue of B by $\lambda_{\min}(B)$. We
 150 use x_i and x_{-i} to denote the i -th entry of the vector x and all entries except the i -th entry, respectively.
 151 We denote $[x_i, x_{i+1}, \dots, x_j]$ by $x_{i:j}$ when $j \geq i$ and the empty set when $j < i$. The partial derivative
 152 of function $f(x)$ with respect to the variables in its i -th block is denoted as $\nabla_i f(x) := \frac{\partial}{\partial x_i} f(x_i, x_{-i})$
 153 and the full gradient is denoted as $\nabla f(x)$. The general sub-gradient of f at x is denoted by $\partial f(x)$.
 154 The exterior product between vectors a and b is $a \times b$. The set of all functions that are n -th order
 155 differentiable is C^n . The ball centered at x with radius r is $\mathcal{B}(x; r)$. The distance between a point
 156 x and a closed set \mathbb{S} is given by $dist(x, \mathbb{S}) := \inf_{s \in \mathbb{S}} \|s - x\|$. $\lambda_{\min}(A)$ and $\lambda_{\min}^+(A)$ denote the
 157 minimum eigenvalue and the minimum positive eigenvalue of A , respectively.

158 **Definitions and assumptions:** In this work, we consider the following *multi-affine quadratic equality*
 159 *constrained* problem:

$$161 \min_{x,z} F(x) + \phi(z), \quad \text{s.t.} \quad A(x) + Qz = 0, \quad (1)$$

162 where $x = (x_1, \dots, x_n)^T \in \mathbb{R}^{n_x}$ is partitioned into n blocks, with each block $x_i \in \mathbb{R}^{n_i}$. Q is a
 163 matrix in $\mathbb{R}^{n_c \times n_z}$, and z is a vector in \mathbb{R}^{n_z} . Function $A(x)$ is a multi-affine quadratic operator.
 164

165 **Definition 2.1.** Function $A(\cdot) : \mathbb{R}^{n_x} \rightarrow \mathbb{R}^{n_c}$ is called a multi-affine quadratic operator when
 166 for each $i \in \{1, \dots, n_c\}$, there exist $C_i \in \mathbb{R}^{n_x \times n_x}$, $d_i \in \mathbb{R}^{n_x}$, and $e_i \in \mathbb{R}$ such that

$$(A(x))_i := \frac{x^T C_i x}{2} + d_i^T x + e_i, \quad (2)$$

170 and moreover, $A(x_j; x_{-j})$ is an affine function for x_j when x_{-j} are fixed, $\forall x_{-j}, j \in [n]$.
 171

172 Note that the set of constraints in equation 1 comprises the linear ones and encompasses a much
 173 broader class in nonlinear settings. It also appears in various applications such as the locomotion and
 174 manipulation problems in robotics, matrix factorization, and neural network training process. From
 175 definition, it is obvious that the diagonal blocks of the matrix C_i is zero matrix. We provide a simple
 176 example of the multi-affine quadratic equality constrained problem.

177 **Example 2.2.** Consider the following problem

$$\min_{x, z} x_1^2 + x_2^2 + z_1^2 + z_2^2, \quad \text{s.t.} \quad x_1 x_2 + x_1 + 1 + z_1 = 0, \quad -x_1 x_2 + x_2 + 1 + z_2 = 0.$$

180 This problem can be reformulated in the form of equation 1 by considering Q to be the identity matrix,
 181 $F(x) := x_1^2 + x_2^2$, $\phi(z) := z_1^2 + z_2^2$, and

$$C_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \quad C_2 = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}, \quad d_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad d_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad e_1 = 1, \quad e_2 = 1.$$

185 The next set of assumptions are made to restrict the objective function in equation 1. Namely, we
 186 assume that the function $F(x)$ can be decomposed into a C^2 strongly convex function and a group of
 187 indicator functions that are block-separable.

188 **Assumption 2.3.** $F(x)$ is subanalytic (see Appendix A for formal definition) and can be written as
 189 $f(x) + \sum_{i=1}^n I_i(x_i)$, where $f(x)$ is C^2 , μ_f -strongly convex with x_f^* denoting its minimizer and $I_i(\cdot)$
 190 is the indicator function of a convex and closed set $X_i \subseteq \mathbb{R}^{n_i}$. Function $\phi(z)$ is also C^2 , μ_z -strongly
 191 convex with its minimizer at ϕ_z^* .

193 We refer to the indicators as block-separable because they take the form $\sum_i I_i(x_i)$ instead of
 194 $I(x_1, \dots, x_n)$. The key distinction is that, in the block-separable case, each block of x must belong to
 195 a specific convex and closed set. Note that this is not a restrictive assumption for a wide range of
 196 problems in robotics, optimal control, and related areas, as the objective functions in these applications
 197 typically represent quadratic costs, often combined with indicator functions to enforce safe regimes
 198 for the control variables x . Moreover, separable non-smooth functions have been frequently assumed
 199 in numerous works such as Lin et al. (2016); Deng et al. (2017); Yang et al. (2022).

200 **Definition 2.4.** Function $g(\cdot) : \mathbb{R}^m \rightarrow \mathbb{R}$ is called L -smooth when there exists $L > 0$ such that

$$\|\nabla g(x) - \nabla g(x')\| \leq L\|x - x'\|, \quad \forall x, x' \in \mathbb{R}^m.$$

203 Note that the indicator functions $\{I_i(\cdot)\}$ may not be smooth.

204 **Definition 2.5.** Function $g(\cdot) : \mathbb{R}^m \rightarrow \mathbb{R} \cup \{\infty\}$ is said to have the α -PL property, where $\alpha \in (1, 2]$,
 205 if there exist $\eta \in (0, \infty)$ and $C > 0$, such that for all x with $|g(x) - g(x^*)| \leq \eta$, where x^* is a point
 206 for which $0 \in \partial g(x^*)$, we have

$$(\text{dist}(\partial g(x), 0))^\alpha \geq C|g(x) - g(x^*)|.$$

209 It is important to note that when a function is subanalytic and lower semi-continuous then there exists
 210 an α such that it has also the α -PL property, which is well-known in the non-convex optimization
 211 literature Frankel et al. (2015); Bento et al. (2024). Furthermore, it has been shown by Fatkhullin
 212 et al. (2022); Li et al. (2023) that under some mild conditions, the α -PL property guarantees that the
 213 iterates of gradient-based algorithms such as gradient descent (GD) or stochastic GD converge to the
 214 optimizer with an explicit convergence rate. In the next section, by showing the α -PL property for
 215 different scenarios, we could establish the convergence rate of the ADMM.

Assumption 2.6. Matrix $Q \in \mathbb{R}^{n_c \times n_z}$ is full row rank.

This assumption is weaker than the one made in Nishihara et al. (2015); Deng et al. (2017), where Q is required to have full column rank. The full column rank can be replaced by a non-singularity assumption as one can reform the constraints to $Q^T A(x) + Q^T Q z = 0$ in which $Q^T Q$ is non-singular when Q is full column rank. However, this reformulation is not possible when Q is full row rank. Assumption 2.6 is crucial for establishing the convergence of ADMM, as demonstrated by the example below, where its violation leads to failure of the algorithm.

Algorithm: To solve equation 1, we consider the augmented Lagrangian ADMM, introducing a dual variable $w \in \mathbb{R}^{n_c}$ and a quadratic penalty term for the constraints with the coefficient ρ . This results in the following Lagrangian function.

Definition 2.7. *The corresponding augmented Lagrangian of equation 1 is given by*

$$L(x, z, w) := F(x) + \phi(z) + \langle w, A(x) + Qz \rangle + \frac{\rho}{2} \|A(x) + Qz\|^2, \quad (3)$$

where $\rho > 0$ is the penalty parameter.

ADMM is a powerful algorithm that can iteratively find a stationary point of the above Lagrangian function. Algorithm 1 summarizes the steps of this algorithm. At each iteration, it sequentially updates the current estimate by minimizing the augmented Lagrangian with respect to the variables in block x_i , $i \in \{1, \dots, n\}$, and z when all other blocks are fixed at their current estimates. Afterwards, the dual variable w is updated depending on how much the constraints are violated. It is important to note that the minimization sub-problems for updating each block are derived by fixing all other blocks. This results in an augmented Lagrangian corresponding to a linearly constrained problem, which is tractable and can be solved efficiently Lin et al. (2015b; 2018).

To show the importance of Assumption 2.6 consider the following example in which this assumption is violated while other aforementioned assumptions hold but the ADMM fails to converge to a feasible solution. Therefore, Assumption 2.6 is indispensable.

Example 2.8. Gao et al. (2020) Consider the following problem which is of the form of equation 1,

$$\min_{x, y} x^2 + y^2, \quad \text{s.t.} \quad xy = 1.$$

With an arbitrary initial point of the form $(x^0, 0, w^0)$, the ADMM's iterates will satisfy $(x^k, y^k) \rightarrow (0, 0)$ and $w^k \rightarrow -\infty$. Note that the limit point violates the constraint.

3 THEORETICAL RESULTS

Herein, we present our theoretical guarantees for ADMM when applied to Problem equation 1. In particular, the following theorem demonstrates that, under the stated assumptions, ADMM converges and establishes key properties of the limit point.

Theorem 3.1. Suppose that Assumption 2.3 and Assumption 2.6 hold. If ϕ is L_ϕ -smooth, then ADMM in 1 with $\rho \geq \max\{\frac{4L_\phi^2}{\mu_\phi \lambda_{\min}^+(Q^T Q)}, \frac{4L_\phi^2}{\mu_\phi \sqrt{\lambda_{\min}^+(QQ^T)}}\}$ converges with at least sublinear convergence rate to a stationary point (x^*, z^*, w^*) of the augmented Lagrangian, i.e.,

$$L(x^k, z^k, w^k) - L(x^*, z^*, w^*) \in o(1/k),$$

where $x^* = (x_1^*, \dots, x_n^*)$ and for all i ,

$$x_i^* \in \arg \min_{x_i \in \mathbb{R}^{n_i}} f(x_i, x_{-i}^*) + I_i(x_i), \quad \text{s.t.} \quad A(x_i, x_{-i}^*) + Qz^* = 0,$$

and z^* is given by $z^* \in \arg \min_{z \in \mathbb{R}^{n_z}} \phi(z)$, such that $A(x^*) + Qz = 0$.

270 This result shows that the limit point (x^*, z^*) satisfies properties analogous to those of a Nash
 271 equilibrium point: that is, when all blocks except one are fixed at their limit values (e.g., (x_{-i}^*, z^*)),
 272 the objective function is optimized with respect to the remaining block (e.g., x_i). Previously, Gao
 273 et al. (2020) showed the convergence of ADMM but without providing any convergence rate. In
 274 addition, their result requires stronger assumptions, such as f needs to be independent of certain
 275 variables, which is not needed in Theorem 3.1.

276 Next, we show that under additional assumptions such as the second-order differentiability of the
 277 Lagrangian at the limiting point and a sufficiently small degree of non-convexity, a linear convergence
 278 rate for ADMM when applied to equation 1 can be guaranteed. The degree of non-linearity is
 279 characterized by the relation between matrix Q (the coefficient of the linear term in the constraints)
 280 and matrices $\{C_i\}$ (the coefficients of the non-linear term).

282 **Theorem 3.2.** *Suppose that the assumptions of Theorem 3.1 hold. Moreover, let f be L_f -smooth
 283 and $L(x, z, w)$ is second-order differentiable at the limit point (x^*, z^*, w^*) . When matrix Q
 284 satisfies*

$$285 \quad \|C\| \in \mathcal{O}\left(\|(QQ^T)^{-1}Q\|^{-1} \cdot \min\left\{m_1, m_2(\lambda_{\min}(QQ^T))^{\frac{1}{2}}, m_3(\lambda_{\min}(QQ^T))^{\frac{1}{4}}\|(QQ^T)^{-1}Q\|^{\frac{1}{2}}\right\}\right), \quad (4)$$

286 where $\|C\| := \max_i \|C_i\|$ and constants $\{m_i \geq 0\}$ depending on problem's parameters e.g.,
 287 L_f, μ_f, \dots then, there exists $c_1 > 1$ such that the iterates of Algorithm 1 satisfy

$$288 \quad L(x^k, z^k, w^k) - L(x^*, z^*, w^*) \in \mathcal{O}(c_1^{-k}).$$

289 Furthermore, (x^*, z^*) is a local minimum of the problem equation 1.

294 Previous results by Lin et al. (2015b) on the performance of ADMM when applied to problems with
 295 linear constraints can be viewed as a special case of Theorem 3.2. Namely, when $\|C\| = 0$, the
 296 constraints in equation 1 reduce to linear constraints and subsequently, Equation (4) holds. Thus,
 297 according to the above result, the linear convergence of Lagrangian holds, which has been proved in
 298 the literature. In addition, Theorem 3.2 implies that even if nonlinear terms in the constraints exist, as
 299 long as $\|C\|$ is small enough, the linear convergence is still preserved.

300 It is important to emphasize that the above result requires differentiability of the Lagrangian at the
 301 limit point, which may not be valid in certain problems. Next, we replace this assumption with an
 302 additional minor assumption on the constraints for x_i s. Namely, we assume that they belong to some
 303 polyhedrals (see Appendix A). These types of constraints are common in various practical problems.

304 **Theorem 3.3.** *Under the assumptions of Theorem 3.1, when matrix Q satisfies equation 4 and
 305 $\{I_i\}$ are the indicator functions of some polyhedral, then, the iterates of ADMM satisfy*

$$307 \quad L(x^k, z^k, w^k) - \min_{(x, z) \in \mathcal{B}(x^k, z^k; r)} L(x, z, w^k) \in \mathcal{O}(c_2^{-k}),$$

308 where $c_2 > 1$ and $r > 0$ are constant. Furthermore, $\lim_{k \rightarrow \infty} (x^k, z^k) = (x^*, z^*)$ is a local
 309 minimum of problem equation 1.

312 **Approximated ADMM:** The algorithm in 1 is required to solve a series of sub-problems at each
 313 iteration in order to update $\{x_i\}$ and z . The results presented in the previous section are established
 314 under the assumption that these sub-problems are solved exactly. Although each sub-problem is
 315 strongly convex and efficiently solvable via gradient methods, it remains unclear whether the previous
 316 convergence rates hold under inexact solutions. In Appendix D.1, we introduce an approximated-
 317 ADMM and provide its convergence guarantees.

318 4 APPLICATION IN ROBOTICS

320 In the locomotion problem, the robot's centroidal momentum dynamics are considered (Viereck &
 321 Righetti, 2021; Meduri et al., 2023). The location, velocity, and angular momentum generated around
 322 the center of mass (CoM) are denoted by \mathbf{c} , $\dot{\mathbf{c}}$, and \mathbf{k} . We aim to optimize the objective function
 323 subject to the physics constraints, i.e., Newton-Euler equations. By discretizing the Newton-Euler
 324 equations and fixing the contact sequence and its timing, the optimal control problem for locomotion

324 can be written in the following unified way.

$$\begin{aligned}
 326 \quad & \min_{\mathbf{c}, \dot{\mathbf{c}}, \mathbf{k}, \mathbf{f}} \sum_{i=0}^{T-1} \phi_t(\mathbf{c}_i, \dot{\mathbf{c}}_i, \mathbf{k}_i, \mathbf{f}_i) + \phi_T(\mathbf{c}_T, \dot{\mathbf{c}}_T, \mathbf{k}_T), \\
 327 \quad & \text{s.t. } \mathbf{c}_{i+1} = \mathbf{c}_i + \dot{\mathbf{c}}_i \Delta t, \quad \dot{\mathbf{c}}_{i+1} = \dot{\mathbf{c}}_i + \sum_{j=1}^N \frac{\mathbf{f}_i^j}{m} \Delta t + \mathbf{g} \Delta t, \quad \dot{\mathbf{c}}_0 = \dot{\mathbf{c}}_{init}, \quad \mathbf{c}_0 = \mathbf{c}_{init}, \\
 328 \quad & \mathbf{k}_{i+1} = \mathbf{k}_i + \sum_{j=1}^N (\mathbf{r}_i^j - \mathbf{c}_i) \times \mathbf{f}_i^j \Delta t, \quad \mathbf{k}_0 = \mathbf{k}_{init}, \quad \mathbf{f}_i^j \in \Omega_i^j, \quad \forall i, j,
 \end{aligned} \tag{5}$$

329 where Δt is the time discretization, subscript i stands for time index, T being the last one. Superscript
330 j specifies the index of the end-effector in contact with the environment, and N is the number of
331 the end-effector. Variables $\mathbf{c}_i, \dot{\mathbf{c}}_i, \mathbf{k}_i, \mathbf{f}_i^j$ denote the location, speed, angular momentum of the center
332 of mass and the friction force at j -th contact at i -th discretization. The location of the end-effector
333 in contact \mathbf{r} is known. The initial conditions for the CoM are given by $\mathbf{c}_{init}, \dot{\mathbf{c}}_{init}, \mathbf{k}_{init}$. Function ϕ_t
334 represents the running cost, ϕ_T is the terminal cost, and the friction \mathbf{f}_i^j is constrained to lie within a
335 safe region Ω_i^j , which we assume it is cone and use polyhedral approximation to represent it. Note
336 that this is a multi-affine equality constraint due to the term $\mathbf{c} \times \mathbf{f}$ in the angular momentum dynamics.
337

338 Next, we reformulate the problem into the form of equation 1 and apply the previous results to derive
339 the ADMM convergence rate. First, notice that the variables \mathbf{c}_i and $\dot{\mathbf{c}}_i$ can be rewritten as functions
340 of $\mathbf{f} = \{\mathbf{f}_i\}$. See Appendix C for details. Second, by defining a new set of variables $\mathbf{k}' = \{\mathbf{k}'_i\}$ as
341 $\mathbf{k}'_{i+1} := \mathbf{k}_{i+1} - \mathbf{k}_i$ for $i \geq 0$ and $\mathbf{k}'_0 := \mathbf{k}_{init}$ and assuming that the running and terminal costs can
342 be decomposed into $f(\mathbf{f}) + \phi(\mathbf{k}')$, we obtain the following equivalent problem.

$$\begin{aligned}
 343 \quad & \min_{\mathbf{k}', \mathbf{f}} f(\mathbf{f}) + \phi(\mathbf{k}') + \sum_{i=0}^T I_i(\mathbf{f}_i), \\
 344 \quad & \text{s.t. } \mathbf{k}'_0 = \mathbf{k}_{init}, \quad \mathbf{k}'_1 = \sum_{j=1}^N \left((\mathbf{r}_0^j - \mathbf{c}_{init}) \times \mathbf{f}_0^j \right) \Delta t, \quad \mathbf{k}'_2 = \sum_{j=1}^N \left((\mathbf{r}_1^j - \mathbf{c}_{init} - \dot{\mathbf{c}}_{init} \Delta t) \times \mathbf{f}_1^j \right) \Delta t, \\
 345 \quad & \mathbf{k}'_{i+1} = \sum_{j=1}^N \left((\mathbf{r}_i^j - \mathbf{c}_{init} - \dot{\mathbf{c}}_{init} i(\Delta t) - \sum_{i'=0}^{i-2} (i-1-i')(\sum_{l=1}^N \frac{\mathbf{f}_i^l}{m} + \mathbf{g})(\Delta t)^2) \times \mathbf{f}_i^j \right) \Delta t, \quad i \geq 2,
 \end{aligned} \tag{6}$$

346 Problem in equation 6 has the same form as in equation 1. This can be seen by defining z and x in
347 equation 1 to be $z := [\mathbf{k}'_0, \mathbf{k}'_1, \dots, \mathbf{k}'_T]^T$ and $x := [x_0, \dots, x_T]^T$, where $x_i := [\mathbf{f}_i^1, \dots, \mathbf{f}_i^N]$. By
348 denoting the corresponding Lagrangian function of the above problem as $L(\mathbf{f}, \mathbf{k}', w) = L(x, z, w)$,
349 we can apply the results from the previous section.

350 **Corollary 4.1.** *Under the assumptions of Theorem 3.1 with sufficiently large ρ , the iterates of the
351 ADMM applied to the problem in equation 6 satisfy $L(x^k, z^k, w^k) - L(x^*, z^*, w^*) \in o(1/k)$.*

352 We also extend the result of Theorem 3.2 to the locomotion problem for which we require that the
353 blocks of the initial point x^0 , the global minimizer of $f(x)$ and $\phi(z)$, x_f^* and ϕ_z^* are all bounded, i.e.,
354

$$\|x^0\|^2, \|x_f^*\|^2 \in \mathcal{O}(n_x), \quad \|z_\phi^*\|^2 \in \mathcal{O}(n_z). \tag{7}$$

355 This requirement holds in almost all physical problems. Note that equation 6 is a multi-affine quadratic
356 constrained problem with the nonlinear term proportional to $(\Delta t)^3$. As $\Delta t \rightarrow 0$, the nonlinear term
357 decays and subsequently, the linear convergence is guaranteed according to Theorem 3.2.

358 **Corollary 4.2.** *Under the assumptions of Corollary 4.1, if equation 7 holds and $L(x, z, w)$ is
359 second-order differentiable at the limit point (x^*, z^*, w^*) , then there exists $c_3 > 1$ and $t_0 > 0$,
360 such that the iterates of the ADMM applied to the problem in equation 6 with $\Delta t \leq t_0$ satisfy*

$$L(x^k, z^k, w^k) - L(x^*, z^*, w^*) \in \mathcal{O}(c_3^{-k}),$$

361 *Furthermore, (x^*, z^*) is a local minimum of problem 6.*

362 In Appendix E, we further extend the result of Theorem 3.3 to the locomotion problem when L is not
363 second-order differentiable at (x^*, z^*, w^*) and show that linear convergence remains achievable.

Figure 4: Left: convex objective with multi-affine constraint. Center: convex objective with linear constraint. Right: nonconvex objective with linear constraint

5 EXPERIMENTS

In this section, we first present a toy example to study the effect of the multi-affine constraint on the convergence rate of the ADMM. Next, we apply the ADMM algorithm to simplified 2D example of locomotion and dynamic locomotion.

Effect of multi-affine quadratic constraint on the convergence rate: Recall that the constraint set of the problem in (1) consists of two parts: the multi-affine quadratic operator $A(\cdot)$, and the linear part represented by Q . According to Theorems 3.2 and 3.3, when the linearity in the constraint becomes dominant, it results in a linear convergence rate. To study the effect of linearity in the constraint on the ADMM’s convergence, we consider the following,

$$\begin{aligned} \min_{\{x_i\}, z} \quad & \frac{\mu_x}{2} (x_1^2 + x_2^2 + x_3^2 + x_4^2) + \frac{\mu_z}{2} z^2, \\ \text{s.t.} \quad & x_1 x_2 - x_3 x_4 + qz + 1 = 0. \end{aligned}$$

In this problem, the effect of non-linearity is quantified by the coefficient q . As q becomes larger, it ensures the convergence rate is linear. Condition in (4) suggests $q \geq 10$ to ensure linear convergence. This is illustrated in Figure 2, showing the convergence results of ADMM under different q .

Figure 2: Performance of the ADMM under the effect of nonlinearity.

Comparison with Existing Methods: To further demonstrate the effectiveness of our method, we conduct a comparative study against PADMM of Yashinski (2021), IPDS-ADMM of Yuan (2025) and IADMM from Tang & Toh (2024) under three scenarios: (i) convex objective with multi-affine constraints, (ii) convex objective with linear constraints, and (iii) nonconvex objective with linear constraints. These methods aim to improve efficiency in linearly constrained problems. However, they currently lack theoretical guarantees when applied to nonlinear constrained problems. As illustrated in Figure 4, our algorithm achieves superior performance when the constraints are nonlinear, while comparable performance in other settings. This highlights the robustness and the efficiency of our approach beyond the convex setting.

2D Locomotion problem: Figure 5 depicts a 2D locomotion problem in which the goal is to achieve smooth walking behaviors, potentially involving varying step lengths at different time steps. To demonstrate the performance of the ADMM algorithm for finding the optimal trajectories, i.e., $\{f_i, k_i\}$, we considered this 2D version of the problem in (5).

In this experiment, we selected a set of parameters that are close to a realistic application, namely, we set $m = 2$ kg (small-size robot in Grimminger et al. (2020)). We used the cost terms $f_i(f_i) = \frac{1}{2} \sum_{i=0}^T \|f_i\|^2 + I_i(f_i)$, and $\phi(z) = 5 \sum_{i=0}^T \|k'_i\|^2$. The constraints on f are designed to ensure that the center of mass remains within a specified target area.

Figure 3: Mean and standard deviation of dynamic violation values over optimization iterations. Results are shown for three different time discretizations. The x-axis shows the iteration number k .

Figure 5: Left: Schematic of a 2D locomotion problem. The robot has two contacts with friction f_1 and f_2 . The location and angular momentum are c and k . Center: Performance of the ADMM for different Δt . Right: Convergence rate of the ADMM for the 2D problem with random initialization.

Figure 6: Snapshots of the robot experiments. The top row shows a humanoid robot performing a vertical jump. The bottom row illustrates a quadruped robot executing a bounding gait. In both cases, centroidal trajectories and forces are found using equation 5, and then a kinematic optimization tracks the planned centroidal trajectory.

Figure 5(center) illustrates the convergence rate for different discretization time values Δt . Note that the y-axis is on the log scale. As suggested by the result of Corollary 4.2, for small enough Δt , linear convergence is guaranteed by the ADMM. While $\Delta t = 0.005$ sec as suggested by Corollary 4.2, our empirical results in Fig. 5 indicate that the bound provided in the corollary is conservative. In practice, ADMM exhibits a linear convergence rate even for significantly larger values of Δt . As shown in Fig. 5(right), ADMM consistently converges linearly regardless of the initial configuration.

Dynamic locomotion problem: Figure 6 depicts dynamic motions executed on a humanoid and quadrupedal robot. These motions can be described by a fixed contact sequence and transition times, which can be used to formulate equation 5. The resulting CoM trajectory (c, \dot{c}, k) can then be tracked via a kinematics optimization in order to be applied on a robotic system as depicted in the figure.

In this experiment, we show successful transfer of the centroidal trajectories found using equation 5 or its equivalent in equation 6 via Algorithm 1 to high-dimensional robotics systems. The kinematics optimization is executed using an open source implementation of Differential Dynamic Programming (DDP) Mastalli et al. (2020). We report the centroidal dynamics constraint violation per iteration of Algorithm 1 for the jumping motion of the humanoid for three different discretization values Δt . The results are depicted in Figure 3, displaying the mean and standard deviation for each Δt over 10 trials with randomized initial conditions.

6 CONCLUSION

In this paper, we provided theoretical guarantees for the convergence rate of ADMM when applied to a class of multi-affine quadratic equality-constrained problems. We proved that the sublinear convergence of the Lagrangian always holds, and every block of the limit point is the optimal solution when other blocks are fixed. We further proved that when the degree of non-convexity, measured by $\|C\|$, is small enough, the convergence will be linear. In addition, the limit point is a local minimum of the problem. Moreover, we applied our result to the locomotion problem in robotics. Our experimental results validated the correctness and robustness of our theorem. In the future, we plan to extend our results with higher-order non-linearity in the constraints and perform an extensive experiment on real-world applications.

486 7 REPRODUCIBILITY STATEMENT
487488 The main paper specifies the problem formulation (Section 2) and theoretical guarantees (Section
489 3). Details of the algorithm, assumptions, and proofs are provided in the appendix. The robotics
490 application (Section 4) and experiments (Section 5) are described with sufficient information for
491 implementation, and additional details are included in the appendix and the supplementary material.
492493 REFERENCES
494

495 Bernardo Aceituno-Cabezas, Carlos Mastalli, Hongkai Dai, Michele Focchi, Andreea Radulescu,
496 Darwin G Caldwell, José Cappelletto, Juan C Grieco, Gerardo Fernández-López, and Claudio
497 Semini. Simultaneous contact, gait, and motion planning for robust multilegged locomotion via
498 mixed-integer convex optimization. *IEEE Robotics and Automation Letters*, 3(3):2531–2538,
499 2017.

500 Alp Aydinoglu, Adam Wei, Wei-Cheng Huang, and Michael Posa. Consensus complementarity
501 control for multi-contact mpc. *IEEE Transactions on Robotics*, 2024.

502

503 Xiaowei Bao, Nikolaos V Sahinidis, and Mohit Tawarmalani. Semidefinite relaxations for quadrati-
504 cally constrained quadratic programming: A review and comparisons. *Mathematical programming*,
505 129:129–157, 2011.

506

507 Rina Foygel Barber and Emil Y Sidky. Convergence for nonconvex admm, with applications to ct
508 imaging. *Journal of Machine Learning Research*, 25(38):1–46, 2024.

509

510 GC Bento, BS Mordukhovich, TS Mota, and Yu Nesterov. Convergence of descent methods under
511 kurdyka- \backslash ojasiewicz properties. *arXiv preprint arXiv:2407.00812*, 2024.

512

513 Dimitri P Bertsekas. Nonlinear programming. *Journal of the Operational Research Society*, 48(3):
514 334–334, 1997.

515

516 Jérôme Bolte, Aris Daniilidis, Adrian Lewis, and Masahiro Shiota. Clarke subgradients of stratifiable
517 functions. *SIAM Journal on Optimization*, 18(2):556–572, 2007.

518

519 Radu Ioan Boț and Dang-Khoa Nguyen. The proximal alternating direction method of multipliers in
520 the nonconvex setting: convergence analysis and rates. *Mathematics of Operations Research*, 45
(2):682–712, 2020.

521

522 Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A tutorial on geometric
523 programming. *Optimization and engineering*, 8:67–127, 2007.

524

525 Xingju Cai, Deren Han, and Xiaoming Yuan. On the convergence of the direct extension of admm
526 for three-block separable convex minimization models with one strongly convex function. *Computa-
527 tional Optimization and Applications*, 66:39–73, 2017.

528

529 Loris Cannelli, Francisco Facchinei, Gesualdo Scutari, and Vyacheslav Kungurtsev. Asynchronous
530 optimization over graphs: Linear convergence under error bound conditions. *IEEE Transactions
531 on Automatic Control*, 66(10):4604–4619, 2020.

532

533 Lesi Chen, Boyuan Yao, and Luo Luo. Faster stochastic algorithms for minimax optimization under
534 polyak- $\{\backslash$ L $\}$ ojasiewicz condition. *Advances in Neural Information Processing Systems*, 35:
535 13921–13932, 2022.

536

537 Christopher A Choquette-Choo, Arun Ganesh, Ryan McKenna, H Brendan McMahan, John Rush,
538 Abhradeep Guha Thakurta, and Zheng Xu. (amplified) banded matrix factorization: A unified
539 approach to private training. *Advances in Neural Information Processing Systems*, 36:74856–74889,
2023.

Francis Clarke. On the inverse function theorem. *Pacific Journal of Mathematics*, 64(1):97–102,
1976.

540 Constantinos Daskalakis, Dylan J Foster, and Noah Golowich. Independent policy gradient methods
 541 for competitive reinforcement learning. *Advances in neural information processing systems*, 33:
 542 5527–5540, 2020.

543

544 Robin Deits and Russ Tedrake. Footstep planning on uneven terrain with mixed-integer convex
 545 optimization. In *2014 IEEE-RAS international conference on humanoid robots*, pp. 279–286. IEEE,
 546 2014.

547 Wei Deng, Ming-Jun Lai, Zhimin Peng, and Wotao Yin. Parallel multi-block admm with $O(1/k)$
 548 convergence. *Journal of Scientific Computing*, 71:712–736, 2017.

549

550 Lahcen El Bourkhissi and Ion Necoara. Convergence rates for an inexact linearized admm for nons-
 551 mooth nonconvex optimization with nonlinear equality constraints. *Computational Optimization
 552 and Applications*, pp. 1–39, 2025.

553

554 Sourour Elloumi and Amélie Lambert. Global solution of non-convex quadratically constrained
 555 quadratic programs. *Optimization methods and software*, 34(1):98–114, 2019.

556

557 Ilyas Fatkhullin, Jalal Etesami, Niao He, and Negar Kiyavash. Sharp analysis of stochastic optimiza-
 558 tion under global kurdyka–łojasiewicz inequality. *Advances in Neural Information Processing
 Systems*, 35:15836–15848, 2022.

559

560 Paul Feehan. Resolution of singularities and geometric proofs of the Łojasiewicz inequalities. *Geome-
 561 try & Topology*, 23(7):3273–3313, 2019.

562

563 Pierre Frankel, Guillaume Garrigos, and Juan Peypouquet. Splitting methods with variable metric for
 564 kurdyka–łojasiewicz functions and general convergence rates. *Journal of Optimization Theory and
 Applications*, 165:874–900, 2015.

565

566 Wenbo Gao, Donald Goldfarb, and Frank E Curtis. Admm for multi-affine constrained optimization.
 567 *Optimization Methods and Software*, 35(2):257–303, 2020.

568

569 Felix Grimminger, Avadesh Meduri, Majid Khadiv, Julian Viereck, Manuel Wüthrich, Maximi-
 570 lien Naveau, Vincent Berenz, Steve Heim, Felix Widmaier, Thomas Flayols, et al. An open
 571 torque-controlled modular robot architecture for legged locomotion research. *IEEE Robotics and
 Automation Letters*, 5(2):3650–3657, 2020.

572

573 Zhishuai Guo, Yan Yan, Zhuoning Yuan, and Tianbao Yang. Fast objective & duality gap convergence
 574 for non-convex strongly-concave min-max problems with pl condition. *Journal of Machine
 Learning Research*, 24(148):1–63, 2023.

575

576 Alexander Herzog, Stefan Schaal, and Ludovic Righetti. Structured contact force optimization for
 577 kino-dynamic motion generation. In *2016 IEEE/RSJ International Conference on Intelligent
 578 Robots and Systems (IROS)*, pp. 2703–2710. IEEE, 2016.

579

580 Francois R Hogan and Alberto Rodriguez. Reactive planar non-prehensile manipulation with hybrid
 581 model predictive control. *The International Journal of Robotics Research*, 39(7):755–773, 2020.

582

583 Hamed Karimi, Julie Nutini, and Mark Schmidt. Linear convergence of gradient and proximal-
 584 gradient methods under the polyak–łojasiewicz condition. In *Machine Learning and Knowledge
 585 Discovery in Databases: European Conference, ECML PKDD 2016, Riva del Garda, Italy,
 September 19–23, 2016, Proceedings, Part I* 16, pp. 795–811. Springer, 2016.

586

587 Vivek Khatana and Murti V Salapaka. Dc-distadmm: Admm algorithm for constrained optimization
 588 over directed graphs. *IEEE Transactions on Automatic Control*, 68(9):5365–5380, 2022.

589

590 Gijeong Kim, Dongyun Kang, Joon-Ha Kim, Seungwoo Hong, and Hae-Won Park. Contact-implicit
 591 mpc: Controlling diverse quadruped motions without pre-planned contact modes or trajectories.
arXiv preprint arXiv:2312.08961, 2023.

592

593 Weiwei Kong and Renato DC Monteiro. Global complexity bound of a proximal admm for linearly
 594 constrained nonseparable nonconvex composite programming. *SIAM Journal on Optimization*, 34
 (1):201–224, 2024.

594 Siqi Kou, Lanxiang Hu, Zhezhi He, Zhijie Deng, and Hao Zhang. Cllms: Consistency large language
 595 models. In *Forty-first International Conference on Machine Learning*, 2024.

596

597 Mark W Krentel. The complexity of optimization problems. In *Proceedings of the eighteenth annual*
 598 *ACM symposium on Theory of computing*, pp. 69–76, 1986.

599

600 Simon Le Cleac'h, Taylor A Howell, Shuo Yang, Chi-Yen Lee, John Zhang, Arun Bishop, Mac Schwa-
 601 ger, and Zachary Manchester. Fast contact-implicit model predictive control. *IEEE Transactions*
 602 *on Robotics*, 2024.

603

604 Jon Lee and Sven Leyffer. *Mixed integer nonlinear programming*, volume 154. Springer Science &
 605 Business Media, 2011.

606

607 Bowen Li and Ya-xiang Yuan. Convergent proximal multiblock admm for nonconvex dynamics-
 608 constrained optimization. *arXiv preprint arXiv:2506.17405*, 2025.

609

610 Jiaxiang Li, Shiqian Ma, and Tejes Srivastava. A riemannian alternating direction method of
 611 multipliers. *Mathematics of Operations Research*, 2024.

612

613 Xiao Li, Andre Milzarek, and Junwen Qiu. Convergence of random reshuffling under the kurdyka-
 614 Łojasiewicz inequality. *SIAM Journal on Optimization*, 33(2):1092–1120, 2023.

615

616 Tian-Yi Lin, Shi-Qian Ma, and Shu-Zhong Zhang. On the sublinear convergence rate of multi-block
 617 admm. *Journal of the Operations Research Society of China*, 3:251–274, 2015a.

618

619 Tianyi Lin, Shiqian Ma, and Shuzhong Zhang. On the global linear convergence of the admm with
 620 multiblock variables. *SIAM Journal on Optimization*, 25(3):1478–1497, 2015b.

621

622 Tianyi Lin, Shiqian Ma, and Shuzhong Zhang. Iteration complexity analysis of multi-block admm
 623 for a family of convex minimization without strong convexity. *Journal of Scientific Computing*, 69
 624 (1):52–81, 2016.

625

626 Tianyi Lin, Shiqian Ma, and Shuzhong Zhang. Global convergence of unmodified 3-block admm for
 627 a class of convex minimization problems. *Journal of Scientific Computing*, 76(1):69–88, 2018.

628

629 Zhenqing Ling, Daoyuan Chen, Liuyi Yao, Yaliang Li, and Ying Shen. On the convergence of
 630 zeroth-order federated tuning for large language models. In *Proceedings of the 30th ACM SIGKDD*
 631 *Conference on Knowledge Discovery and Data Mining*, pp. 1827–1838, 2024.

632

633 Ji Liu, Steve Wright, Christopher Ré, Victor Bittorf, and Srikrishna Sridhar. An asynchronous parallel
 634 stochastic coordinate descent algorithm. In *International Conference on Machine Learning*, pp.
 635 469–477. PMLR, 2014.

636

637 Lei Luo, Yanfu Zhang, and Heng Huang. Adversarial nonnegative matrix factorization. In *Inter-
 638 national Conference on Machine Learning*, pp. 6479–6488. PMLR, 2020.

639

640 Hanbaek Lyu. Stochastic regularized majorization-minimization with weakly convex and multi-
 641 convex surrogates. *Journal of Machine Learning Research*, 25(306):1–83, 2024.

642

643 Carlos Mastalli, Rohan Budhiraja, Wolfgang Merkt, Guilhem Saurel, Bilal Hammoud, Maximilien
 644 Naveau, Justin Carpentier, Ludovic Righetti, Sethu Vijayakumar, and Nicolas Mansard. Crocoddyl:
 645 An Efficient and Versatile Framework for Multi-Contact Optimal Control. In *IEEE International
 Conference on Robotics and Automation (ICRA)*, 2020.

646

647 Avadesh Meduri, Paarth Shah, Julian Viereck, Majid Khadiv, Ioannis Havoutis, and Ludovic Righetti.
 648 Biconmp: A nonlinear model predictive control framework for whole body motion planning. *IEEE*
 649 *Transactions on Robotics*, 2023.

650

651 Robert Nishihara, Laurent Lessard, Ben Recht, Andrew Packard, and Michael Jordan. A general
 652 analysis of the convergence of admm. In *International conference on machine learning*, pp.
 653 343–352. PMLR, 2015.

654

655 Brahayam Ponton, Majid Khadiv, Avadesh Meduri, and Ludovic Righetti. Efficient multicontact
 656 pattern generation with sequential convex approximations of the centroidal dynamics. *IEEE*
 657 *Transactions on Robotics*, 37(5):1661–1679, 2021.

648 Michael Posa, Cecilia Cantu, and Russ Tedrake. A direct method for trajectory optimization of rigid
 649 bodies through contact. *The International Journal of Robotics Research*, 33(1):69–81, 2014.
 650

651 Quentin Rebjock and Nicolas Boumal. Fast convergence to non-isolated minima: four equivalent
 652 conditions for c_2 functions. *Mathematical Programming*, pp. 1–49, 2024.

653 R Tyrrell Rockafellar and Roger J-B Wets. *Variational analysis*, volume 317. Springer Science &
 654 Business Media, 2009.

655

656 Nikolaos V Sahinidis. Mixed-integer nonlinear programming 2018, 2019.
 657

658 Paarth Shah, Avadesh Meduri, Wolfgang Merkt, Majid Khadiv, Ioannis Havoutis, and Ludovic
 659 Righetti. Rapid convex optimization of centroidal dynamics using block coordinate descent. In
 660 *2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, 2021.

661 Xinyue Shen, Steven Diamond, Madeleine Udell, Yuantao Gu, and Stephen Boyd. Disciplined
 662 multi-convex programming. In *2017 29th Chinese control and decision conference (CCDC)*, pp.
 663 895–900. IEEE, 2017.

664

665 Wei Shi, Qing Ling, Kun Yuan, Gang Wu, and Wotao Yin. On the linear convergence of the admm in
 666 decentralized consensus optimization. *IEEE Transactions on Signal Processing*, 62(7):1750–1761,
 667 2014.

668 Tran Van Su. Optimality and duality for nonsmooth mathematical programming problems with
 669 equilibrium constraints. *Journal of Global Optimization*, 85(3):663–685, 2023.

670

671 Tianyun Tang and Kim-Chuan Toh. Self-adaptive admm for semi-strongly convex problems. *Mathe-
 672 matical Programming Computation*, 16(1):113–150, 2024.

673

674 Ilyass Taouil, Lorenzo Amatucci, Majid Khadiv, Angela Dai, Victor Barasol, Giulio Turrisi, and
 675 Claudio Semini. Non-gaited legged locomotion with monte-carlo tree search and supervised
 676 learning. *IEEE Robotics and Automation Letters*, 2024.

677

678 Yuval Tassa, Tom Erez, and Emanuel Todorov. Synthesis and stabilization of complex behaviors
 679 through online trajectory optimization. In *2012 IEEE/RSJ International Conference on Intelligent
 680 Robots and Systems*, pp. 4906–4913. IEEE, 2012.

681

682 Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel, and Tom Goldstein. Training
 683 neural networks without gradients: A scalable admm approach. In *International conference on
 machine learning*, pp. 2722–2731. PMLR, 2016.

684

685 Marc Toussaint, Jason Harris, Jung-Su Ha, Danny Driess, and Wolfgang Höning. Sequence-of-
 686 constraints mpc: Reactive timing-optimal control of sequential manipulation. In *2022 IEEE/RSJ
 687 International Conference on Intelligent Robots and Systems (IROS)*, pp. 13753–13760. IEEE, 2022.

688

689 Marc A Toussaint, Kelsey Rebecca Allen, Kevin A Smith, and Joshua B Tenenbaum. Differentiable
 690 physics and stable modes for tool-use and manipulation planning. 2018.

691

692 Julian Viereck and Ludovic Righetti. Learning a centroidal motion planner for legged locomotion. In
 693 *2021 IEEE International Conference on Robotics and Automation (ICRA)*, pp. 4905–4911. IEEE,
 2021.

694

695 Cangqing Wang, Mingxiu Sui, Dan Sun, Zecheng Zhang, and Yan Zhou. Theoretical analysis of meta
 696 reinforcement learning: Generalization bounds and convergence guarantees. In *Proceedings of the
 697 International Conference on Modeling, Natural Language Processing and Machine Learning*, pp.
 153–159, 2024.

698

699 Yu Wang, Wotao Yin, and Jinshan Zeng. Global convergence of admm in nonconvex nonsmooth
 700 optimization. *Journal of Scientific Computing*, 78:29–63, 2019.

701 P-B Wieber. Holonomy and nonholonomy in the dynamics of articulated motion. In *Fast motions in
 biomechanics and robotics*, pp. 411–425. Springer, 2006.

702 Manuel Wüthrich, Felix Widmaier, Felix Grimminger, Joel Akpo, Shruti Joshi, Vaibhav Agrawal,
 703 Bilal Hammoud, Majid Khadiv, Miroslav Bogdanovic, Vincent Berenz, et al. Trifinger: An
 704 open-source robot for learning dexterity. In *Conference on Robot Learning (CoRL)*, 2020.

705 Gongxian Xu. Global optimization of signomial geometric programming problems. *European journal*
 706 *of operational research*, 233(3):500–510, 2014.

708 Tengyu Xu, Yingbin Liang, and Guanghui Lan. Crpo: A new approach for safe reinforcement
 709 learning with convergence guarantee. In *International Conference on Machine Learning*, pp.
 710 11480–11491. PMLR, 2021.

711 Yangyang Xu and Wotao Yin. A block coordinate descent method for regularized multiconvex
 712 optimization with applications to nonnegative tensor factorization and completion. *SIAM Journal*
 713 *on imaging sciences*, 6(3):1758–1789, 2013.

715 Yu Yang, Xiaohong Guan, Qing-Shan Jia, Liang Yu, Bolun Xu, and Costas J Spanos. A survey of
 716 admm variants for distributed optimization: Problems, algorithms and features. *arXiv preprint*
 717 *arXiv:2208.03700*, 2022.

718 Maryam Yashtini. Multi-block nonconvex nonsmooth proximal admm: Convergence and rates under
 719 kurdyka–łojasiewicz property. *Journal of Optimization Theory and Applications*, 190(3):966–998,
 720 2021.

722 Ganzhao Yuan. Admm for nonconvex optimization under minimal continuity assumption. *ICLR*,
 723 2025.

724 Ganzhao Yuan and Bernard Ghanem. Binary optimization via mathematical programming with
 725 equilibrium constraints. *arXiv preprint arXiv:1608.04425*, 2016.

727 Jinshan Zeng, Shao-Bo Lin, Yuan Yao, and Ding-Xuan Zhou. On admm in deep learning: Conver-
 728 gence and saturation-avoidance. *Journal of Machine Learning Research*, 22(199):1–67, 2021.

729 Hengmin Zhang, Junbin Gao, Jianjun Qian, Jian Yang, Chunyan Xu, and Bob Zhang. Linear
 730 regression problem relaxations solved by nonconvex admm with convergence analysis. *IEEE*
 731 *Transactions on Circuits and Systems for Video Technology*, 2023.

732 Hui Zhang and Wotao Yin. Gradient methods for convex minimization: better rates under weaker
 733 conditions. *arXiv preprint arXiv:1303.4645*, 2013.

735 Huaijiang Zhu, Avadesh Meduri, and Ludovic Righetti. Efficient object manipulation planning with
 736 monte carlo tree search. In *2023 IEEE/RSJ international conference on intelligent robots and*
 737 *systems (IROS)*. IEEE, 2023.

739 **Appendix**

741 **A TECHNICAL DEFINITIONS AND LEMMAS**

743 **Definition A.1.** Let $f : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{\infty\}$ and $x \in \text{dom}(f)$. A vector v is a regular subgradient of f
 744 at x , indicated by $v \in \widehat{\partial}f(x)$, if $f(y) \geq f(x) + \langle v, y - x \rangle + o(\|y - x\|)$ for all $y \in \mathbb{R}^n$. A vector v
 745 is a general subgradient, indicated by $v \in \partial f(x)$, if there exist sequences $x_n \rightarrow x$ and $v_n \rightarrow v$ with
 746 $f(x_n) \rightarrow f(x)$ and $v_n \in \widehat{\partial}f(x_n)$.

748 **Definition A.2** (Subanalytic set). A subset $V \subset \mathbb{R}^n$ is called subanalytic if for every point $x \in \mathbb{R}^n$
 749 there exist

- 750 - an open neighborhood $U \subset \mathbb{R}^n$ of x ,
- 751 - a real-analytic manifold M of dimension $n + m$,
- 752 - a relatively compact semianalytic set $S \subset M$,

753 and a real-analytic projection map $\pi : M \rightarrow \mathbb{R}^n$ such that $V \cap U = \pi(S) \cap U$.

754 **Definition A.3** (Subanalytic function). Let $U \subset \mathbb{R}^n$ be open. An extended-real-valued function
 755 $f : U \rightarrow \mathbb{R} \cup \{\pm\infty\}$ is called subanalytic if its graph $\Gamma_f = \{(x, y) \in U \times \mathbb{R} : y = f(x)\}$ is a
 756 subanalytic subset of \mathbb{R}^{n+1} .

756 **Definition A.4.** (KL property Bołt & Nguyen (2020)) The function Ψ is said to have the Kurdyka-
 757 Łojasiewicz (KL) property at a point $\hat{u} \in \text{dom } \partial\Psi := \{u \in \mathbb{R}^N : \partial\Psi(u) \neq \emptyset\}$, if there exist
 758 $\eta \in (0, +\infty]$, a neighborhood U of \hat{u} and a function $\varphi \in \Phi_\eta$ such that for every

$$760 \quad u \in U \cap [\Psi(\hat{u}) < \Psi(u) < \Psi(\hat{u}) + \eta]$$

761 it holds

$$762 \quad \varphi'(\Psi(u) - \Psi(\hat{u})) \cdot \text{dist}(0, \partial\Psi(u)) \geq 1,$$

763 where Φ_η is the set of all concave and continuous functions $\varphi : [0, \eta] \rightarrow [0, +\infty)$ which satisfy the
 764 following conditions:

- 766 1. $\varphi(0) = 0$;
- 767 2. φ is C^1 on $(0, \eta)$ and continuous at 0;
- 768 3. for all $s \in (0, \eta) : \varphi'(s) > 0$.

771 If $\phi(x) = Cx^{(\alpha-1)/\alpha}$ in the KL property, where C is a positive constant, then it is equivalent with
 772 α -PL condition in Definition 2.5.

773 **Definition A.5.** A polyhedral set is a set which can be expressed as the intersection of a finite set of
 774 closed half-spaces, i.e., $\{x \in \mathbb{R}^n | Ax \leq b\}$ as for some matrix $A \in \mathbb{R}^{m \times n}$ and vector $b \in \mathbb{R}^m$.

776 **Lemma A.6.** Rockafellar & Wets (2009) If $f = g + f_0$ with g finite at \bar{x} and f_0 smooth on a
 777 neighborhood of x , then $\partial f(x) = \partial g(x) + \nabla f_0(x)$.

778 **Lemma A.7.** Rockafellar & Wets (2009) For any proper, convex function $f : \mathbb{R}^n \rightarrow \overline{\mathbb{R}}$ and any point
 779 $\bar{x} \in \text{dom } f$, one has

$$780 \quad \partial f(\bar{x}) = \{v \mid f(x) \geq f(\bar{x}) + \langle v, x - \bar{x} \rangle \text{ for all } x\}.$$

782 **Lemma A.8** (Gao et al. (2020)). Let h be a μ -strongly convex and L -smooth function, A be
 783 a linear map of x , and \mathcal{C} be a closed and convex set. Let $b_1, b_2 \in \text{Im}(A)$, and consider the
 784 sets $\mathcal{U}_1 = \{x : Ax + b_1 \in \mathcal{C}\}$ and $\mathcal{U}_2 = \{x : Ax + b_2 \in \mathcal{C}\}$, which we assume to be nonempty.
 785 Let $x^* = \text{argmin} \{h(x) : x \in \mathcal{U}_1\}$ and $y^* = \text{argmin} \{h(y) : y \in \mathcal{U}_2\}$. Then, $\|x^* - y^*\| \leq$

$$786 \quad \frac{1 + \frac{2L}{\mu}}{\sqrt{\lambda_{\min}^+(AA^T)}} \|b_2 - b_1\|.$$

788 **Theorem A.9** (Bolte et al. (2007)). Assume that $f : \mathbb{R}^n \rightarrow \mathbb{R} \cup \{+\infty\}$ is a lower semi-continuous
 789 globally sub-analytic function and $f(x_0) = 0$, where $\mathbf{0} \in \partial f(x_0)$. Then, there exist $\delta > 0$ and
 790 $\theta \in [0, 1)$ such that for all $x \in |f|^{-1}(0, \delta)$, we have

$$791 \quad |f(x)|^\theta \leq \rho \|x^*\|, \quad \text{for all } x^* \in \partial f(x).$$

793 **Lemma A.10** (Inverse Function Theorem Clarke (1976)). Let $u_0 \in X$ and $h_0 \in Y$ such that
 794 $g(u_0) = h_0$ and suppose that there exists a neighborhood $U_0 \subset X$ of u_0 such that 1) $g \in C^1$ for all
 795 the point in U_0 ; 2) $dg(u_0)$ is invertible. Then, there exist neighborhoods $U \subset U_0$ of u_0 and $V \subset Y$
 796 of h_0 , such that the equation $g(u) = h$ has a unique solution in U , for all $h \in V$.

797 **Definition A.11** (Feehan (2019)). Let $d \geq 1$ be an integer, $U \subset \mathbb{K}^d$ be an open subset, $E : U \rightarrow \mathbb{K}$
 798 be a C^2 function, and $\text{Crit}(E) := \{x \in U : \nabla E(x) = 0\}$. We say that E is Morse-Bott at a point
 799 $x_\infty \in \text{Crit}(E)$ if 1) $\text{Crit}(E)$ is a C^2 sub-manifold of U , and 2) $T_{x_\infty} \text{Crit}(E) = \text{Ker } \nabla^2 E(x_\infty)$,
 800 where $T_x \text{Crit}(E)$ is the tangent space to $\text{Crit}(E)$ at a point $x \in \text{Crit}(E)$.

801 **Theorem A.12.** Feehan (2019) Let $d \geq 1$ be an integer and $U \subset \mathbb{K}^d$ an open subset. If $E : U \rightarrow \mathbb{K}$
 802 is a Morse-Bott function, then there are constants $C \in (0, \infty)$ and $\sigma_0 \in (0, 1]$ such that

$$803 \quad \|\nabla E(x)\| \geq C_0 |E(x) - E(x_\infty)|^{1/2}, \quad \text{for all } x \in \mathcal{B}(x_\infty; \sigma).$$

805 B ADDITIONAL EXPERIMENT DETAILS

808 The details of the problem in the comparison section are presented here. In that experiment, we
 809 consider the following problems and used three different optimizer including our ADMM and
 illustrated their convergence rates in Figure 4.

810 1. Convex objective with multi-affine constraints:

811

$$812 \min_{\{x_i\}, z} \frac{\mu_x}{2} (x_1^2 + x_2^2 + x_3^2 + x_4^2) + \frac{\mu_z}{2} z^2, \quad \text{s.t.} \quad x_1 x_2 - x_3 x_4 + 1.5z + 1 = 0.$$

813

814 2. Convex objective with linear constraints:

815

$$816 \min_{\{x_i\}, z} \frac{\mu_x}{2} (x_1^2 + x_2^2) + \frac{\mu_z}{2} z^2, \quad \text{s.t.} \quad x_1 + x_2 + z + 1 = 0.$$

817

818 3. Non-convex objective with linear constraints:

819

$$820 \min_{\{x_i\}, z} \frac{\mu_x}{2} (x_1^2 + 4 \sin^2(x_1) + x_2^2) + \frac{\mu_z}{2} z^2, \quad \text{s.t.} \quad x_1 + x_2 + z + 1 = 0.$$

821

822 C DERIVATIONS OF THE LOCOMOTION PROBLEM

823 Notice that the variables \mathbf{c}_i and $\dot{\mathbf{c}}_i$ for $i \geq 2$ in Problem Equation (5) can be rewritten as functions of
 824 $\mathbf{f} = \{\mathbf{f}_i\}$, as

825

$$826 \mathbf{c}_i(\mathbf{f}) = \mathbf{c}_{\text{init}} + \dot{\mathbf{c}}_{\text{init}} i(\Delta t) + \sum_{i'=0}^{i-2} (i-1-i') \left(\sum_{j=1}^N \frac{\mathbf{f}_{i'}^j}{m} + \mathbf{g} \right) (\Delta t)^2,$$

827

$$828 \dot{\mathbf{c}}_i(\mathbf{f}) = \dot{\mathbf{c}}_{\text{init}} + \sum_{i'=0}^{i-1} \sum_{j=1}^N \left(\frac{\mathbf{f}_{i'}^j}{m} + \mathbf{g} \right) (\Delta t).$$

829

830 D PROOFS OF THEOREMS IN SECTION 3

831 PROOF OF THEOREM 3.1

832 The proof consists of three main parts: i) to show that $\{L(x^k, z^k, w^k)\}$ is decreasing, ii) to show that
 833 the sequence $\{x^k, z^k, w^k\}$ is bounded and has a limit point, and iii) to use the α -PL property for
 834 establishing the convergence rate.

835 **i) $L(x^k, z^k, w^k)$ is decreasing:** From Assumption 2.3, f is strongly convex for each blocks i , we get

836

$$837 f(x_{1:i-1}^{k+1}, x_{i:n}^k) - f(x_{1:i}^{k+1}, x_{i+1:n}^k) \geq \langle \nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k), x_i^{k+1} - x_i^k \rangle + \frac{\mu_f}{2} \|x_i^{k+1} - x_i^k\|^2. \quad (8)$$

838

839 Furthermore, since I_i is convex, Lemma A.7 implies

840

$$I_i(x_i^{k+1}) \geq I_i(x_i^k) + \langle v, x_i^{k+1} - x_i^k \rangle, \quad (9)$$

841

842 for all $v \in \partial I_i(x_i^k)$. As $x_i^{k+1} \in \text{argmin} L(x_{1:i-1}^{k+1}, x_i, x_{i+1:n}^k, z^k, w^k)$, the subgradient at x_i^{k+1} satisfies

843

$$844 \mathbf{0} \in \partial L(x_{1:i}^{k+1}, x_{i+1:n}^k, z^k, w^k),$$

845

$$846 \implies \mathbf{0} \in \partial I(x_i^{k+1}) + \nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k) + \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k) w^k$$

847

$$848 + \rho \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k) (A(x_{1:i}^{k+1}, x_{i+1:n}^k) + Qz^k),$$

849

$$850 \implies -\nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k) - \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k) (w^k + \rho (A(x_{1:i}^{k+1}, x_{i+1:n}^k) + Qz^k)) \in \partial I(x_i^{k+1}). \quad (10)$$

851

852 where the second line holds from the fact that $f(x) + \langle w, A(x) + Qz \rangle + \frac{\rho}{2} \|A(x) + Qz\|^2$ is first-order
 853 differentiable and 8.8(c) of Rockafellar & Wets (2009). On the other hand, we have

854

$$855 L(x_{1:i-1}^{k+1}, x_{i:n}^k, z^k, w^k) - L(x_{1:i}^{k+1}, x_{i+1:n}^k, z^k, w^k)$$

856

$$857 = f(x_{1:i-1}^{k+1}, x_{i:n}^k) - f(x_{1:i}^{k+1}, x_{i+1:n}^k) + I_i(x_i^k) - I_i(x_i^{k+1}) + \langle w^k, A(x_{1:i-1}^{k+1}, x_{i:n}^k) - A(x_{1:i}^{k+1}, x_{i+1:n}^k) \rangle$$

858

$$859 + \frac{\rho}{2} (\|A(x_{1:i-1}^{k+1}, x_{i:n}^k) + Qz^k\|^2 - \|A(x_{1:i}^{k+1}, x_{i+1:n}^k) + Qz^k\|^2)$$

860

$$861 = f(x_{1:i-1}^{k+1}, x_{i:n}^k) - f(x_{1:i}^{k+1}, x_{i+1:n}^k) + I_i(x_i^k) - I_i(x_i^{k+1}) + \langle w^k, A(x_{1:i-1}^{k+1}, x_{i:n}^k) - A(x_{1:i}^{k+1}, x_{i+1:n}^k) \rangle$$

862

$$863 + \frac{\rho}{2} \|A(x_{1:i-1}^{k+1}, x_{i:n}^k) - A(x_{1:i}^{k+1}, x_{i+1:n}^k)\|^2 + \rho \langle A(x_{1:i-1}^{k+1}, x_{i:n}^k) - A(x_{1:i}^{k+1}, x_{i+1:n}^k), A(x_{1:i}^{k+1}, x_{i+1:n}^k) + Qz^k \rangle$$

$$\begin{aligned}
&= f(x_{1:i-1}^{k+1}, x_{i:n}^k) - f(x_{1:i}^{k+1}, x_{i+1:n}^k) + I_i(x_i^k) - I_i(x_i^{k+1}) + \frac{\rho}{2} \|A(x_{1:i-1}^{k+1}, x_{i:n}^k) - A(x_{1:i}^{k+1}, x_{i+1:n}^k)\|^2, \\
&\quad + \langle w^k + \rho(A(x_{1:i}^{k+1}, x_{i+1:n}^k) + Qz^k), A(x_{1:i-1}^{k+1}, x_{i:n}^k) - A(x_{1:i}^{k+1}, x_{i+1:n}^k) \rangle \\
&= f(x_{1:i-1}^{k+1}, x_{i:n}^k) - f(x_{1:i}^{k+1}, x_{i+1:n}^k) + I_i(x_i^k) - I_i(x_i^{k+1}) + \frac{\rho}{2} \|A(x_{1:i-1}^{k+1}, x_{i:n}^k) - A(x_{1:i}^{k+1}, x_{i+1:n}^k)\|^2, \\
&\quad + (x_i^k - x_i^{k+1})^T \nabla_i A(x_{1:i+1}^k, x_{i+1:n}^k) (w^k + \rho(A(x_{1:i}^{k+1}, x_{i+1:n}^k) + Qz^k)) \\
&= f(x_{1:i-1}^{k+1}, x_{i:n}^k) - f(x_{1:i}^{k+1}, x_{i+1:n}^k) + I_i(x_i^k) - I_i(x_i^{k+1}) + \frac{\rho}{2} \|A(x_{1:i-1}^{k+1}, x_{i:n}^k) - A(x_{1:i}^{k+1}, x_{i+1:n}^k)\|^2, \\
&\quad + (x_i^k - x_i^{k+1})^T (-v - \nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k)) \\
&= f(x_{1:i-1}^{k+1}, x_{i:n}^k) - f(x_{1:i}^{k+1}, x_{i+1:n}^k) - \langle \nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k), x_i^k - x_i^{k+1} \rangle \\
&\quad + I_i(x_i^k) - I_i(x_i^{k+1}) - \langle v, x_i^k - x_i^{k+1} \rangle + \frac{\rho}{2} \|A(x_{1:i-1}^{k+1}, x_{i+1:n}^k) - A(x_{1:i-1}^{k+1}, x_{i:n}^k)\|^2.
\end{aligned}$$

where $v \in \partial I(x_i^{k+1})$. The second equality is due to $\|V_1 - V_3\|^2 - \|V_2 - V_3\|^2 = \|V_2 - V_3\|^2 + 2\langle V_1 - V_2, V_2 - V_3 \rangle$, for all the vectors V_1, V_2 and V_3 . The fourth equality holds since $A(x_i, x_{-i})$ is an affine function for x_i when x_{-i} is fixed. We apply the Equation (10) at the fifth equality.

Consider the convexity property of f and I_i from Equation (8), Equation (9), the difference of Lagrangian can be further lower-bounded as

$$\begin{aligned}
&L(x_{1:i-1}^{k+1}, x_{i:n}^k, z^k, w^k) - L(x_{1:i}^{k+1}, x_{i+1:n}^k, z^k, w^k) \\
&= f(x_{1:i-1}^{k+1}, x_{i:n}^k) - f(x_{1:i}^{k+1}, x_{i+1:n}^k) - \langle \nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k), x_i^k - x_i^{k+1} \rangle \\
&\quad + I_i(x_i^k) - I_i(x_i^{k+1}) - \langle v, x_i^k - x_i^{k+1} \rangle + \frac{\rho}{2} \|A(x_{1:i}^{k+1}, x_{i+1:n}^k) - A(x_{1:i-1}^{k+1}, x_{i:n}^k)\|^2 \\
&\geq f(x_{1:i-1}^{k+1}, x_{i:n}^k) - f(x_{1:i}^{k+1}, x_{i+1:n}^k) - \langle \nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k), x_i^k - x_i^{k+1} \rangle \\
&\quad + I_i(x_i^k) - I_i(x_i^{k+1}) - \langle v, x_i^k - x_i^{k+1} \rangle \\
&\geq \frac{\mu_f}{2} \|x_i^{k+1} - x_i^k\|^2.
\end{aligned}$$

Adding up the above inequality for all the blocks, the difference of Lagrangian between (x^k, z^k, w^k) and (x^{k+1}, z^k, w^k) can be lower-bounded,

$$L(x^k, z^k, w^k) - L(x^{k+1}, z^k, w^k) \geq \frac{\mu_f}{2} \|x^{k+1} - x^k\|^2. \quad (11)$$

From the strong convexity of $\phi(z)$, the partial Hessian of Lagrangian on variable z is

$$\nabla_{zz}^2 L(x, z, w) = \nabla_{zz}^2 \phi(z) + \rho Q^T Q \succeq \mu_\phi I,$$

which indicates the Lagrangian is μ_ϕ -strongly convex at z . As $z^{k+1} \in \operatorname{argmin}_z L(x^{k+1}, z, w^k)$ and the strong-convexity of Lagrangian at z , the difference of Lagrangian between (x^{k+1}, z^k, w^k) and (x^{k+1}, z^{k+1}, w^k) can be lower-bounded,

$$L(x^{k+1}, z^k, w^k) - L(x^{k+1}, z^{k+1}, w^k) \geq \frac{\mu_\phi}{2} \|z^k - z^{k+1}\|^2. \quad (12)$$

From the update rule on z and w , the partial derivative on z at (x^{k+1}, z^{k+1}, w^k) satisfies,

$$\mathbf{0} = \nabla_z L(x^{k+1}, z^{k+1}, w^k) = \nabla \phi(z^{k+1}) + Q^T w^k + \rho Q^T (A(x^k) + Qz^{k+1}) = \nabla \phi(z^{k+1}) + Q^T w^{k+1}.$$

which indicates $Q^T w^k = -\nabla \phi(z^k)$ if $k \geq 1$. In addition, from the setting that $Q^T w^0 = -\nabla \phi(z^0)$, we have $Q^T w^k = -\nabla \phi(z^k)$ for all $k \geq 0$. Therefore, for all k , we get

$$\|w^{k+1} - w^k\|^2 \leq \frac{\|Q^T w^{k+1} - Q^T w^k\|^2}{\lambda_{\min}^+(Q^T Q)} = \frac{\|\nabla \phi(z^{k+1}) - \nabla \phi(z^k)\|^2}{\lambda_{\min}^+(Q^T Q)} \leq \frac{L_\phi^2 \|z^{k+1} - z^k\|^2}{\lambda_{\min}^+(Q^T Q)}. \quad (13)$$

After updating w , the Lagrangian between (x^{k+1}, z^{k+1}, w^k) and $(x^{k+1}, z^{k+1}, w^{k+1})$ is lower-bounded by

$$\begin{aligned}
L(x^{k+1}, z^{k+1}, w^k) - L(x^{k+1}, z^{k+1}, w^{k+1}) &= \langle w^k - w^{k+1}, A(x^{k+1}) + Qz^{k+1} \rangle \\
&= -\frac{1}{\rho} \|w^{k+1} - w^k\|^2 \geq -\frac{L_\phi^2 \|z^{k+1} - z^k\|^2}{\rho \lambda_{\min}^+(Q^T Q)}.
\end{aligned} \quad (14)$$

918 where the inequality is due to Equation (13). As a result, from Equation (11), Equation (12) and
919 Equation (47), the difference of Lagrangian between (x^k, z^k, w^k) and $(x^{k+1}, z^{k+1}, w^{k+1})$ satisfies
920

$$\begin{aligned}
921 \quad & L(x^k, z^k, w^k) - L(x^{k+1}, z^{k+1}, w^{k+1}) \\
922 \quad & \geq \frac{\mu_f}{2} \|x^{k+1} - x^k\|^2 + \left(\frac{\mu_\phi}{2} - \frac{L_\phi^2}{\rho \lambda_{\min}^+(Q^T Q)} \right) \|z^{k+1} - z^k\|^2, \\
923 \quad & \geq \frac{\mu_f}{2} \|x^{k+1} - x^k\|^2 + \frac{\mu_\phi}{4} \|z^{k+1} - z^k\|^2. \\
924 \quad & \geq \frac{\mu_f}{2} \|x^{k+1} - x^k\|^2 + \frac{\mu_\phi}{8} \|z^{k+1} - z^k\|^2 + \frac{\mu_\phi \lambda_{\min}^+(Q^T Q)}{8L_\phi^2} \|w^{k+1} - w^k\|^2, \forall k. \\
925 \quad & \\
926 \quad & \\
927 \quad & \\
928 \quad & \\
929 \quad & \\
930 \quad & \text{where we apply } \rho \geq \frac{4L_\phi^2}{\mu_\phi \lambda_{\min}^+(Q^T Q)} \text{ in the second inequality. In consequence, } \{L_k\}_{k=0}^{+\infty} \text{ is decreasing.} \\
931 \quad & \\
932 \quad \mathbf{ii)} (x^k, z^k, w^k) \text{ is bounded: For these iterate, by denoting } \tilde{z}^k \in \operatorname{argmin}\{\phi(z) | A(x^k) + Qz = 0\}, \\
933 \quad & \text{we have} \\
934 \quad & \\
935 \quad L(x^k, z^k, w^k) = f(x^k) + \phi(z^k) + \langle w^k, A(x^k) + Qz^k \rangle + \frac{\rho}{2} \|A(x^k) + Qz^k\|^2, \\
936 \quad & \\
937 \quad = f(x^k) + \phi(z^k) + \langle w^k, Q(z^k - \tilde{z}^k) \rangle + \frac{\rho}{2} \|A(x^k) + Qz^k\|^2, \\
938 \quad & \\
939 \quad = f(x^k) + \phi(z^k) + \langle \nabla \phi(z^k), \tilde{z}^k - z^k \rangle + \frac{\rho}{2} \|A(x^k) + Qz^k\|^2, \\
940 \quad & \\
941 \quad = f(x^k) + \phi(\tilde{z}^k) + \phi(z^k) - \phi(\tilde{z}^k) + \langle \nabla \phi(z^k), \tilde{z}^k - z^k \rangle + \frac{\rho}{2} \|A(x^k) + Qz^k\|^2, \\
942 \quad & \\
943 \quad \geq f(x^k) + \phi(\tilde{z}^k) - \frac{L_\phi}{2} \|z^k - \tilde{z}^k\|^2 + \frac{\rho}{2} \|A(x^k) + Qz^k\|^2. \\
944 \quad & \\
945 \quad \text{where the third line comes from } \nabla \phi(z^k) + Q^T w^k = 0, \text{ the fourth line is due to the Lipschitz gradient} \\
946 \quad & \text{of } \phi. \text{ Now, consider any } z' \text{ such that } -Qz^k + Qz' = 0, \text{ then} \\
947 \quad & \\
948 \quad L(x^{k+1}, z', w^k) - L(x^{k+1}, z^k, w^k) = \phi(z') - \phi(z^k). \\
949 \quad & \\
950 \quad \text{Since } z^k \in \operatorname{argmin} L(x^{k+1}, z, w^k), \text{ from the equation above, we get } \phi(z^k) \leq \phi(z'). \text{ In words,} \\
951 \quad & z^k \in \operatorname{argmin}\{\phi(z) | -Qz^k + Qz = 0\}, \forall k \geq 1. \text{ Notice that } \tilde{z}^k \in \operatorname{argmin}\{\phi(z) | A(x^k) + Qz = 0\} \\
952 \quad & \text{and } \phi(z) \text{ is strongly convex and smooth, from Lemma A.8, Equation (16) can be further lower-} \\
953 \quad & \text{bounded when } \rho \text{ is large enough,} \\
954 \quad & \\
955 \quad L(x^k, z^k, w^k) \geq f(x^k) + \phi(\tilde{z}^k) - \frac{L_\phi}{2} \|z^k - \tilde{z}^k\|^2 + \frac{\rho}{2} \|Q(z^k - \tilde{z}^k)\|^2, \\
956 \quad & \\
957 \quad \geq f(x^k) + \phi(\tilde{z}^k) + \left(\frac{\rho}{2} - \frac{\gamma L_\phi}{2} \right) \|A(x^k) + Qz^k\|^2, \\
958 \quad & \\
959 \quad \geq f(x^k) + \phi(\tilde{z}^k), \\
960 \quad & \\
961 \quad \geq f(x_f^*) + \phi(z_\phi^*) + \frac{\mu_f}{2} \|x^k - x_f^*\|^2 + \frac{\mu_\phi}{2} \|\tilde{z}^k - z_\phi^*\|^2. \\
962 \quad & \\
963 \quad \text{where } \gamma = \frac{1 + \frac{2L_\phi}{\mu_\phi}}{\sqrt{\lambda_{\min}^+(QQ^T)}} \text{ and we apply } \rho \geq \frac{4L_\phi^2}{\mu_\phi \sqrt{\lambda_{\min}^+(QQ^T)}}. \\
964 \quad & \\
965 \quad \text{The last line of Equation (17) and } \{L(x^k, z^k, w^k)\} \text{ being decreasing indicate } \{x^k\} \text{ and } \{\tilde{z}^k\} \text{ are} \\
966 \quad & \text{bounded. In addition, from the Equation (17), } \|\tilde{z}^k - z^k\|^2 \text{ can be upper-bounded as} \\
967 \quad & \\
968 \quad \|\tilde{z}^k - z^k\|^2 \leq \frac{2}{\rho - \gamma L_\phi} (L(x^k, z^k, w^k) - f(x^k) - \phi(\tilde{z}^k)), \\
969 \quad & \\
970 \quad \leq \frac{2}{\rho - \gamma L_\phi} (L(x^0, z^0, w^0) - f(x_f^*) - \phi(z_\phi^*)). \\
971 \quad & \\
972 \quad \text{This implies that } \{z^k\} \text{ is bounded sequence as well.}$$

972 As Q is full row rank, QQ^T is positive definite matrix. From the update rules of w , we know that
 973 $Q^T w^k = -\nabla \phi(z^k)$. Thus,
 974

$$\begin{aligned} 975 \quad \|w^k\| &= \|(QQ^T)^{-1}Q\nabla\phi(z^k)\| \\ 976 \quad &\leq \|(QQ^T)^{-1}Q\| \cdot \|\nabla\phi(z^k) - \nabla\phi(z_\phi^*)\| \\ 977 \quad &\leq \|(QQ^T)^{-1}Q\| \cdot \|\nabla\phi(z^k) - \nabla\phi(z_\phi^*)\| \leq L_\phi \|(QQ^T)^{-1}Q\| \cdot \|z^k - z_\phi^*\|. \end{aligned}$$

979 As $\{z^k\}$ is bounded, $\{w^k\}$ will be bounded. Hence, $\{x^k, z^k, w^k\}$ is bounded and a limit point exists.
 980 From the definition of $L(x^{k+1}, z^{k+1}, w^{k+1})$, its subgradient at x_i in $(k+1)$ -th iteration is
 981

$$\begin{aligned} 982 \quad \partial_i L(x^{k+1}, z^{k+1}, w^{k+1}) &= \partial_i I_i(x_i^{k+1}) + \nabla_i f(x_i^{k+1}) + \nabla_i A(x^{k+1})w^{k+1} \\ 983 \quad &\quad + \rho \nabla_i A(x^{k+1})(A(x^{k+1}) + Qz^{k+1}). \end{aligned}$$

985 From Equation (10), we have $-\nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k) - \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k)(w^k + \rho(A(x_{1:i}^{k+1}, x_{i+1:n}^k) + Qz^k)) \in \partial I(x_i^{k+1})$, thus, according to the above equation, $v_i^{k+1} \in \partial_i L(x^{k+1}, z^{k+1}, w^{k+1})$ can be
 986 written as follows.
 987

$$\begin{aligned} 988 \quad v_i^{k+1} &= -\nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k) - \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k)(w^k + \rho(A(x_{1:i}^{k+1}, x_{i+1:n}^k) + Qz^k)) \\ 989 \quad &\quad + \nabla_i f(x^{k+1}) + \nabla_i A(x^{k+1})w^{k+1} + \rho \nabla_i A(x^{k+1})(A(x^{k+1}) + Qz^{k+1}) \end{aligned}$$

990 Using algebraic manipulations, we can obtain
 991

$$\begin{aligned} 992 \quad v_i^{k+1} &= \nabla_i f(x^{k+1}) - \nabla_i f(x_{1:i}^{k+1}, x_{i+1:n}^k) + (\nabla_i A(x^{k+1}) - \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k))w^{k+1} \\ 993 \quad &\quad + \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k)(w^{k+1} - w^k) + \rho(\nabla_i A(x^{k+1}) - \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k))A(x^{k+1}) \\ 994 \quad &\quad + \rho \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k)(A(x^{k+1}) - A(x_{1:i}^{k+1}, x_{i+1:n}^k)) \\ 995 \quad &\quad + \rho(\nabla_i A(x^{k+1}) - \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k))Qz^{k+1} + \rho \nabla_i A(x_{1:i}^{k+1}, x_{i+1:n}^k)Q(z^{k+1} - z^k). \end{aligned} \tag{18}$$

1000 By applying Equation (15), and the fact that $\{L^k\}$ is lower bounded from Equation (17), the norm of
 1001 the difference between two iterates converge to 0, i.e.

$$\lim_{k \rightarrow +\infty} \|x^{k+1} - x^k\| = 0, \lim_{k \rightarrow +\infty} \|z^{k+1} - z^k\| = 0, \lim_{k \rightarrow +\infty} \|w^{k+1} - w^k\| = 0. \tag{19}$$

1002 Because $\{x^k\}$ is bounded and $\{\nabla_i A(x^k)\}$ is multi-affine with respect to x^k , then $\{\nabla_i A(x^k)\}$ is
 1003 bounded as well. From Equation (19), the limit of $\{v_i^k\}$ goes to the zero vector for all the blocks i ,
 1004 i.e.,
 1005

$$\lim_{k \rightarrow +\infty} v_i^k = \mathbf{0} \in \partial_i L(x^k, z^k, w^k).$$

1006 For the variables w and z , applying the update rule indicates
 1007

$$\nabla_w L(x^{k+1}, z^{k+1}, w^{k+1}) = A(x^{k+1}) + Qz^{k+1} = \frac{1}{\rho}(w^{k+1} - w^k),$$

1008 and

$$\begin{aligned} 1009 \quad \nabla_z L(x^{k+1}, z^{k+1}, w^{k+1}) &= \nabla \phi(z^{k+1}) + Q^T w^{k+1} + \rho Q^T (A(x^{k+1}) + Qz^{k+1}), \\ 1010 \quad &= \rho Q^T (A(x^{k+1}) + Qz^{k+1}) = Q^T (w^{k+1} - w^k). \end{aligned}$$

1011 Therefore, by applying Equation (19), the limit of the partial gradient $\lim_{k \rightarrow +\infty} \nabla_z L(x^k, z^k, w^k) = \mathbf{0}$ and $\lim_{k \rightarrow +\infty} \nabla_w L(x^k, z^k, w^k) = \mathbf{0}$. Overall, there exists $v^k \in \partial L(x^k, z^k, w^k)$ such that
 1012 $\lim_{k \rightarrow +\infty} v^k = \mathbf{0}$. As the limit point (x^*, z^*, w^*) exists and $\mathbf{0} \in \partial L(x^*, z^*, w^*)$, then (x^*, z^*, w^*)
 1013 is a constrained stationary point.

1014 On the other hand, since, the following problems are convex with affine constraints on x_i and z ,
 1015 respectively

$$\begin{aligned} 1016 \quad \min_{x_i} \{f(x_i, x_{-i}^*) + I_i(x_i) : A(x_i, x_{-i}^*) + Q(z^*) = 0\}, \\ 1017 \quad \min_z \{\phi(z) : A(x^*) + Qz = 0\}, \end{aligned}$$

they both satisfy the strong duality condition and thus (x^*, z^*, w^*) is also the global optimum of these problems. This finishes the first part of the proof.

iii) Establishing the convergence rate: Note that $I_i(x_i)$ is an indicator function of a closed semi-algebraic set. Subsequently, L is a lower semi-continuous and sub-analytic function. Thus, applying Theorem A.9 to the function $L(x, z, w) - L(x^*, z^*, w^*)$ shows that there exists $1 < \alpha \leq 2$ and $\eta > 0$ such that it satisfies the α -PL property,

$$(\text{dist}(0, \partial L(x, z, w)))^\alpha \geq c(L(x, z, w) - L(x^*, z^*, w^*))$$

whenever $|L(x, z, w) - L(x^*, z^*, w^*)| \leq \eta$.

On the other hand, from Equation (15), there exists positive constants a such that

$$L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^k, z^k, w^k) \leq -a(\|x^{k+1} - x^k\|^2 + \|z^{k+1} - z^k\|^2 + \|w^{k+1} - w^k\|^2). \quad (20)$$

Moreover, from Equation (18) and the fact that $\{x_k, z_k, w_k\}$ is bounded, the norm of the subgradient is also upper-bounded the distance between two iterates, i.e.,

$$\|v^{k+1}\| \leq b\sqrt{\|x^{k+1} - x^k\|^2 + \|z^{k+1} - z^k\|^2 + \|w^{k+1} - w^k\|^2}, \quad (21)$$

where $b > 0$. Therefore, by applying Equation (20) and Equation (21), the following inequality holds,

$$L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^k, z^k, w^k) \leq -\frac{a}{b^2}\|v^{k+1}\|^2 \leq -\frac{a}{b^2}\text{dist}\left(0, \partial L(x^{k+1}, z^{k+1}, w^{k+1})\right)^2. \quad (22)$$

From the α -PL property, we obtain

$$L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^k, z^k, w^k) \leq -\frac{ac^{2/\alpha}}{b^2}\left(L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^*, z^*, w^*)\right)^{2/\alpha}.$$

whenever $|L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^*, z^*, w^*)| \leq \eta$. Then, from Theorem 1 and 2 of Bento et al. (2024), we have

$$L(x^k, z^k, w^k) - L(x^*, z^*, w^*) \in \mathcal{O}(k^{-\frac{\alpha}{2-\alpha}}) \subseteq o\left(\frac{1}{k}\right).$$

Moreover, the iterates converges to the limit point, i.e., $\lim_{k \rightarrow +\infty}(x^k, z^k, w^k) = (x^*, z^*, w^*)$. From Theorem 3 of Bento et al. (2024), the convergence rate of (x^k, z^k, w^k) is

$$\|(x^k, z^k, w^k) - (x^*, z^*, w^*)\| \in \mathcal{O}(k^{-\frac{\alpha-1}{2-\alpha}}).$$

□

PROOF OF THEOREM 3.2

As Lagrangian is second-order differentiable at (x^*, z^*, w^*) , we have $F(x) = f(x)$, $\forall x \in \mathcal{B}(x^*; r)$, where $r > 0$. In words, there exists a neighborhood of (x^*, z^*, w^*) which belongs to the constraint set, i.e., indicator functions are all zero for the points in that neighborhood. Recall the Lagrangian function,

$$L(x, z, w) = f(x) + \phi(z) + \sum_{i=1}^{n_c} w_i \left(\frac{x^T C_i x}{2} + d_i^T x + e_i + q_i^T z \right) + \frac{\rho}{2} \sum_{i=1}^{n_c} \left(\frac{x^T C_i x}{2} + d_i^T x + e_i + q_i^T z \right)^2.$$

Under Assumption 2.6, Assumption 2.3 and smoothness, we have $L_f I \succeq \nabla^2 f(x) \succeq \mu_f I$, $L_\phi I \succeq \nabla^2 \phi(z) \succeq \mu_\phi I$ and $Q^T = [q_1, \dots, q_n]$ is full column rank. The constrained stationary point satisfies

$$\nabla_z L(x^*, z^*, w^*) = \nabla \phi(z^*) + Q^T w^* = 0. \quad (23)$$

Next, we compute the Hessian of the Lagrangian at the stationary point (x^*, z^*, w^*) and show that if it is invertible then the convergence rate will be linear. To this end, applying Equation (23), the

1080 Hessian at (x^*, z^*, w^*) can be represented as follows
 1081

$$1082 \begin{bmatrix} \nabla^2 f(x^*) + \sum_i w_i^* C_i & \mathbf{0}_{n_x \times n_z} & C_1 x^* + d_1 & \cdots & C_n x^* + d_n \\ 1083 \mathbf{0}_{n_z \times n_x} & \nabla^2 \phi(z^*) & q_1 & \cdots & q_n \\ 1084 (C_1 x^* + d_1)^T & q_1^T & 0 & \cdots & 0 \\ 1085 \vdots & \vdots & \vdots & \ddots & \vdots \\ 1086 (C_n x^* + d_n)^T & q_n^T & 0 & \cdots & 0 \end{bmatrix} + \rho \sum_{i=1}^{n_c} H_i, \\ 1087$$

1088 where

$$1089 \begin{aligned} 1090 H_i = & \begin{bmatrix} C_i x^* + d_i \\ q_i \\ 0 \\ \vdots \\ 0 \end{bmatrix} \begin{bmatrix} (C_i x^* + d_i)^T & q_i^T & 0 & \cdots & 0 \end{bmatrix} \\ 1091 & \end{aligned} \\ 1092 & \\ 1093 & \\ 1094 & .$$

1095 As a result, the kernel of the Hessian at (x^*, z^*, w^*) is equivalent to the kernel of the matrix in the
 1096 first term. Which is invertible when the following matrix is invertible.

$$1097 \begin{aligned} 1098 \nabla^2 f(x^*) + \sum_i w_i^* C_i - & \begin{bmatrix} \mathbf{0}_{n_x \times n_z} & C_1 x^* + d_1, \dots, C_n x^* + d_n \end{bmatrix} \begin{bmatrix} \nabla^2 \phi(z^*) & Q^T \\ Q & \mathbf{0}_{n \times n} \end{bmatrix}^{-1} \begin{bmatrix} (C_1 x^* + d_1)^T \\ \vdots \\ (C_n x^* + d_n)^T \end{bmatrix} \\ 1100 & . \\ 1101 & \end{aligned}$$

1102 Note that $\begin{bmatrix} \nabla^2 \phi(z^*) & Q^T \\ Q & \mathbf{0}_{n \times n} \end{bmatrix}^{-1}$ exists given that Q is full row rank.

$$1103 \begin{aligned} 1104 \nabla^2 f(x^*) + \sum_i w_i^* C_i + & \begin{bmatrix} C_1 x^* + d_1, \dots, C_n x^* + d_n \end{bmatrix} (Q(\nabla^2 \phi(z^*))^{-1} Q^T)^{-1} \begin{bmatrix} (C_1 x^* + d_1)^T \\ \vdots \\ (C_n x^* + d_n)^T \end{bmatrix} . \\ 1105 & (24) \\ 1106 & \\ 1107 & \\ 1108 & \end{aligned}$$

1109 Without loss of generality, we can assume $I_i(x_i^0) = 0 \forall i$. As $L(x^t, z^t, w^t)$ is decreasing over t if ρ
 1110 is large enough, by selecting (z^0, w^0) such that $A(x^0) + Qz^0 = 0$ and $Q^T w^0 = -\nabla \phi(z^0)$, strong
 1111 convexity and smoothness of f and ϕ imply

$$1113 \begin{aligned} 1114 f(x_f^*) + \phi(z_\phi^*) + L_f(\|x_f^*\|^2 + \|x^0\|^2) + L_\phi(\|z_\phi^*\|^2 + \|z^0\|^2) \\ 1115 \geq f(x_f^*) + \phi(z_\phi^*) + \frac{L_f}{2} \|x_f^* - x^0\|^2 + \frac{L_\phi}{2} \|z_\phi^* - z^0\|^2 \\ 1116 \geq f(x^0) + \phi(z^0) = L(x^0, z^0, w^0) \\ 1117 \geq L(x^*, z^*, w^*) = f(x^*) + \phi(z^*) \\ 1118 \geq f(x_f^*) + \phi(z_\phi^*) + \frac{\mu_f}{2} \|x^* - x_f^*\|^2 + \frac{\mu_\phi}{2} \|z^* - z_\phi^*\|^2. \\ 1119 \\ 1120 \end{aligned}$$

1121 In the above expression, the first inequality is due to $a^2 + b^2 \geq (a - b)^2/2$, the second inequality is
 1122 due to the smoothness of f and ϕ , the third inequality is because $L(x^k, z^k, w^k)$ is decreasing over k ,
 1123 and the last inequality is due to strong convexity of f and ϕ .

1124 The above expression implies

$$1126 \frac{\mu_f}{2} \|x^* - x_f^*\|^2 + \frac{\mu_\phi}{2} \|z^* - z_\phi^*\|^2 \leq L_f(\|x_f^*\|^2 + \|x^0\|^2) + L_\phi(\|z_\phi^*\|^2 + \|z^0\|^2), \\ 1127$$

1128 which provides upper bounds for $\|x^* - x_f^*\|^2$ and $\|z^* - z_\phi^*\|^2$, i.e.,

$$1130 \|x^* - x_f^*\|^2 \in \mathcal{O} \left(\frac{L_f}{\mu_f} (\|x_f^*\|^2 + \|x^0\|^2) + \frac{L_\phi}{\mu_f} (\|z_\phi^*\|^2 + \|z^0\|^2) \right) . \\ 1131 \quad (25)$$

1132 and

$$1133 \|z^* - z_\phi^*\|^2 \in \mathcal{O} \left(\frac{L_f}{\mu_\phi} (\|x_f^*\|^2 + \|x^0\|^2) + \frac{L_\phi}{\mu_\phi} (\|z_\phi^*\|^2 + \|z^0\|^2) \right) . \\ 1134 \quad (26)$$

1134 They also give upper bound for $\|x^* - x_f^*\|$ and $\|z^* - z_\phi^*\|$, i.e.,
1135

$$1136 \|x^* - x_f^*\| \in \mathcal{O} \left(\sqrt{\frac{L_f}{\mu_f}} (\|x_f^*\| + \|x^0\|) + \sqrt{\frac{L_\phi}{\mu_f}} (\|z_\phi^*\| + \|z^0\|) \right), \quad (27)$$

1138 and

$$1140 \|z^* - z_\phi^*\| \in \mathcal{O} \left(\sqrt{\frac{L_f}{\mu_\phi}} (\|x_f^*\| + \|x^0\|) + \sqrt{\frac{L_\phi}{\mu_\phi}} (\|z_\phi^*\| + \|z^0\|) \right). \quad (28)$$

1142 From the first Equation of Equation (23) and the fact that Q is full row rank, an upper bound of $\|w^*\|$
1143 will be

$$1145 \|w^*\| = \|(QQ^T)^{-1}Q\nabla\phi(z^*)\| \leq \|(QQ^T)^{-1}Q\| \cdot \|\phi(z^*)\| \\ 1146 = \|(QQ^T)^{-1}Q\| \cdot \|\phi(z^*) - \phi(z_\phi^*)\| \\ 1147 \leq L_\phi \|(QQ^T)^{-1}Q\| \|z^* - z_\phi^*\| \\ 1148 \in \mathcal{O} \left(\|(QQ^T)^{-1}Q\| L_\phi \left(\sqrt{\frac{L_f}{\mu_\phi}} (\|x_f^*\| + \|x^0\|) + \sqrt{\frac{L_\phi}{\mu_\phi}} (\|z_\phi^*\| + \|z^0\|) \right) \right). \quad (29)$$

1152 By the definition of $A(x)$, we have

$$1154 \|A(x^0)\|^2 = \sum_{i=1}^{n_c} \left(\frac{1}{2} (x^0)^T C_i x^0 + d_i^T x^0 + e_i \right)^2 \in \mathcal{O} \left(n_c (\|x^0\|^4 \|C\|^2 + \|x^0\|^2 \|d\|^2 + \|e\|^2) \right),$$

1156 where $\|C\| := \max_i \|C_i\|$, $\|d\| := \max_i \|d_i\|$ and $\|e\| := \max_i |e_i|$. Consequently,

$$1158 \|A(x^0)\| \in \mathcal{O} \left(\sqrt{n_c} (\|x^0\|^2 \|C\| + \|x^0\| \|d\| + \|e\|) \right). \quad (30)$$

1159 Notice that $A(x^0) + Qz^0 = 0$ and Q is full row rank, then $z^0 = -Q^+ A(x^0) + v$, where Q^+ is the
1160 Moore-Penrose pseudo-inverse and $v \in \ker(Q)$. Thus, there exists z^0 such that

$$1162 \|z^0\| = \|Q^+ A(x^0)\| \leq \|Q^+\| \|A(x^0)\| = \frac{1}{\sqrt{\lambda_{\min}(QQ^T)}} \|A(x^0)\|.$$

1164 From the bound of $\|A(x^0)\|$ in Equation (30), $\|z^0\|$ can be upper bounded as

$$1166 \|z^0\| \leq \frac{1}{\sqrt{\lambda_{\min}(QQ^T)}} \|A(x^0)\| \in \mathcal{O} \left(\sqrt{\frac{n_c}{\lambda_{\min}(QQ^T)}} (\|x^0\|^2 \|C\| + \|x^0\| \|d\| + \|e\|) \right). \quad (31)$$

1167 From Equation (29) and Equation (31), an upper bound of $\|w^*\|$ can be rewritten as

$$1169 \mathcal{O} \left(\|(QQ^T)^{-1}Q\| L_\phi \left(\sqrt{\frac{L_f}{\mu_\phi}} (\|x_f^*\| + \|x^0\|) + \sqrt{\frac{n_c}{\lambda_{\min}(QQ^T)}} (\|x^0\|^2 \|C\| + \|x^0\| \|d\| + \|e\|) \right) \right).$$

1172 In addition, as $\| \sum_{i=1}^{n_c} w_i^* C_i \| \in \mathcal{O} (\sqrt{n_c} \|w^*\| \|C\|)$, it can be bounded as follows

$$1173 \mathcal{O} \left(\|(QQ^T)^{-1}Q\| \sqrt{n_c} L_\phi \|C\| \left(\sqrt{\frac{L_f}{\mu_\phi}} (\|x_f^*\| + \|x^0\|) \right. \right. \\ 1174 \left. \left. + \sqrt{\frac{L_\phi}{\mu_\phi}} (\|z_\phi^*\| + \sqrt{\frac{n_c}{\lambda_{\min}(QQ^T)}} (\|x^0\|^2 \|C\| + \|x^0\| \|d\| + \|e\|)) \right) \right). \quad (32)$$

1178 Note that since f is μ_f -strongly convex, if $\| \sum_{i=1}^n w_i^* C_i \| < \mu_f$, then the matrix in Equation (24)
1179 will be positive definite. So the Hessian at the stationary point is invertible. This can be ensured by
1180 letting each of the above terms to be $\mathcal{O}(\mu_f)$, i.e.,

$$1181 \|(QQ^T)^{-1}Q\| \sqrt{n_c} L_\phi \|C\| \left(\sqrt{\frac{L_f}{\mu_\phi}} (\|x_f^*\| + \|x^0\|) + \sqrt{\frac{L_\phi}{\mu_\phi}} \|z_\phi^*\| \right) \in \mathcal{O}(\mu_f), \\ 1182 \|(QQ^T)^{-1}Q\| \|C\| \sqrt{\frac{L_\phi^3}{\mu_\phi}} \sqrt{\frac{n_c^2}{\lambda_{\min}(QQ^T)}} (\|x^0\| \|d\| + \|e\|) \in \mathcal{O}(\mu_f), \quad (33) \\ 1183 \|(QQ^T)^{-1}Q\| \|C\|^2 \sqrt{\frac{L_\phi^3}{\mu_\phi}} \sqrt{\frac{n_c^2}{\lambda_{\min}(QQ^T)}} \|x^0\|^2 \in \mathcal{O}(\mu_f).$$

1188 The above inequalities lead to the following condition.
 1189

$$\begin{aligned}
 1190 \quad \|C\| &\in \mathcal{O} \left(\min \left\{ \frac{\mu_f \sqrt{\mu_\phi}}{\sqrt{n_c} L_\phi \left(\sqrt{L_f} (\|x_f^*\| + \|x^0\|) + \sqrt{L_\phi} \|z_\phi^*\| \right)} \| (QQ^T)^{-1} Q \|^{-1}, \right. \right. \\
 1191 \quad &\frac{\mu_f \sqrt{\mu_\phi}}{\sqrt{L_\phi^3 n_c^2 (\|x^0\| \|d\| + \|e\|)}} (\lambda_{\min}(QQ^T))^{1/2} \| (QQ^T)^{-1} Q \|^{-1}, \\
 1192 \quad &\left. \left. \left(\frac{\mu_f \sqrt{\mu_\phi}}{\sqrt{L_\phi^3 n_c^2 \|x^0\|^2}} \right)^{1/2} (\lambda_{\min}(QQ^T))^{1/4} \| (QQ^T)^{-1} Q \|^{-1/2} \right\} \right). \tag{34}
 \end{aligned}$$

1200 By defining

$$\begin{aligned}
 1201 \quad m_1 &:= \frac{\mu_f \sqrt{\mu_\phi}}{\sqrt{n_c} L_\phi \left(\sqrt{L_f} (\|x_f^*\| + \|x^0\|) + \sqrt{L_\phi} \|z_\phi^*\| \right)}, \\
 1202 \quad m_2 &:= \frac{\mu_f \sqrt{\mu_\phi}}{\sqrt{L_\phi^3 n_c^2 (\|x^0\| \|d\| + \|e\|)}}, \\
 1203 \quad m_3 &:= \left(\frac{\mu_f \sqrt{\mu_\phi}}{\sqrt{L_\phi^3 n_c^2 \|x^0\|^2}} \right)^{1/2},
 \end{aligned}$$

1209 we obtain the condition in Equation (4).

1210 If Equation (34) is satisfied, the stationary point is non-degenerate (meaning that the Hessian is
 1211 invertible at that point). In consequence, the stationary point is also isolated. This can be seen
 1212 by applying the Local Inversion Theorem presented in Lemma A.10 using $u_0 = (x^*, z^*, w^*)$ and
 1213 $g = \nabla L$. This lemma implies that every stationary point of the Lagrangian function is isolated if it is
 1214 non-degenerate. As a result, if Equation (34) holds,

$$1216 \quad \ker \nabla^2 f(\tilde{x}) = T_{\tilde{x}} S = \{\mathbf{0}\},$$

1217 where \tilde{x} is a stationary point, S is the set of stationary points, and $T_{\tilde{x}} S$ is the tangent space of S at \tilde{x} .
 1218 Therefore, according to Definition A.11 and Theorem A.12, the Lagrangian is a Morse-Bott function,
 1219 and it satisfies the α -PL inequality around every stationary point with $\alpha = 2$, i.e.,

1220 **Theorem D.1.** *Suppose that the Equation (4) holds, then for every stationary point (x^*, z^*, w^*) of L
 1221 such that L is second order differentiable at this point, there exists constants C and $r > 0$, s.t.*

$$1223 \quad \|\nabla L(x, z, w)\|^2 \geq C |L(x, z, w) - L(x^*, z^*, w^*)|, \quad \forall (x, z, w) \in \mathcal{B}(x^*, z^*, w^*; r).$$

1225 From Equation (22) and the above result, for k large enough so that $(x^k, z^k, w^k) \in \mathcal{B}(x^*, z^*, w^*; r)$,
 1226 we have

$$\begin{aligned}
 1227 \quad L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^k, z^k, w^k) &\leq -\frac{aC}{b^2} (L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^*, z^*, w^*)), \\
 1228 \quad \implies L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^*, z^*, w^*) &\leq \left(1 + \frac{aC}{b^2}\right)^{-1} (L(x^k, z^k, w^k) - L(x^*, z^*, w^*)), \\
 1229 \quad \implies L(x^k, z^k, w^k) - L(x^*, z^*, w^*) &= O(c^{-k}),
 \end{aligned}$$

1233 where $c := (1 + \frac{aC}{b^2}) > 1$. From Theorem 3 of Bento et al. (2024), the convergence of iterates
 1234 (x^k, z^k, w^k) is

$$1237 \quad \|x^k - x^*\|^2 + \|z^k - z^*\|^2 + \|w^k - w^*\|^2 \in \mathcal{O}(c^{-k}).$$

1239 Lastly, consider the second partial derivative of the Lagrangian with respect to x and z at (x^*, z^*, w^*) ,

$$1241 \quad \begin{bmatrix} \nabla^2 f(x^*) + \sum_i w_i^* C_i & \mathbf{0} \\ \mathbf{0} & \nabla^2 \phi(z^*) \end{bmatrix} \succ \mathbf{0}.$$

From proposition 3.3.2 of Bertsekas (1997), the second-order sufficiency condition is satisfied and thus, the point (x^*, z^*) is the local minimum of the problem 1. \square

As a corollary of Theorem 3.2, if the limiting point is of the form $(x^*, z^*, \mathbf{0})$, then the linear convergence rate of the ADMM is ensured, i.e.,

Corollary D.2. *Under the assumptions of Theorem 3.1, if the iterates of the ADMM converge to (x^*, z^*, w^*) with $w^* = \mathbf{0}$, then, there is $c_1 > 1$ such that*

$$L(x^k, z^k, w^k) - L(x^*, z^*, w^*) \in \mathcal{O}(c_1^{-k}).$$

Proof. When $w_i^* = 0, \forall i$, the Equation Equation (24) will become

$$\nabla^2 f(x^*) + \begin{bmatrix} C_1 x^* + d_1, \dots, C_n x^* + d_n \end{bmatrix} (Q(\nabla^2 \phi(z^*))^{-1} Q^T)^{-1} \begin{bmatrix} (C_1 x^* + d_1)^T \\ \vdots \\ (C_n x^* + d_n)^T \end{bmatrix} \succ 0.$$

and consequently, the Hessian of the Lagrangian at the stationary point will be invertible. The rest of the proof is similar to the proof of Theorem 3.2. \square

PROOF OF THEOREM 3.3

Suppose that the constraint sets for X_i s are polyhedrals. From Equation (13), Equation (20) and Equation (21), there exist $v \in \partial_{x,z} L(x^{k+1}, z^{k+1}, w^{k+1})$, and positive constants a and b , such that

$$\begin{aligned} L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^k, z^k, w^k) &\leq -a(\|x^{k+1} - x^k\|^2 + \|z^{k+1} - z^k\|^2), \\ \|v\|^2 &\leq b(\|x^{k+1} - x^k\|^2 + \|z^{k+1} - z^k\|^2). \end{aligned}$$

This results in

$$L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^k, z^k, w^k) \leq -\frac{a}{b}\|v\|^2 \leq -\frac{a}{b} \min_{s \in \partial_{x,z} L(x^{k+1}, z^{k+1}, w^{k+1})} \|s\|^2. \quad (35)$$

Consider the function \tilde{L} s.t. $L(x, z, w) = \tilde{L}(x, z, w) + \sum_{i=1}^n I_i(x_i)$. Then, when w is fixed, the second-order derivative of \tilde{L} is

$$\begin{bmatrix} \nabla^2 f(x^*) + \sum_i w_i^* C_i & \mathbf{0} \\ \mathbf{0} & \nabla^2 \phi(z^*) \end{bmatrix}.$$

To ensure that at the constrained stationary point (x^*, z^*, w^*) , the above matrix is positive definite, we require that $\nabla^2 f(x^*) + \sum_{i=1}^n w_i^* C_i \succ 0$. Notice that at the constrained stationary point, Equation (23) still holds. According to the proof of Theorem 3.2, when Equation (34) holds, then $\nabla^2 f(x^*) + \sum_{i=1}^n w_i^* C_i \succ 0$, and the Hessian of \tilde{L} is positive definite. Consequently, the function $\tilde{L}(x, z, w)$ is locally strongly convex with respect to (x, z) , $\forall (x, z) \in \mathcal{B}(x^*, z^*; r')$ and $\forall w \in \mathcal{B}(w^*, r'')$, for some $r' > 0$ and $r'' > 0$. Since $\text{dom}(L)$ is polyhedral, and $L(x, z, w) = \tilde{L}(x, z, w) + \sum_{i=1}^n I_i(x_i)$, according to the results in Appendix F of Karimi et al. (2016), the α -PL inequality holds for $\alpha = 2$, i.e.,

$$\begin{aligned} \min_{s \in \partial_{x,z} L(x, z, w)} \|s\|^2 &\geq 2\mu(L(x, z, w) - \min_{(x, z) \in \mathcal{B}(x^*, z^*; r')} L(x, z, w)), \\ \forall (x, z) \in \mathcal{B}(x^*, z^*; r') \text{ and } \forall w \in \mathcal{B}(w^*, r''). \end{aligned}$$

On the other hand, since $(x^k, z^k, w^k) \rightarrow (x^*, z^*, w^*)$, for k that is large enough, i.e. $k \geq K$, there exists $r > 0$ such that $\mathcal{B}(x^k, z^k; r) \subseteq \mathcal{B}(x^K, z^K; 2r)$, $\mathcal{B}(x^k, z^k; 2r) \subseteq \mathcal{B}(x^*, z^*; r')$ and $w^k \in \mathcal{B}(w^*, r'')$. As a result,

$$\begin{aligned} \min_{s \in \partial_{x,z} L(x^k, z^k, w)} \|s\|^2 &\geq 2\mu(L(x^k, z^k, w) - \min_{(x, z) \in \mathcal{B}(x^*, z^*; r')} L(x, z, w)), \\ &\geq 2\mu(L(x^k, z^k, w) - \min_{(x, z) \in \mathcal{B}(x^k, z^k; 2r)} L(x, z, w)), \quad k \geq K. \end{aligned}$$

Combining the above inequality with Equation (35) yields that there exists $C_1 > 0$ such that for $k \geq K$,

$$L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^k, z^k, w^k) \leq -C_1 \left(L(x^{k+1}, z^{k+1}, w^{k+1}) - \min_{(x,z) \in \mathcal{B}(x^K, z^K; 2r)} L(x, z, w^{k+1}) \right).$$

Note that due to the update rule in Algorithm 1, for every x and z , we have $L(x, z, w^{k+1}) - L(x, z, w^k) = \rho \|A(x) + Qz\|^2 \geq 0$, and consequently,

$$\min_{(x,z) \in \mathcal{B}(x^K, z^K; 2r)} L(x, z, w^{k+1}) \geq \min_{(x,z) \in \mathcal{B}(x^K, z^K; 2r)} L(x, z, w^k).$$

As a result, for $k \geq K$, the following inequality, obtained from the previous two inequalities, holds

$$(1+C_1) \left(L(x^{k+1}, z^{k+1}, w^{k+1}) - \min_{(x,z) \in \mathcal{B}(x^K, z^K; 2r)} L(x, z, w^{k+1}) \right) \leq L(x^k, z^k, w^k) - \min_{(x,z) \in \mathcal{B}(x^K, z^K; 2r)} L(x, z, w^k).$$

This implies

$$L(x^k, z^k, w^k) - \min_{(x,z) \in \mathcal{B}(x^K, z^K; 2r)} L(x, z, w^k) \leq (1+C_1)^{-(k-K)} \left(L(x^K, z^K, w^K) - \min_{(x,z) \in \mathcal{B}(x^K, z^K; 2r)} L(x, z, w^K) \right). \quad (36)$$

As $\mathcal{B}(x^k, z^k; r) \subseteq \mathcal{B}(x^K, z^K; 2r)$, from Equation (36), the linear convergence of $L(x^k, z^k, w^k) - \min_{(x,z) \in \mathcal{B}(x^k, z^k; r)} L(x, z, w^k)$ can be ensured, i.e., let $c_2 := 1 + C_1$, then

$$\begin{aligned} L(x^k, z^k, w^k) - \min_{(x,z) \in \mathcal{B}(x^k, z^k; r)} L(x, z, w^k) &\leq L(x^k, z^k, w^k) - \min_{(x,z) \in \mathcal{B}(x^K, z^K; 2r)} L(x, z, w^k), \\ &\leq (1 + C_1)^{-(k-K)} \left(L(x^K, z^K, w^K) - \min_{(x,z) \in \mathcal{B}(x^K, z^K; 2r)} L(x, z, w^K) \right) \in \mathcal{O}(c_2^{-k}). \end{aligned}$$

To prove that (x^*, z^*) is a local minimum, notice that as k goes to infinity, $(x^k, z^k, w^k) \rightarrow (x^*, z^*, w^*)$, $I_i(x_i^*) = 0, \forall i$ and Equation (36) implies that for all $(x, z) \in \mathcal{B}(x^*, z^*; r)$

$$F(x^*) + \phi(z^*) = f(x^*) + \phi(z^*) = L(x^*, z^*, w^*) = \min_{(x,z) \in \mathcal{B}(x^*, z^*; r)} L(x, z, w^*) \leq L(x, z, w^*).$$

For all the points $(x, z) \in \mathcal{B}(x^*, z^*; r)$ satisfying $A(x) + Qz = 0$, $F(x) + \phi(z)$ can be bounded as

$$F(x^*) + \phi(z^*) = \min_{(x,z) \in \mathcal{B}(x^*, z^*; r)} L(x, z, w^*) \leq L(x, z, w^*) = F(x) + \phi(z).$$

And thus (x^*, z^*) is a local minimum of problem Equation (1). \square

D.1 APPROXIMATED ADMM

Consider the following algorithm.

Algorithm 2 Approximated-ADMM

Require: $(x_1^0, \dots, x_n^0), z^0, w^0, \rho$
for $k = 0, 1, 2, \dots$ **do**
 for $i = 1, \dots, n$ **do**
 $x_i^{k+1} \approx \arg \min_{x_i} L(x_{1:i-1}^{k+1}, x_i, x_{i+1:n}^k, z^k, w^k)$
 end for
 $z^{k+1} \approx \arg \min_z L(x^{k+1}, z, w^k)$
 $w^{k+1} = w^k + \rho(A(x^{k+1}) + Qz^{k+1})$
 end for

Theorem D.3. *Under the assumptions of Theorem 3.2, if the Approximated ADMM in 2 is applied to Problem 1, and the following condition are satisfied,*

P1: *the iterates $p^k := (x^k, z^k, w^k)$ are bounded, and $L(p^k) = L(x^k, z^k, w^k)$ is lower bounded,*

P2: *there is a constant $C_1 > 0$ such that for all sufficiently large k ,*

$$L(x^k, z^k, w^k) - L(x^{k+1}, z^{k+1}, w^{k+1}) \geq C_1 \|p^{k+1} - p^k\|^2.$$

1350

P3: and there exists $d^{k+1} \in \partial L(x^{k+1}, z^{k+1}, w^{k+1})$ and $C_2 > 0$ such that for all sufficiently large k ,

$$\|d^{k+1}\| \leq C_2 \|p^{k+1} - p^k\|.$$

1354

1355 Then, the convergence results of Theorem 3.1, Theorem 3.2 and Theorem 3.3 remain valid under their
1356 respective additional assumptions.

1357

1358 *Proof.* Remind that these presented conditions in this theorem are the key element to prove Theorem
1359 3.1. In exact ADMM, the condition P2 and P3 are satisfied in Equation (15) and Equation (21).
1360 Conditions P2 and P3 imply that there exists $d^k \in \partial L(x^k, z^k, w^k)$ such that

$$\begin{aligned} L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^k, z^k, w^k) &\leq -C_1(\|x^{k+1} - x^k\|^2 + \|z^{k+1} - z^k\|^2 + \|w^{k+1} - w^k\|^2) \\ &\leq -\frac{C_1}{C_2^2} \|d^{k+1}\|^2 \leq -\frac{C_1}{C_2^2} (\text{dist}(\mathbf{0}, \partial L(x^{k+1}, z^{k+1}, w^{k+1})))^2, \end{aligned}$$

1364

1365 which is precisely the Equation (22) in the Proof of Theorem 3.1. From condition P1 and P2, the
1366 Lagrangian $L(x^k, z^k, w^k)$ is lower bounded and non-increasing, which indicates $L(p^k)$ converges as
1367 k goes to infinity. Then, from P2, we know,

$$\|x^{k+1} - x^k\| \rightarrow 0, \quad \|z^{k+1} - z^k\| \rightarrow 0, \quad \|w^{k+1} - w^k\| \rightarrow 0.$$

1368 Based on P1, the iterates (x^k, z^k, w^k) are bounded, thus, the limit point exists. The rest of the proof
1369 is identical with the proof of Theorem 3.1. \square

1370

1371 **Error models.** Suppose there exist nonnegative sequences $\{\epsilon_k^{(i)}\}_{k \geq 0}$ and $\{\eta_k\}_{k \geq 0}$ such that

$$L(x_{1:i-1}^{k+1}, x_i^{k+1}, x_{i+1:n}^k, z^k, w^k) \leq \min_{x_i} L(x_{1:i-1}^{k+1}, x_i, x_{i+1:n}^k, z^k, w^k) + \epsilon_k^{(i)}, \quad (37)$$

$$L(x^{k+1}, z^{k+1}, w^k) \leq \min_z L(x^{k+1}, z, w^k) + \eta_k, \quad (38)$$

1377

1378 At iteration k , let \hat{x}_i^{k+1} and \hat{z}^{k+1} denote the exact minimizers of the corresponding block subproblems
1379 appearing in Algorithm 1 with the current arguments fixed; i.e.,

$$\hat{x}_i^{k+1} \in \arg \min_{x_i} L(x_{1:i-1}^{k+1}, x_i, x_{i+1:n}^k, z^k, w^k),$$

$$\hat{z}^{k+1} \in \arg \min_z L(x^{k+1}, z, w^k).$$

1380 The iterates produced by Algorithm 2 are denoted by x_i^{k+1} and z^{k+1} , with errors $e_{x,i}^{k+1} := x_i^{k+1} -$
1381 \hat{x}_i^{k+1} and $e_z^{k+1} := z^{k+1} - \hat{z}^{k+1}$.

1382 **Theorem D.4.** Let Algorithm 2 produce (x^k, z^k, w^k) and assume the inexactness condition from
1383 Equation (37) and Equation (38), then:

1384

1385 1. If $\sum_k (\sum_i \epsilon_k^{(i)} + \eta_k) < \infty$ and the assumptions for Theorem 3.1 hold, the sequence
1386 $\{L(x^k, z^k, w^k)\}$ converges and $\lim_{k \rightarrow +\infty} \|A(x^k) + Qz^k\| = 0$, $\lim_{k \rightarrow +\infty} \|x^{k+1} - x^k\| =$
1387 0 , $\lim_{k \rightarrow +\infty} \|z^{k+1} - z^k\| = 0$. Every limit point (x^*, z^*, w^*) is a stationary point of L ,
1388 and x^* and z^* satisfy the blockwise optimality conditions stated in Theorem 3.1.

1389

1390 2. If further $\sum_k \epsilon_k^{(i)} + \eta_k \leq C[\|x^{k+1} - x^k\|^2 + \|z^{k+1} - z^k\|^2 + \|w^{k+1} - w^k\|^2]$, where C is a
1391 small enough constant, the convergence result of Theorem 3.1, Theorem 3.2 and Theorem 3.3
1392 remain valid under their respective additional assumptions.

1393

1394 *Proof.* We work under Assumption 2.3 (blockwise strong convexity of f and φ), Assumption 2.6
1395 (full row rank of Q), and the smoothness conditions used in Theorems 3.1 and 3.2. Let denote the
1396 inexact errors $e_{x,i}^{k+1} := x_i^{k+1} - \hat{x}_i^{k+1}$, $e_z^{k+1} := z^{k+1} - \hat{z}^{k+1}$.

1397

1398 By blockwise strong convexity, each univariate subproblem $\psi_i(x_i) := L(x_{1:i-1}^{k+1}, x_i, x_{i+1:n}^k, z^k, w^k)$
1399 is μ_f -strongly convex for some $\mu_f > 0$, hence quadratic growth yields
1400

$$\psi_i(x_i^{k+1}) - \psi_i(\hat{x}_i^{k+1}) \geq \frac{\mu_f}{2} \|e_{x,i}^{k+1}\|^2. \quad (39)$$

1404 Combining with Equation (37) gives $\|e_{x,i}^{k+1}\|^2 \leq \frac{2}{\mu_f} \epsilon_k^{(i)}$. Likewise, strong convexity in z gives
 1405 $\|e_z^{k+1}\|^2 \leq \frac{2}{\mu_\phi} \eta_k$ for some $\mu_\phi > 0$.
 1406

1407 We derive a blockwise descent inequality for the inexact updates (x_i^{k+1}, z^{k+1}) , by comparing
 1408 them with the exact block minimizers $\hat{x}_i^{k+1} \in \arg \min_{x_i} L(x_{1:i-1}^{k+1}, x_i, x_{i+1:n}^k, z^k, w^k)$ and $\hat{z}^{k+1} \in$
 1409 $\arg \min_z L(x^{k+1}, z, w^k)$.
 1410

1411 Fix $i \in \{1, \dots, n\}$ and define the univariate subproblem

$$1412 \quad \psi_i(u) := L(x_{1:i-1}^{k+1}, u, x_{i+1:n}^k, z^k, w^k). \\ 1413$$

1414 Under Equation (38), we also have

$$1416 \quad \psi_i(x_i^{k+1}) \leq \min_u \psi_i(u) + \epsilon_k^{(i)} = \psi_i(\hat{x}_i^{k+1}) + \epsilon_k^{(i)}. \quad (40)$$

1418 Combining Equation (39) and Equation (40) gives

$$1419 \quad \|x_i^{k+1} - \hat{x}_i^{k+1}\|^2 \leq \frac{2}{\mu_f} \epsilon_k^{(i)}. \quad (41)$$

1422 Now compare the *values* across one x -block update. Then,

$$1424 \quad L(x_{1:i}^{k+1}, x_{i+1:n}^k, z^k, w^k) - L(x_{1:i-1}^{k+1}, x_i^k, x_{i+1:n}^k, z^k, w^k) \\ 1425 = \psi_i(x_i^{k+1}) - \psi_i(x_i^k) \\ 1426 \leq (\psi_i(\hat{x}_i^{k+1}) - \psi_i(x_i^k)) + (\psi_i(x_i^{k+1}) - \psi_i(\hat{x}_i^{k+1})) \quad (42)$$

$$1428 \leq -\frac{\mu_f}{2} \|\hat{x}_i^{k+1} - x_i^k\|^2 + \epsilon_k^{(i)}, \quad (43)$$

1430 where the last line uses the exact-case one-block descent.

1431 To express the decrease in terms of the *inexact* step size $\|x_i^{k+1} - x_i^k\|$, we have

$$1433 \quad \|\hat{x}_i^{k+1} - x_i^k\|^2 \geq \frac{1}{2} \|x_i^{k+1} - x_i^k\|^2 - \|x_i^{k+1} - \hat{x}_i^{k+1}\|^2 \geq \frac{1}{2} \|x_i^{k+1} - x_i^k\|^2 - \frac{2}{\mu_f} \epsilon_k^{(i)}.$$

1435 Plugging this into Equation (43) we obtain

$$1437 \quad L(x_{1:i}^{k+1}, x_{i+1:n}^k, z^k, w^k) - L(x_{1:i-1}^{k+1}, x_i^k, x_{i+1:n}^k, z^k, w^k) \leq -\frac{\mu_f}{4} \|x_i^{k+1} - x_i^k\|^2 + 2\epsilon_k^{(i)}. \quad (44)$$

1439 Following the same process for block z yields

$$1440 \quad L(x^{k+1}, z^{k+1}, w^k) - L(x^{k+1}, z^k, w^k) \leq -\frac{\mu_\phi}{2} \|\hat{z}^{k+1} - z^k\|^2 + \eta_k,$$

1442 and

$$1444 \quad \|z^{k+1} - \hat{z}^{k+1}\|^2 \leq \frac{2}{\mu_\phi} \eta_k,$$

1445 for some $\beta > 0$ from the exact-case z -block descent. As in the x -block,

$$1447 \quad \|\hat{z}^{k+1} - z^k\|^2 \geq \frac{1}{2} \|z^{k+1} - z^k\|^2 - \|z^{k+1} - \hat{z}^{k+1}\|^2 \geq \frac{1}{2} \|z^{k+1} - z^k\|^2 - \frac{2}{\mu_\phi} \eta_k,$$

1448 hence

$$1449 \quad L(x^{k+1}, z^{k+1}, w^k) - L(x^{k+1}, z^k, w^k) \leq -\frac{\mu_\phi}{4} \|z^{k+1} - z^k\|^2 + 2\eta_k. \quad (45)$$

1452 The dual update is $w^{k+1} = w^k + \rho (A(x^{k+1}) + Qz^{k+1})$. By linearity of L in w ,

$$1453 \quad L(x^{k+1}, z^{k+1}, w^{k+1}) - L(x^{k+1}, z^{k+1}, w^k) = \langle w^{k+1} - w^k, A(x^{k+1}) + Qz^{k+1} \rangle \\ 1454 = \rho \|A(x^{k+1}) + Qz^{k+1}\|^2 = \frac{1}{\rho} \|w^{k+1} - w^k\|^2. \quad (46)$$

1456 Furthermore, we have

$$\begin{aligned}
\|w^{k+1} - w^k\|^2 &\leq \frac{\|Q^T w^{k+1} - Q^T w^k\|}{\lambda_{\min}^+(Q^T Q)}, \\
&\leq \frac{\|\nabla_z \phi(z^{k+1}) - \nabla_z L(x^{k+1}, z^{k+1}, w^k) - \nabla_z \phi(z^k) + \nabla_z L(x^k, z^k, w^{k-1})\|^2}{\lambda_{\min}^+(Q^T Q)}, \\
&\leq \frac{3\|\nabla_z \phi(z^{k+1}) - \nabla_z \phi(z^k)\|^2 + 3\|\nabla_z L(x^{k+1}, z^{k+1}, w^k)\|^2 + 3\|\nabla_z L(x^k, z^k, w^{k-1})\|^2}{\lambda_{\min}^+(Q^T Q)}, \\
&\leq \frac{3L_\phi^2}{\lambda_{\min}^+(Q^T Q)} \|z^{k+1} - z^k\|^2 + \frac{6(L_\phi + \lambda_{\max}(Q^T Q))}{\lambda_{\min}^+(Q^T Q)} (\eta_k + \eta_{k-1})
\end{aligned} \tag{47}$$

As a result, we get

$$\begin{aligned}
& L(x^k, z^k, w^k) - L(x^{k+1}, z^{k+1}, w^{k+1}) \\
& \geq \frac{\mu_f}{4} \|x^{k+1} - x^k\|^2 - 2 \sum_i \epsilon_k^{(i)} + \frac{\mu_\phi}{4} \|z^{k+1} - z^k\|^2 - 2\eta_k - \frac{1}{\rho} \|w^{k+1} - w^k\|^2 \\
& \geq \frac{\mu_f}{4} \|x^{k+1} - x^k\|^2 - 2 \sum_i \epsilon_k^{(i)} + \left(\frac{\mu_\phi}{4} - \frac{3L_\phi^2}{\rho \lambda_{\min}^+(Q^T Q)} \right) \|z^{k+1} - z^k\|^2 - 2\eta_k \\
& \quad - \frac{6(L_\phi + \lambda_{\max}(Q^T Q))}{\rho \lambda_{\min}^+(Q^T Q)} (\eta_k + \eta_{k-1}) \\
& \geq \frac{\mu_f}{4} \|x^{k+1} - x^k\|^2 - 2 \sum_i \epsilon_k^{(i)} + \frac{\mu_\phi}{8} \|z^{k+1} - z^k\|^2 - 2\eta_k - \frac{6(L_\phi + \lambda_{\max}(Q^T Q))}{\rho \lambda_{\min}^+(Q^T Q)} (\eta_k + \eta_{k-1}) \\
& \geq \frac{\mu_f}{4} \|x^{k+1} - x^k\|^2 + \frac{\mu_\phi}{16} \|z^{k+1} - z^k\|^2 + \frac{\mu_\phi \lambda_{\min}^+(Q^T Q)}{48L_\phi^2} \|w^{k+1} - w^k\|^2 - M \left(\sum_i \epsilon_k^{(i)} + \eta_k + \eta_{k-1} \right). \tag{48}
\end{aligned}$$

where we apply Equation (47) in the third and the last inequalities, $M = 2 + \frac{6(L_\phi + \lambda_{\max}(Q^T Q))}{\rho \lambda_{\min}^+(Q^T Q)}$ is a constant and ρ is large enough.

Summing Equation (48) from $k = 0$ to K and telescoping yields

$$\begin{aligned}
& L(x^0, z^0, w^0) - L(x^{K+1}, z^{K+1}, w^{K+1}) + 2M \sum_{k=0}^K \left(\sum_i \epsilon_k^{(i)} + \eta_k \right) \\
& \geq \sum_{k=0}^K \left[\frac{\mu_f}{4} \|x^{k+1} - x^k\|^2 + \frac{\mu_\phi}{16} \|z^{k+1} - z^k\|^2 + \frac{\mu_\phi \lambda_{min}^+(Q^T Q)}{48L_\phi^2} \|w^{k+1} - w^k\|^2 \right]
\end{aligned}$$

By Assumption 2.3 and the quadratic penalty, $L(x^{K+1}, z^{K+1}, w^{K+1})$ is bounded below. While $\sum_{k=0}^K (\sum_i \epsilon_k^{(i)} + \eta_k) < \infty$ by hypothesis. Hence the nonnegative series

$$\sum_{k=0}^{\infty} \left[\sum_{i=1}^n \|x_i^{k+1} - x_i^k\|^2 + \|z^{k+1} - z^k\|^2 + \|w^{k+1} - w^k\|^2 \right] < \infty,$$

which implies $\|x^{k+1} - x^k\| \rightarrow 0$, $\|z^{k+1} - z^k\| \rightarrow 0$, and $\|w^{k+1} - w^k\| \rightarrow 0$. The blockwise optimality follows as in Theorem 3.1.

If further $\sum_i \epsilon_k^{(i)} + \eta_k \leq C[\|x^{k+1} - x^k\|^2 + \|z^{k+1} - z^k\|^2 + \|w^{k+1} - w^k\|^2]$, where

$$C < \frac{\min\left\{\frac{\mu_f}{4}, \frac{\mu_\phi}{16}, \frac{\mu_\phi \lambda_{\min}^+(Q^T Q)}{48L_\phi^2}\right\}}{2M},$$

1512 then

$$\begin{aligned}
 1514 \quad & L(x^0, z^0, w^0) - L(x^{K+1}, z^{K+1}, w^{K+1}) \\
 1515 \quad & \geq \sum_{k=0}^K \left[\frac{\mu_f}{4} \|x^{k+1} - x^k\|^2 + \frac{\mu_\phi}{16} \|z^{k+1} - z^k\|^2 + \frac{\mu_\phi \lambda_{\min}^+(Q^T Q)}{48L_\phi^2} \|w^{k+1} - w^k\|^2 - 2M \left(\sum_i \epsilon_k^{(i)} + \eta_k \right) \right], \\
 1516 \quad & \geq \sum_{k=0}^K C' (\|x^{k+1} - x^k\|^2 + \|z^{k+1} - z^k\|^2 + \|w^{k+1} - w^k\|^2)
 \end{aligned} \tag{49}$$

1522 where $C' > 0$. The rest follows the proof of Theorem 3.1, Theorem 3.2 and Theorem 3.3. \square

E PROOFS OF SECTION 4

1529 **Corollary E.1.** *Under the assumptions of Corollary 4.1, if the iterates of the ADMM applied to the problem in 6 converge to (x^*, z^*, w^*) with $w^* = 0$, then the Lagrangian converge linearly, i.e., there exists $c_4 > 1$ such that*

$$1533 \quad L(x^k, z^k, w^k) - L(x^*, z^*, w^*) \leq \mathcal{O}(c_4^{-k}),$$

1535 **Corollary E.2.** *Under the assumptions of Corollary 4.2, if I_i s are the indicator functions of some polyhedrals, then,*

$$1538 \quad L(x^k, z^k, w^k) - \min_{(x, z) \in \mathcal{B}(x^k, z^k; r)} L(x, z, w^k) \in \mathcal{O}(c_5^{-k}),$$

1540 where $c_5 > 1$ and $r > 0$. Furthermore, (x^*, z^*) is the local minimum of problem Equation (6).

1543 PROOFS OF COROLLARY 4.1, COROLLARY E.1, COROLLARY 4.2 AND COROLLARY E.2

1544 In this setting, the corresponding objective functions will be

$$\begin{aligned}
 1547 \quad & F(x) := f(x) + \sum_{i=0}^T I_i(x_i), \quad \phi(z) := \sum_{i=1}^T \phi(k'), \\
 1548 \quad & f(x) := f(\mathbf{f}), \quad I_i(x_i) := \sum_{j=1}^N I_W(\mathbf{f}_i^j).
 \end{aligned}$$

1553 The corresponding multi-affine quadratic constraints of the locomotion problem is $A(x) + Qz = 0$
1554 in which Q is the identity matrix and
1555

$$1556 \quad A(x) := \begin{bmatrix} \mathbf{k}_{\text{init}} \\ A^1(\mathbf{f}) \\ \vdots \\ A^T(\mathbf{f}) \end{bmatrix},$$

1562 in which

$$1564 \quad A^i(\mathbf{f}) := \sum_{j=1}^N \left(\left(\mathbf{r}_i^j - \mathbf{c}_{\text{init}} - \dot{\mathbf{c}}_{\text{init}} i(\Delta t) - \sum_{i'=0}^{i-2} (i-1-i') \left(\sum_{l=1}^N \frac{\mathbf{f}_i^l}{m} + \mathbf{g} \right) (\Delta t)^2 \right) \times \mathbf{f}_i^j \right) \Delta t, \text{ for } i \geq 2.$$

From the robotic problem in Equation (6), we have $C_i = 0$ in A_2^1 and A_2^2 . For A_2^i , $i \geq 3$, C_i is actually a sparse matrix. If we consider r_j^t as a constant, then

$$\begin{aligned}
\mathbf{k}'_{i+1} - \mathbf{k}_i &= \sum_{j=1}^N \left(\left(\mathbf{r}_i^j - \mathbf{c}_{\text{init}} - \dot{\mathbf{c}}_{\text{init}} i(\Delta t) - \sum_{i'=0}^{i-2} (i-1-i') \left(\sum_{l=1}^N \frac{\mathbf{f}_i^l}{m} + \mathbf{g} \right) (\Delta t)^2 \right) \times \mathbf{f}_i^j \right) \Delta t \\
&= \sum_{j=1}^N \left(\left(\mathbf{r}_i^j - \mathbf{c}_{\text{init}} - \dot{\mathbf{c}}_{\text{init}} i(\Delta t) - \sum_{i'=0}^{i-2} (i-1-i') \mathbf{g} (\Delta t)^2 \right) \times \mathbf{f}_i^j \right) \Delta t \\
&\quad - \sum_{j=1}^N \sum_{i'=0}^{i-2} \sum_{l=1}^N (i-1-i') \frac{\mathbf{f}_{i'}^l \times \mathbf{f}_i^j}{m} (\Delta t)^3 \\
&= \text{Affine Terms on } \mathbf{X} - \sum_{j=1}^N \sum_{i'=0}^{i-2} \sum_{l=1}^N (i-1-i') \frac{\mathbf{f}_{i'}^l \times \mathbf{f}_i^j}{m} (\Delta t)^3 \\
&= \text{Affine Terms on } \mathbf{X} - \sum_{j=1}^N \sum_{i'=0}^{i-2} \sum_{l=1}^N \frac{(\Delta t)^3}{m} (i-1-i') \begin{bmatrix} f_{i',y}^l f_{i,z}^j - f_{i',z}^l f_{i,y}^j \\ -f_{i',x}^l f_{i,z}^j + f_{i',z}^l f_{i,x}^j \\ f_{i',x}^l f_{i,y}^j - f_{i',y}^l f_{i,x}^j \end{bmatrix} \\
&= \text{Affine Terms on } \mathbf{X} - \sum_{j=1}^N \sum_{l=1}^N \frac{(\Delta t)^3}{m} \begin{bmatrix} \frac{1}{2} \mathbf{f}^T \sum_{i'=0}^{i-2} C_{i',y,i,z}^{j,l} \mathbf{f} \\ \frac{1}{2} \mathbf{f}^T \sum_{i'=0}^{i-2} C_{i',x,i,z}^{j,l} \mathbf{f} \\ \frac{1}{2} \mathbf{f}^T \sum_{i'=0}^{i-2} C_{i',x,i,y}^{j,l} \mathbf{f} \end{bmatrix} \tag{50}
\end{aligned}$$

where $C_{i',y,i,z}^{j,l}$, $C_{i',x,i,z}^{j,l}$ and $C_{i',x,i,y}^{j,l}$ only have 4 non-zero element with its number equals to $i-1-i'$ or $-(i-1-i')$ at (i'_{x_1}, i_{x_2}) , (i_{x_2}, i'_{x_1}) , (i'_{x_2}, i_{x_1}) and (i_{x_1}, i'_{x_2}) , where $(x_1, x_2) \in \{(x, y), (x, z), (y, z)\}$. As a result

$$\left\| \sum_{i'=0}^{i-2} C_{i',x_1,i,x_2}^{j,l} \right\| \leq \left\| \sum_{i'=0}^{i-2} C_{i',x_1,i,x_2}^{j,l} \right\|_F = \sqrt{\sum_{i'=0}^{i-2} 4(i-1-i')^2} \leq 2i^{3/2}.$$

In addition,

$$\begin{aligned}
\|C_i\| &= \left\| \sum_{j=1}^N \sum_{i'=0}^{i-2} \sum_{l=1}^N \frac{(\Delta t)^3}{2m} C_{i',x_1,i,x_2}^{j,l} \right\| \leq \sum_{j=1}^N \sum_{l=1}^N \frac{(\Delta t)^3}{2m} \left\| \sum_{i'=0}^{i-2} C_{i',x_1,i,x_2}^{j,l} \right\| \\
&\leq \sum_{j=1}^N \sum_{l=1}^N \frac{2i^{3/2}(\Delta t)^3}{2m} \leq \sum_{j=1}^N \sum_{l=1}^N \frac{2T^{3/2}(\Delta t)^3}{2m} \\
&\leq \frac{N^2 2T^{3/2}(\Delta t)^3}{2m} \in \mathcal{O}\left(\frac{N^2 T^{3/2}(\Delta t)^3}{m}\right).
\end{aligned}$$

and $C_i \in \mathbb{R}^{n \times n}$, where $n_x = Nn_z = Nn_c = 3N(T+1)$.

If we can seeking a solution on the time interval $[0, T_{\text{total}}]$ and we split it into T discretization, then $T = \frac{T_{\text{total}}}{\Delta t}$. In consequence,

$$n_x = Nn_z = Nn_c = 3N \left(\frac{T_{\text{total}}}{\Delta t} + 1 \right) = \Theta \left(N \frac{T_{\text{total}}}{\Delta t} \right). \tag{51}$$

and

$$\|C\| = \max_i \|C_i\| \in \mathcal{O}\left(\frac{N^2 (T_{\text{total}})^{3/2} (\Delta t)^{3/2}}{m}\right). \tag{52}$$

For d_i , by denoting $a_i^j = \mathbf{r}_i^j - \mathbf{c}_{\text{init}} - \dot{\mathbf{c}}_{\text{init}} i(\Delta t) - \sum_{i'=0}^{i-2} (i-1-i') \mathbf{g} (\Delta t)^2$, notice that,

$$\begin{aligned}
\sum_{j=1}^N \left(\left(\mathbf{r}_i^j - \mathbf{c}_{\text{init}} - \dot{\mathbf{c}}_{\text{init}} i(\Delta t) - \sum_{i'=0}^{i-2} (i-1-i') \mathbf{g} (\Delta t)^2 \right) \times \mathbf{f}_i^j \right) \Delta t &= \sum_{j=1}^N \left(a_i^j \times \mathbf{f}_i^j \right) \Delta t \\
&= \sum_{j=1}^N \begin{bmatrix} a_{i,y}^j f_{i,z}^j - a_{i,z}^j f_{i,y}^j \\ -a_{i,x}^j f_{i,z}^j + a_{i,z}^j f_{i,x}^j \\ a_{i,x}^j f_{i,y}^j - a_{i,y}^j f_{i,x}^j \end{bmatrix} \Delta t
\end{aligned}$$

1620 and

$$\begin{aligned}
|a_{i,z}^j| &= |\mathbf{r}_{i,z}^j - \mathbf{c}_{\text{init},z} - \dot{\mathbf{c}}_{\text{init},z}t(\Delta t) - \sum_{i'=0}^{i-2} (i-1-i')\mathbf{g}_z(\Delta t)^2| \\
&\leq |\mathbf{r}_{i,z}^j| + |\mathbf{c}_{\text{init},z}| + |\dot{\mathbf{c}}_{\text{init},z}i(\Delta t)| + \left| \sum_{i'=0}^{i-2} (i-1-i')\mathbf{g}_z(\Delta t)^2 \right| \\
&\leq |\mathbf{r}_{i,z}^j| + |\mathbf{c}_{\text{init},z}| + |\dot{\mathbf{c}}_{\text{init},z}T(\Delta t)| + \left| \sum_{i'=0}^{T-2} (i-1-i')\mathbf{g}_z(\Delta t)^2 \right| \\
&\leq |\mathbf{r}_{i,z}^j| + |\mathbf{c}_{\text{init},z}| + |\dot{\mathbf{c}}_{\text{init},z}T_{\text{total}}| + \left| \frac{1}{2}\mathbf{g}_zT_{\text{total}}^2 \right| \in \mathcal{O}(T_{\text{total}}^2).
\end{aligned}$$

1631 The bound is same for $|a_{t,x}^j|$ and $|a_{t,y}^j|$. As a result, by choosing $x_1, x_2 \in \{x, y, z\}$,

1633
$$\|d_i\| \leq \sqrt{|a_{i,x_1}^j|^2 + |a_{i,x_2}^j|^2} N \Delta t \in \mathcal{O}(NT_{\text{total}}^2 \Delta t). \quad (53)$$

1634 From Equation (51), Equation (52), Equation (53), Equation (7), $\|e\| = 0$ and $Q = I$, Equation (34)
1635 suffices to require

$$\begin{aligned}
\frac{N^2(T_{\text{total}})^{3/2}(\Delta t)^{3/2}}{m} &\in \mathcal{O} \left(\min \left\{ \frac{\mu_f \sqrt{\mu_\phi}}{\sqrt{\frac{T_{\text{total}}}{\Delta t}} L_\phi \left(\sqrt{L_f} \sqrt{N \frac{T_{\text{total}}}{\Delta t}} + \sqrt{L_\phi} \sqrt{\frac{T_{\text{total}}}{\Delta t}} \right)}, \right. \right. \\
&\quad \frac{\mu_f \sqrt{\mu_\phi}}{\sqrt{L_\phi^3 \frac{T_{\text{total}}}{\Delta t}} \sqrt{N \frac{T_{\text{total}}}{\Delta t}} NT_{\text{total}}^2 \Delta t}, \\
&\quad \left. \left. \left(\frac{\mu_f \sqrt{\mu_\phi}}{L_\phi^{3/2} N \frac{T_{\text{total}}}{\Delta t} N \frac{T_{\text{total}}}{\Delta t}} \right)^{1/2} \right\} \right),
\end{aligned}$$

1647 which is equivalent to

1648
$$\Delta t \in \mathcal{O} \left\{ \frac{\mu_f^2 \mu_\phi m^2}{L_\phi^2 (L_f + L_\phi) N^6 T_{\text{total}}^5}, \frac{\mu_f \sqrt{\mu_\phi} m}{L_\phi^{3/2} N^{7/2} T_{\text{total}}^5}, \frac{\mu_f \sqrt{\mu_\phi} m^2}{L_\phi^{3/2} N^6 T_{\text{total}}^5} \right\}. \quad (54)$$

1651 Once the Equation (54) holds, the Equation (4) is satisfied, and the conclusion from the proof of
1652 Corollary D.2, Theorem 3.2, Theorem 3.3 follows. \square 1654

F ADDITIONAL EXPERIMENTS INFORMATION

1656 The simulations are done on a normal laptop with Intel(R) Core(TM) i5-1235U with 16GB of
1657 memory.1658 In the 2D locomotion problem, the horizontal location of the end-effector r_x is switched to $r_x + D$
1659 after $M\Delta t$ time steps, where D and M can be chosen randomly for each step to increase the
1660 variability in the motion. The frictions are constrained so that the horizontal location of CoM c_x
1661 satisfies $-0.15m \leq c_x \leq 0.15m$, and vertical location of CoM c_z satisfies $0.15m \leq c_z \leq 0.25m$
1662 distance from the stance foot to the CoM. All the other details can be found in the code in the
1663 supplementary material.1664 We further provide the computation time for the locomotion problem under different Δt . As Δt
1665 becomes smaller, the dimension of the problem become larger, which requires more time for the
1666 computation.1668 **Table 2: Computation time for different Δt**

Δt	0.05s	0.02s	0.01s	0.005s	0.002s	0.001s
Computation time	0.60s	1.51s	3.29s	7.31s	18.54s	38.82s

1672 Additionally, Fig. 7 confirms that the friction cone constraints are satisfied throughout the optimization
1673 process.

Figure 7: The result of friction and its friction cone.

G ADDITIONAL EXPERIMENTS

Sensitivity of ρ : Here, we provide additional experiments for the sensitivity analysis of the penalty parameter ρ . As illustrated in the left Figure of 8, by increasing the penalty coefficient, the convergence rate decreases while the convergence rate remains linear.

Approximated ADMM: In this experiment, we ran the inexact ADMM, where the updates (i.e., the solutions to the subproblems) are computed using gradient descent (GD) with different numbers of iterations. For example, when the inner-loop iteration count is set to 10, each subproblem is solved using 10 steps of GD. The results are shown in the right panel of Figure 8, where they are compared with the exact ADMM, in which the subproblems are solved analytically.

Figure 8: Left: sensitivity analysis of ρ . Right: Inexact ADMM with different numbers of GD in the inner loop

Comparison with other methods: Here, we compare several benchmark methods with our algorithm on problems featuring different types of constraints: linear and multi-affine quadratic constraints. These figures contain additional method called IADMM from Tang & Toh (2024). As shown in Figure 9, our ADMM algorithm achieves linear convergence in all settings.

Figure 9: Left: convex objective with multi-affine constraint. Center: convex objective with linear constraint. Right: nonconvex objective with linear constraint

1728

H LIMITATION

1729
1730 Our theoretical analysis only establishes convergence of the ADMM for the quadratic constraint
1731 problem. The convergence analysis for the higher-order constraints needs further investigation.
1732 Also, Theorem 3.2 is satisfied with second order differentiability of the Lagrangian at (x^*, z^*, w^*) .
1733 A possible relaxed way is to analyze the differential part x_d^* of x^* , and prove the PL property of
1734 $\tilde{L}(x_d, z, w) = L(x_d, x_{-d}^*, z, w)$, when $x_{-d} = x_{-d}^*$ is fixed.
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781