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ABSTRACT

In this paper, we study a class of non-convex optimization problems known as
multi-affine quadratic equality constrained problems, which appear in various
applications—from generating feasible force trajectories in robotic locomotion and
manipulation to training neural networks. Although these problems are generally
non-convex, they exhibit convexity or related properties when all variables except
one are fixed. Under mild assumptions, we prove that the alternating direction
method of multipliers (ADMM) converges when applied to this class of problems.
Furthermore, when the "degree" of non-convexity in the constraints remains within
certain bounds, we show that ADMM achieves a linear convergence rate. We
validate our theoretical results through practical examples in robotic locomotion.

1 INTRODUCTION

Non-convex optimization serves as a fundamental concept in modern machine learning, such as
reinforcement learning [Xu et al.[(2021); Wang et al.| (2024) and large language models |Ling et al.
(2024); [Kou et al.| (2024). The non-convexity in these applications may arise from the objective
function, the constraint set, or both. Finding a solution to a non-convex problem is, in general, NP-
hard Krentel| (1986). As a step to manage this complexity, a common practice is to study problems
with additional structural assumptions under which particular solvers, such as gradient-based methods,
are guaranteed to converge to an optimizer. Subsequently, various relaxations of the objective and/or
constraints have been proposed to transform the original problem into a more tractable problem. For
instance, the objective function has been studied under assumptions such as weak strong convexity
Liu et al.[(2014), restricted secant inequality [Zhang & Yin|(2013), error bound |Cannelli et al.| (2020),
and quadratic growth Rebjock & Boumal (2024). On the other hand, optimization problems with
various types of non-linear constraints have been investigated, such as quadratically constrained
quadratic programs (QCQP) Bao et al.[(2011)); Elloumi & Lambert (2019), geometric programming
(GP)Boyd et al.|(2007); Xu| (2014), mixed-integer nonlinear programming (MINLP) Lee & Leyfter
(2011); |Sahinidis| (2019), and equilibrium constraints problem Yuan & Ghanem|(2016);[Su (2023).

Recently, there has been growing interest in analyzing non-convex optimization problems with specific
block structures, driven by their broad range of applications. Although such problems are generally
non-convex, they often exhibit convexity or related properties when all but one block of variables is
fixed. Various structural properties of these problems have been studied, including multi-convexity in
minimization settings Xu & Yin|(2013); Shen et al.|(2017); Lyu|(2024), PL-strongly concave|Guo et al.
(2023), and PL-PL [Daskalakis et al. (2020)); |Chen et al.| (2022) in min-max formulations. Motivated
by two well-known applications in robotics, in this work, we study multi-affine equality-constrained
optimization problems (see Problem in equation|[T).

In particular, locomotion and manipulation problems in robotics (Figure[I)) involve intermittent contact
interactions with the world. Due to the hybrid nature of these interactions, generating dynamically-
consistent trajectories for such systems leads to a set of non-convex problems, which remains an
open challenge. In general, the problem of planning through contact is handled in two ways; contact-
implicit and contact-explicit. The first approach directly incorporates the complementarity constraints
arising from the contacts, either by relaxing them within the problem formulation |Tassa et al.| (2012)
or at the solver level |Posa et al.| (2014). While this approach has recently shown considerable promise
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Figure 1: Examples of locomotion and manipulation settings, (left) Solo Grimminger et al.|(2020)

and (right) Trifinger[Wiithrich et al.| (2020)
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in practice [Kim et al.|(2023)); [Aydinoglu et al| (2024); [Le Cleac’h et al/ (2024), providing convergence

guarantees remains an open problem due to the presence of multiple sources of non-convexity. The
second approach handles contact in the trajectory optimization problem by casting it as a mixed-
integer optimization [Deits & Tedrake| (2014); Toussaint et al.| (2018). In this approach, the hybrid
nature of interaction is explicitly taken into account with integer variables, and thus, a combinatorial
search is required to decide over the integer decision variables, while the continuous trajectory
optimization problem ensures the kinematic and dynamic feasibility of the problem. This approach
has also shown great success in recent years in both locomotion [Ponton et al.| (2021); [Taouil et al.
2024)); [Aceituno-Cabezas et al.| (2017) and contact-rich manipulation tasks Hogan & Rodriguez|
2020); [Toussaint et al.| (2022)); [Zhu et al.| (2023)).

The optimization problem in the contact-explicit setting exhibits additional interesting structure. In
particular, the dynamics can be decomposed into underactuated and actuated components
(2006). This implies that, to generate a feasible force trajectory, the kinematics can be abstracted
away. Assuming the robot can produce any desired contact force, it is sufficient to consider only
the Newton-Euler dynamics to generate dynamically consistent trajectories for the robot’s center of
mass (CoM) in locomotion and for the object’s CoM in manipulation. Interestingly, in this setting,
the non-convexity in the dynamics has a special form, namely it is multi-affine [Herzog et al| (2016).
This renders the trajectory optimization problem a multi-affine equality-constrained optimization
problem. These types of problems also appear in other applications such as matrix factorizationLuo
et al|(2020); Choquette-Choo et al.|(2023)), graph theory, and neural network training process Taylor
et al.|(2016);|Zeng et al.| (2021)).

Recent work has exploited this structure to solve the problem using methods such as block coordinate
descent [Shah et al.| (2021)) and the alternating direction method of multipliers (ADMM)
(2023). In constrained optimization problems with linearly separable constraints, ADMM is
an efficient and reliable algorithm Lin et al.|(2015a); Deng et al.|(20177)); Yashtini| (2021)). Notably,
its variants are driving the success of many machine learning applications involving optimization
problems with linear constraints and convex objectives [Shi et al.| (2014)); [Nishihara et al.| (2015));
Khatana & Salapakal (2022) as well as those with non-convex objectives Bot & Nguyen| (2020);
Kong & Monteiro| (2024); Wang et al.| (2019); [Li et al.| (2024)); [Yuan| (2025). However, not all of
these works provide convergence guarantees, and those that do either rely on additional assumptions
or establish weaker forms of convergence. For instance, Bot & Nguyen| (2020) considered the
problem min f(z) + ¢(z) subject to Ax = z, where ¢ is proper and lower semicontinuous (LSC),
h is differentiable and L-smooth. They proved last-iterate convergence to a KKT point under the
KL property (see Definition [2.5)) and assuming access to a proximal solver, i.e., arg min,{¢(2) +
(y*, Az® — 2) + || Az® — 27 + L[|z — 2*||*}. A similar assumption is made by (2025).
However, this requirement is quite restrictive when g is nonconvex and the constraints are nonlinear.
In fact, their guarantees no longer hold when the constraint set includes nonlinear relations, such as
{x129 + 23 + 2z = 0}. The next table presents a comparison of existing ADMM approaches.

Naturally, it is important to understand the limitations of ADMM in settings with nonlinear constraints,
such as multi-affine equality-constrained [Wang et al| (2019); [Zhang et al.| (2023); Barber & Sidky
(2024)). [EI Bourkhissi & Necoara) (2025) studied general nonlinear equality-constrained nonconvex
optimization but imposed additional structural assumptions to ensure regularity, such as full column
rank of the constraint Jacobian. They also relied on backtracking strategies to solve each subproblem.
Furthermore, they established convergence rates under the assumption that the objective satisfies
the a-PL property. focused on proximal ADMM methods for general nonlinear
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Table 1: Comparison with previous work

Ref. Blocks | Objective Assumptions Constraints | Convergence
Bot & Nguyen| | =2 f(z) + ¢(2) f: smooth, ¢: LSC Linear Last iterate as-
(2020) suming a-PL
Wang et al|| >2 F@)+P, Li(zi)+¢(2) | f: smooth, ¢: smooth | Linear Avg. iterate
2019) f + ¢ : coercive
Li et all| =2 f(z) + ¢(2) f: smooth, ¢: convex, | Convex, Best iterate
(2024) nonsmooth bounded
Yuan|(2025) > 2 S filzi) + hi(z;) fi: smooth, bounded | Linear Avg. iterate
derivative, h; : nons-
mooth, h,, : convex
Our Work >2 F@)+X0, Li(zi)+¢(z) | f: strongly convex, Multi- Last iterate
smooth, ¢: strongly | affine, un-
convex, smooth bounded

dynamics constraints. However, they only provide the best-iterate convergence between two iterates
and fail to provide convergence rate related to the stationary point. In problems with multi-affine
constraints, |Gao et al.|(2020) investigated the convergence properties of ADMM under the strict set of
assumptions for the objective function (it has to be independent of certain variables). However, they
fail to show any explicit convergence rate, which is crucial for applications like trajectory planning in
robotics, where solutions must be computed within a short time slot with predefined accuracy. This
leads to a key question that we seek to address in this study.

What convergence rate can be guaranteed for ADMM when applied to optimization problems
with multi-affine quadratic equality constraints?

Previous works have shown that a linear convergence rate is achievable in linearly constrained
problems with a strongly convex objective [Lin et al.| (2015b); |Cai et al.| (2017); |Lin et al.|(2018). On
the other hand, it is straightforward to see that the multi-affine quadratic constraints gradually reduce
to linear constraints as the non-convex coefficients vanish (i.e., {C;} — 0 in equation . Thus, in the
extreme case when all the non-convex coefficients are zero, linear convergence is ensured. However,
our empirical results indicate that a linear convergence rate remains attainable even when the nonlinear
quadratic components are present. This observation motivates our next research question.

If the effect of non-convexity in the constraint is small enough, does the linear convergence of
ADMM when applied to the problem in|]|still hold?

In this paper, we provide positive answers to both of the questions raised above. More precisely,
when the norm of the non-convex coefficients (i.e., {||C;||}) is sufficiently small relative to the norms
of the linear components in the constraint set, ADMM achieves a linear convergence rate. Otherwise,
under certain mild assumptions, we show that the convergence rate is sub-linear. In addition, we
validate our theoretical findings through several practical experiments in robotic applications.

2 PROBLEM SETTING

Notations: Throughout this work, we denote || B|| and ||a|| as the spectral norm of matrix B and the
Euclidean norm of vector a, respectively and denote the smallest eigenvalue of B by A, (B). We
use z; and z_; to denote the i-th entry of the vector x and all entries except the i-th entry, respectively.
We denote [x;, T;y1,- -, mj} by x;.; when j > i and the empty set when j < ¢. The partial derivative
of function f(x) with respect to the variables in its i-th block is denoted as V; f (z) := a%i fxzi,x_y)
and the full gradient is denoted as V f(x). The general sub-gradient of f at x is denoted by Jf(z).
The exterior product between vectors a and b is a x b. The set of all functions that are n-th order
differentiable is C™. The ball centered at = with radius r is B(z; ). The distance between a point
x and a closed set S is given by dist(x,S) := infses ||s — 2||. Apmin(A) and A, (A) denote the
minimum eigenvalue and the minimum positive eigenvalue of A, respectively.

Definitions and assumptions: In this work, we consider the following multi-affine quadratic equality
constrained problem:

min F(z) + ¢(2), s.t.

T,z

Ax) +Qz =0, ey
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where x = (x1,--+ ,2,)T € R" is partitioned into n blocks, with each block z; € R™. Q is a
matrix in R™*"= and z is a vector in R"=. Function A(x) is a multi-affine quadratic operator.

Definition 2.1. Function A(:) : R™ — R is called a multi-affine quadratic operator when
foreachi € {1,...,n.}, there exist C; € R"=*"= d, € R" and e; € R such that

T,
(@) = T2 1 iz + e @

and moreover, A(x;; x_;) is an affine function for x; when x_; are fixed, Vx_;, j € [n].

Note that the set of constraints in equation |l| comprises the linear ones and encompasses a much
broader class in nonlinear settings. It also appears in various applications such as the locomotion and
manipulation problems in robotics, matrix factorization, and neural network training process. From
definition, it is obvious that the diagonal blocks of the matrix C; is zero matrix. We provide a simple
example of the multi-affine quadratic equality constrained problem.

Example 2.2. Consider the following problem

minx%—i—x%—i—z%—i—zg, s.t. rixo+ax1+14+21=0, —z129+T2+1+20=0.
T,z

This problem can be reformulated in the form of equation[I|by considering Q to be the identity matrix,
F(x) := 22 + 22, ¢(2) := 22 + 22, and
0 1

0o -1 1 0
1 0 1 0:|7 d1—|:0:|, d2—|:1:|7 61—].7 62—]..

The next set of assumptions are made to restrict the objective function in equation Il Namely, we
assume that the function F'(x) can be decomposed into a C strongly convex function and a group of
indicator functions that are block-separable.

C) = , Oy =

Assumption 2.3. F(z) is subanalytic (see Appendix @for formal definition) and can be written as
f(x) + 321 L), where f(z) is C?, jug-strongly convex with x'; denoting its minimizer and I;(-)
is the indicator function of a convex and closed set X; CR™:. Function ¢(z) is also C?, -strongly
convex with its minimizer at ¢7.

We refer to the indicators as block-separable because they take the form ), I;(z;) instead of
I(x1,...,2,). The key distinction is that, in the block-separable case, each block of 2z must belong to
a specific convex and closed set. Note that this is not a restrictive assumption for a wide range of
problems in robotics, optimal control, and related areas, as the objective functions in these applications
typically represent quadratic costs, often combined with indicator functions to enforce safe regimes
for the control variables x. Moreover, separable non-smooth functions have been frequently assumed
in numerous works such as|Lin et al.| (2016); Deng et al.|(2017); [Yang et al.| (2022).

Definition 2.4. Function g(-) : R™ — R is called L-smooth when there exists L > 0 such that
IVg(z) = Vg(a)ll < Lz — 2|, Va, 2" € R™.

Note that the indicator functions {;(-)} may not be smooth.

Definition 2.5. Function g(-) : R™ —R U {oo} is said to have the a-PL property, where o € (1,2],
if there exist ) € (0, 00] and C' > 0, such that for all x with |g(x) — g(z*)| < n, where ©* is a point
for which 0 € Og(z*), we have

(dist(9g(x), 0))" > Clg(z) — gla*)].

It is important to note that when a function is subanalytic and lower semi-continuous then there exists
an « such that it has also the a-PL property, which is well-known in the non-convex optimization
literature Frankel et al.|(2015); |Bento et al.| (2024)). Furthermore, it has been shown by [Fatkhullin
et al.| (2022); ILi et al.[(2023) that under some mild conditions, the a-PL property guarantees that the
iterates of gradient-based algorithms such as gradient descent (GD) or stochastic GD converge to the
optimizer with an explicit convergence rate. In the next section, by showing the o-PL property for
different scenarios, we could establish the convergence rate of the ADMM.

Assumption 2.6. Matrix QQ € R™*"= is full row rank.
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This assumption is weaker than the one made in [Nishihara et al.| (2015)); Deng et al.|(2017)), where
@ is required to have full column rank. The full column rank can be replaced by a non-singularity
assumption as one can reform the constraints to Q7 A(z) + Q7 Qz = 0 in which QT'Q is non-singular
when @ is full column rank. However, this reformulation is not possible when () is full row rank.
Assumption [2.6] is crucial for establishing the convergence of ADMM, as demonstrated by the
example below, where its violation leads to failure of the algorithm.

Algorithm: To solve equation[I} we consider the augmented Lagrangian ADMM, introducing a dual
variable w € R™< and a quadratic penalty term for the constraints with the coefficient p. This results
in the following Lagrangian function.

Definition 2.7. The corresponding augmented Lagrangian of equation[l|is given by
P
L(w, z,w) := F(x) + ¢(2) + (w, A(z) + Q) + 5| A(z) + Q=] )
where p > 0 is the penalty parameter.

ADMM is a powerful algorithm that can it-
eratively find a stationary point of the above Algorithm 1 ADMM
Lagranglan functlon.. Algorl.thmﬂ]summa- Require: (20, ...,20), 2% u°, p
rizes the steps of this algorithm. At each fork —0.1.2.. . do
iteration, it sequentially updates the current fori—1.. .. ndo
estimate by minimizing the augmented La- k1
grangian with respect to the variables in i

block z;, i € {1,....,n}, ar}d z when al.l A+ € argmin, Lz, 2, wh)
other blocks are fixed at their current esti- k41 ok A( k+1) ) k+1)
mates. Afterwards, the dual variable w is w = w" + p(A(z z
updated depending on how much the con-
straints are violated. It is important to note
that the minimization sub-problems for updating each block are derived by fixing all other blocks.
This results in an augmented Lagrangian corresponding to a linearly constrained problem, which is
tractable and can be solved efficiently [Lin et al.| (2015bj 2018)).

. k+1 k E ook
€ argming (275, 2, 7 .,, 27, w")

end for

end for

To show the importance of Assumption [2.6|consider the following example in which this assumption
is violated while other aforementioned assumptions hold but the ADMM fails to converge to a feasible
solution. Therefore, Assumption [2.6]is indispensable.

Example 2.8. (Gao et al|(2020) Consider the following problem which is of the form of equation![l]

minz? +y?, st xy=1.
z,y

With an arbitrary initial point of the form (aco, 0, wU), the ADMM’s iterates will satisfy (xk, yk) —
(0,0) and w*® — —o0. Note that the limit point violates the constraint.

3 THEORETICAL RESULTS

Herein, we present our theoretical guarantees for ADMM when applied to Problem equation [T} In
particular, the following theorem demonstrates that, under the stated assumptions, ADMM converges
and establishes key properties of the limit point.

Theorem 3.1. Suppose that Assumption2.3|and Assumption 2.6\ hold. If ¢ is Lg-smooth, then

. . 4L3) 4L§)
ADMM in|l|with p > max{ i (@D ma L (@aT

convergence rate to a stationary point (x*, z*, w*) of the augmented Lagrangian, i.e.,

) } converges with at least sublinear

L(z*, 2%, wk) — L(z*, 2%, w*) € o(1/k),
where x* = (a7, ..., x},) and for all i,

cey gy

x; € arg m%@n flzi,a,) + Li(x;), st Alxg,zx,)+Qz* =0,
x; ER™:

and z* is given by z* € argmin,crn- ¢(2), such that A(x*) + Qz = 0.
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This result shows that the limit point (z*, z*) satisfies properties analogous to those of a Nash
equilibrium point: that is, when all blocks except one are fixed at their limit values (e.g., (z* ;, 2*)),
the objective function is optimized with respect to the remaining block (e.g., z;). Previously, |Gao
et al.| (2020) showed the convergence of ADMM but without providing any convergence rate. In
addition, their result requires stronger assumptions, such as f needs to be independent of certain
variables, which is not needed in Theorem[3.1}

Next, we show that under additional assumptions such as the second-order differentiability of the
Lagrangian at the limiting point and a sufficiently small degree of non-convexity, a linear convergence
rate for ADMM when applied to equation [I] can be guaranteed. The degree of non-linearity is
characterized by the relation between matrix () (the coefficient of the linear term in the constraints)
and matrices {C;} (the coefficients of the non-linear term).

Theorem 3.2. Suppose that the assumptions of Theorem@hold. Moreover; let f be L ¢-smooth
and L(x, z,w) is second-order differentiable at the limit point (x*, z*,w*). When matrix Q

satisfies

Icl € o(I1QQ™) ™ QI - min {ma, ma(Amin(QQ™))2,ms (Amin(QQT) 1 1(QQT) QU2 }),
“

where ||C|| := max; ||C;|| and constants {m; > 0} depending on problem’s parameters e.g.,

L¢, g, ... then, there exists ¢y > 1 such that the iterates of Algorithmmsatisfy

L(z®, 2% w®) — L(z*, 2%, w*) € O(c;¥).

Furthermore, (x*, 2*) is a local minimum of the problem equation

Previous results by |Lin et al.[(2015b) on the performance of ADMM when applied to problems with
linear constraints can be viewed as a special case of Theorem Namely, when ||C|| = 0, the
constraints in equation [T reduce to linear constraints and subsequently, Equation () holds. Thus,
according to the above result, the linear convergence of Lagrangian holds, which has been proved in
the literature. In addition, Theorem [3.2]implies that even if nonlinear terms in the constraints exist, as
long as ||C|| is small enough, the linear convergence is still preserved.

It is important to emphasize that the above result requires differentiability of the Lagrangian at the
limit point, which may not be valid in certain problems. Next, we replace this assumption with an
additional minor assumption on the constraints for ;8. Namely, we assume that they belong to some
polyhedrals (see Appendix [A). These types of constraints are common in various practical problems.

Theorem 3.3. Under the assumptions of Theorem[3.1} when matrix Q satisfies equationdand
{I;} are the indicator functions of some polyhedral, then, the iterates of ADMM satisfy

L(z*, 28, wk) — min L(z, z,w*) € O(cz*),
(z,2)€B(z*,2%;r)
where co > 1 and r > 0 are constant. Furthermore, limy_, (2", 2%) = (2*,2*) is a local
minimum of problem equation|[I}

Approximated ADMM: The algorithm in|l|is required to solve a series of sub-problems at each
iteration in order to update {x;} and z. The results presented in the previous section are established
under the assumption that these sub-problems are solved exactly. Although each sub-problem is
strongly convex and efficiently solvable via gradient methods, it remains unclear whether the previous
convergence rates hold under inexact solutions. In Appendix [D.I] we introduce an approximated-
ADMM and provide its convergence guarantees.

4  APPLICATION IN ROBOTICS

In the locomotion problem, the robot’s centroidal momentum dynamics are considered (Viereck &
Righettil |2021; Meduri et al., 2023). The location, velocity, and angular momentum generated around
the center of mass (CoM) are denoted by c, ¢, and k. We aim to optimize the objective function
subject to the physics constraints, i.e., Newton-Euler equations. By discretizing the Newton-Euler
equations and fixing the contact sequence and its timing, the optimal control problem for locomotion
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can be written in the following unified way.

T-1
Jany ; oi(ci, i, ki, ) + or(er, er, kr), 5)

N
. . . £ . )
st cip1 =c¢; +FEAL, i =&+ E EZAt +gAt, & = i, Co = Cinir,
j=1

N
kipn=ki+» (r] —c;)) x t/At, ko =k, £ €, Vij,
j=1
where At is the time discretization, subscript ¢ stands for time index, 7" being the last one. Superscript
7 specifies the index of the end-effector in contact with the environment, and NN is the number of
the end-effector. Variables c;, ¢;, k;, f/ denote the location, speed, angular momentum of the center
of mass and the friction force at j-th contact at ¢-th discretization. The location of the end-effector
in contact r is known. The initial conditions for the CoM are given by ¢iyir, Cinir, Kinir. Function ¢
represents the running cost, ¢ is the terminal cost, and the friction fi] is constrained to lie within a
safe region €2, which we assume it is cone and use polyhedral approximation to represent it. Note
that this is a multi-affine equality constraint due to the term ¢ X f in the angular momentum dynamics.

Next, we reformulate the problem into the form of equation [I]and apply the previous results to derive
the ADMM convergence rate. First, notice that the variables ¢; and ¢; can be rewritten as functions
of f = {f;}. See Appendix [C|for details. Second, by defining a new set of variables k' = {k’;} as
k';11 :=k;y1 — k; fori > 0 and kK’ := Ky, and assuming that the running and terminal costs can
be decomposed into f(f) + ¢(k’), we obtain the following equivalent problem.

T
min  f(f) + 6(K) + Z Ii(£), ©)
N

((I‘é - cmn) X fg)At7 Ky = Z

M= L

s.t. k/o = k,'m',, kll =

—

(I‘{. — Cinit — Cinit At) X ff)At,

Jj=1 j=1
N ‘ i—2 N gl ‘
Kipn=Y. ((rg — e — e i(A) = (i=1=) (Y =+ g)(A1)?) x fg)At, i > 2,
j=1 i’=0 =1

Problem in equation [| has the same form as in equation [T This can be seen by defining z and x in
equationto be z := [Ko,k'1,- - ,kK'7)T and x := |29, ,z7]T, where x; := [f}, - ,fV]. By
denoting the corresponding Lagrangian function of the above problem as L(f, k', w) = L(z, z, w),
we can apply the results from the previous section.

Corollary 4.1. Under the assumptions of Theorem 31| with sufficiently large p, the iterates of the
ADMM applied to the problem in equation@satisfy Lk, 2% wh) — L(x*, 2%, w*) € o(1/k).

We also extend the result of Theorem [3.2]to the locomotion problem for which we require that the
blocks of the initial point z°, the global minimizer of f(x) and ¢(z), z’; and ¢7 are all bounded, i.e.,

12°11%, l27]1* € O(ne),  I5]I* € O(n.). ™
This requirement holds in almost all physical problems. Note that equation[6]is a multi-affine quadratic

constrained problem with the nonlinear term proportional to (At)3. As At — 0, the nonlinear term
decays and subsequently, the linear convergence is guaranteed according to Theorem 3.2}

Corollary 4.2. Under the assumptions of Corollary if equation@holds and L(z, z,w) is
second-order differentiable at the limit point (x*, z*, w*), then there exists c3 > 1 and tg > 0,
such that the iterates of the ADMM applied to the problem in equation[B|lwith At < tq satisfy

L(x*, 2% w®) — L(z*, 2*,w*) € O(cz"),

Furthermore, (x*, 2*) is a local minimum of problem@

In Appendix [E] we further extend the result of Theorem [3.3]to the locomotion problem when L is not
second-order differentiable at (z*, 2*, w*) and show that linear convergence remains achievable.
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Figure 4: Left: convex objective with multi-affine constraint. Center: convex objective with linear
constraint. Right: nonconvex objective with linear constraint

5 EXPERIMENTS

In this section, we first present a toy example to study the effect of the multi-affine constraint on the
convergence rate of the ADMM. Next, we apply the ADMM algorithm to simplified 2D example of
locomotion and dynamic locomotion.

Effect of multi-affine quadratic constraint on the convergence rate: Recall that the con-
straint set of the problem in consists of two parts: the multi-affine quadratic operator
A(-), and the linear part represented by ). According to Theorems and when
the linearity in the constraint becomes dominant, it results in a linear convergence rate.
To study the effect of linearity in the constraint on the
ADMM’s convergence, we consider the following,

a=1

a=100

Y [ |
min S(ah +af +af+ad) + T el Y
s.t. 122 —x3x4 + gz +1=0. [ o \

In this problem, the effect of non-linearity is quan-
tified by the coefficient q. As g becomes larger, | |

it ensures the convergence rate is linear. Condi- ° ° toranons K *
tion in (@) suggests ¢ > 10 to ensure linear con-

vergence. This is illustrated in Figure 2} showing Figure 2: Performance of the ADMM under
the convergence results of ADMM under different . the effect of nonlinearity.

Comparison with Existing Methods: To further

demonstrate the effectiveness of our method, we conduct a comparative study against PADMM
of |Yashtini| (2021), IPDS-ADMM of [Yuan| (2025) and IADMM from [Tang & Toh| (2024) under
three scenarios: (i) convex objective with multi-affine constraints, (ii) convex objective with linear
constraints, and (iii) nonconvex objective with linear constraints. These methods aim to improve
efficiency in linearly constrained problems. However, they currently lack theoretical guarantees when
applied to nonlinear constrained problems. As illustrated in Figure[d] our algorithm achieves superior
performance when the constraints are nonlinear, while comparable performance in other settings.
This highlights the robustness and the efficiency of our approach beyond the convex setting.

2D Locomotion problem: Figure [5 depicts a 2D

locomotion problem in which the goal is to achieve = e
smooth walking behaviors, potentially involving vary- e
ing step lengths at different time steps. To demon-
strate the performance of the ADMM algorithm for
finding the optimal trajectories, i.e., {f;, k; }, we con-
sidered this 2D version of the problem in (3).

Dynamic Violation

In this experiment, we selected a set of parame-
ters that are close to a realistic application, namely,
we set m = 2 kg (small-size robot in |[Grimminger] Figure 3: Mean and standard deviation of
et al] (2020)). We used the cost terms f;(f;) = dynamic Vi{OIaﬁlon valuﬁs ovefr Opﬁimilcl%;ifon
iava 2 _ T /2 iterations. Results are shown for three differ-
3 2o I6il” + Lif), and 6(2) = 55, [IK; " ent time discretizations. The x-axis shows the
iteration number k.

o 5 20 25

10 15
Number of iterations k

The constraints on f are designed to ensure that the
center of mass remains within a specified target area.



Under review as a conference paper at ICLR 2026

gl ‘ @ =

zZ =
I 1010 -
o 1 2 3 4 5 0 1 2 3 4 5 3
X

i I #lterations k #iterations k

Figure 5: Left: Schematic of a 2D locomotion problem. The robot has two contacts with friction f;
and f5. The location and angular momentum are ¢ and k. Center: Performance of the ADMM for
different At. Right: Convergence rate of the ADMM for the 2D problem with random initialization.

Figure 6: Snapshots of the robot experiments. The top row shows a humanoid robot performing a
vertical jump. The bottom row illustrates a quadruped robot executing a bounding gait. In both cases,
centroidal trajectories and forces are found using equation[3] and then a kinematic optimization tracks
the planned centroidal trajectory.

Figure fcenter) illustrates the convergence rate for different discretization time values A¢. Note that
the y-axis is on the log scale. As suggested by the result of Corollary .2} for small enough At, linear
convergence is guaranteed by the ADMM. While At = 0.005 sec as suggested by Corollary 4.2}
our empirical results in Fig. [5|indicate that the bound provided in the corollary is conservative. In
practice, ADMM exhibits a linear convergence rate even for significantly larger values of At. As
shown in Fig. [B[right), ADMM consistently converges linearly regardless of the initial configuration.

Dynamic locomotion problem: Figure [6] depicts dynamic motions executed on a humanoid and
quadrupedal robot. These motions can be described by a fixed contact sequence and transition times,
which can be used to formulate equation The resulting CoM trajectory (c, ¢, k) can then be tracked
via a kinematics optimization in order be applied on a robotic system as depicted in the figure.

In this experiment, we show successful transfer of the centroidal trajectories found using equation 3]
or its equivalent in equation [6] via Algorithm[I|to high-dimensional robotics systems. The kinematics
optimization is executed using an open source implementation of Differential Dynamic Programming
(DDP) Mastalli et al.| (2020). We report the centroidal dynamics constraint violation per iteration
of Algorithm|I|for the jumping motion of the humanoid for three different discretization values At.
The results are depicted in Figure[3] displaying the mean and standard deviation for each At over 10
trials with randomized initial conditions.

6 CONCLUSION

In this paper, we provided theoretical guarantees for the convergence rate of ADMM when applied
to a class of multi-affine quadratic equality-constrained problems. We proved that the sublinear
convergence of the Lagrangian always holds, and every block of the limit point is the optimal solution
when other blocks are fixed. We further proved that when the degree of non-convexity, measured
by ||C||, is small enough, the convergence will be linear. In addition, the limit point is a local
minimum of the problem. Moreover, we applied our result to the locomotion problem in robotics.
Our experimental results validated the correctness and robustness of our theorem. In the future, we
plan to extend our results with higher-order non-linearity in the constraints and perform an extensive
experiment on real-world applications.
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7 REPRODUCIBILITY STATEMENT

The main paper specifies the problem formulation (Section 2) and theoretical guarantees (Section
3). Details of the algorithm, assumptions, and proofs are provided in the appendix. The robotics
application (Section 4) and experiments (Section 5) are described with sufficient information for
implementation, and additional details are included in the appendix and the supplementary material.
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Appendix

A TECHNICAL DEFINITIONS AND LEMMAS

Definition A.1. Ler f : R™ — RU {oo} and © € dom(f) . A vector v is a regular subgradient of f

at z, indicated by v € 0f (), if f(y) > f(x) + (v,y — z) + o(|ly — z||) for all y € R™. A vector v
is a general subgradient, indicated by v € 0f(x), if there exist sequences x,, — x and v, — v with
f(xn) = f(z) and v, € Of (xy,).

Definition A.2 (Subanalytic set). A subset V C R" is called subanalytic if for every point x € R"
there exist

- an open neighborhood U C R™ of x,

- a real-analytic manifold M of dimension n 4+ m,

- a relatively compact semianalytic set S C M,

and a real-analytic projection map w: M — R" such that V N"U = W(S) NnU.

Definition A.3 (Subanalytic function). Let U C R"™ be open. An extended-real-valued function
f: U — RU{+oo} is called subanalytic if its graph Ty = {(z,y) €U xR:y= f(z)}isa
subanalytic subset of R™+1,

14
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Definition A.4. (KL property|Bot & Nguyen, (2020)) The function V is said to have the Kurdyka—
Lojasiewicz (KL) property at a point i € dom OV := {u € RN : 0W(u) # 0}, if there exist
n € (0, 400], a neighborhood U of & and a function ¢ € ®,, such that for every

weUN[U(h) < U(u) < U(a) +n]
it holds

¢ (P(u) — ¥(a)) - dist(0, 0 (u)) > 1,

where ®,, is the set of all concave and continuous functions ¢ : [0,1) — [0, +00) which satisfy the
following conditions:

2. pis Ct on (0,7m) and continuous at 0;

3. forall s € (0,n): ¢'(s) > 0.

Ifo(x) = Cz =/ jn the KL property, where C'is a positive constant, then it is equivalent with
a-PL condition in Definition[2.3]

Definition A.5. A polyhedral set is a set which can be expressed as the intersection of a finite set of
closed half-spaces, i.e., {x € R"|Ax < b} as for some matrix A € R™*™ and vector b € R™.
Lemma A.6. |[Rockafellar & Wets| (2009) If f = g + fo with g finite at T and fo smooth on a
neighborhood of x, then Of (x) = dg(x) + V fo(z).

Lemma A.7. |Rockafellar & Wets|(2009) For any proper, convex function f : R™ — R and any point
T € dom f, one has

of(z) ={v | f(z) > f(Z&) + (v,z — Z) for all x}.

Lemma A.8 (Gao et al| (2020)). Let h be a u-strongly convex and L-smooth function, A be
a linear map of x, and C be a closed and convex set. Let b1,bs € Im(A), and consider the
setsUy = {x: Az +by € C} and Us = {x: Az + by € C}, which we assume to be nonempty.

Let z* = argmin{h(z):z €Uy} and y* = argmin{h(y) : y € Us}. Then, ||z* —y*| <
1+2L
\/ﬁ b2 — b1 |-

Theorem A.9 (Bolte et al.| (2007)). Assume that f : R™ — R U {400} is a lower semi-continuous
globally sub-analytic function and f (xq) = 0, where 0 € Of(xq). Then, there exist § > 0 and
6 € [0,1) such that for all x € | f|~1(0,6), we have

f@)I” <plla*|l,  forallz* € 0f(x).

Lemma A.10 (Inverse Function Theorem |Clarke (1976)). Let ug € X and hg € Y such that
g (uo) = ho and suppose that there exists a neighborhood Uy C X of ug such that 1) g € C* for all
the point in Uy; 2) dg (ug) is invertible. Then, there exist neighborhoods U C Uy of ug and V. C'Y
of ho, such that the equation g(u) = h has a unique solution in U, forall h € V.

Definition A.11 (Feehan|(2019)). Let d > 1 be an integer, U C K? be an open subset, £ : U — K
be a C? function, and Crit(E) := {x € U : VE(x) = 0}. We say that E is Morse-Bott at a point
Too € Crit(E) if 1) Crit(E) is a C? sub-manifold of U, and 2) T, Crit(E) = Ker V2E (z,),
where T, Crit(E) is the tangent space to Crit(E) at a point z € Crit(E).

Theorem A.12. Feehan|(2019) Let d > 1 be an integer and U C K an open subset. If E : U — K
is a Morse-Bott function, then there are constants C' € (0, 00) and o € (0, 1] such that

IVE(z)|| > Co |E(z) — E (z:0)|Y?,  forallz € B(zos;0).
B ADDITIONAL EXPERIMENT DETAILS

The details of the problem in the comparison section are presented here. In that experiment, we
consider the following problems and used three different optimizer including our ADMM and
illustrated their convergence rates in Figure ]
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1. Convex objective with multi-affine constraints:

{ml}n%(m‘l + x2 + a:3 + x4) + M; z2 s.t. T1ro —x3x4+ 1.52+1=0.

2. Convex objective with linear constraints:

mln'u—(ac1 +22) + %227

fuin 7 st. z14+x24+24+1=0.
z;},z

3. Non-convex objective with linear constraints:

{m1}n7(x1+4s1n (331)4-1”2)—&—;;22'2 st. x1+axe+2+1=0.

C DERIVATIONS OF THE LOCOMOTION PROBLEM

Notice that the variables c; and ¢; for 7 > 2 in Problem Equation @) can be rewritten as functions of
f={f;},as

1—2 N j
£
ci(f):Cinit +Cm1tl(At)+Z 7,*1*2 (ZL+g)
=0 Jj=1 m
i—1 N 1
—Cznzt+ZZ(l, ) )
/=0 j=1

D PROOFS OF THEOREMS IN SECTION [3]

PROOF OF THEOREM [3.1]

The proof consists of three main parts: i) to show that { L(z*, 2% w*)} is decreasing, ii) to show that

the sequence {z*, 2% w*} is bounded and has a limit point, and iii) to use the a-PL property for
establishing the convergence rate.

i) L(z*, 2%, w") is decreasing: From Assumption[2.3] f is strongly convex for each blocks 7, we get
k+1  _k k+1 .k ok k+1 k Hf oy k1 k2
fvital,) = fai e Tit1m) = (Vi f(mlv s T4 1in) T * xz>+?”x7+ -z |7 (®)
Furthermore, since I; is convex, Lemma[A.7]implies

Li(af*h) > L) + (v, af T —al), ©)

) ’L K3

k+1

forallv € OI;(at). Aszl ™ € argminL (2§12, 2, 2%, .., 2%, w*), the subgradient at zf ! satisfies

0 € OL(2y )t afyy. 2, 0"),
g 0 € 8](:5’““) + vf(xllﬁle? z+1 n) + V A(mllctla f+1 n)wk
+pV; A(l"fflv Y n)(A(l“'fJ{l, TFi1m) +Q2),

= v f(xl A H—l n) v A(xl qo0 i+1:n)(w + p(A(xllctl’ f—i—l n) + sz)) € 81($f+1)

(10)

where the second line holds from the fact that f(z) + (w, A(x) 4+ Qz) + §||A(x) + Qz||? is first-order
differentiable and 8.8(c) of Rockafellar & Wets|(2009). On the other hand, we have

k+1 k k k k+1 .k k k
L(‘rlz 17‘T'Ln72 w ) L(‘rlz 7$z+1n72 w )

= [yt al,) = F@ af,) + L(ef) = Li(ef ™) + (b, (L af,) — Ay e,

wn

*(IIA(x’fflp ) + Q2|2 = A 2 ) + Q2F1%)

k k k k k k k
f(%jlla zn) f(xltl’ z+1n)+I( ) Ii(x,H)Jr(w aA(‘Tl—l_llvmzn) A(%—:l’xwln

”n

)

)

k k k : k k k
+§||A(x1f11,xk ) — A(%Ta ﬁl:n)” +P<A(351J{11a33k ) — A(l’ltlv f+1n> A(l’ltl’ Lit1in

16
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= flayiliwln) = FE Y afi,) + L)) — L) + BHA(CC]fJ{lpzk ) = Al by,
+ (W + p(A(T af ) + Q2), Aty 2f,) — A(aflfjla 1)
= flavilialn) = FEEh el n,) + Laf) = L) + *||A(fl”l1ﬁ;11aaclC ) = AT by,
+ (@ — 2l T TVA@Y s 2 n) (08 + p(A 2 ,) + Q2F))
= flavitiwln) = FS Y afi,) + L)) = L) + §||A($lftl1azfn) — A b,
+ (af =i T (—v = Vif (211 28 0))
= fayilaln) = fh) afi,) - <vf<ar’ft1, i)y — 2y )

+ L) = L ™) = (v, 2f — 27 + ||A($lffla TFy1m) — Al o)
where v € AI(x¥*1). The second equality is due to ||V} — V3|2 — [|[Va — V3|2 = [|[Va — V5% +

2(Vy — Vi, Vo — V3), for all the vectors V3, V, and V3. The fourth equality holds since A(x;, z—_;) is
an affine function for ; when x_; is fixed. We apply the Equation (T0) at the fifth equality.

Consider the convexity property of f and I; from Equation (), Equation (9), the difference of
Lagrangian can be further lower-bounded as

L(xlftllvxfnvzk w") — L(a:lffl,xfﬂ nvzk w")
= fehftal,) — flh, ic—i-ln) (Vif (2 ainn), 2 — i)

+ Li(af) = Li(aith) - < — it + IIA(Q?’fTIa ) — Al a1
2 f(xlﬁlp n) = f(x ) 1+1 m) — (Vi f(m’ffl, f+1 )T — $§+1>

+ L) = L) = (v, 2] — a7 )

e R

Adding up the above inequality for all the blocks, the difference of Lagrangian between (x, 2% w*)

and (z¥*1, 2¥, w") can be lower-bounded,
L(z*, 2% wh) — L(z**L, 28wk > %kaﬂ —z*|% (11)
From the strong convexity of ¢(z), the partial Hessian of Lagrangian on variable z is
Vi L(z,2,w) = V2.6(2) + pQTQ = pgl.,

which indicates the Lagrangian is p14-strongly convex at z. As 2P+l € argmin, L(z* !, 2, w¥) and

the strong-convexity of Lagrangian at z, the difference of Lagrangian between (z*+1, 2% w*) and
(xFH1) 2k +1 %) can be lower-bounded,

L(zMh 28 k) — L(aPtt, 2P

k+1

I
e (12)

From the update rule on z and w, the partial derivative on z at (xk“, zk“, wk ) satisfies,

)2,

)2,

|2,

0 = V. L(z"+1, 2541 wh) = Vo (P +QTwk +pQT (A(zF+1)+Q2F1) = V(1) +QT w1,

which indicates Qka = —Vo(z¥) if k > 1. In addition, from the setting that QT w® = —V¢(2°),
we have QTw* = —V¢(2*) for all k > 0. Therefore, for all k, we get
211 k1 _ k|2
[ — wh|? < IIQT - QTuk|P Vel k+1) VoM L¢Ilz |

After updating w, the Lagrangian between (a:’““,zk“,wk) and (zk“,zk“,wkﬂ) is lower-
bounded by

. (13)

L(karl Zk+1,wk> o L(karl’ZkJrl’warl) _ <wk o wk+17A(xk‘+1) + sz+1>
1 L2 Zk+1 _ k 2 (14)
_7||wk+1 _ wk”Z 45” ”

)

17
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where the inequality is due to Equation (T3). As a result, from Equatlon @ Equation (12) and
k+

Equation (47), the difference of Lagrangian between (2, zk wk) and (= L wk*1) satisfies

L(a:k,zk,wk) _ L(a:k+1,zk+1,wk+l)

i Ho L

k k

> Lokt — gt P (B2 - ke
> ELjjat+t — 2h? + &sz — 2|2,

2 4

)\-‘r‘ T

> %||1‘k+1 . $k||2 + %”qutl _ Zk||2 + He mzn(Q Q) ||wk+1 . wk”Q,Vk.

2
8L

2
Mab/\lm(QTQ)

,w") is bounded: For these iterate, by denoting % € argmin{#(z)|A(z*) + Qz = 0},

where we apply p > in the second inequality. In consequence, {Lk}ﬁ;’% is decreasing.

ii) (2%, 2%

we have
Lia*, 2, wh) = F@h) + 6(=F) + (wF, A(ah) + Q%) + DI AGH) + Q2* |,
= F@h) + 6(") + (b, Q(F — 2) + Ll A@H) + Q=4
= F@*) + 6(") + (Vo(e¥), 2 — ) + ZJ|Aah) + Q=" |1,
)+ B + 6(=5) — F) + (Vo(h), 2% — 24) + L] A@) + Q4

L
> fla*) + B(2F) — 211 - )P + LA + Q.
(16)
where the third line comes from V¢ (z*) + QT w" = 0, the fourth line is due to the Lipschitz gradient
of ¢. Now, consider any 2z’ such that —Qz* 4+ Qz’ = 0, then

L(a*H 2 wk) — L, 28, wh) = ¢(2) — ¢(2F).
Since zF € argmin L(z**+1, 2z, w*), from the equation above, we get ¢(z*) < ¢(z’). In words,
2% € argmin{¢(2)| — Qz* + Qz = 0}, Vk > 1. Notice that Z* € argmirﬁ(z)\A(xk) +Qz =0}

and ¢(z) is strongly convex and smooth, from Lemma Equation (16)) can be further lower-
bounded when p is large enough,

L
Lia*, 2, wh) 2 f@¥) + 0(2*) - ZE)1* - 22 + D@ - 27,
> (@) +6(24) + (8~ T20)AGH) + QP )
f
f

* H o - *
> fa) + 0(=5) + S la® — P + 5712 - 21

2Ly 412
where v = % and we apply p > ﬁj(QQT)

The last line of Equation and {L(z* ¥)} being decreasing indicate {z*} and {Z*} are
bounded. In addition, from the Equation , |2 — 2*||? can be upper-bounded as

13 — 20|12 < j%w’f,z’%w% — Fa") — 6(25)),

2 * *
< m([/(mo, 2% w?) — f(xf) - ¢(Z¢))

This implies that {2*} is bounded sequence as well.

18
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As Q is full row rank, QQ7 is positive definite matrix. From the update rules of w, we know that
QTw* = —V¢(zF). Thus,

[w*[l = 1(QQT) ' QVe(")|

< 1QQT) QI - IV (=*) — Vo (=)

< QAT 'QI - IVo(=*) = Vo)l < Loll(QQT) QI - 2% — 25
As {z*} is bounded, {w*} will be bounded. Hence, {*, z*, w"} is bounded and a limit point exists.
From the definition of L(z**!, 2#+1 1), its subgradient at z; in (k 4 1)-th iteration is

QL (xF L 2P Wby = AL (25T + V, f (2P ) + Vi Az L
+ pviA(l,k+1)(A(zk+1) + sz+1).

From Equation (10), we have —V, f (2§11, 2% | )=V A(2f T 2k ) (wF + p(A(@FE Y 2k ) +

Q%)) € 0I(z k“) thus, according to the above equation, v¥ ™! € 9; L(z*+1, 2¥+1 w*+1) can be
written as follows.

’Hl -V f(x1 i f+1:n) Vi A(xl i ’forl n)(wk + p(A(m]ffl, f+1:n) + sz»
+ Vif(@") + VAP 4 pV AR (AR + Q2R
Using algebraic manipulations, we can obtain
vt = Vif (@) = Vif (e o) + (ViA@Y = VAl ag,))wt !
+ VAT b ) (M =)+ (VAR = VAt 2 n) A
+ VA ) (A ) — Ayt 2 1,)

+ p(ViA@* ) — VA 2k 1)) QT + pVi Ay 2k L) QR — Zk%lS)

By applying Equation , and the fact that { L*} is lower bounded from Equation , the norm of
the difference between two iterates converge to 0, i.e.

lim |28 — 2| =0, lim ||2"! —2F| =0, lim |w*™! —w®|| = 0. (19)
k—+oco k—+oco k—+oco

Because {z*} is bounded and {V;A(x*)} is multi-affine with respect to =¥, then {V; A(z*)} is
bounded as well. From Equation , the limit of {”uiC } goes to the zero vector for all the blocks ¢,
ie.,

lim of =0 € ;L(zF, 2%, w").

k—+oo

For the variables w and z, applying the update rule indicates
Vo L(aF 1, 26 b1y = A(zh+)) 4+ Q2F 1 = l(wkﬂ —wh)
p

and
VZL($k+1,Zk+1,wk+l) _ v¢(zk+1) + Qka+1 + pQT(A(l‘k+1) + sz—&-l),
_ pQT(A(IkJrl) + szJrl) —_ QT(wk+1 _ U)k)
Therefore, by applying Equation , the limit of the partial gradient limy,_, , oo V. L(x", 2%, w*) =
0 and limg ;o0 Vi L(2", 2% wF) = 0. Overall, there exists v* € 9L(2*, 2% w*) such that

limy 1 o0 v¥ = 0. As the limit point (z*, 2*, w*) exists and 0 € JL(x*, 2*, w*), then (z*, 2*, w*)
is a constrained stationary point.

On the other hand, since, the following problems are convex with affine constraints on z; and z,
respectively
mm{f(mw )+ Li(wg) © Az, 2%;) + Q(2%) = 0},

min{6(2) : Aa*) + Q= = 0},

19
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they both satisfy the strong duality condition and thus (z*, z*, w*) is also the global optimum of
these problems. This finishes the first part of the proof.

iii) Establishing the convergence rate: Note that I;(x;) is an indicator function of a closed semi-
algebraic set. Subsequently, L is a lower semi-continuous and sub-analytic function. Thus, applying
Theorem[A.9]to the function L(x, z, w) — L(z*, 2*, w*) shows that there exits 1 < o < 2and n > 0
such that it satisfies the a-PL property,

(dist(0, 0L(x, z,w)))* > e(L(z, z,w) — L(x*, 2", w*))
whenever | L(z, z, w) — L(a*, z*,w*)| < n.
On the other hand, from Equation @), there exists positive constants a such that
L(ah 1, 2540 b1 _ (k| 2k k) < —a([labt— ok |24 ]| 25— 2K 2 bt =k |2). (20)

Moreover, from Equation (18) and the fact that {xy, zx, wy } is bounded, the norm of the subgradient
is also upper-bounded the distance between two iterates, i.e.,

[+ < b\/ka-',-l k|2 2R — 2K ||2 4 okl — k|2, (1)

where b > 0. Therefore, by applying Equation and Equation (21)), the following inequality holds,

2

L(zMh 2P kY — L2, 28 wh) < —%HkaHZ < —I%dist (O,@L(karl,zkH,wkH) .
(22)
From the a-PL property, we obtain
2/ 2/
LGt 2 ) — Lt 25, wb) < =20 (L 2 ) - Lt 2 wt))

whenever |L(zF 1 2F1 wk+1) — L(2* 2%, w*)| < 7. Then, from Theorem 1 and 2 of Bento et al.
(2024)), we have
k _k .k kK Kk ] 1
L(z", 2", w"”) — L(z*, 2", w*) € O(k™2==) CO(kz) .
Moreover, the iterates converges to the limit point, i.e., limg_, oo (z¥, 2%, w*) = (z*, 2*, w*). From
Theorem 3 of Bento et al.| (2024), the convergence rate of (2, z¥, wk) is

(", 2%, wh) — (%, 2, w*) || € Ok~ F=).

PROOF OF THEOREM [3.2]

As Lagrangian is second-order differentiable at (z*, z*, w*), we have F'(z) = f(z), Vz € B(z*;r),
where r > 0. In words, there exists a neighborhood of (z*, z*, w*) which belongs to the constraint
set, i.e., indicator functions are all zero for the points in that neighborhood. Recall the Lagrangian
function,

2T Cix

Liw, 2,w) = f(@)+6()+ > wi(

i=1

Under Assumption Assumption and smoothness, we have L, ~ VQf(x) =ppd, Lyl =

V2¢(z) = pgl and QT = [ql, e ,qn] is full column rank. The constrained stationary point
satisfies

Ne T
xt Cix
+dfx+€i+QiTz)+gZ(#*dfer@Hr%Tz)z-
i=1

V.L(z*, 25, w*) = Vo (") + QTw* = 0. (23)

Next, we compute the Hessian of the Lagrangian at the stationary point (z*, z*, w*) and show that
if it is invertible then the convergence rate will be linear. To this end, applying Equation (23), the

20
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Hessian at (z*, 2*, w*) can be represented as follows

Qf(x*) + Z.L w:cl Oannz C’m* + dl cee Cnx* + dn
0"2 XNy V2¢(Z*) q1 e Adn ne
(Cra* +dy)” gt L )
(Crz™ + dn)T q?; 0 o 0
where
Ciz* +d
Qi
H, = 0 [(c e +d)T qf 0 0]
0

As aresult, the kernel of the Hessian at (x*, z*, w*) is equivalent to the kernel of the matrix in the
first term. Which is invertible when the following matrix is invertible.

0nz XNy
V(=) QT]l (Gra” +di)?

2 (x*)+;wi*01-f[0nzxnz 01I*+d1,~~~ ,Cn.l‘*—‘rdn] Q 0

(Cna* +dn)"

-1

2 * T

Note that {V ¢)Q(Z ) OQ ] exists given that () is full row rank.
nxn

(Crz* +dy)T
V() + > wiCi+ [Cra” +du, o, O +dn| (Q(V76(2) Q7)™ ; e
‘ (Cnz* + dn)T

Without loss of generality, we can assume I;(z9) = 0 Vi. As L(a?, 2, w') is decreasing over t if p
is large enough, by selecting (2%, w?) such that A(z°) + Qz° = 0 and QTw’ = —V¢(2°), strong
convexity and smoothness of f and ¢ imply

f(fv}) +(25) + Ly (a3 + 12°1%) + Lo (251> + 112°]1%)
Fap) + 6(z5) + Ly — 2l + 22 12g — 2P
f=z ) ¢(2°) = L(a®, 2%, w’)
L(z™, 2% w) = f(2") + ¢(27)
e >+¢<z¢> + Bl jla* — a2 + B2l - =)
In the above expression, the first inequality is due to a® + b*> > (a — b)? /2, the second inequality is

due to the smoothness of f and ¢, the third inequality is because L(z*, ¥ w*) is decreasing over k,
and the last inequality is due to strong convexity of f and ¢.

The above expression implies

# * * * *
%Hx f||2+ 20|2* = z51” < Ly(la}l” + 12°1%) + Lo (2517 + 112°11%),
which provides upper bounds for ||z* — :n}||2 ,ie.,
lz* = a3 € O ( (=317 + ll2°]1%) + ¢(||Z$>H2 + ZO||2)> : (25)
g py
and I
TP *
l* = z5]1* € © (u (317 + 1l2°1%) + o (l=5l* + ||20||2)> : (26)
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They also give upper bound for [|z* — 2% | and [|2* — 2}]|, i.e.,

* * Lf * 0 L¢ * 0
T —x%|| e O —(lz%|| + llz7|) + 1/ —Ulz5] + ||z , 27
| il (HM(H Fl+ 127D \/M(H s+ 1271
* * Lf * 0 L¢ * 0
zZF =2z €O — (=% + llz"|]) + 1/ — 25| + || 2 . (28)
[ sl <”u¢(” Fl (1271 \/%(H s+ 1271

From the first Equation of Equation and the fact that @ is full row rank, an upper bound of ||w*||
will be

and

Jw*]| = [(QRT)'QVS(=")Il < QR ' Q]| - lo(z") ||
= (QQN)T'QIl - lp(z*) — d(2)
< L (QQT) Q= — Z5 |l (29)

L L
€0 H=1Q|IL 2L+ 1200 + =2 (|25 + ||2° .
(1QQT QL (y a1+ 1)+ 2151+ 12°1))
By the definition of A(z), we have

Ne

1 2
JA@) 12 =Y (567 Cia® +dla® + i) € O(nelllaNICI? + 1)) + lel®) )
1=1
where ||C|| := max; ||C;]|, ||d]| := max; ||d;|| and ||e]| := max; |e;|. Consequently,
14 € O(vaela®IPICI + 22l + flel)). (30)

Notice that A(z%) + Q2" = 0 and Q is full row rank, then 2 = —Q* A(z°) + v, where Q7 is the
Moore-Penrose pseudo-inverse and v € ker(Q). Thus, there exists z° such that

1
12°1 = 1Q* A=)l < 1QFIIAE")] = ——===[4E")I.
/\min(QQT)
From the bound of || A(x")|| in Equation (30)), ||2°|| can be upper bounded as
0 1 0 Nec 012 0
1271 < WHA(I e O( W(HI IFICH + ="Ml dll + ||6||)>- (3N

From Equation (29) and Equation , an upper bound of ||w*|| can be rewritten as

0 (II(QQT)lQIILa)(\/E(Iw}II + 11+ \/Ej (128l + /5 e (=" I71C0 + el ) + ||e|>))) .

In addition, as | Y-, wiC|| € O(y/ne|lw*|||C]]), it can be bounded as follows

o (I(QQT)lQI\/nTquICl (\/E(le}ll +112°1)

Ly
Mo

(32)

Tl
Amin (QQT)

Note that since f is ps-strongly convex, if || Y1 ; w;C;|| < py, then the matrix in Equation (24)
will be positive definite. So the Hessian at the stationary point is invertible. This can be ensured by
letting each of the above terms to be O(uy), i.e.,

1QQ") " QUL C (1 2L (ol + 1a°) + | 2115 1) € OGup)
¢ Ho
T\—1 Lz ng 0
1@@")QUICI 25— zm (sl + llel) € Oy, (33)
I(QQT)1Q||||C|2\/L>3\/712 21 € O(us).
o\ Amin(QQT)

22
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The above inequalities lead to the following condition.

. Hf/ B Ty—1 . —1
ICll € O | min Q") QlI™,
( {wm (Vs + 112D + VZalz31)
RIvEe (Amin(QQT)VZIQQT QI 34)

LRz (=0l + llel)

(W)”2<Amm<QQT))““|(QQT>‘1Q|‘”2}> .

Lnzja")
By defining
— Bf /T
vieLs (Vs (23l + 12°0) + v/Zoll=51)
e Hf/Heo

V/Lan2 (20 il + llel)
1/2
my o= (LMY

Lgng|«°|?
we obtain the condition in Equation (@).

If Equation (34) is satisfied, the stationary point is non-degenerate (meaning that the Hessian is
invertible at that point). In consequence, the stationary point is also isolated. This can be seen
by applying the Local Inversion Theorem presented in Lemmausing ug = (x*,2*,w*) and
g = VL. This lemma implies that every stationary point of the Lagrangian function is isolated if it is
non-degenerate. As a result, if Equation (34) holds,

kerV2f(z) = T3S = {0},

where 7 is a stationary point, .S is the set of stationary points, and 7.5 is the tangent space of .S at 7.
Therefore, according to Definition [A.TT]and Theorem[A.12} the Lagrangian is a Morse-Bott function,
and it satisfies the a-PL inequality around every stationary point with o = 2, i.e.,

Theorem D.1. Suppose that the Equation (4) holds, then for every stationary point (x*, z*, w*) of L
such that L is second order differentiable at this point, there exists constants C and r > 0, s.t.

||VI/(x7z,w)||2 > C|L(z, z,w) — L(x*, z*,w)|, V(z,zw) € B(x*, z* w;r).

From Equation and the above result, for k large enough so that (2, 2%, w"*) € B(z*, z*, w*;r),
we have

C
L(xk-i—l’zk-i-l,wk-&-l) _ L(xk’zk’wk) < _‘22 (L(xk-y—ljzk-q—l’wk-&-l) _ L(x*,zﬂw*)),
aC\
—s L(aMH, A wF) - Lt 2wt < (1 - bg) (L(z*, 25 wk) = L(z*, 2%, w*),

— Lia*, 2, u) - Lia*, 24, w*) = 0(c ™),

where ¢ := (1 + ‘Z—QC) > 1. From Theorem 3 of [Bento et al.| (2024)), the convergence of iterates

(xF, 2k wh) is

e = 2*|2 + 125 = 2217 + w* — w*| € O(™).
Lastly, consider the second partial derivative of the Lagrangian with respect to : and z at (x*, 2*, w*),

V2f (") + 3 wiC 0

0 veo()| 7
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From proposition 3.3.2 of Bertsekas| (1997)), the second-order sufficiency condition is satisfied and
thus, the point (z*, 2*) is the local minimum of the problem I} O

As a corollary of Theorem if the limiting point is of the form (z*, z*,0), then the linear
convergence rate of the ADMM is ensured, i.e.,

Corollary D.2. Under the assumptions of Theorem[3.1} if the iterates of the ADMM converge to
(x*, 2%, w*) with w* = 0, then, there is ¢ > 1 such that

L(zk, 2% wh) — L(z*, 2%, w*) € O(c;F).
Proof. When w} = 0, Vi, the Equation Equation (24) will become

(Crz* +di)"
V2 f(a*) + [clx* +di, -, Cra? +dn] Q(Ve(z") Q") ™! : > 0.
(Cnl’* + dn)T

and consequently, the Hessian of the Lagrangian at the stationary point will be invertible. The rest of
the proof is similar to the proof of Theorem [3.2] O

PROOF OF THEOREM [3.3]

Suppose that the constraint sets for X;s are polyhedrals. From Equation (I3), Equation (20) and
Equation (21)), there exist v € 9, . L(x k“ 2F+1 wk+1) and positive constants a and b, such that

L@ A b Lk, 2 0b) < —a(llet PP AP,
[o]|> < b([Ja* T — 2F|* + (|25 = 2F)1?).
This results in

. X a
L(mk+1,zk+1,wk+1) _ L(xk,zk,wk) < _ZHUHZ <= min . ” ”2 (35)

b SE€EDy . L(zk+1 zk+1 g
Consider the function L s.t. L(z,z,w) = L(z, z,w) + >, I;(x;). Then, when w is fixed, the
second-order derivative of L is

)+ D 0
0 V2¢(2*)

To ensure that at the constrained stationary point (x*, z*, w*), the above matrix is positive definite, we
require that V2 f (z*)+ >, wrC; = 0. Notice that at the constrained stationary point, Equation
still holds. According to the proof of Theorem [3.2] when Equation ( . holds, then V2 f(z*) +
S, wrC; = 0, and the Hessian of L is positive deﬁmte Consequently, the function L(x zZ,w)
is locally strongly convex with respect to (z, z), ¥(z, z) € B(z*, z*;r') and Yw € B(w*,r"), for
some r’ > 0 and " > 0. Since dom(L) is polyhedral, and L(z, z, w) = L(z,z,w) + Z?:1 Ii(z:),
according to the results in Appendix F of [Karimi et al.|(2016)), the a-PL inequality holds for a = 2,
ie.,

. 2 .
min s||* > 2u(L(z, z,w) — min L(x,z,w)),
SE€Dy, . L(x,z,w) ” ” ( ( ) (z,2)EB(z*,2*;r") ( ))

V(x,z) € B(z*,z*;7") and Yw € B(w*,r").

On the other hand, since (2%, 2%, w¥) — (2*, 2* W ) for k that is large enough, i.e. k > K,
there exists r > 0 such that B(z¥, z%;r) C B(«K,2K;2r), B(a*, 2%;2r) C B(z*,2*;7') and
wk € B(w*,r"). As aresult,

Seaw,zrgl(gl’azk w) Is ”2 = 2M(L(I 2 ) = (:E,Z)EIBIgI},y;r/) Lz, z,w)),
> 2,“([/(1’19’ zk’ w) — min L(x’ va))’ k> K.

(z,z)EB(zF,2F;2r)
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Combining the above inequality with Equation (33) yields that there exists C; > 0 such that for
k> K,

L(zF Y R bt — L2k, 2% wh) < C’l( (2P HL, 2R+ gkt min L(m,z,wk+1)).
(z,2)eB(xX 2K ;2r)

Note that due to the update rule in Algorithm E], for every z and z, we have L(z,z, w*t!) —
L(z, z,w*) = p||A(z) + Qz||* > 0, and consequently,

min L(z, z,w" 1) > min L(z, z,w").
(z,2)EB(zK 2K ;2r) (z,2)EB(z K 2K ;2r)

As aresult, for £ > K, the following inequality, obtained from the previous two inequalities, holds

(1—|—C’1)<L(ask+1,zk+1,wk+1)— min  L(z, 2 wk+1)) < L(z*, 28 wh)—  min  L(z, z,w").
(z,2)EB(zX 2K ;2r (z,2)EB(z X 2K ;2r

This implies

L(z* 28 w®)— min  L(z,z,w*) < (140C;) "¢ (L(xK,zK, Ky~ min L(:c,z,wK))
(z,2)EB(x 25 ;2r) (z,2)EB(zX 2K ;2r)
(36)

As B(2¥, 2%;r) C B(2¥, 2% 2r), from Equation , the linear convergence of L(z*, 2%, w") —
min, ,)ep(ar o+ L(x, 2, w") can be ensured, i.e., let ¢ := 1 4 C1, then

L(zF, 2% wh) —  min  L(z,z,w") < L(z*, 2%, w®) — min  L(z, z,w"),
(z,2)€B(zk,2%;r) (z,2)EB(zk 2K ;2r)
(k—K) K K K —k
<(1+Cy)¢ (L( R S )) € 0.

To prove that (x*,z*) is a local mlmmum notice that as k goes to infinity, (x 2K wk) —

(z*, z*,w*), I;(x¥) = 0, Vi and Equation (36) implies that for all (z, z) € B(z*, z* r)

F(z*) + ¢(2") = f(2") + ¢(z") = L(a", 2", w") = min  L(z,2,w") < L(z, 2,w").
(z,z)EB(z*,2*;T)

*

For all the points (x, z) € B(a*, 2*;r) satisfying A(z) + Qz = 0, F(x) + ¢(z) can be bounded as

Fa') +o(z) = min Lz zuw') < Liezw') = Flz) + 6(2).
(z,z)EB(z*,2*;r)

And thus (z*, z*) is a local minimum of problem Equation (1). O

D.1 APPROXIMATED ADMM

Consider the following algorithm.

Algorithm 2 Approximated-ADMM

e (0 0y .0 , 0
Require: (29,...,2)),2% w" p
for k=0,1,2,...do
fori=1,...,ndo
k+1 . k+1 k ko, k
T R argming, L(xy -, 24, 28, ., 27, w")

end for

2#+1 x~ argmin, L(zF*1, 2, wk)

Wkt = ok +p(A(zk+1) + sz+1)
end for

Theorem D.3. Under the assumptions of Theorem[3.2} if the Approximated ADMM in[2)is applied to
Probleml[l] and the followmg condmon are satisfied,

PI: the iterates p* := (2%, 2* w*) are bounded, and L(p*) = L(z*, 2%, w*) is lower bounded,
P2: there is a constant Cy > O such that for all sufficiently large k,

L(xk,zk,wk) _ L($k+1,zk+1,wk+1) > Calk—H —pkHQ-
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P3: and there exists d**t1 € OL(z*+1, 21 w*+1) and Cy > 0 such that for all sufficiently large k,
"+ < Collp = p*.

Then, the convergence results of Theorem[3.1] Theorem3.2|and Theorem [3.3| remain valid under their
respective additional assumptions.

Proof. Remind that these presented conditions in this theorem are the key element to prove Theo-
rem [3.1] In exact ADMM, the condition P2 and P3 are satlsﬁed in Equation (T3] and Equation (ZI).
Conditions P2 and P3 imply that there exists d* € OL(x*, z¥,w*) such that

T R B N B R R [P 1O
Ch Cy,,.
< ——2||dk+1||2 < —@(d’ést(o,aL(karl,Zk+1,wk+1)))2,

which is premsely the Equatlon (22) in the Proof of Theorem@ From condition P1 and P2, the
Lagrangian L(z*, 2%, w¥) is lower bounded and non-increasing, which indicates L(p") converges as
k goes to infinity. Then from P2, we know,

lz** = a® ) =0, (|25 = 2F =0, wttt — W] = 0.

Based on P1, the iterates (z*, 2, w") are bounded, thus, the limit point exists. The rest of the proof

is identical with the proof of Theorem [3.1] O

Error models. Suppose there exist nonnegative sequences {e,(f)} x>0 and {nx } x>0 such that

k+1 k+1 2k k +1 2k (1)
L2yl o] wi g, 25w )<rr11nL(9c1Z 1> Tis Hln,z w )—i—ek , (37)

L(xk+1,zk+1,w ) < mlnL(azk“,z,w ) + Mks (38)

At iteration k, let :ck'H and 2**! denote the exact minimizers of the corresponding block subproblems

appearing in Algorlthm 1 with the current arguments fixed; i.e.,

~k+1 3 k+1 k k .k
Ty €argmin L(zy5ny, 26, 03y 1, 25 wh),

le argmin L(zMh 2, wh).
The iterates produced by Algorlthmlare denoted by /™" and 2**!, with errors e/t 1= 2T —
k+1 and ek+1 SR+l _ Skl

Theorem D.4. Let Algorithm 2 produce (x*, 2%, w*) and assume the inexactness condition from
Equation (37) and Equation (38)), then:

LIfY (>, e,(z) + nr) < oo and the assumptions for Theorem hold, the sequence
{L(2%, 2% wk)} converges and limy,_ y o, || A(2%) +Q2* bl ok =
0, limg 4 o0 [|2FFY — 2| = 0. Every limit point (z*, z*,w*) is a stationary point of L,
and x* and z* satisfy the blockwise optimality conditions stated in Theorem 3.1}

2. Iffurther Y, € 4y < Off|a’ ! — 2F||2 + || 25+1 — 25|24 [[wh+! — wk||2], where C is a
small enough constant, the convergence result of Theorem[3.1| Theorem[3.2|and Theorem[3.3]
remain valid under their respective additional assumptions.

Proof. We work under Assumption 2.3 (blockwise strong convexity of f and ), Assumption 2.6
(full row rank of ()), and the smoothness conditions used in Theorems[3.1]and[3:2} Let denote the

inexact errors ekJrl = gt Rl ekt = kAl 2k

By blockwise strong convexity, each univariate subproblem v; (x;) := L(z¥ 11, i,k ., 2%, wh)
is p¢-strongly convex for some 1y > 0, hence quadratic growth yields

Pi(@f ) — s (FFT) > B ek T2 (39)
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Combining with Equation 1| gives ||ek+ 1H2 < /% 61(:)- Likewise, strong convexity in = gives
[leb+1)|2 < %nk for some py > 0.

k+1

We derive a blockwise descent inequality for the inexact updates (z; ,zF*t1), by comparing
~k41 1

. k+ k k ok k1
them with the exact block minimizers Z; " € argmin,, L(x{. 1, i, 2 ., 2%, w") and 2" €

k+1

argmin, L(z**1, 2, wk).

Fix i € {1,...,n} and define the univariate subproblem
k+1 k ko, k
,lpl( ) (xlz 1, U, x7.+1nvz , W )

Under Equation (38), we also have

Gilaf ™) < mingi(w) + 6 = @)+ (40)
Combining Equation (39) and Equation gives
2 .
e e e (41)
M

Now compare the values across one x-block update. Then,

k+1 k k Kk k+1 k .k k , k
L(LU11 y Lip1mr s W )_L(xlz 1585 Tijqp1ms# W )

= (@) — i(ah)
(i @) — i (2F)) + (Wa(al™) — (@) 42)
o CAREED e 43)

IN

IN

where the last line uses the exact-case one-block descent.

To express the decrease in terms of the inexact step size ||z¥** — z¥||, we have
~k k k+1l _ ok k ~k k k j
IZ5 = 2b|2 > Hlad ™t — a2 = el =P > Rl -2k - 2 )
Plugging this into Equation (@3)) we obtain
. IJ/ .
L(xllgtla i§+l;n,zk,wk) L(‘rllﬁz_lhxk xz-i—l Ho kvwk) S _Zf Hxiﬁ_l _xi’CHQ + 261(;)' (44)
Following the same process for block z yields
1L
L(:L'kJrl,ZkJrl,’wk) - L(karl,Zk,U)k) < - 74’ ||2k+1 _ZkH2 + e,
and 5
||Zk+1 _ 2k+1H2 < k.
Mo
for some 5 > 0 from the exact-case z-block descent. As in the x-block,
54 = 42 > M = HP — [AH = R > R~ 2,
hence "
L(xk+17zk+17wk) - L(xk+1uzkawk) < - f HZk+1 - ’zk”2 + 277k (45)

The dual update is w**+ = w* + p (A(z**1) + Q2z*+1). By linearity of L in w,
L(IkJrl Zlc+1 wk+1) o L(:L'k+1 Zk+1 wk) _ <wk+1 7wk A(zk+1) +sz+1>

1 (46)
= p[|A(@") + QzF? =

7Hwk+1 _wk||2.

Furthermore, we have
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Hwk+1 _wkH2 < ”QT b QT k”

mzn(QTQ) ’
< IVe(E ) = VoL@ M wb) — Veg(zh) + V. L, 25wt )|
N mzn(QTQ) 7
< BIV=0("Y) = Voo (M2 + 3| VoL, M wh) |2 4 3|V, L(a”, 2F, w12
B mzn(QTQ) ’
3L 6(Lg + Amas Q"Q
< bkt ke g We Anenl T D
(47)
As aresult, we get
L(aﬁk,zk,wk> o L($k+1,zk+1,wk+l)
i 1
2 El IR M P =237+ BRI = P = 2 — P
> ,Uf” k+1 k||2 QZ (i)_’_(ﬁ% 3L2 )l k+1 k”? 9
> ||z —2||* — € —_ = [ = — 20,
4 =" W@TQ)
6(L +>\mw T
_ 8y éQ Q))(nk“"nkfl)
Bf (k1 k2 (i) o Moy k+1 _ k|2 6(L¢+)\maz(QTQ))
> =" —atT =2 g + =27 = 2T - 2m — (7 + nk—1)
1 1o 2 Fodmin(QTQ i
> J||mk+1 e 7¢'||Zk+1 _ Zk||2 + ¢—(2)”wk+1 — w2 - M<Z EEC) e A o)
4 16 48L75 ,
(48)
T
where we apply Equation in the third and the last inequalities, M = 2 + MHM—ZC;(T?Q)Q)) isa
constant and p is large enough. -

Summing Equation (#8)) from k£ = 0 to K and telescoping yields
L(a®, 2 u’) = L@+ 2540 ) 4 21 Z >+ m)

K
Bf ok Ko LA in (QTQ)
>y [ZHHC"“ — ¥ + TG”ZkH — 2|7 4 i s ol — |

2
P 48L7

By Assumption 2.3 and the quadratic penalty, L(x®+1 2K+1 4 &+1) is bounded below. While
Z 0D e(z) + 1) < oo by hypothesis. Hence the nonnegative series

o0 n
Z[an’““ T2+ 25— )2 4 o — k)2 < oo,

which implies [[2*+1 — 2| — 0, ||2F*1 — 2¥|| — 0, and [Jw**! — w*|| — 0. The blockwise
optimality follows as in Theorem [3.1]

If further 3, et + ny < C[Jlak ™ — 2%||2 4 [|25F1 — 28)12 4 kT — wk[[2], where

ipope oA (QF Q)}
416 48L2

2M

min{ &L
C<
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then

L(CUO,ZO,”U}O) o L(xK+1,zK+1,wK+1)

K + T
> Z[If”:clwrl _ kaQ + 17?;”21%1 _ ZkH2 + ¢ 11181112 ”warl _ wk”Q _ QJV[(Z 62) + )],
¢ i

e
I
o

C/(Hmk-&-l _ kaZ 4 sz-+1 _ Zk:||2 + ||,wk:+1 _ wk:HQ)

]~

=
Il

0
(49)

where C’ > 0. The rest follows the proof of Theorem [3.1] Theorem [3.2]and Theorem O

E PROOFS OF SECTION ]

Corollary E.1. Under the assumptions of Corollary if the iterates of the ADMM applied to the
problem in@converge to (x*, z*, w*) with w* = 0, then the Lagrangian converge linearly, i.e., there
exists ¢4 > 1 such that

L<xkazkawk) - L(J?*,Z*,U)*) < O(Clk)a

Corollary E.2. Under the assumptions of Corollary[|d.2} if I;s are the indicator functions of some
polyhedrals, then,

L(zF, 2k wh) — min L(z, z,wk) € Oz ),
( ) olin ( ) € O(c5 ")

where c5 > 1 and r > 0. Furthermore, (x*, z*) is the local minimum of problem Equation @

PROOFS OF COROLLARY [4.1}, COROLLARY [E-T], COROLLARY [£.2] AND COROLLARY [E-2]

In this setting, the corresponding objective functions will be

T T

F(z) = f(z) + Zu(m, ¢(2) = Z¢<k’>,
N .
fl@)=f(), Li(w):=> Iw(f).
j=1

The corresponding multi-affine quadratic constraints of the locomotion problem is A(x) + Qz = 0
in which @ is the identity matrix and

kim’t
A(z) = Alzm ;
A (8)
in which
. N , 2 N gl _
AN(E) = Z <<rg — Cinit — € i(A) = Y (i —1-i) () E + g)(At)2> X ff) At, fori > 2.
j=1 /=0 =1
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From the robotic problem in Equation (6)), we have C; = 0 in A} and A2. For A%, i > 3, C; is
actually a sparse matrix. If we consider 7% as a constant, then

J
N i—2 N gl
ki1 =kip1 — ki = I — Cinit — Cinit 4 - j—1—14' - 2 J
41 -k ; <<r Cinit — Cinit 1(AL) 2(2 z)(; =+ g) (A1) > X f1> At
N ) i-2 )
= Z <<r — Cinit — éiniti(At) — Z(Z -1 il)g(At)z) X fg) At
j=1 i'=0

N N o f
DWUCEELE
N

= Affine Terms onX—Z

h p S fh
i1 N +fzz

fh ,sz,y — fi ,yff,m
SO C U E

Mz
3L

N
= Affine Terms on X — Z

<.
Il
-
s\
Il
o
Il
=

N N (At)S 3 y 1,z
= Affine Terms oanZZ - 17 ZE, 220 C’f’izzzf
i—1 = T
i=1i=1 %f zz/ 0 CZ T, yf
(50)
where CZ] i C’f’ 2., and ci! z.iy Only have 4 non-zero element with its number equals to

i—1—d"or—(i—1~—4i)at(i Ilvlmz) (iwy> iy, )s (i, ie,) and (i, ,i,,), where (x1,22) €
{(z,9), (x,2),(y,2)}. As aresult

i_2 i—2
l N . . .
I ZCZ wriall < ch o lF = A =1 =) < 2%,
i =0
In addition,
N i—2 N : N E i—2
A)? At)? ;
ol =133 Gt <SS C o L
j=14=01=1 Jj=11=1 /=0
N N 3/2 3 N N 3/2 3
23/%(At) 2T3/%(At)
= Z Z 2m = z Z 2m
j=11=1 Jj=11=1
26m3/2 3 213/2 3
o N221°7 (A co (N T32(At) )
- 2m m

and C; € R"*" where n, = Nn, = Nn. =3N(T +1).

If we can seeking a solution on the time interval [0, T},:4;] and we split it into 7" discretization, then
T = %. In consequence,

rftotal Ttotal
s =Nn, =Nn,=3N 1| = N . 1
Ny n, ne =3 ( At + ) O ( AL ) 51

and

(52)

IIC]| = max ||C;]| € O (N2(Ttotal)3/2(At)3/2) .

m

For d;, by denoting a{ = rg — Cinit — Cinit 1(AL) — Zz, 20 (i — 1 —1i")g(At)?, notice that,

N 1—2 N
((rg’ — e — € i(Af) = 3 (i =1 i’)g(At)Q) x fij) At=3"(al x ) At
1

j= i’=0 Jj=1
J _ g fI
N CL ’y a; . J; "
,E : _ J
- a ©,T + a1 zJdi,x At
j=1 J J _ gl J
Y Y
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and
i—2
lal | =[xl — cinit,= — € H(AL) = Y (i — 1 —i)g (A1)’
i/=0
] i—2
S| Jeimi =] o+ €, 20(AD] + ] Y (0= 1= i)g=(AL)?]
/=0
) T—-2
<]l | + € T(AL)] +[ Y (i = 1= i)g=(A1)’]
i/ =0

. . 1
< |rg’z| + |Cinit,z| + ‘Cinit,thotal| + ‘ingtzotal‘ € O(thotal)'

The bound is same for |a{7m\ and |agy\ As a result, by choosing z1, 22 € {z,v, z},

1dall < \/I o2+, IQNAt € O(NTjuAt). (53)

From Equation , Equation (52), Equation (53)), Equation (7), |le|| = 0 and @ = I, Equation (34)
suffices to require

2 3/2 3/2
N (Ttotal) (At) c O | min { Hi/ B ,
m /thttal Ly (\/Tf /NTtgttal + \/E /Ttgttal>

Hf/ e
TO(L Toa
/LS total N Ztot lNthotal

1/2
( N > )
3/2 Tiota Tiota ’
L¢/ N zot LN tAttl

)

which is equivalent to

pjpgm® [y /Ty fis/Hem’
Ate 04 75 6 3/2 3/2 : 54
L¢(Lf + L¢)N T total L N7/2Tt5 tal L N6Tt50tal

Once the Equation @) holds, the Equation @) is satisfied, and the conclusion from the proof of
Corollary Theorem [3.2] Theorem 3.3] follows. O

F ADDITIONAL EXPERIMENTS INFORMATION

The simulations are done on a normal laptop with Intel(R) Core(TM) i5-1235U with 16GB of
memory.

In the 2D locomotion problem, the horizontal location of the end-effector r,, is switched to v, + D
after M At time steps, where D and M can be chosen randomly for each step to increase the
variability in the motion. The frictions are constrained so that the horizontal location of CoM ¢,
satisfies —0.15m < ¢, < 0.15m, and vertical location of CoM c, satisfies 0.15m < ¢, < 0.25m
distance from the stance foot to the CoM. All the other details can be found in the code in the
supplementary material.

We further provide the computation time for the locomotion problem under different At. As At
becomes smaller, the dimension of the problem become larger, which requires more time for the
computation.

Table 2: Computation time for different At
At 0.05s 0.02s 0.01s 0.005s 0.002s 0.001s
Computation time | 0.60s 1.51s 3.29s 7.31s 18.54s 38.82s

Additionally, Fig. [7/confirms that the friction cone constraints are satisfied throughout the optimization
process.
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fro = plfel
o
-100 -80 -60 -40 -20 o 20 40 60 80 100

Figure 7: The result of friction and its friction cone.

G ADDITIONAL EXPERIMENTS

Sensitivity of p: Here, we provide additional experiments for the sensitivity analysis of the penalty
parameter p. As illustrated in the left Figure of[8] by increasing the penalty coefficient, the conver-
gence rate decreases while the convergence rate remains linear.

Approximated ADMM: In this experiment, we ran the inexact ADMM, where the updates (i.e.,
the solutions to the subproblems) are computed using gradient descent (GD) with different numbers
of iterations. For example, when the inner-loop iteration count is set to 10, each subproblem is solved
using 10 steps of GD. The results are shown in the right panel of Figure[8] where they are compared
with the exact ADMM, in which the subproblems are solved analytically.

exact
100 3inner loops
500 10 inner loops
1000 30 inner loops
5000 100 F

10°

1010 F

1010 107 .
0 5 10 15 20 25 30 3 40 45 50 o 10 20 30 40 50 60 70 80 90 100
#lterations k #lterations k

Figure 8: Left: sensitivity analysis of p. Right: Inexact ADMM with different numbers of GD in the
inner loop

Comparison with other methods: Here, we compare several benchmark methods with our algo-
rithm on problems featuring different types of constraints: linear and multi-affine quadratic constraints.
These figures contain additional method called IADMM from [Tang & Toh| (2024). As shown in
Figure[9} our ADMM algorithm achieves linear convergence in all settings.

10 1015 1010
0 10 20 30 40 S0 & 7 8 % .00 0 10 20 3 4 S0 6 70 8 90 100 0 10 20 3 4 50 6 70 8 90 100
Hiterations k #iterations k #iterations k

Figure 9: Left: convex objective with multi-affine constraint. Center: convex objective with linear
constraint. Right: nonconvex objective with linear constraint
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H LIMITATION

Our theoretical analysis only establishes convergence of the ADMM for the quadratic constraint
problem. The convergence analysis for the higher-order constraints needs further investigation.
Also, Theorem is satisfied with second order differentiability of the Lagrangian at (a*, z*, w*).
A possible relaxed way is to analyze the differential part x7; of z*, and prove the PL property of

L(zq,z,w) = L(zq,x* 4, 2,w), when z_4 = x* ; is fixed.
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