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Abstract

Large language models often possess latent capabilities that lie dormant unless
explicitly elicited, or surfaced, through fine-tuning or prompt engineering. Pre-
dicting, assessing, and understanding these latent capabilities pose significant
challenges in the development of effective, safe AI systems. In this work, we
recast elicitation as an information-constrained fine-tuning problem and empir-
ically characterize upper bounds on the minimal number of parameters needed
to achieve specific task performances. We find that training as few as 10–100
randomly chosen parameters—several orders of magnitude fewer than state-of-
the-art parameter-efficient methods—can recover up to 50% of the performance
gap between pretrained-only and full fine-tuned models, and 1,000s to 10,000s
of parameters can recover 95% of this performance gap. We show that a logistic
curve fits the relationship between the number of trained parameters and model
performance gap recovery. This scaling generalizes across task formats and do-
mains, as well as model sizes and families, extending to reasoning models and
remaining robust to increases in inference compute. To help explain this behavior,
we consider a simplified picture of elicitation via fine-tuning where each trainable
parameter serves as an encoding mechanism for accessing task-specific knowledge.
We observe a relationship between the number of trained parameters and how effi-
ciently relevant model capabilities can be accessed and elicited, offering a potential
route to distinguish elicitation from teaching.

1 Introduction

Many recent efforts in advancing the capability frontier of large language models (LLMs) focus on
post-training methods, such as fine-tuning, reinforcement learning with human feedback, or prompt
engineering. In many cases, these methods easily achieve significant performance gains through
small adjustments to a model, suggesting pre-existing capabilities that need only be unlocked rather
than taught. As a result, evaluations intended to benchmark maximal performance can underestimate
a model’s true capabilities [1], leading to an “elicitation gap” between its actual ceiling performance
and the capabilities it ordinarily demonstrates. This poses challenges in accurately predicting the
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model’s behavior once released, with broader safety implications in ensuring deployed models aren’t
capable of causing harm.

Prior work that aims to extrapolate LLM capabilities has focused on the impact of scale—compute,
data, or model size—on the improvement of model capabilities [2]. We propose a complementary
framework that takes these as constant and instead varies the number of trainable parameters available
during fine-tuning. Since all information contained in a model is stored in its parameters, we use this
trainable parameter count as a direct proxy for the information budget available during fine-tuning.
We then reconsider elicitation in terms of the minimal amount of information a model requires to
demonstrate a capability, and we propose this quantity as an indicator of whether the capability had
already existed within the model prior to fine-tuning.

We find that fine-tuning only a tiny fraction of a model’s parameters often suffices to recover most
of its latent capabilities, even when those parameters are selected completely at random (Figure 1).
Training as few as ~10-105 randomly chosen, low-rank adapter weights can close 50-95% of the
performance gap between zero-shot and fully fine-tuned LLMs across multiple choice and natural
language generation tasks that span a variety of domains, including long-context chain-of-thought
reasoning. We identify Pareto frontiers of performance versus parameter count when models are
elicited, which assume no prior information about model internals. These frontiers reveal a logistic
relationship between elicited performance and the logarithm of the number of trainable parameters
(logistic in log-p): steep initial improvements that asymptotically plateau approaching the model’s
full parameter count. We find that this behavior generalizes across task formats (multiple choice and
natural language generation), subject domains, and model sizes and families, including reasoning
models.

Our approach may help distinguish elicitation, in which latent capabilities are surfaced, from teaching,
wherein the model learns a new skill. We validate our approach by computing Pareto frontier curves
on identical randomly initialized models, where our approach finds (as expected) that recovering even
50% of the performance when teaching complex capabilities from scratch requires several orders of
magnitude more parameters than elicitation.

Our main contributions are:

1. Elicitation frontiers. We empirically characterize how elicited performance scales with the
number of randomly selected trainable parameters across ten benchmark tasks, four model sizes,
and two model families (Llama3 and Qwen2.5) and find that training only ~101-105 parameters
can achieve 50-95% of the performance achieved by fine-tuning all model weights.

2. Information-theoretic interpretation of elicitation. We present a picture of elicitation built
upon Rissanen’s Minimum Description Length (MDL) principle [3] to quantify how much must
be specified to a model for a latent capability to manifest, if one exists.

3. Distinguishing elicitation from teaching. We observe qualitative differences in the information
models use to represent tasks when relevant capabilities are pre-existing versus absent, proposing
that elicitation can be interpreted as a model’s ability to develop short descriptions of how to
effectively utilize latent skills.

2 Related Work

Parameter-efficient fine-tuning. Parameter-efficient fine-tuning (PEFT) methods that freeze most
of a model’s weights while training only a small auxiliary module have become standard practice for
adapting large language models to downstream tasks. Adapters [4] insert lightweight MLP blocks,
while prefix-tuning [5] prepends trainable vectors, and LoRA [6] injects low-rank adapters. Despite
using significantly fewer parameters than full fine-tuning, LoRA often nearly matches its performance,
indicating that adaptation information can be highly compact [7]. Recent approaches like DoRA [8],
PiSSA [9], BitFit [10], and sparse fine-tuning methods [11–14] reduce parameters further without
significant performance loss, and small subsets of model weights have been shown to significantly
impact model performance [15], collectively highlighting model overparameterization. Our work
explores the extreme lower bound of parameter efficiency, demonstrating substantial gains from
training as few as 10-100 randomly selected parameters, far fewer than existing approaches.

Scaling laws and information-theoretic bounds. Recent work on scaling laws characterizes
performance improvement with increased compute, data, or total model parameters [2, 16, 17].
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Figure 1: Fine-tuning only 10-100 randomly selected parameters recovers 50% of performance
gap between zero-shot and fully fine-tuned models. (Top) Logistic fits (solid lines) to Pareto
frontier points (circles) with bootstrapped 95% confidence intervals (shaded regions) for Llama 3
models of sizes 1B, 3B, and 8B parameters fine-tuned on GSM-8K-CoT-Choice. Dashed lines
indicate the 97.5 percentile eight-shot accuracy for each model. (Bottom) Minimum number of
trained parameters at which various levels of gap closure (50%, 75%, 90%, and 95%) are met or
exceeded for each model size (1B, 3B, and 8B parameters).

Complementing this, our “elicitation frontier” explicitly focuses on the minimal parameter budget
required for task adaptation. Our parameter-based approach builds on top of Rissanen’s Minimum
Description Length (MDL) [3] principle and related work [18] that relates the utility of a particular
model capability during training to the amount of information contained in the training dataset.

Lottery tickets and random-parameter hypotheses. The Lottery Ticket Hypothesis [19] demon-
strates that sparse subnets (“winning tickets”) can match dense performance but requires expensive
search. Our findings show random-parameter selection achieves nearly identical Pareto frontiers
without specialized search, suggesting that adaptation information is both compact and distributed
throughout the model.

3 Methodology

3.1 Base models & PEFT setup

In our experiments, we fine-tune a randomly chosen subset of a model’s parameters to convergence on
different tasks using their public train sets, and we measure how performance on held-out data varies
with the minimum number of parameters needed to specify the updated weights of the fine-tuned
model.

Models and baselines. We fine-tune widely used language models from the Llama and Qwen
families (Llama 3.2 1B/3B, Llama 3.1 8B, Qwen2.5-1.5B) [20, 21]. The models used in our
experiments are all pretrained base models, unless otherwise noted.
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We compare with full fine-tuning, which trains all parameters in the model and defines each model’s
upper performance ceiling, zero-shot accuracy or loss (performance floor) and eight-shot accuracy
(prompt-based elicitation, where applicable) for each model, as well as standard LoRA. In binary
classification tasks (BoolQ, GSM-8K-CoT-Choice), we also compare performance with that of a
trained, task-specific classifier head on top of the unembedding layer of the base model, as well as a
linear probe trained directly on the representations of the middle two layers of the model. Additional
details can be found in Appendix A.

Parameter selection and fine-tuning. We select random subsets of LoRA parameters (rather than
performing structured choice or searching for optimally efficient parameters) as random selection
requires no prior information about the model’s internal representations. This eliminates the possibility
that additional information could effectively be used for elicitation but remain unaccounted for. In
experiments that train random subsets of parameters within the LoRA modules, learnable subsets of
the LoRA adapter matrices are trained while the remaining adapter weights are held frozen at their
initialized values. We select these trainable parameters using uniform random sampling across all
LoRA modules in all layers, with each parameter having equal probability of selection regardless of
its position in the network. This selection is implemented by applying a random binary mask over
gradients during the backward pass, preserving gradient updates only for the selected parameters.

All fine-tuning experiments use AdamW as the optimizer [22], except in experiments training fewer
than 20 parameters, where we also perform Bayesian optimization directly on model parameters [23],
which often outperforms gradient descent and offers a ~100-500x improvement in training time (GPU
hours). However, we use gradient descent for all MDL calculations as prequential coding relies on
first epoch cross-entropy loss, which is not computed in Bayesian optimization.

In all experiments, we train until convergence, regardless of the number of epochs required. To verify
that only the intended number of learnable parameters has been updated during training, we compare
the weights of the LoRA modules at initialization to the weights following fine-tuning and ensure
that only the unmasked parameters have been updated. See Appendix C for additional details about
fine-tuning procedure details and hyperparameter selection.

3.2 Datasets

We fine-tune and evaluate on 4 classification tasks and 4 generative tasks: GSM-8K-CoT-Choice (a
CoT correctness classification task, see Section D.1 for dataset details), ARC-Easy, ARC-Challenge
[24], and BoolQ [25] for classification tasks, and Alpaca [26], TinyStories [27], Lichess chess puzzles,
and s1K-Qwen-1.5B3 for generation tasks. For reasoning model experiments, we also evaluate on
AMC24 and AIME25 (competition math problems), both of which were released after the release of
Qwen2.5, to ensure that test set questions cannot have appeared in train data. For all three datasets,
we sample 16 responses per question (temperature=0.6) to estimate pass@1 and majority response
(maj@16). We also evaluate on AIME24 using the same sampling method to enable comparisons
with previous work. For Alpaca, we evaluate the win rate of each fine-tuned model against the best
full fine-tuned model when generating answers on Alpaca-Eval (temperature = 0), using Anthropic’s
internal preference model used for training Claude Sonnet 4 as a judge.

4 Empirical Results

4.1 Fine-tuning 100 randomly-chosen parameters often achieves over 50% performance gap
closure on classification tasks

Elicitation Pareto frontier. Following the procedure of Appendix E, we select a sequence of
trainable parameter budgets spanning from a single parameter to the full set of LoRA adapter
weights for ranks 1-1024, in addition to all parameters in the full model (full fine-tuning). We
define the empirical frontier as the average accuracy achieved across all seeds for the best set of
hyperparameters for each parameter budget. Figure 1 (top) plots the resulting frontier points for
GSM-8K-CoT-Choice on a log-scale x–axis, along with the best-fit generalized logistic curve and
corresponding bootstrapped 95% confidence intervals.

3s1K-Qwen-1.5B is an adaptation of s1K [28] which uses prompts from the s1K dataset with completions
generated by DeepSeek-R1-Qwen-1.5B (DeepSeek R1 distilled into Qwen2.5-Math-1.5B).
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Gap closure. To quantify how many parameters are needed for common performance targets, we
compute the budgets at which the given performance gap recovery thresholds are met, with the extent
of performance gap defined as the difference between the full fine-tuned model’s performance (or
maximum of the logistic fit, whichever is higher) and its zero-shot accuracy.

Figure 1 (bottom) reports these values for the three model sizes. Table 1 reports these values for the
50% and 90% thresholds across all multiple-choice datasets and Llama models, comparing them with
the performance of zero-shot evaluation on the corresponding pretrained-only base models and that
of the full fine-tuned models with all ~109 parameters trained.

Only ~30 parameters are required to recover 50% of the zero-shot to full-fine-tune gap on GSM-
8K-CoT-Choice and BoolQ (Figure 10), meaning that adjusting exclusively a few dozen randomly
selected dimensions across all layers of the model can achieve half of the performance gain of full
fine-tuning.

The grade-school level science datasets ARC-Easy and ARC-Challenge show a similar overall
pattern, albeit with higher parameter requirements than GSM-8K-CoT-Choice, likely due to the
more specialized scientific knowledge they assess. In particular, fine-tuning on ARC-Challenge,
composed entirely of questions answered incorrectly by both a retrieval-based algorithm and a word
co-occurrence algorithm [24], requires significantly more parameters for the smallest model (Llama
3.2 1B) than on other tasks as well as compared to larger models (Llama 3.2 3B and Llama 3.1 8B),
potentially indicating capability acquisition rather than elicitation due to the possible absence of the
capability in the 1B model following pretraining. We discuss a possible interpretation of this behavior
in Section 5.

We observe that larger models also require only few-parameter adjustments to achieve substantial gap
closure (Table 1), supporting the hypothesis that larger models already possess most of the requisite
knowledge and require minimal tuning to effectively demonstrate it. On all multiple-choice datasets,
including both ARC datasets, Llama 3.1 8B achieves 50% performance gap recovery with fewer than
100 trainable parameters.

Table 1: Number of trainable parameters required to close various performance (accuracy)
gap thresholds on multiple-choice tasks (GSM-8K-CoT-Choice, ARC-Easy, ARC-Challenge).
The extent of the full performance gap is defined as the difference between the performance of the
fine-tuned model with all parameters trained (Full FT) and the zero-shot accuracy of the pretrained
base model. #Params denotes the minimum number of trained parameters at which the model’s
performance matches or exceeds 50% or 90% of the gap above the zero-shot accuracy. %Params
denotes the percentage of trained parameters at each threshold relative to the size of the pretrained
base model backbone. Results for natural language generation can be found in Section G.1.

Dataset Model Baselines (%Acc.) 50% Gap Closure 90% Gap Closure

Zero-shot Full FT #Params %Params #Params %Params

GSM-8K-CoT-Choice
Llama-3.2-1B 47.56 87.46 39 2.67× 10−6 1036 8.38× 10−5

Llama-3.2-3B 48.36 85.21 33 1.21× 10−6 2752 8.56× 10−5

Llama-3.1-8B 51.27 87.46 77 9.58× 10−7 2403 3.80× 10−5

ARC-Easy
Llama-3.2-1B 24.81 76.45 216 1.74× 10−5 4144 3.35× 10−4

Llama-3.2-3B 74.08 87.06 774 2.41× 10−5 159k 4.95× 10−3

Llama-3.1-8B 80.46 91.27 99 1.28× 10−6 318k 3.96× 10−1

ARC-Challenge
Llama-3.2-1B 24.21 53.78 3023 2.44× 10−4 154k 1.24× 10−2

Llama-3.2-3B 53.81 75.01 236 7.34× 10−6 3077 9.58× 10−5

Llama-3.1-8B 61.11 82.66 98 1.22× 10−7 415 5.17× 10−6

4.2 Fine-tuning 1,000 randomly selected parameters achieves 50% gap closure on some
generative tasks

When fine-tuning on the Alpaca instruction-tuning dataset, we observe that training a small fraction
of parameters (relative to model size) achieves most of the performance benefits of full fine-tuning
for all three Llama models (1B, 3B, and 8B), recovering 50% of the full performance gap in both win
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Figure 2: Fine-tuning small random subsets of parameters can elicit better performance on
generative tasks. Achieving 50% gap closure on Alpaca-Eval (left) and TinyStories (center) with
pretrained Llama models requires training ~1,000 or fewer parameters, whereas ~100,000 parameters
or more may required when teaching new, complex capabilities for both story generation (center) and
optimal chess move prediction (right) tasks.
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Figure 3: Distillation of DeepSeek R1-style reasoning scales logistically. Fine-tuning Qwen2.5-
1.5B on 1,000 unique reasoning traces generated by DeepSeek-R1-Distilled-Qwen-1.5B (a post-
trained Qwen2.5 model distilled from DeepSeek-R1 using supervised fine-tuning, performance
indicated by dashed lines) results in similar trends as observed for Llama models fine-tuned on
multiple-choice and generative datasets, suggesting generalization of elicitation scaling behavior to
chain-of-thought reasoning tasks and models in other families. For all three datasets, both majority
voting (orange) and pass@1 (blue) estimated from sampling 16 responses (temperature=0.6) recover
similar logistic scaling with increasing trainable parameters (log-scale x–axis). Error bars indicate
standard errors over 16 samples.

rate and loss improvement (Figure 2, left panel, & Figure 7) on Alpaca-Eval with ~1,000 learnable
parameters (all models).

When fine-tuning Qwen2.5-1.5B on math reasoning traces from DeepSeek-R1-Distill-Qwen-1.5B, we
find it requires a larger number of trainable parameters to close the gap, reflecting the relative difficulty
of the task. For both exact match accuracy (maj@16) and loss improvement on AMC24 (over the
base model’s performance and calculated against reference solutions generated by DeepSeek-R1-
Distill-Qwen-1.5B), ~10,000-20,000 trainable parameters are sufficient to achieve 50% gap closure
(Figure 3 & Figure 8).

Simpler or easier tasks, such as TinyStories, that make use of capabilities which are already salient in
the model largely require fewer trainable parameters to saturate task performance or achieve various
performance thresholds, with the necessary parameter budgets appearing correlated with (assumed)
task difficulty.

4.3 Logistic scaling of elicited performance emerges across tasks and models

We find a logistic relationship between the task performance and the logarithm of tuned parameters,
across multiple-choice tasks despite them covering different domains and using different formats
(Figure 4), and most generation tasks (Figure 2), including reasoning tasks (Figure 3). While
the absolute performance levels and the exact number of random parameters required for specific
gap closure thresholds vary across tasks and models sizes, the characteristic S-curve shape in log-
parameter space remains consistent.
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Figure 4: Logistic scaling patterns emerge across multiple tasks and model sizes. Each subplot
shows model performance (y-axis) for all random seeds on a different task (from left to right: GSM-
8K, ARC-Easy, ARC-Challenge) against the number of trainable parameters (x-axis, log scale) for
three model sizes (1B, 3B, 8B). Solid lines indicate logistic fits to Pareto frontier points, with shaded
regions denoting bootstrapped 95% confidence intervals. Consistent scaling behavior as a function
of trainable parameters suggests that general features broadly characterize elicitation patterns and
asymptotic model performance across task types, dataset difficulty, and model size.

To verify that the observed logistic relationship is not an artifact of the specific functional form chosen,
we evaluate several alternative scaling relationships (power law, saturating exponential, and piecewise
linear with power law). Quantitative model comparisons using Bayesian and Akaike information
criteria consistently favor logistic fits across all datasets and models (see Appendix F for detailed
comparisons). The consistency of these fits across models and tasks, independent of the performance
metric used, suggests that the observed scaling behavior reflects an underlying, common relationship
between elicited capability level and the logarithm of parameters, rather than being an artifact of our
analysis approach.

4.4 Stability of Pareto frontier and robustness of logistic scaling across random initializations

Figure 4 shows the distribution of highest-performing models at every parameter budget for every
random seed, rather than just the nominal Pareto frontier points. Each point indicates a model
fine-tuned with a unique random seed; opaque points correspond to the Pareto frontier, with solid
line logistic fits to the frontier-defining points. We observe that the Pareto frontier is insensitive to
seed and that the highest performing runs for all seeds overwhelmingly lie within the 95% confidence
interval of the fit to the actual frontier.

While there is naturally some variation across random initializations of the LoRA matrices, as well as
which modules and layers are adapted, the overall pattern of rapid performance improvement with
minimal parameters is consistent. The logistic trend also remains visible across seeds, even with
suboptimal hyperparameters (Figure 12), and we observe similar, but shifted, logistic fits independent
of optimization effort or method.

4.5 Distinguishing elicitation and teaching in pretrained and randomly initialized models

To study qualitative differences between elicitation and teaching, we compare the performance of
pretrained and randomly initialized variants of the same model architecture (Llama 3.2 1B) to isolate
the effects of a model’s relevant, existing task representations on its elicited performance. We focus on
two tasks which can be learned without pre-existing language knowledge or capabilities: TinyStories,
a simple English short story language modeling task, and mate-in-N chess puzzles sourced from
Lichess4; both of these tasks use limited vocabularies, require only short context lengths, and have
large enough training sets that a 1B parameter model can learn the relevant capability.

For TinyStories, a much easier task for a pretrained model that already understands language,
achieving equivalent performance levels (set at 50% gap closure in the pretrained model) requires

4Mate-in-N chess puzzles reduce the depth of tree search needed to find optimal moves, both simplifying the
task of judging a model’s win capacity and forcing a more difficult learning curve.
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training more than seven orders of magnitude more parameters in the randomly initialized model than
in the pretrained model. For Lichess puzzles, a significantly more difficult task that likely requires
teaching for both model variants5, this parameter gap is less than an order of magnitude and 50% gap
closure requires more than trainable 100,000 parameters.

5 Minimum Description Length

Rissanen’s Minimum Description Length (MDL) principle [3] formalizes Occam’s razor as the notion
that the best model of a dataset is one that provides the simplest explanation, or shortest description,
for it. MDL frames algorithmic learning as optimal data compression, in which models that can
reconstruct task data from shorter descriptions are said to have learned more about the task.

Perez et al. [18] find that a capability is useful to a model if and only if it decreases the length of the
model’s shortest description of the dataset. By computing a computationally-tractable upper bound
on MDL, Rissanen Data Analysis (RDA), it is demonstrated that genuine capabilities always shrink
MDL, whereas information accessible to a model that is uncorrelated with the data labels does not.

In our setting, we presume that a capability may be latent in the pretrained (base) model M0 and try
to elicit that capability on a dataset designed to surface it. A small adapter ∆θk with only k trainable
weights serves as a pointer to that capability. If a short message (containing the adapter weights ∆θk)
lets the model compress the subsequent label stream by many bits, the original base model already
likely contained a highly structured representation of the task. Conversely, if the MDL shrinks slowly
or not at all until k becomes large, this means training did not find a small pointer to an existing
capability, and thus the capability was likely absent and must be learned from scratch rather. MDL
compression, given by the difference in description lengths between a frozen pretrained base model
and a model with k tunable parameters, ∆k = L0 − Lk, directly measures how helpful the latent
capability is to the model when k parameters are available to specify how to access it, quantifying the
intrinsic value of the capability to the task at a specific level of elicitation.

Table 2: An underelicited model versus a model which lacks a capability in MDL terms.

Elicitation regime MDL (#Bits to encode labels) Capability presence

Training elicits the capability Lk ≪ L0 (for k small) Latent, present after training
Training teaches new capabilities Lk ∼ L0 (for k small) Absent or already elicited

We compute upper bounds on MDL using prequential coding, encoding each example sequentially
using the model trained only on previously observed examples, following the procedure of Perez
et al. [18]. Practically, we initialize the pretrained model, present each training example exactly
once, perform a gradient step immediately after an example (or batch) has been seen, and accumulate
the per-token, per-example (per-batch) cross-entropy losses across all examples in the dataset. Full
details of this computation and its construction for our particular fine-tuning setting can be found in
Appendix I.

5.1 Empirical MDL Scaling and Logistic Behavior

For most tasks and models, MDL compression closely tracks improvements in accuracy, smoothly
increasing with (randomly selected) trainable parameter count and eventually saturating at a maximal
ceiling (Figure 5, top right). Both curves follow logistic forms in log-parameter space.

For Llama 3.1 8B fine-tuned on ARC-Challenge, the derivatives of accuracy and MDL compression
nearly coincide and share similar qualitative features, such as near-Gaussian behavior. Figure 5 (top
right) demonstrates the close tracking of accuracy with MDL compression (in bits). In contrast,
for the same dataset, the accuracy and MDL curves for Llama 3.2 1B, along with their respective
derivatives, demonstrate significant discrepancies between both each other and the behavior observed
in Llama 3.1 8B (Figure 5, left panels).

To quantify information encoding efficiency, we analyze the derivative of the logistic MDL compres-
sion curve versus parameters (Figure 5, bottom). The peak in this derivative indicates the parameter

5Both remain below 0.01% optimal move accuracy with up to 64 in-context examples.
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Figure 5: Accuracy and MDL compression track each other when eliciting latent capabilities
but deviate when the required capability is initially absent in the model. (Top panels) Accuracy
(colored, left y-axis) and MDL compression (black, right y-axis) plotted against parameter count
(x-axis, log scale) for Llama 3.2 1B (left) and Llama 3.1 8B (right) on ARC-Challenge. For 8B,
as parameter count increases, MDL compression and accuracy both rise following logistic curves
in log-parameter space. In contrast, MDL compression in 1B remains flat up to ~105 parameters,
at which point it discontinuously jumps, though accuracy rises smoothly. Shaded regions indicate
bootstrapped 95% confidence intervals on logistic fits. (Bottom panels) Derivatives of the accuracy
(colored) and MDL compression (black) curves, showing peak rates of change that correspond to
highest per-parameter compression and performance efficiency (vertical dashed lines). Both peaks
occur at similar parameter counts for Llama 3.1 8B (right) but are separated by approximately an
order of magnitude for Llama 3.2 1B (left), indicating significant differences in how efficiently the
models are each able to explicitly use the necessary capability to generate simpler models of the
dataset, relative to the number of parameters trained.

budget at which marginal additional parameters maximally improve dataset compression. Comparing
this to the accuracy derivative reveals subtle differences between information-theoretic encoding
efficiency and downstream task performance efficiency: in cases where the pointer to the underlying
capability requires many epochs of training to find or generate, MDL compression will be low even if
downstream task accuracy is high at the end of multi-epoch training, which may explain why for both
Llama 3.2 1B and Llama 3.1 8B the derivative peak is to the right of the parameter peak.

6 Discussion

In Section 4 and Section 5, we presented two complementary views of elicitation: an empiri-
cal view, where performance rises logistically with the number of trained parameters, and an
information-theoretic view, where the Minimum Description Length (MDL) of the label stream
falls as soon as a latent capability is unlocked. Here, we synthesise these perspectives and discuss
their implications.

6.1 Linking performance frontiers and MDL compression

Figure 1 and Table 1 showed that training only ~10-105 randomly chosen parameters recovers 50–95%
of the zero-shot to full-fine-tune gap. Section 5 then established that the same parameter budgets
yield hundreds of bits of MDL reduction. Taken together, these results indicate that the logistic
frontiers of Section 4 can be viewed analogously to compression curves: each additional parameter
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provides the model with an incremental number of bits it can spend on describing the task. The peak
of the logistic curve derivative therefore pinpoints an information threshold beyond which adding
capacity yields diminishing returns. Models that already contain the requisite capability (e.g. Llama
3.1 8B on ARC-Challenge) reach this threshold quickly, whereas models that cannot readily access a
relevant capability (Llama 3.2 1B on the same task), and may need to learn it entirely, require orders
of magnitude more parameters before significant reductions in MDL occur.

6.2 Practical and safety implications

Evaluation gaps. Benchmarks relying on zero-shot or in-context performance may underestimate a
model’s true capabilities by a large margin. MDL may provide a useful diagnostic: if a small adapter
suffices to significantly improve task performance, evaluators should treat the corresponding skill as
present, even if accuracy is low in the frozen state or in prompt-based elicitation settings.

Distributed representations. The success of random parameter selection suggests that knowledge
is spread throughout the network rather than localized in specific layers (Figure 8).

Logistic-in-log-parameters scaling. Consistent scaling patterns across tasks and model sizes hints
at a possible common property of elicitation that may offer use as a means of predicting future
elicitation thresholds for capabilities of interest.

6.3 Limitations

• Task diversity. While we have evaluated our approach across several classification and generative
tasks, none of them have the diversity and complexity of production settings.

• Theoretical approximations. Our information-theoretic analysis relies on approximations such as
first-epoch loss as a proxy for MDL. More precise formulations that yield tighter upper bounds
might reveal additional nuances in the elicitation process.

• Random selection. While our random parameter selection approach yields surprisingly strong
results, it may not be optimal. Structured approaches to parameter selection or low-probability
“winning ticket” parameter selections or initializations could potentially improve efficiency further.

• Elicitation methods. There are potentially methods of eliciting capabilities that vastly outperform
the current state-of-the-art, making it difficult to provide a tight upper bound on the number of
parameters needed for elicitation.

• Finite dataset size. The performance we obtain after training k parameters is a lower bound on
the maximal performance that is possible to achieve at that capacity, in particular because we only
train on datasets of finite (and sometimes relatively small) size. This is especially an issue for large
k, where the model has more capacity to learn, which might result in our result overestimating gap
closure for smaller k.

7 Conclusion

We present a novel framework for quantifying the elicitation of latent capabilities in language models
based on the minimum number of trainable parameters required to achieve various performance levels
on downstream tasks. We propose quantifying elicitation with an “elicitation frontier,” a curve that
maps the number of trained parameters to performance improvements. Across 8 tasks and 4 model
sizes from two popular model families, we find that 20-1000 randomly selected parameters suffice to
recover most of the performance gap between zero-shot and full fine-tuning.

Our elicitation frontier framework offers a complementary perspective to traditional scaling laws,
focusing on the minimal information required to unlock capabilities rather than the maximal capacity
of models. The consistent logistic scaling relationship we observe across tasks and model sizes
suggests that fundamental, shared principles may govern the ways in which capabilities scale with
parameter adjustments. Our study complements classic compute- and data-centric scaling laws with
an information-centric perspective: how much must be said to a model before it shows what it already
knows? Understanding this information budget is essential for capability forecasting, responsible
deployment, and the design of safe, reliable, and predictable AI systems.
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A Baselines

For all tasks, we use three baselines for comparison (zero-shot performance, eight-shot performance, and
fine-tuning all parameters of the base model). We define each model’s performance floor as its zero-shot accuracy
(multiple-choice datasets) or zero-shot win rate (Alpaca). We take each model’s highest performance (accuracy
or win rate) following full fine-tuning (updating all model weights) as its nominal ceiling performance.

Full fine-tuning. For all models, we fine-tune the entire model until convergence on each dataset. We
define convergence as the point where validation accuracy exhibits no improvement for 20 consecutive epochs.
Specifically, if |Acc(t) − max(Acc(t − 20 : t))| < ε where ε = 10−4, training terminates. This criterion
ensures stable convergence while avoiding premature stopping.

Zero-shot evaluation. For each model, we perform zero-shot evaluation on the validation and test sets.
Prompts used for zero-shot evaluation are the same as those used for all fine-tuning experiments. Prompt formats
for each dataset can be found in Appendix D.

Multi-shot evaluation. We perform multi-shot evaluation similarly, using the same prompt format as used
for zero-shot evaluation and prepending randomly selected examples (with properly formatted correct responses
for each) from the corresponding train set. The number of shots is equal to the number of prepended train set
examples with answers. We use the same formatting for each example, prepending the same train set examples
each time, with the final example being the validation or test set example that we evaluate the model’s response
on, in which the answer field is left blank.

We tested variations with 1, 2, 4, 8, 16, and 32 shots prepended for each model and dataset, finding that 8 shots
resulted in the highest performance across the board. We average performance across n = 30 trials for each
number of shots X to obtain the overall X-shot performance. Every trial uses a different random seed that is
used only to select the specific train set examples that are prepended; the same set of random seeds is used for all
models, datasets, and X-shot configurations. We ensure that the prepended examples contain an approximately
even split of each answer class to reduce potential sources of bias in the model outputs. Due to variation in
performance across seeds, we use the 97.5 percentile (2σ above the mean) value on the distribution of scores as
an approximate upper bound baseline for the model’s X-shot performance.

A.1 Additional binary classification baselines

For binary classification datasets GSM-8K-CoT-Choice and BoolQ, we compare the performance of two
additional baselines: (i) training a task-specific classifier head attached to the unembedding layer of the model,
and (ii) training a linear probe on the representations of the middle two layers of each model. Figure 6 compares
these baselines for Llama-3.2-1B on GSM-8K-CoT-Choice.

Classifier Head. We initialize each model with a classifier head that enforces the model’s outputs to be one
of the two label classes. The classifier head contains twice the number of parameters of the model’s hidden
dimension. We then freeze the model backbone and train only the weights in the classifier head when fine-tuning
on each dataset, taking the highest final evaluation performance at convergence across seeds (s = 5) as the
baseline.

Linear Probe. We initialize each model with all parameters frozen and train a linear probe out the represen-
tations of the middle two layers of each model.

B Generative Experiments

B.1 Alpaca

Discussion. Across the Alpaca instruction-tuning runs, win-rate versus trainable-parameter count similarly
increases quickly with few parameters (Figure 7). For Llama-3.2-1B, win rate (versus the best full fine-tuned
model) jumps from ~0.08 to ~0.71 as the budget grows from 103 to 105 updated weights. The 3B model follows
a similar pattern, shifted one decade to the left. Note that overall, the win rate is lower for 8B (compared to 1B
or 3B) as it is a higher-capacity base model with relatively higher full fine-tuned performance.

Dataset and splits. For the open-ended generation experiments we adopt the Stanford Alpaca
instruction-following corpus. The raw 52k examples are shuffled once with a fixed random seed and par-
titioned 90/10 into training (234,006 instructions) and held-out evaluation (26,006 instructions). No additional
filtering or augmentation is applied. All results in the main text use the full training split; the “tiny” ablations
described below operate on the same data but restrict the number of trainable parameters, not the dataset size.
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Figure 6: Llama-3.2-1B fine-tuned on GSM-8K-CoT-Choice with full fine-tune (red star), classifier
head (black star), and linear probe (blue dashed line) baselines.

Prompt construction and tokenization. Each instance is formatted with the standard Alpaca template
where the input block is omitted when empty. The expected answer is appended after the prompt. The entire
sequence is truncated to 256 tokens. During training we follow common instruction-tuning practice and compute
loss only on the response: all prompt tokens are replaced with the ignore-index so gradients flow exclusively
through the generated portion. The end-of-sequence token is reused as the pad token.

Base models and adaptation strategy. We fine-tune two pretrained Llama-3.2 models—1B and 3B
parameters—using low-rank adaptation. Unless otherwise noted, LoRA modules (ranks 1, 2, 4, 8, 16, 256, 512)
are inserted on every projection matrix in every transformer block.

To study how few parameters suffice for high-quality generation we treat the weights inside the LoRA matrices
as an unordered pool and select an absolute number of them to update (1 to full rank). Selection is uniform at
random over all LoRA weights; the mask is sampled once at the start of each run and held fixed for the duration
of training. In the very-few parameter regime (<10k trainable parameters) the original language-model head
remains frozen to isolate the effect of the highly sparse adaptation; at larger budgets the head is fine-tuned
together with the adapters.

Optimization and runtime. Every model is trained for exactly two passes over the 234k-example training
split. Mixed-precision (bfloat16) training with FlashAttention-2 is employed throughout, and gradient check-
pointing is enabled except in the smallest runs. Each experiment fits on a single NVIDIA H100 GPU; no
multi-GPU or distributed training was employed.

Evaluation protocol. After fine-tuning we generate completions for the 805-example Alpaca evaluation
subset using greedy decoding (temperature 0, max 256 tokens). Outputs are scored by an off-the-shelf preference
model that compares each fine-tuned model’s answer against the corresponding answer from the un-adapted
base model of the same size. We report the win rate of the fine-tuned model over the 805 comparisons; ties and
losses are counted separately but not shown in the main tables.

Summary of reported configurations. Model sizes: Llama 3.2 1B, Llama 3.2 3B, Llama 3.1 8B

LoRA ranks: 1, 2, 4, 8, 16, 256, 512

Trainable-parameter budgets: exact counts spanning from just a few parameters to nearly full finetuning.

Epochs: 2 (all runs)

Sequence length: 256 tokens

Hardware: single NVIDIA H100 80 GB GPU per run

B.2 Reasoning distillation with s1K rollouts

To determine the parameter efficiency of eliciting reasoning capability in Qwen base models, we generate
reasoning traces for all prompts in the s1K dataset [28] using the respective post-trained (DeepSeek-R1 distilled)
version of each model. The post-trained models used were originally trained by DeepSeek using supervised
fine-tuning (SFT) on a large corpus of several hundred thousand reasoning traces generated by DeepSeek-R1.
We then perform SFT on each original base model using the dataset of the corresponding post-trained model’s
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(a) 1B Pareto frontier: Loss improvement (b) 1B Pareto frontier: Win rate

(c) 3B Pareto frontier: Loss improvement (d) 3B Pareto frontier: Win rate

(e) 8B Pareto frontier: Loss improvement (f) 8B Pareto frontier: Win rate

Figure 7: Comparison of loss improvement and win rate for Llama models fine-tuned on Alpaca
and evaluated on AlpacaEval (1B, 3B, and 8B). Loss improvement is computed as each fine-tuned
model’s (blue points) improvement in the cross-entropy loss for autoregressive generation compared
to its corresponding base model. Win rate denotes the proportion of responses generated a fine-tuned
model (red points) that are preferred by the reward model over responses generated by the best full
fine-tuned model. In each graph, single points denote the result of a single fine-tuned model with the
specified number of trainable parameters. The Pareto frontier in each graph is denoted by the opaque
points with black outline connected by a solid line.
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Figure 8: Adapting K,Q, V,O matrices in the self-attention layers (blue points) is more parameter-
efficient for (sparse random-parameter) LoRA adaptation than adapting G,U,D matrices in the
feed-forward network/MLP layers of the transformer block (orange points). For the same trainable
parameter budget, adapting weight matrices in the self-attention layers results in higher loss improve-
ment of the converged, fine-tuned model over the base model’s zero-shot loss (results shown for
evaluation on the AMC23 dataset). This effect is particularly pronounced when fine-tuning sparse
random-parameter subsets of the rank-1 LoRA adapters. Differences in loss improvement are similar
when training all adapter parameters (i.e., “full-rank”), nearly independent of rank and regardless of
whether the self-attention or FFN layers in each transformer block are adapted.

generations to the s1K prompts; we use the same method for (sparse) LoRA adaptation and full fine-tuning as
described in Appendix C.

C Fine-tuning details

C.1 Target Modules

We investigate variations in which we adapt all weight matrices within the transformer block, Q,V or
Q,V,K,O matrices in the self-attention layers, G,U,D matrices in the feed-forward network (FFN)/MLP
layers, K,Q, V, U,D matrices across the transformer block, and randomly selected subsets of weight matrices
across the transformer block. We observe similar logistic scaling behavior of performance versus number of
learnable parameters across all configurations of adapted weight matrices.

We find that attention-only tuning (adapting K,Q, V,O matrices) is consistently the most parameter-efficient
across all datasets (multiple choice and generative, including reasoning), irrespective of answer format. This
suggests that the information needed to activate pre-existing knowledge is not confined to the FFN subspace.
Figure 8 compares the loss improvement for Qwen-2.5-Math-1.5B fine-tuned on 1,000 reasoning traces generated
from R1-Distill-Qwen-1.5B6, a model distilled from DeepSeek-R1 into the same Qwen-2.5-Math-1.5B base
model via supervised fine-tuning.

When we refer to “trainable parameters,” we exclusively mean scalar values within LoRA adapter matrices
(except in full fine-tuning, in which we directly train the base model’s original parameters). For rank-r adaptation:

• Matrix A: Rr×din (Kaiming uniform initialization)
• Matrix B: Rdout×r (zero initialization)
• Total parameters per module: r × (din + dout)

C.2 Seed and hyperparameter variation

For each parameter budget, we run up to 5 random seeds with up to 50 Bayesian-Hyperband trials each over
learning rate, batch size, and weight decay. In all experiments, we train until convergence (defined as at least
20 epochs with no improvement in validation accuracy for multiple choice tasks, or at least 2 epochs with no
improvement in validation loss for generative tasks), regardless of the number of epochs required.

6Prompts used for generating the model reasoning trace rollouts used for supervised fine-tuning were derived
from the s1K dataset [28].
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Search spaces. Parameter search ranges are calibrated based on the number of trainable parameters and GPU
memory constraints:

• Learning rate: [10−6, 1] (log-uniform spacing)
• Batch size: {1, 2, 4, 8, 16, 32, 64, 128, 256} (discrete)
• Weight decay: [0, 0.1] (uniform sampling)

C.3 Multiple-choice scoring

For every multiple-choice dataset, we score the model by directly comparing logits of the canonical answer
tokens (e.g., “A”/“B”/“C”/“D”) at the final position.

To reduce the dependence of the results on the model’s ability to format its responses properly, we additionally
run an ablation that sums probabilities over several token variations per option (including different capitalization,
synonyms, whitespace). We then calculate loss and accuracy directly using the logits for tokens corresponding
to each label class.

For multiple-choice tasks, we assign labels by aggregating probabilities across variations for each ground-truth
label token:

P (label) =
∑
i

P (tokeni), (1)

where tokeni ∈ {“A”, “ A”, “a”, “ a”} for label A (and similarly for all other labels).

We take the softmax of the model’s output vector for the final token position to obtain probabilities on the
outputs for each token in the model’s vocabulary, and for each label class, we sum the probabilities of differently
formatted, single-token variations of each label (e.g., “A”: (“A”, “ A”, “a”, “ a”) for label class A). We use
the same set of variations for all label classes (e.g., “Correct”: (“Correct”, “ Correct”, “correct”, “ correct”),
“Incorrect”: (“Incorrect”, “ Incorrect”, “incorrect”, “ incorrect”) with sets of labels for each class incorporating
the same variations on spacing and capitalization). This approach ensures robustness to minor formatting
variations in the model’s output while maintaining evaluation consistency.

The two procedures (logit comparison on ground-truth labels only versus cumulative probability comparison on
variations of ground-truth labels) differ by <0.2 percentage points on average, demonstrating that memorization
of the output format does not explain the observed increases in performance.

C.4 Bayesian optimization directly over LoRA adapter weights (ultra-low parameter regimes)

For experiments in which fewer than 20 parameters are trained, training until convergence can require more
than 1000 training epochs, and training dynamics can become unpredictable with discontinuities observed in the
loss. The combination of these factors makes it difficult to identify when training has converged or to explore
sufficient hyperparameter configurations to effectively resolve the true elicitation Pareto frontier.

To circumvent this issue, in addition to training with gradient descent, in the regime of fewer than ~20-25
trainable parameters, we also perform Bayesian optimization with a Gaussian process surrogate model and
expected improvement acquisition function (GPyTorch with default Matérn kernel) directly on the learnable
adapter weights within the LoRA matrices; parameter selection is performed using the same random sampling
procedure as in the gradient-descent-based fine-tuning setting. This approach mitigates optimization instabilities
at extreme sparsity levels.

For the Gaussian process, parameter bounds were empirically calibrated through preliminary gradient descent
experiments:

• k ≤ 2 : [−10, 10], [−5, 5]
• 3 ≤ k ≤ 10 : [−5, 5], [−3, 3]
• 11 ≤ k ≤ 25 : [−3, 3], [−1, 1],

where k is the number of trainable parameters. The Gaussian process optimizer directly searches this k-
dimensional space, evaluating model performance for each parameter configuration. The same bounds are used
for all trainable weights (uniform bounding hypercube). We initially uniformly randomly sample from within
the bounding hypercube a set of candidate vectors that contains three times as many vectors as the number of
trainable weights. Each vector has dimension equal to the number of trainable weights, with each entry in a
vector corresponding to an individual trainable weight.

For each candidate vector, we replace the values of the trainable weights in the original LoRA matrices with
the corresponding candidate entries and evaluate on the entire train and validation sets. We use the initial set
of candidate vectors with evaluated accuracies to seed the Gaussian process optimization. We iterate over all
candidate vectors, generating up to 400 additional, new candidate vectors with the Gaussian process optimizer,
and take the performance from the candidate vector with highest validation accuracy as the final performance
(with weights of the final trained parameters replaced with that candidate vector’s entries).
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This process entirely eliminates the need for hyperparameter search and significantly reduces training time and
overhead, as only the forward pass must be computed for optimization. In this very-few parameter limit, we find
that performance from models trained with Bayesian optimization matches or exceeds the performance of the
best performing hyperparameter configurations, enabling us to efficiently sample the elicitation frontier.

Due to the fact that Bayesian optimization does not employ training epochs, however, we are unable to calculate
prequential minimum description lengths for the resulting fine-tuned models. Instead, we calculate prequential
MDL only for models fine-tuned using gradient descent.

C.5 Computational Requirements
• Hardware: Single NVIDIA H100 80 GB GPU
• Runtime: 10 minutes to 36 hours depending on parameters trained and total training epochs
• Memory: 20-60 GB depending on model size and batch size
• Total experiments: ~3500 individual runs

D Dataset details and fine-tuning prompts

D.1 GSM-8K-CoT-Choice

GSM-8K-CoT-Choice was created by adapting ~1000 questions from the GSM-8K benchmark [29] to a binary
classification task. For each question, four distinct chain-of-thought reasoning solution attempts and answers
were generated with Claude 3.5 Sonnet. In each example, the model is presented with a question, a solution
attempt, and a final answer and asked to identify whether the solution attempt and final answer are correct.
The dataset is split evenly between correct and incorrect solutions, with two of each per question. During
development, one example from each label class per question (one true, one false) was randomly sampled to
construct the fine-tuning dataset, and we confirmed similar training dynamics across random seeds. Model-
generated solution attempts were rigorously validated by a human and additional language model (Claude 3.5
Haiku) to ensure accurate labeling.

D.1.1 Dataset generation procedure for GSM-8K-CoT-Choice

We use the following procedure to generate the dataset:

1. Question selection: Sample 1,000 problems from GSM-8K training and validation sets
2. Solution generation: For each problem, generate 4 chain-of-thought solutions using Claude-3.5-

Sonnet with structured JSON output (2 correct examples, 2 incorrect examples)
3. Answer validation:

• Correct solutions: Verify exact string match with ground-truth answer
• Incorrect solutions: Ensure no match with ground-truth answer

4. Quality control: Manual verification of flagged examples where automated validation fails
5. Balance Verification: Confirm exactly 2 correct and 2 incorrect solutions per problem
6. Sampling: Randomly sample one example from each label class per question

D.1.2 Dataset statistics for GSM-8K-CoT-Choice
• Total examples: 4,000 (1,000 questions × 4 solutions each)
• Class balance: 50% correct, 50% incorrect
• Token length: 99% of examples < 384 tokens (using Llama tokenizer)

D.2 DeepSeek-R1 distilled model generations to s1K prompts

The dataset used for supervised fine-tuning each base model was created by generating rollouts (model genera-
tions) to each prompt in the s1K dataset [28] using the official DeepSeek-distilled version of the specific base
model, up to a maximum length of 32768 tokens (temperature=0.6). Following the procedure of Muennighoff
et al. [28], we verify that the reasoning traces have the correct format (i.e., a thinking portion where initial
reasoning is carried out, followed by an answer to the user query) but do not regenerate incorrect solutions.

D.3 Fine-tuning Prompts

Systematic evaluation revealed minimal sensitivity to prompt variations when instructions are present (<0.5%
performance difference). Without instructions, performance degrades by approximately 2%, motivating our
standardized prompt templates.
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D.3.1 GSM-8K-CoT-Choice

‘‘‘
You will be given a math problem, a step-by-step solution attempt,
and a final answer.
Evaluate the correctness of the solution attempt and answer to the
problem.
Respond with ONLY ’Correct’ or ’Incorrect.’
Problem: {problem}
Solution Attempt: {solution attempt}
Answer: {answer}
Respond with ONLY ’Correct’ or ’Incorrect’. Response:
‘‘‘

D.3.2 ARC-Easy & ARC-Challenge

‘‘‘
You will be given a question and a series of answer choices labeled
A, B, C, D, etc.
Select the correct answer from the choices.
Respond with ONLY the uppercase letter of the correct answer (A-E).
Question: {question}
Answer choices:
A: {choice A}
B: {choice B}
... {other choices}
Response:
‘‘‘

D.3.3 BoolQ

‘‘‘
You will be given a passage and a question.
Determine the answer to the question based on the information in the
passage.
Respond with ONLY ’Yes’ or ’No.’
Passage: {passage}
Question: {question}
Response:
‘‘‘

D.3.4 Alpaca

‘‘‘
Below is an instruction that describes a task{, paired with an input
that provides further context}.
Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:
‘‘‘

E Preliminaries

Notation. Let D = {(xi, yi)}ni=1 denote a downstream task dataset of size n. We denote by θ0 the parameters
of the pretrained base model and by θp,s,h the LoRA-adapted parameters ontained by training exactly p adapter
weights with random seed s and hyperparameters h. We write

Acc(θ) =
1

|Dval|
∑

x,y∈Dval

1{ŷθ(x) = y} (2)
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for the validation accuracy of the model θ. We further define the zero-shot baseline Acc0 = Acc(θ0) and the
accuracy of the fully fine-tuned model Accfull.

Parameter Budget Selection. We select parameter budgets {p1, ..., pk} on a logarithmic scale to ensure
adequate resolution across orders of magnitude.

Pareto Frontier Extraction. To characterize the trade-off between parameter budget and performance, we
choose a set of budgets p ∈ {p1, . . . , pK}. For each budget p, we perform:

• S = 3 – 5 independent random seeds s.
• For each (p, s), up to 50 hyperparameter trials h via Bayesian optimization with Hyperband [30].
• Record the maximal validation accuracy

f(p) = max
s,h

Acc
(
θp,s,h

)
. (3)

The set of points
{
(p, f(p))

}K

p=1
defines the empirical Pareto frontier. We fit a generalized logistic in log p for

its flexibility in modeling diverse S-shaped growth patterns:

f(p) ≈ Acc∞ − Acc∞ −Acc0
(1 + exp (−a− b log p))ν

, (4)

using nonlinear least squares to recover (Acc0,Acc∞, a, b, ν). This formulation accommodates asymmetric
growth curves observed across different tasks.

Bootstrap Confidence Intervals. We employ nonparametric bootstrap with 104-105 samples:

1. For each iteration, remove one frontier point uniformly at random
2. Fit logistic curve to remaining points
3. Compute 95% confidence intervals from empirical distribution of fitted parameters

Empirical Metrics. We evaluate two additional quantities on the frontier models θp,s∗,h∗ achieving f(p):

1. Gap closure:

GC(p) =
f(p)−Acc0
Accfull −Acc0

∈ [0, 1].

2. Online MDL [3, 31]:

MDL(p) =

n∑
i=1

ℓ
(
θp,s∗,h∗ ; xi, yi

)
,

where ℓ is the per-example training loss, which is updated after each example (or batch) has been processed,
and the sum is taken over the first epoch only, such that each train set example has been seen exactly once by
the model.

F Analysis of alternative fitting functions

F.1 Alternative fitting functions

We analyze four alternative fitting functions in addition to a generalized logistic: saturating exponential, power
law, (piecewise) broken power law, and smooth broken power law (power law multiplied with a logistic window
to maintain differentiability).

Generalized logistic:

y = ymin +
ymax − ymin

(1 + e−k(x−x0))
ν (5)

Saturating exponential:
y = ymax −Ae−B(x−x0) (6)

Power law:
y = axb (7)

Broken power law:

y =

{
a+ bx for x ≤ xk

a+ bxk + c(x− xk)
d for x > xk

(8)
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Smooth broken power law:

y =

{
a+ bx for x << xk

a+ bxk + c(x− xk)
d for x >> xk

(9)

F.2 Model comparison metrics

We evaluate model fit using:

• Akaike information criterion (AIC): 2k − 2 ln L̂

• Bayesian information criterion (BIC): k lnn− 2 ln L̂

• Mean square error (MSE): 1
n

∑
i(yi − ŷi)

2,

where k is the number of fitting parameters (not trainable parameters in this instance), n is the number of data
points (i.e., the number of Pareto frontier points used for generating the fitted curve), and L̂ is the maximized
likelihood (sum of squared errors). Figure 9 shows the results of curve fitting for all three Llama model sizes
(1B, 3B, and 8B) fine-tuned on GSM-8K-CoT-Choice with corresponding AIC and BIC for each fit.

G Results from additional datasets

G.1 Alpaca

Figure 7 shows results from fine-tuning Llama-3.2-1B and Llama-3.2-3B on the Alpaca instruction-tuning
dataset.

G.2 BoolQ

Figure 7 shows results from fine-tuning Llama-3.2-1B and Llama-3.2-3B on BoolQ. The logistic scaling of
accuracy with increasing trainable parameters remains consistent in BoolQ, with both models requiring ~100
parameters to achieve 50% performance gap closure between zero-shot accuracy and full fine-tune accuracy.

G.3 Dataset Coverage Limitations

BoolQ and Alpaca experiments include only Llama-3.2-1B and 3B models due to computational constraints.
The consistent logistic scaling observed across completed experiments suggests similar patterns would emerge
for the 8B model, though empirical validation remains future work.

H Results across hyperparameter and seed variations

Because we fine-tune with numbers of trainable parameters spanning several orders of magnitude, we optimize
hyperparameters at each parameter budget for each seed, performing up to 50 trials of Bayesian optimization
with Hyperband. Figure 12 shows results for hyperparameter optimization trials for Llama 3.2 1B (top) and
Llama 3.2 3B (bottom) fine-tuned on ARC-Easy (all seeds). Hyperparameter optimization is required for each
parameter budget as hyperparameters (learning rate, in particular) can differ significantly depending on the
sparsity of trainable parameters. For the highest performing seeds, as shown in Figure 4, the highest performing
runs for each seed demonstrate little variability in final validation accuracy and largely fall within the 95%
confidence interval of the fit to the Pareto frontier.

I Construction of Prequential MDL and RDA

Because the true Minimum Description Length is uncomputable, Perez et al. [18] propose to upper bound it with
the data’s MDL obtained by prequential coding:

L(y1:N | x1:N , f) < L(y1:N | x1:N ), (10)

which states that a model that uses a domain-relevant capability to generate a label obtains a more compact
explanation of the label-generation process, which enables it to succinctly model the dataset itself.

We can alternatively view this label-generation learning process as a communication protocol for sending the
labels for the dataset from someone who has them to someone who does not. Alice, who has the labels, wants
to share them with Bob, who does not, and they want to find the smallest file Alice needs to send to Bob so
he can have them. Alice and Bob share the same base model M and learning algorithm A (which contains all
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Llama 3.2 1B: Pareto Frontier and Fitted Curves

Pareto Frontier
Saturating Exponential (AIC: 23.9, BIC: 46.6)
Generalized Logistic (AIC: 18.8, BIC: 41.5)
Broken Power Law (AIC: 25.8, BIC: 48.5)
Smooth Broken Power Law (AIC: 25.9, BIC: 48.6)
Regular Power Law (AIC: 25.7, BIC: 48.4)
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Llama 3.2 3B: Pareto Frontier and Fitted Curves

Pareto Frontier
Saturating Exponential (AIC: 24.8, BIC: 42.8)
Generalized Logistic (AIC: 15.3, BIC: 33.3)
Broken Power Law (AIC: 28.1, BIC: 46.1)
Smooth Broken Power Law (AIC: 28.8, BIC: 46.8)
Regular Power Law (AIC: 28.8, BIC: 46.8)
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Llama 3.2 8B: Pareto Frontier and Fitted Curves

Pareto Frontier
Saturating Exponential (AIC: 24.0, BIC: 41.8)
Generalized Logistic (AIC: 18.2, BIC: 36.0)
Broken Power Law (AIC: 26.9, BIC: 44.7)
Smooth Broken Power Law (AIC: 27.0, BIC: 44.8)
Regular Power Law (AIC: 27.3, BIC: 45.1)

Figure 9: Fitting of curves with corresponding AIC and BIC for 1B, 3B, and 8B Llama models
fine-tuned on GSM-8K-CoT-Choice. For all models, AIC and BIC are consistently lowest for fits to a
generalized logistic function.
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Figure 10: Fine-tuning ~100 parameters in Llama-3.2-1B and Llama-3.2-3B recovers 50% of
the performance gap on BoolQ. 2σ standard errors are shown as shaded regions.

information Bob needs to know to replicate Alice’s training on his end), update the model after each label, and
code that label with its instantaneous cross-entropy loss. This “online” code length converges in expectation to
the true MDL when the learner (i.e., model) is Bayes-optimal.

Perez et al. [18] introduce Rissanen Data Analysis to replace MDL with a block-wise code that retrains the
model (calculating loss and updating gradients) only after a batch of examples has been seen, until all examples
in the dataset have been seen a single time. This still constitutes an upper bound on the minimum information
Alice must send because each batch is encoded with a less recent model than in the prequential setting.

Canonically, RDA either keeps the model architecture and optimizer fixed or charges log2 M additional bits
if an ensemble of M learners is allowed, averaging codelengths over five random seeds. We adopt the same
formulation.

We additionally ask the question, "How much do you have to specify to the model to get it to demonstrate
knowledge it already has?". An intuitive way of measuring how much guiding a model needs to be able to access
(some fraction of) a pre-existing capability is by counting the number of parameters that must be updated for it to
be able to achieve a certain performance threshold on a task that requires the skill. In our elicitation framework,
we employ MDL to measure how efficiently a model can encode task labels during its initial exposure to the
training data. We compute MDL using the first epoch of training from a randomly initialized LoRA adapter,
not from a converged model, as this provides a measure of how quickly a model can develop an efficient task
representation given minimal parameter updates.

Comparing MDL and final test accuracy for a given model then provides information about how well a model can
quickly develop a compact description of the task, as well as information about the model’s ultimate asymptotic
performance when given effectively unlimited parameter updates. For most tasks, MDL compression tracks
accuracy improvements closely (Figure 5). However, divergences between MDL and accuracy curves (as
seen for Llama-3.2-1B on ARC-Challenge) provide diagnostic information: when accuracy improves without
commensurate MDL compression, the model may be learning rather than eliciting.

We can then recast our fine-tuning elicitation setting as a communication protocol between Alice and Bob:

All header terms are paid once, before the first label is transmitted, and the final summation term in the message
is the usual prequential code computed only on the labels, as the inputs x and backbone M0 are shared a priori,
following Perez et al. [18].

Our MDL calculation proceeds as follows:
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Figure 11: Validation accuracy for all hyperparameter configurations for Llama 3.2 1B and Llama 3.2
3B fine-tuned on ARC-Easy. Each semi-transparent point indicates a fine-tuned model with a unique
combination of hyperparameters and random seed. The logistic fit to the Pareto frontier is denoted by
a solid blue line, and a gray dashed line connects the points that define the Pareto frontier. For both
models, nearly all 250+ hyperparameter and seed combinations (5 seeds with 50+ hyperparameter
combinations each) for each parameter budget lie close to the Pareto frontier (within 2 percentage
points).

1. Initialization: Given parameter budget k, randomly select k parameters from LoRA adapters using
seed s

2. Hyperparameter selection: Through Bayesian optimization, identify hyperparameters h that maxi-
mize validation accuracy

3. Prequential MDL computation: For the optimal (s, h) configuration, compute prequential loss
during the first epoch only

Following the prequential MDL formulation [18, 32–34], we encode each example sequentially using the model
trained only on previously observed examples:

Lpreq = − logP (D|θ̂) = −
T∑

t=1

log(yt|xt; θt−1), (11)

in which t indexes gradient steps in the first epoch, ensuring each encoded data point is unseen at encoding
time. Practically, this is done by initializing the pretrained model, presenting each training example (or batch)
exactly once, performing a gradient step immediately after an example (batch) has been seen, and accumulating
the per-example cross-entropy losses over all examples (batches). This directly measures the incremental
compression efficiency of a model during fine-tuning.

Intuitive Interpretation: Consider MDL as measuring how efficiently a model can “compress” its understanding
of a task within its first pass over the training dataset. If updating merely 10 parameters enables the model to
compress task labels by hundreds of bits within the first epoch alone, this suggests the model already possesses a
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Figure 12: Llama-3.1-8B fine-tuned on ARC-Challenge. Each semi-transparent point indicates a
fine-tuned model with a unique set of hyperparameters and random seed. The logistic fit to the Pareto
frontier is denoted by a solid blue line, and a gray dashed line connects the points that define the
Pareto frontier.
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Table 3: Casting PEFT elicitation as an Alice → Bob communication game.

Element Description

Alice & Bob Identical copies of pretrained base model M0

Shared knowledge Base model M0, learning algorithm A, dataset inputs
{x1, ..., xn}

Alice’s goal Communicate dataset labels {y1, ..., yn} to Bob
Communication (message) (i) A one-shot header describing number of trainable parameters

k to initialize the LoRA adapters θk with, parameter selection
seed s, hyperparameters h; + (ii) block-wise stream of label
codes

Instructions for accessing capability f The adapter update ∆θk containing k learned weights that Bob
obtains as he trains his copy of M0

structured representation of the task—the parameters merely serve as a “key” to unlock this latent knowledge.
Conversely, if compression improves only marginally until thousands of parameters are modified, the capability
may likely require learning from scratch rather than elicitation, as it cannot be easily unlocked or accessed.

Algorithm 1 Prequential MDL Computation.

Input: Base model M0, dataset D = {xi, yi}Ni , parameter budget k
Initialize model M0 with LoRA adapters with k trainable parameters, ∆θk, (using seed s)
Initialize MDL, Lk = 0
for each batch B in epoch 1 do

Compute loss ℓB = CrossEntropy(M0(∆θk, B), labels(B))
Lk += ℓB × |B|
Update trainable parameters ∆θk via gradient descent

end for
Return Lk

Interpretation for elicitation: In scenarios with high compression and low trainable parameter counts, the
model rapidly develops an efficient encoding scheme with a limited set of locations where it can make changes,
suggesting it leverages pre-existing structured representations. In scenarios with low compression, the model
struggles to compress the label stream efficiently, indicating that the capability is not easily accessible or
utilized—potentially because it is absent. This differs from standard fine-tuning analysis because we measure
compression during initial learning, not post-convergence, and explicitly account for the information cost of
specifying which parameters to train. The resulting compression rate then reveals how much “latent structure”
the model can immediately access.

The MDL compression ∆k = L̄(0)
p − L̄(k) is therefore a direct, information-theoretic measure of how helpful

the latent capability is when k parameters are available to specify how to access it. In the language of Alice
and Bob, if granting Alice access to f shortens the MDL, then f must convey information that was previously
missing. The magnitude of the MDL drop, measured in bits, quantifies the intrinsic value of the capability to the
task.

In our setting, every capability is presumed to be latent in the pretrained (base) model M0. A small adapter ∆θk
with only k trainable weights serves as a pointer to that capability; training enables the model to develop this
pointer, as ∆θk plays the role of invoking f . If a short message (∆θk) lets the model compress the subsequent
label stream by hundreds of bits, it is highly probable that the original base model already contained a highly
structured representation of the task. Conversely, if the MDL shrinks slowly or not at all until k becomes large,
the capability was likely absent and must be learned rather than elicited.

J Data and Code Availability

GSM-8K-CoT-Choice dataset and evaluation scripts will be released with publication.

• LoRA implementation with random masking
• Bayesian optimization for ultra-low parameter regimes
• MDL computation utilities
• Frontier extraction and fitting procedures
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The claims made accurately reflect the paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in the
paper.

• The abstract and/or introduction should clearly state the claims made, including the contributions
made in the paper and important assumptions and limitations. A No or NA answer to this
question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much the
results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are not
attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We acknowledge several limitations of the scope of this research, including task diversity,
model selection, and the effectiveness of our elicitation methods, in a separate limitations section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the paper
has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to violations of

these assumptions (e.g., independence assumptions, noiseless settings, model well-specification,
asymptotic approximations only holding locally). The authors should reflect on how these
assumptions might be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only tested
on a few datasets or with a few runs. In general, empirical results often depend on implicit
assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide
closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address problems
of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by reviewers
as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms that
preserve the integrity of the community. Reviewers will be specifically instructed to not penalize
honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a complete
(and correct) proof?

Answer: [NA]

Justification: We do not include any theoretical results in this paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• The proofs can either appear in the main paper or the supplemental material, but if they appear in
the supplemental material, the authors are encouraged to provide a short proof sketch to provide
intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide details on our fine-tuning details, including LoRA modules for adaptation,
random parameter selection, hyperparameters, random seeds, and optimization methods.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by the

reviewers: Making the paper reproducible is important, regardless of whether the code and data
are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to make
their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might suffice,
or if the contribution is a specific model and empirical evaluation, it may be necessary to either
make it possible for others to replicate the model with the same dataset, or provide access to
the model. In general. releasing code and data is often one good way to accomplish this, but
reproducibility can also be provided via detailed instructions for how to replicate the results,
access to a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of the
contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either be

a way to access this model for reproducing the results or a way to reproduce the model (e.g.,
with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [No]

Justification: We plan to release our code once it has been anonymized. We try to provide sufficient
instructions in the supplemental material to ensure that our results can be faithfully reproduced.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.
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• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state which
ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions (if
applicable).

• Providing as much information as possible in supplemental material (appended to the paper) is
recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: We provide all train and test details in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that is

necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate informa-
tion about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report bootstrapped 95% confidence intervals on all fits to data.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main claims
of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report

a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: We provide hardware information in the supplemental material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.

29



• The paper should disclose whether the full research project required more compute than the
experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code
of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and believe our work adheres to the listed
principles.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [Yes]

Justification: We discuss both potential positive and negative societal impacts resulting from this work
in the Discussion section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or

why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: No models with new, dangerous capabilities will be released with this project. No
dangerous datasets will be released.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.
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• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: Asset creators are cited where relevant and licenses and terms of use are described in the
supplemental material.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses
for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [Yes]

Justification: New assets are documented and described in the supplemental material.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
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Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: This project does not use LLMs in important, original or non-standard ways for its core
methods.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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