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Abstract

Building a domain-specific semantic parser001
with little or no domain-specific training data002
remains a challenging task. Previous work has003
shown that crowdsourced paraphrases of syn-004
thetic (grammar-generated) utterances can be005
used to train semantic parsing models for new006
domains with good results. We investigate007
whether semantic parsers for new domains can008
be built with no additional human effort, ob-009
taining paraphrases of grammar-generated ut-010
terances from large neural language models,011
such as Google’s T5 and EleutherAI’s GPT-J,012
as an alternative to crowd-sourcing. While our013
models trained with automated paraphrases014
generated by pretrained language models do015
not outperform supervised models trained with016
similar amounts of human-generated domain-017
specific data, they perform well in a zero-018
shot setting, where no domain-specific data019
is available for a new domain. Additionally,020
unlike the current state-of-the-art in zero-shot021
semantic parsing, our approach does not re-022
quire the use of large transformer-based lan-023
guage models at inference-time. Using the024
OVERNIGHT dataset, we show that automated025
paraphrases can be used to train a semantic026
parsing model that outperforms or is compet-027
itive with state-of-the-art-models in the zero-028
shot setting, while requiring a small fraction029
of the time and energy costs at inference time.030

1 Introduction031

Semantic parsing—the task of mapping natural lan-032

guage utterances to logical forms—is an impor-033

tant aspect of language understanding necessary034

for many applications, such as question answer-035

ing (Berant et al., 2013; Shen and Lapata, 2007;036

Yih et al., 2016), querying databases (Zelle and037

Mooney, 1996), and ontology induction (Poon and038

Domingos, 2010). Much of the academic work039

on semantic parsing is based on existing datasets,040

while semantic parsers for production use are of-041

ten trained on painstakingly collected and anno-042

tated human data. However, when faced with the 043

challenge of creating a semantic parser for a new 044

domain, such as an interface for an equipment re- 045

pair database, what is the most efficient way to 046

create the required domain-specific training data? 047

This problem is explored by Wang et al. (2015), 048

who propose using crowdsource workers to create 049

natural language versions of grammar-generated 050

English-like canonical utterances that can be de- 051

terministically mapped to logical forms in their 052

framework. While this is an effective method for 053

rapidly building a semantic parser for a new do- 054

main, it is inherently limited by the time and cost 055

of having humans create the training data. As the 056

domain becomes more complex, the number of 057

possible combinations of logical forms that need to 058

be converted to natural language and paraphrased 059

becomes increasingly large and unwieldy. 060

In Berant and Liang (2014) and Wang et al. 061

(2015), the authors use a “manageable set of can- 062

didate logical forms”, as creating a canonical ut- 063

terance for every possible entity and relation set 064

would be intractable (Berant et al., 2013). While 065

computational tractability is certainly a concern 066

when dealing with larger domains, one of the key 067

limiting factors to the number of canonical utter- 068

ances one can utilize in the OVERNIGHT frame- 069

work is the time and cost of having humans cre- 070

ate multiple natural language paraphrases of each 071

canonical utterance. Additionally, in an industrial 072

setting, releasing proprietary data to a crowdsourc- 073

ing platform for annotation may be inadvisable. To 074

mitigate these issues, we investigate the possibility 075

of completely replacing human-generated training 076

data with paraphrases generated using large state- 077

of-the-art transformer language models, namely 078

Google’s text-to-text transformer model T5 (Raf- 079

fel et al., 2020) and EleutherAI’s GPT-J (Wang, 080

2021). We show that human-generated training 081

data can be effectively replaced with paraphrases 082

of grammar-generated canonical utterances using 083
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pretrained language models, thus eliminating the084

need for human-created paraphrase data.085

While generating embeddings from large trans-086

former models at inference time has been demon-087

strated beneficial in semantic parsing (Xu et al.,088

2020a), we hypothesize that in small, task-oriented089

semantic parsing domains, running BERT (Devlin090

et al., 2019) or other large pre-trained language091

models at inference time may not be necessary,092

and that adequate performance may be garnered093

by training smaller neural models on training sam-094

ples generated from transformer-based paraphrase095

models. Additionally, when task-oriented seman-096

tic parsing models are deployed in real-world use097

cases, such as reservation booking bots which may098

handle a large number of requests, the time and099

energy cost of running large transformer LMs at100

inference becomes substantial. By generating para-101

phrase data prior to training, we effectively take102

advantage of the knowledge contained in these pre-103

trained transformer models without the computa-104

tional, financial, and environmental cost of running105

them at inference time.106

To test this hypothesis, we investigate the util-107

ity of machine-generated paraphrases in training108

semantic parsers. We propose a straightforward109

approach consisting of a paraphrase model based110

on a large pre-trained language model, which111

is used only prior to model training, and a Bi-112

LSTM sequence-to-sequence model (Hochreiter113

and Schmidhuber, 1997; Sutskever et al., 2014)114

which we run at inference. We find that the use115

of paraphrases generated automatically with T5 or116

GPT-J can replace human-generated data entirely117

with no reduction in accuracy in most domains on118

the OVERNIGHT dataset. Further, we show that119

in the zero-shot setting, wherein a semantic parser120

is trained with no domain-specific training data,121

we outperform the current state-of-the-art model122

proposed by Xu et al. (2020b) on the OVERNIGHT123

dataset at a fraction of the time and energy require-124

ments.125

2 Previous work126

One of the key challenges faced by developers cre-127

ating applications that require precise natural lan-128

guage understanding is finding or generating the129

labeled data necessary to train effective semantic130

parsers. The problem is exacerbated by the fact131

that semantic parsing is often quite domain and132

topic specific, somewhat limiting the benefit that133

can be derived from of out-of-domain semantic 134

parsing datasets. As pointed out by Su and Yan 135

(2017), different domains often require different 136

predicates and entities; in fact, 30% to 50% of 137

the tokens in each of the eight domains covered 138

by the OVERNIGHT dataset for semantic parsing 139

(Wang et al., 2015) do not occur in any of the 140

other seven included domains. As a result, cross- 141

domain transfer learning in semantic parsing is 142

somewhat limited, especially in small, task-specific 143

domains. While training a single model on multi- 144

ple domains has been shown an effective means of 145

improving model performance (Herzig and Berant, 146

2017), this approach still requires domain-specific 147

training data. More recent work (Su and Yan, 2017) 148

trains a cross-domain semantic parser on data from 149

multiple out-of-domain datasets. Given the rela- 150

tively wide number of semantic parsing datasets 151

available to researchers and industry, we operate 152

under a similar assumption, though we use human- 153

generated out-of-domain paraphrases only in fine- 154

tuning our paraphrase model. In cases where no 155

out-of-domain training data is available for para- 156

phrase model fine-tuning, developers of semantic 157

parsers could create a grammar for the target do- 158

main and generate canonical utterances, as pro- 159

posed in Wang et al. (2015). These canonical utter- 160

ances could then be paraphrased to create natural- 161

language equivalents using LM-based paraphrasing 162

without fine-tuning to either supplement or com- 163

pletely replace the human-generated data proposed 164

in Wang et al.’s pipeline. 165

Various approaches have been proposed to cre- 166

ate labeled training data for semantic parsers. As 167

described in Wang et al. (2015), training a semantic 168

parser for a new domain consists of the following 169

steps: 170

• Defining a seed lexicon of entities and proper- 171

ties required in the domain 172

• Generating a set of combinations of said enti- 173

ties and properties. 174

• Using a deterministic grammar to generate 175

pseudo-natural language sentences represent- 176

ing each entity-property combination. 177

• Paraphrasing these pseudo-language forms to 178

create natural language utterances. 179

• Training a semantic parser to map each nat- 180

ural language utterance to its corresponding 181

logical form. 182
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Several previous works have used paraphrases183

of machine generated pseudo-language as the basis184

for training semantic parsers. For example, Berant185

and Liang (2014) propose converting predicates ex-186

pressed in the formal language λ-DCS (Liang et al.,187

2013) to canonical utterances using a determinis-188

tic grammar and entity descriptions from Google’s189

Freebase KnowledgeBase (Google, 2013). These190

canonical utterances are then matched with natu-191

ral language utterances in the WEBQUESTIONS192

dataset (Berant et al., 2013) using a paraphrase193

association model.194

Wang et al. (2015) expand upon Berant and195

Liang (2014)’s work by using a human-in-the-loop196

setup, in which Amazon Mechanical Turk workers197

are tasked with writing paraphrases for machine-198

generated canonical utterances. By having humans199

write the paraphrases, Wang et al. (2015) are able200

to expand on the number of domains for which they201

train semantic parsers, rather than being limited to202

those utterances present in WEBQUESTIONS. How-203

ever, Wang et al.’s approach introduces a new limit-204

ing factor in the development of training data - the205

time and cost of having humans write paraphrases.206

Wang et al. (2015) use crowd-sourcing to obtain207

human-generated training data, which allows for208

relatively fast and efficient collection of training209

data for supervised models. However, the use of210

crowd-sourcing introduces another set of limita-211

tions to data quality: annotators are not specifically212

trained in the target task, nor are they necessarily in-213

centivized to generate high-quality data which can214

be more time-consuming to create (Hsueh et al.,215

2009). Additionally, even though relatively low216

compared to other methods of dataset creation such217

as expert annotation, the cost of crowd-sourcing218

can become prohibitive, especially when larger219

amounts of training data are needed.220

Supervised models for semantic parsing on the221

OVERNIGHT dataset, such as Wang et al. (2015),222

do not utilize grammar-generated canonical utter-223

ances during model training; rather these canonical224

utterances are simply discarded once they have225

been used as the basis for the creation of human-226

generated paraphrases. As pointed out by Cao et al.227

(2020), this is an inefficient use of the available228

data, as pseudo-language canonical utterances can229

themselves be used as training data, and can also230

be utilized to generate paraphrases automatically231

using paraphrase models.232

In order to eliminate the use of human labor233

in developing training data, Marzoev et al. (2020) 234

propose to tackle semantic parsing as a semantic 235

search problem. However, their results are not 236

competitive with previous work, and require the 237

use of a large general-purpose language model at 238

inference time. Xu et al. (2020b) propose a model 239

which utilizes machine-generated paraphrases of 240

grammar-generated canonical utterances, which 241

can be deterministically mapped to logical form, 242

to replace human-generated data for training se- 243

mantic parsers, and are able to achieve impressive 244

results. Similarly, Cao et al. (2020) also propose 245

to generate paraphrases of canonical utterances to 246

conduct unsupervised training of a semantic parser 247

for a new domain. Cao et al. (2020) also demon- 248

strate a semi-supervised model which uses machine 249

generated paraphrases of canonical utterances to 250

supplement human-created paraphrases for model 251

training. The results presented by both Xu et al. 252

(2020b) and Cao et al. (2020) on the OVERNIGHT 253

dataset are competitive with state-of-the-art super- 254

vised models even with no human-generated data 255

used to train their parsing models. However, like 256

Marzoev et al. (2020), to achieve competitive re- 257

sults, both require the use of a BERT-based encoder 258

during inference to generate contextualized embed- 259

dings, a choice we avoid in order to demonstrate the 260

efficacy of LM-generated paraphrases in building 261

smaller, more efficient semantic parsers for small 262

domains. We show that large pre-trained neural 263

models can be leveraged during training to produce 264

much more economical models with competitive 265

accuracy. 266

3 Methods 267

In this paper we explore the effects of using auto- 268

mated paraphrases of grammar-generated canonical 269

utterances, which can be deterministically mapped 270

to logical forms, as training data for semantic 271

parsers for small domains. We build and test all 272

models using the OVERNIGHT dataset (Wang et al., 273

2015), which contains semantic parsing data for 274

eight separate domains. In the OVERNIGHT dataset, 275

each domain is a set of triples (Ut ∈ U,Ct ∈ 276

C,Zt ∈ Z). Z is a set of logical forms, C is 277

the set of machine-generated canonical utterances, 278

and U is the set of human-generated paraphrases. 279

We assume a one-to-one mapping Z → 280

C. Given that each logical form in the 281

OVERNIGHT dataset is deterministicly mapped to 282

a pseudo-language canonical form, our sequence- 283
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to-sequence models generate these canonical forms284

rather than the λ-DCS equivalents, as proposed in285

Su and Yan (2017). Once generated, these canoni-286

cal forms can be readily converted to a logical form287

by means of a grammar.288

We frame semantic parsing itself as a sequence-289

to-sequence task, as proposed by Su and Yan290

(2017). We build a simple Bi-LSTM encoder-291

decoder model which we train on various amounts292

of automatically paraphrased data. We intention-293

ally designed models which do not rely on large294

pre-trained neural models during inference, making295

our solution far more computationally and econom-296

ically efficient, and thus more practical for end-user297

applications. Rather, we use large transformer lan-298

guage models to generate automated paraphrases of299

the machine-generated canonical utterances in each300

domain, and these paraphrases are used as training301

data. By generating paraphrases using large trans-302

former language models prior to training, we are303

able to harness a portion of the power of these mod-304

els without the computational cost of running a305

large model during inference.306

We consider several conditions under which LM-307

generated paraphrases of canonical utterances may308

be used to replace in-domain human-generated309

paraphrases. We created models in the following310

training data conditions:311

• Paraphrases generated by T5 without fine-312

tuning on out-of-domain data (T5)313

• Paraphrases generated by T5 with fine-314

tuning on out-of-domain human-generated315

data (FINED-TUNED T5)316

• Paraphrases generated by GPT-J with out-of-317

domain human-generated data used as input318

context (GPT-J).319

To generate data for the T5 and FINE-TUNED320

T5 conditions, we first fined-tuned T5-base for321

paraphrasing using the PAWS dataset (Zhang et al.,322

2019), including data from the Quora Question323

Pairs dataset1. In the T5 condition, no further324

fine-tuning is performed and this model is used325

directly for paraphrasing canonical utterances. For326

the FINE-TUNED T5 condition, we hold out one327

domain as the target semantic parsing domain and328

further fine-tune for paraphrasing on the remaining329

7 domains. This model is then used to generate330

1https://www.quora.com/q/quoradata/
First-Quora-Dataset-Release-Question-Pairs

paraphrases for the held out domain. The process 331

is repeated 8 times, resulting in one model for each 332

domain. 333

GPT-J paraphrases were obtained using the GPT- 334

J-6B model available through HuggingFace2. Be- 335

cause GPT-J is designed to generate continuations 336

of input text, we provide the model with a con- 337

text consisting canonical utterance and human- 338

generated paraphrase pairs. As with the fine-tuning 339

of T5 described above, paraphrases from GPT-J are 340

generated using out-of-domain human-generated 341

paraphrases as input context. We choose a target 342

domain for which to generate paraphrases and then 343

construct the context input for GPT-J by concate- 344

nating a canonical-paraphrase pair from each of 345

the non-target domains. These paraphrases are fol- 346

lowed by the canonical utterance from the target 347

domain to be paraphrased. GPT-J then generates 348

a paraphrase of the input canonical utterance. No 349

fine-tuning of GPT-J, other than that in-context 350

fine-tuning (Brown et al., 2020) described above, 351

is conducted prior to generation. Appendix A.1 352

shows a sample of the context provided to GPT- 353

J, the input canonical utterance, and the resulting 354

paraphrase generated by the model. 355

Paraphrase model fine-tuning is the only aspect 356

of our methodology which relies on out-of-domain 357

human-generated data. At no point is in-domain 358

human-generated data used in the semantic parsing 359

model development. In total we generate 10 differ- 360

ent paraphrase models for the three conditions; one 361

for T5, 8 for FINE-TUNED T5, and one for GPT-J. 362

When generating paraphrases via T5 and GPT-J, 363

we recognize the fact that generated paraphrases 364

may hinder or improve the performance of the re- 365

sulting models depending on their quality. As a 366

result, we tested the paraphrase filtering method 367

described in Xu et al. (2020b), but did not find a 368

significant benefit to model performance. Thus, we 369

take no specific steps to filter paraphrases for qual- 370

ity in the present work. However, we consider the 371

number of paraphrases to generate per canonical ut- 372

terance n, to be a hyperparameter; this allows us to 373

increase the likelihood of generating quality para- 374

phrases while regulating for model performance. 375

We believe that our strong results demonstrate the 376

efficacy of our proposed method. 377

To evaluate inference-time cost and efficiency of 378

the models we discuss, we use the Experiment Im- 379

2https://huggingface.co/EleutherAI/
gpt-j-6B
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pact Tracker toolkit from Henderson et al. (2020).380

This Python toolkit tracks the run time and total381

power usage (CPU and GPU) of an application and382

provides an estimate of the CO2eq cost associated383

with the energy usage.384

4 Experiments385

We experiment with generating datasets of varying386

size, ranging from one LM-generated paraphrase387

per canonical utterance up to 100 paraphrases per388

canonical utterance. In section 5 we discuss our389

process for choosing the optimal value of n and390

discuss the general effect of increasing the number391

of paraphrases. We note that only canonical utter-392

ances contained in the training set are paraphrased.393

That is, the validation set for a particular domain is394

the same regardless of the number of paraphrases395

per training sample we choose to generate.396

For each domain in the OVERNIGHT dataset, we397

train a Bi-LSTM encoder-decoder model to gener-398

ate pseudo-language canonical forms from input399

natural language utterances. As the goal of this400

paper is to explore the effect of using automated401

paraphrasing in fixed-domain semantic parsing, we402

train a separate sequence-to-sequence model for403

each domain trained on LM-generated natural lan-404

guage paraphrases of domain-specific canonical405

utterances. The parsing models consist of an RNN406

encoder with two Bi-LSTM layers of 500 units407

each, and an RNN decoder with global attention,408

again with two layers of 500 units each. We use a409

dropout of 0.1. We experimented using pretrained410

GloVe embeddings (Pennington et al., 2014) but411

found no statistical improvement in our models.412

Rather, embeddings are randomly initialized and413

updated during model training. All models are414

trained using OpenNMT (Klein et al., 2017). Train-415

ing and validation sets for each domain were gen-416

erated by performing a 80/20 split of its official417

OVERNIGHT training set; where all human utter-418

ances in the training split are discarded. Evaluation419

was conducted using the official OVERNIGHT test420

set for the target domain, which consists of human421

utterances only.422

5 Choosing the number of examples423

To investigate the effect of increasing numbers of424

example paraphrases on model performance, we425

compared the accuracy of the resulting models on426

the OVERNIGHT validation set. Figure 1 shows427

the average validation accuracy across all domains428

versus the number of paraphrases per canonical 429

utterance from fine-tuned T5. 430

Figure 1: Average cross-domain validation accuracy in-
creases as the number of paraphrases from fine-tuned
T5 increases.

Figure 2: Average validation accuracy vs number of
paraphrases from fine-tuned T5 for each domain.

We find that the average cross-domain accu- 431

racy generally increases as we include more ex- 432

ample paraphrases. This might be the case if only 433

a few domains greatly benefited from increased 434

paraphrasing, however we found that all domains 435

benefit from an increased number of paraphrases. 436

Figure 2 shows how the accuracy for each domain 437

increases as we increase the number of paraphrases. 438

Although all domains see accuracy improvements 439

as we increase the number of paraphrases, not all 440

domains benefit equally. The Basketball domain 441

benefits the most, with an improvement over 40% 442

between n = 1 and n = 100, while the Restaurants 443

domains benefits the least with an improvement 444

slightly over 10%. 445

What causes a domain to be more susceptible 446

to accuracy improvements from increased para- 447
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phrasing is unknown. For example, the Basketball448

domain contains 18% more canonical utterances449

in the training set than the Restaurants domain,450

so it may make sense to see greater relative im-451

provement on the Basketball domain compared to452

Restaurants if beginning with more canonical ut-453

terances resulted in better performance from para-454

phrasing. However, the Housing domain is approx-455

imately half the size of the Restaurants domain,456

but sees an accuracy improvement of 28% com-457

pared to Restaurants’ 10%. After performing this458

comparison for all domains, the accuracy improve-459

ment gained from increasing the number of ex-460

ample paraphrases generated does not seem to be461

correlated with the number of canonical examples462

in the domain. We investigated other qualities for463

each domain (e.g., average utterance length, num-464

ber of unique utterances, and number of distinct465

utterances with label overlap) which could possibly466

affect affinity for paraphrasing, but did not find any467

conclusive results. See Appendix A.2 for examples468

of generated paraphrases from each data condition,469

for each domain.470

Regardless of paraphrase quality or relative accu-471

racy improvements between domains, we see that472

for each domain, generating more paraphrases has473

an overall positive effect on the resulting semantic474

parsing model. Both the T5 and FINE-TUNED T5475

conditions see similar relative accuracy improve-476

ments with increasing numbers of paraphrases. Al-477

though this general upward trend in accuracy im-478

provement is promising, it is clear there is a point479

of diminishing returns. Further, the resources re-480

quired to generate the paraphrases become pro-481

hibitive with an increasing number of paraphrases,482

as we will discuss in section 7. For this reason we483

limit our generation to n =≤ 100. We leave fur-484

ther investigation into which data features impact485

the effectiveness of paraphrasing for a particular486

domain and utterance type to future work.487

6 Results488

Table 1 shows our results (with varying numbers489

of example paraphrases) on all domains in the490

OVERNIGHT dataset alongside results from pre-491

vious works which do not use in-domain data. We492

report accuracy on exact match of the output for493

each sentence. Accurate output is defined as an494

exact string match between the model output and495

the corresponding canonical utterance in the test496

set. Any deviation from the target canonical utter-497

ance, however small, is considered inaccurate out- 498

put. This approach is in keeping with the method 499

used in previous work such as Wang et al. (2015); 500

Marzoev et al. (2020); Xu et al. (2020b). All re- 501

ported results are the average of five runs of the 502

target condition. 503

We first compare each data-condition using the 504

maximum number of example paraphrases per 505

canonical utterance. Using 100 paraphrases from 506

FINE-TUNED T5 results in models which have an 507

average cross-domain accuracy of 58.9%. These 508

models outperform equivalent models trained on 509

human-only data on all but two domains. Com- 510

pared to the current state-of-the-art zero-shot 511

method (Xu et al., 2020b), we achieve a 3.3 per- 512

centage point higher cross-domain accuracy. 513

Next we find that paraphrases generated from T5 514

result in much less accurate parsing models. With 515

100 example paraphrases per canonical utterance, 516

the non-fine-tuned condition models achieve an 517

accuracy 15 percentage points lower than those 518

using fine-tuned T5. It is clear that fine-tuning on 519

out-of-domain data with similar sentence structure 520

enables T5 to generate better paraphrases for this 521

task. 522

Finally, we see models generated using only 10 523

example paraphrases from GPT-J result in models 524

which outperform those generated with 100 exam- 525

ples from T5 condition by 2.5 percentage points. 526

GPT-J seems to be able to generate much stronger 527

paraphrases than non-fine-tuned T5, as we can see 528

slightly better model accuracy with an order of 529

magnitude less the number of paraphrases, though 530

we should note that GPT-J does have access to a 531

limited amount (10 examples) of similar out-of- 532

domain data in the form of generation prompts. 533

However, when compared to the FINE-TUNED T5 534

condition, even with the same number of example 535

paraphrases used, the GPT-J condition performs 536

much worse by at least 5 percentage points. We 537

should note that we chose to generate a maximum 538

of 10 example paraphrases from GPT-J due to the 539

significant time and computational cost of running 540

this model, as discussed in Section 7. 541

As previously discussed, increasing the number 542

of example paraphrases per canonical utterance 543

increases the generated model accuracy on the vali- 544

dation set. Therefore, in an attempt to reduce the 545

total time it takes to produce a model (that is, time 546

spent both on paraphrase generation and model 547

training) one could train a model on a more mod- 548
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condition Basketball Blocks Calendar Housing Recipes Social Publications Restaurants Avg
Marzoev et al. (2020) 47 27 32 36 49 28 34 43 37
Synthetic Only 9.2 14.58 5.59 8.47 11.29 7.26 16.27 21.39 11.76
Human Only 75.96 33.68 49.4 40.74 66.78 64.44 59.01 47.23 54.66
Xu et al. (2020b) 70.1 38.4 58.9 51.9 64.4 47.2 56.5 57.5 55.6
Fine-Tuned T5 (10 ex) 61.38 27.02 58.33 43.7 66.76 54.57 54.24 47.74 51.7
Fine-Tuned T5 (50 ex) 72.43 32.58 56.15 53.04 74.17 59.55 56.77 53.16 57.23
Fine-Tuned T5 (100 ex) 76.21 36.24 57.86 55.56 75.69 60.86 56.52 52.41 58.92
T5 (50 ex) 48.47 33.83 37.62 32.28 60.19 32.92 40.37 43.88 41.2
T5 (100 ex) 55.69 34.74 34.29 35.87 62.04 34.73 45.96 46.99 43.79
GPT-J (1 ex) 42.56 29.7 34.05 27.72 46.06 35.72 36.96 38.86 36.45
GPT-J (10 ex) 60.51 32.83 43.93 38.41 55.93 45.09 44.1 49.58 46.30

Table 1: Accuracy results and comparison to previous work. Our results are an average of five runs and others are
copied from cited papers.

est number of a paraphrases with the trade-off of549

reduced accuracy. We see that even when reducing550

the number of paraphrases generated, the models551

generated have competitive accuracy. Training on552

50 example paraphrases per canonical utterance553

from fine-tuned T5 results in models which have554

a cross-domain accuracy of 57.2%, still slightly555

higher than both the current state-of-the-art zero-556

shot models and models trained on human-only557

data. Similarly, training models on 50 example558

paraphrases per canonical utterance from T5 or just559

1 example paraphrase per canonical utterance from560

GPT-J results in a cross-domain accuracy of 41.2%561

and 36.5%, respectively, competitive with Marzoev562

et al. (2020).563

7 Efficiency and Execution Time564

W/ GPU Time (s) kgCO2eq kWh
Bi-LSTM 102.28 1.09× 10−3 4.37× 10−3

AutoQA 2898.8 3.95× 10−2 0.158

W/O GPU Time (s) kgCO2eq kWh
Bi-LSTM 340.78 7.85× 10−4 3.13× 10−3

AutoQA 5129.33 1.22× 10−2 4.88× 10−2

Table 2: Average execution time of the Bi-LSTM
model and AutoQA with GPU (top) and on CPU only
(bottom)

Model Time (s) kgCO2eq kWh
T5 0.39 2.59× 10−6 1.03× 10−5

GPT-J 17.6 4.13× 10−4 1.65× 10−3

Table 3: Averages per utterance to paraphrase for T5
and GPT-J

In this section we compare the economic and565

environmental impact of our simple Bi-LSTM566

encoder-decoder model with the BERT-LSTM567

model from Xu et al. (2020b) by calculating the 568

execution time and cost of inference on the same 569

dataset. Further, we also compare the cost of para- 570

phrase generation between T5 and GPT-J. As pre- 571

viously mentioned in Section 3, we use the Ex- 572

periment Impact Tracker toolkit (Henderson et al., 573

2020) to get accurate benchmarks. 574

For the comparison of our Bi-LSTM model with 575

the BERT-LSTM model of Xu et al. (2020b), we 576

focus only on the cost accrued during inference 577

time due to the fact that over the lifetime of most 578

deployed neural network models, the cost associ- 579

ated with inference will eventually outweigh the 580

original cost of training (Patterson et al., 2021). 581

We use the publicly available Genie NLP toolkit3 582

along with the OVERNIGHT models found on the 583

author’s website 4 to compare our work to AutoQA 584

(Xu et al., 2020b). To give a good estimation of 585

the execution time and efficiency of both models 586

we test each on a custom data set which contains 587

the Basketball domain test set repeated 100 times 588

(a total of 39100 total utterances). Additionally, 589

we measure and discount the total time and energy 590

cost by the amounts spent loading the model(s) into 591

memory to better capture solely the difference in 592

the cost associated with inference. 593

Since GenieNLP generates prediction statistics 594

(accuracy, BLEU scores, etc) by default during in- 595

ference, and OpenNMT does not, we modified the 596

GenieNLP code slightly to omit generating these 597

statistics so the comparisons would be more equi- 598

table. Otherwise, both models are run with their 599

default inference parameters. 600

The experiment was run on a machine with an 601

Intel Xeon ES-2640 v4 CPU @ 2.4GHz, a 12GB 602

3https://github.com/stanford-oval/
genienlp

4https://wiki.almond.stanford.edu/
releases
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NVIDIA GTX 1080 Ti GPU, and 64 GB of RAM.603

We run our experiment twice, once utilizing the604

GPU and another only using the CPU. Again, re-605

ported results are the average of five runs. Table 2606

summarizes the results of the experiment.607

First, when utilizing both GPU and CPU, we608

find using our Bi-LSTM encoder-decoder model609

results in a 28.4x speedup when compared to the610

AutoQA model on the same dataset. Similarly, our611

Bi-LSTM model utilizes 2.77% of the estimated612

kgCO2eq and kWh cost to execute when compared613

to AutoQA.614

When run without using the GPU, we find a615

15.1x speedup when using the Bi-LSTM model616

compared to AutoQA. The difference between the617

energy consumption of the two models is also re-618

duced, with the Bi-LSTM model using 6.44% of619

the estimated kgCO2eq and kWh cost to execute620

when compared to AutoQA.621

For the comparison of T5 and GPT-J for para-622

phrase generation, the model is first loaded into623

memory and then benchmarked solely on para-624

phrase generation to focus only on the inference625

cost of paraphrasing. We select 120 utterances from626

the Basketball training set and they are paraphrased627

once each. This is repeated 5 times and the results628

are reported as the average unit divided by 120 (e.g,629

seconds per utterance). The experiment was run630

on a machine with an Intel Xeon ES-2620 CPU @631

2.10 GHz, 512 GB of RAM, and an array of 12GB632

NVIDIA GTX 1080 Ti GPUs. T5 utilized a single633

GPU and GPT-J was split evenly across two GPUs.634

Table 3 summarizes the results of our experiment.635

We find that generating paraphrases using T5 re-636

sults in a 45x speedup when compared to paraphras-637

ing the same utterance using GPT-J. Further, T5638

requires just 0.63% of the kgCO2eq and kWh cost639

per utterance used by GPT-J. While we see from640

the section 6 that GPT-J generated paraphrases can641

be used to train a semantic parsing model with642

fewer overall paraphrases than can be done with643

T5, it’s clear this efficiency is paid for in the time644

and energy cost required to generate them.645

8 Conclusion646

In this paper we investigate the use of machine-647

generated paraphrases to replace human-generated648

paraphrases in the framework initially laid out by649

Wang et al. (2015). As pointed out by the authors650

of that paper, they must limit the number of logical651

forms for which they generate example natural-652

language utterances in a given domain, as the num- 653

ber of potential logical forms is quite large. How- 654

ever, if we can successfully remove the human-in- 655

the-loop, or at least reduce their role in the process 656

of generating training data, we stand to expand the 657

number of forms which can be covered. Further, 658

the time required and cost of building a semantic 659

parser for a new domain is significantly reduced. 660

By training a relatively small Bi-LSTM encoder- 661

decoder model with paraphrases generated by a 662

large language model such as T5 and GPT-J, we 663

seek to build an efficient system that benefits from 664

the linguistic and domain-relevant knowledge con- 665

tained within these models without the need of 666

using a large language model during inference. 667

Our findings that all human-generated data in the 668

OVERNIGHT dataset can be effectively replaced 669

with automatically generated paraphrases without 670

reducing model accuracy in all but two domains is 671

a key finding of this paper. 672

Further, our model performance on strictly au- 673

tomated paraphrases surpasses the state-of-the-art 674

levels presented in Xu et al. (2020b) and our choice 675

to use simpler parsing models is more practical for 676

end-user applications. We show that large language 677

models can be leveraged during the training phase 678

and their performance gains can be realized with 679

a fraction of the time, energy, and environmental 680

costs associated with deploying them at inference 681

time. Specifically, we show that our relatively small 682

LSTM encoder-decoder model uses roughly 3% of 683

the resources required of the current state-of-the-art 684

model, with an improved overall accuracy. 685

Finally, we show preliminary results that this 686

method of data generation is generalizable to other 687

large language models, such as GPT-J, where fine- 688

tuning would be impossible due to a lack of sim- 689

ilar data with the quantity needed, or infeasible 690

for most users due to the computational resources 691

needed to do so. 692

In future work, we plan to conduct a detailed 693

analysis of the paraphrases generated by T5 and 694

GPT-J to better understand the types of canonical 695

utterances that these models are most capable of 696

paraphrasing. This will allow us to choose those 697

logical forms, such as highly compositional utter- 698

ances, that most benefit from human-in-the-loop 699

paraphrasing. We plan to expand this work to new 700

domains for which no training data currently exists 701

to test the effectiveness of our approach in rapidly 702

deploying semantic parsers for new domains. 703

8



9 Ethical considerations704

The present work is part of an ongoing effort to705

reduce reliance on large, computationally and en-706

vironmentally costly language models in NLP re-707

search. As demonstrated, our proposed method708

is able to compete with previous SOTA methods709

at a fraction of the cost in terms of computational710

resources and CO2 emissions. In an NLP environ-711

ment where ever-increasing language model size712

seems to be the norm, we strongly believe that har-713

nessing the power of these models in an efficient714

manner is essential to the long-term sustainability715

of language processing technology. Additionally,716

we recognize the potential for bias that exists in717

current pretrained language models; and by using718

large pretrained language models to effect the gen-719

eration of paraphrases, there is opportunity for this720

bias to propagate through these paraphrases. We721

are eager to investigate methods of mitigating such722

bias in our proposed paraphrase models723
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A Appendix 867

A.1 GPT-J Context 868

• Original: number of steals (over a season) of 869

player kobe bryant whose number of played 870

games (over a season) is 3 871

Paraphrase: how many all season steals did 872

kobe bryant have in 3 games 873
... 874

Original: block that is right of block that block 875

1 is left of 876

Paraphrase: find me a block that block 1 is to 877

the left of 878

Original: number of ingredient 879

Paraphrase: how many ingredients are needed 880

Original: housing unit whose size is larger 881

than size of 123 sesame street 882

Paraphrase: 883

– Generated Paraphrase: 884

885

* show me apartments larger than 123 886

sesame street 887

A.2 Example Paraphrases 888

• Canonical: housing unit whose size is larger 889

than size of 123 sesame street 890

– Human 891

* housing that is bigger than 123 892

sesame street 893

* housing units outsizing 123 sesame 894

street 895

– T5 896

* Housing unit whose size is larger 897

than size of 123 sesame street. 898

* housing unit whose size is more than 899

the size of 123 Sesame Street House 900

– Fine-Tuned T5 901

* which housing is larger than the size 902

of 123same street 903

* find me all the buildings with a size 904

larger than that of 123 905

– GPT-J 906

* show me apartments larger than 123 907

sesame street 908

* what housing unit is not 123 sesame 909

street 910

• Canonical: person that is friends with student 911

whose end date is at most 2004 912
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– Human913

* friend of student whose end date is914

not after 2004915

* find students friends who ended in916

2004 or before917

– T5918

* Who is friends with a student at least919

whose end date is 2004920

* The person is a friend of a student921

whose end date is at most 2004922

– Fine-Tuned T5923

* who is a friend that is not related to924

the end date 2004925

* find a pal that has an end date no later926

than 2004927

– GPT-J928

* students whose end date is at least929

the end date of student whose friend930

is the same person as the person931

* show me students who are friends932

with students that are still studying933

• Canonical: season of player kobe bryant934

– Human935

* which season was kobe bryant936

* what year did kobe bryant play937

– T5938

* Kobe bryant season of player kobe939

bryant940

* Kobe bryant is the championship941

player.942

– Fine-Tuned T5943

* what is the season of kobe bryant944

* what season does kobe bryant have945

– GPT-J946

* what season is player kobe bryant in947

* what season was bryant in948

• Canonical: recipe whose preparation time is949

at least cooking time of rice pudding950

– Human951

* show me recipes with preparation952

time equal to or longer than rice pud-953

ding954

* show me recipes that have the same955

or longer preparation time as rice956

pudding957

– T5958

* Recipe whose preparation time is 959

cooking time of rice pudding. 960

* The baking time of rice pudding 961

recipe is at least 3 days. The cooking 962

time of a potato is 0 days. 963

– Fine-Tuned T5 964

* whos got a different recipe than rice 965

pudding 966

* recipes prepared at least as long as 967

rice pudding 968

– GPT-J 969

* find recipes that involve cooking time 970

greater than or equal to rice pudding 971

preparation time 972

* what recipe can be prepared in the 973

same time as rice pudding 974

• Canonical: article that has the most number 975

of author 976

– Human 977

* article with the largest amount of au- 978

thors 979

* what article has the most authors 980

– T5 981

* article with the most authors having 982

the most articles with the most au- 983

thors having the most articles with 984

the most author having the most ar- 985

ticles with the most authors having 986

the most articles with the most author 987

having the least number of articles. 988

* The article with the most author(s) 989

has the most author(s)’ names. 990

– Fine-Tuned T5 991

* which article belongs to the most peo- 992

ple 993

* what article has the most number of 994

authors 995

– GPT-J 996

* what article has the most number of 997

authors 998

* what article has been written by the 999

most number of authors 1000

• Canonical: cuisine that is cuisine of the least 1001

number of restaurant 1002

– Human 1003

* what cuisine is served by the fewest 1004

restaurants 1005
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* what cuisine has the least amount of1006

restaurants1007

– T51008

* Cuisine that is the cuisine with the1009

least number of restaurants1010

* Cuisine that is cuisine of the lowest1011

number of restaurants1012

– Fine-Tuned T51013

* which cuisine is used least in restau-1014

rants1015

* what cuisine has the fewest number1016

of restaurants1017

– GPT-J1018

* find me a cuisine with the least num-1019

ber of restaurants1020

* cuisine with the fewest number of1021

restaurants1022

• Canonical: meeting whose start time is larger1023

than end time of weekly standup1024

– Human1025

* meetings that start later than the1026

weekly standup meeting1027

* meeting whose start time is after end1028

time of weekly standup1029

– T51030

* Meeting whose start time is larger1031

than the end time of a weekly standup1032

meeting1033

* Meeting whose start time is larger1034

than the end time of weekly standups1035

will have the same start time as the1036

first time as the other morning meet-1037

ing.1038

– Fine-Tuned T51039

* which meetings have a start date after1040

the end date of the weekly standup1041

* find me all people who began school1042

after the end date of weekly standup1043

– GPT-J1044

* what meeting takes longer to start1045

than weekly standup1046

* which meeting starts later than1047

weekly standup1048

• Canonical: block that block 1 is left of and1049

whose length is 3 inches1050

– Human1051

* what block is to the right of block 1 1052

and has a length of 3 inches 1053

* are there any 3inch long blocks to the 1054

right of block 1 1055

– T5 1056

* Block of which block 1 is left and 1057

whose length is 3 inches 1058

* Block of block of which block 1 is 1059

left and whose length is 3 inches. 1060

– Fine-Tuned T5 1061

* which blocks are left on my left with 1062

a length of 3 inches 1063

* which blocks are 2 inches thick and 1064

are left of the blocks 1065

– GPT-J 1066

* block 1 that block 1 is left of and 1067

whose length is 3 inches 1068

* what block is left of and whose 1069

length is 3 inches 1070
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