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Abstract

Building a domain-specific semantic parser
with little or no domain-specific training data
remains a challenging task. Previous work has
shown that crowdsourced paraphrases of syn-
thetic (grammar-generated) utterances can be
used to train semantic parsing models for new
domains with good results. We investigate
whether semantic parsers for new domains can
be built with no additional human effort, ob-
taining paraphrases of grammar-generated ut-
terances from large neural language models,
such as Google’s TS5 and EleutherAI’s GPT-J,
as an alternative to crowd-sourcing. While our
models trained with automated paraphrases
generated by pretrained language models do
not outperform supervised models trained with
similar amounts of human-generated domain-
specific data, they perform well in a zero-
shot setting, where no domain-specific data
is available for a new domain. Additionally,
unlike the current state-of-the-art in zero-shot
semantic parsing, our approach does not re-
quire the use of large transformer-based lan-
guage models at inference-time. Using the
OVERNIGHT dataset, we show that automated
paraphrases can be used to train a semantic
parsing model that outperforms or is compet-
itive with state-of-the-art-models in the zero-
shot setting, while requiring a small fraction
of the time and energy costs at inference time.

1 Introduction

Semantic parsing—the task of mapping natural lan-
guage utterances to logical forms—is an impor-
tant aspect of language understanding necessary
for many applications, such as question answer-
ing (Berant et al., 2013; Shen and Lapata, 2007;
Yih et al., 2016), querying databases (Zelle and
Mooney, 1996), and ontology induction (Poon and
Domingos, 2010). Much of the academic work
on semantic parsing is based on existing datasets,
while semantic parsers for production use are of-
ten trained on painstakingly collected and anno-

tated human data. However, when faced with the
challenge of creating a semantic parser for a new
domain, such as an interface for an equipment re-
pair database, what is the most efficient way to
create the required domain-specific training data?
This problem is explored by Wang et al. (2015),
who propose using crowdsource workers to create
natural language versions of grammar-generated
English-like canonical utterances that can be de-
terministically mapped to logical forms in their
framework. While this is an effective method for
rapidly building a semantic parser for a new do-
main, it is inherently limited by the time and cost
of having humans create the training data. As the
domain becomes more complex, the number of
possible combinations of logical forms that need to
be converted to natural language and paraphrased
becomes increasingly large and unwieldy.

In Berant and Liang (2014) and Wang et al.
(2015), the authors use a “manageable set of can-
didate logical forms”, as creating a canonical ut-
terance for every possible entity and relation set
would be intractable (Berant et al., 2013). While
computational tractability is certainly a concern
when dealing with larger domains, one of the key
limiting factors to the number of canonical utter-
ances one can utilize in the OVERNIGHT frame-
work is the time and cost of having humans cre-
ate multiple natural language paraphrases of each
canonical utterance. Additionally, in an industrial
setting, releasing proprietary data to a crowdsourc-
ing platform for annotation may be inadvisable. To
mitigate these issues, we investigate the possibility
of completely replacing human-generated training
data with paraphrases generated using large state-
of-the-art transformer language models, namely
Google’s text-to-text transformer model TS5 (Raf-
fel et al., 2020) and EleutherAI’s GPT-J (Wang,
2021). We show that human-generated training
data can be effectively replaced with paraphrases
of grammar-generated canonical utterances using



pretrained language models, thus eliminating the
need for human-created paraphrase data.

While generating embeddings from large trans-
former models at inference time has been demon-
strated beneficial in semantic parsing (Xu et al.,
2020a), we hypothesize that in small, task-oriented
semantic parsing domains, running BERT (Devlin
et al., 2019) or other large pre-trained language
models at inference time may not be necessary,
and that adequate performance may be garnered
by training smaller neural models on training sam-
ples generated from transformer-based paraphrase
models. Additionally, when task-oriented seman-
tic parsing models are deployed in real-world use
cases, such as reservation booking bots which may
handle a large number of requests, the time and
energy cost of running large transformer LMs at
inference becomes substantial. By generating para-
phrase data prior to training, we effectively take
advantage of the knowledge contained in these pre-
trained transformer models without the computa-
tional, financial, and environmental cost of running
them at inference time.

To test this hypothesis, we investigate the util-
ity of machine-generated paraphrases in training
semantic parsers. We propose a straightforward
approach consisting of a paraphrase model based
on a large pre-trained language model, which
is used only prior to model training, and a Bi-
LSTM sequence-to-sequence model (Hochreiter
and Schmidhuber, 1997; Sutskever et al., 2014)
which we run at inference. We find that the use
of paraphrases generated automatically with TS or
GPT-J can replace human-generated data entirely
with no reduction in accuracy in most domains on
the OVERNIGHT dataset. Further, we show that
in the zero-shot setting, wherein a semantic parser
is trained with no domain-specific training data,
we outperform the current state-of-the-art model
proposed by Xu et al. (2020b) on the OVERNIGHT
dataset at a fraction of the time and energy require-
ments.

2 Previous work

One of the key challenges faced by developers cre-
ating applications that require precise natural lan-
guage understanding is finding or generating the
labeled data necessary to train effective semantic
parsers. The problem is exacerbated by the fact
that semantic parsing is often quite domain and
topic specific, somewhat limiting the benefit that

can be derived from of out-of-domain semantic
parsing datasets. As pointed out by Su and Yan
(2017), different domains often require different
predicates and entities; in fact, 30% to 50% of
the tokens in each of the eight domains covered
by the OVERNIGHT dataset for semantic parsing
(Wang et al., 2015) do not occur in any of the
other seven included domains. As a result, cross-
domain transfer learning in semantic parsing is
somewhat limited, especially in small, task-specific
domains. While training a single model on multi-
ple domains has been shown an effective means of
improving model performance (Herzig and Berant,
2017), this approach still requires domain-specific
training data. More recent work (Su and Yan, 2017)
trains a cross-domain semantic parser on data from
multiple out-of-domain datasets. Given the rela-
tively wide number of semantic parsing datasets
available to researchers and industry, we operate
under a similar assumption, though we use human-
generated out-of-domain paraphrases only in fine-
tuning our paraphrase model. In cases where no
out-of-domain training data is available for para-
phrase model fine-tuning, developers of semantic
parsers could create a grammar for the target do-
main and generate canonical utterances, as pro-
posed in Wang et al. (2015). These canonical utter-
ances could then be paraphrased to create natural-
language equivalents using LM-based paraphrasing
without fine-tuning to either supplement or com-
pletely replace the human-generated data proposed
in Wang et al.’s pipeline.

Various approaches have been proposed to cre-
ate labeled training data for semantic parsers. As
described in Wang et al. (2015), training a semantic
parser for a new domain consists of the following
steps:

* Defining a seed lexicon of entities and proper-
ties required in the domain

* Generating a set of combinations of said enti-
ties and properties.

* Using a deterministic grammar to generate
pseudo-natural language sentences represent-
ing each entity-property combination.

* Paraphrasing these pseudo-language forms to
create natural language utterances.

* Training a semantic parser to map each nat-
ural language utterance to its corresponding
logical form.



Several previous works have used paraphrases
of machine generated pseudo-language as the basis
for training semantic parsers. For example, Berant
and Liang (2014) propose converting predicates ex-
pressed in the formal language A-DCS (Liang et al.,
2013) to canonical utterances using a determinis-
tic grammar and entity descriptions from Google’s
Freebase KnowledgeBase (Google, 2013). These
canonical utterances are then matched with natu-
ral language utterances in the WEBQUESTIONS
dataset (Berant et al., 2013) using a paraphrase
association model.

Wang et al. (2015) expand upon Berant and
Liang (2014)’s work by using a human-in-the-loop
setup, in which Amazon Mechanical Turk workers
are tasked with writing paraphrases for machine-
generated canonical utterances. By having humans
write the paraphrases, Wang et al. (2015) are able
to expand on the number of domains for which they
train semantic parsers, rather than being limited to
those utterances present in WEBQUESTIONS. How-
ever, Wang et al.’s approach introduces a new limit-
ing factor in the development of training data - the
time and cost of having humans write paraphrases.
Wang et al. (2015) use crowd-sourcing to obtain
human-generated training data, which allows for
relatively fast and efficient collection of training
data for supervised models. However, the use of
crowd-sourcing introduces another set of limita-
tions to data quality: annotators are not specifically
trained in the target task, nor are they necessarily in-
centivized to generate high-quality data which can
be more time-consuming to create (Hsueh et al.,
2009). Additionally, even though relatively low
compared to other methods of dataset creation such
as expert annotation, the cost of crowd-sourcing
can become prohibitive, especially when larger
amounts of training data are needed.

Supervised models for semantic parsing on the
OVERNIGHT dataset, such as Wang et al. (2015),
do not utilize grammar-generated canonical utter-
ances during model training; rather these canonical
utterances are simply discarded once they have
been used as the basis for the creation of human-
generated paraphrases. As pointed out by Cao et al.
(2020), this is an inefficient use of the available
data, as pseudo-language canonical utterances can
themselves be used as training data, and can also
be utilized to generate paraphrases automatically
using paraphrase models.

In order to eliminate the use of human labor

in developing training data, Marzoev et al. (2020)
propose to tackle semantic parsing as a semantic
search problem. However, their results are not
competitive with previous work, and require the
use of a large general-purpose language model at
inference time. Xu et al. (2020b) propose a model
which utilizes machine-generated paraphrases of
grammar-generated canonical utterances, which
can be deterministically mapped to logical form,
to replace human-generated data for training se-
mantic parsers, and are able to achieve impressive
results. Similarly, Cao et al. (2020) also propose
to generate paraphrases of canonical utterances to
conduct unsupervised training of a semantic parser
for a new domain. Cao et al. (2020) also demon-
strate a semi-supervised model which uses machine
generated paraphrases of canonical utterances to
supplement human-created paraphrases for model
training. The results presented by both Xu et al.
(2020b) and Cao et al. (2020) on the OVERNIGHT
dataset are competitive with state-of-the-art super-
vised models even with no human-generated data
used to train their parsing models. However, like
Marzoev et al. (2020), to achieve competitive re-
sults, both require the use of a BERT-based encoder
during inference to generate contextualized embed-
dings, a choice we avoid in order to demonstrate the
efficacy of LM-generated paraphrases in building
smaller, more efficient semantic parsers for small
domains. We show that large pre-trained neural
models can be leveraged during training to produce
much more economical models with competitive
accuracy.

3 Methods

In this paper we explore the effects of using auto-
mated paraphrases of grammar-generated canonical
utterances, which can be deterministically mapped
to logical forms, as training data for semantic
parsers for small domains. We build and test all
models using the OVERNIGHT dataset (Wang et al.,
2015), which contains semantic parsing data for
eight separate domains. In the OVERNIGHT dataset,
each domain is a set of triples (U; € U,C; €
C,Zy € Z). Z is a set of logical forms, C' is
the set of machine-generated canonical utterances,
and U is the set of human-generated paraphrases.
We assume a one-to-one mapping Z —
C. Given that each logical form in the
OVERNIGHT dataset is deterministicly mapped to
a pseudo-language canonical form, our sequence-



to-sequence models generate these canonical forms
rather than the A\-DCS equivalents, as proposed in
Su and Yan (2017). Once generated, these canoni-
cal forms can be readily converted to a logical form
by means of a grammar.

We frame semantic parsing itself as a sequence-
to-sequence task, as proposed by Su and Yan
(2017). We build a simple Bi-LSTM encoder-
decoder model which we train on various amounts
of automatically paraphrased data. We intention-
ally designed models which do not rely on large
pre-trained neural models during inference, making
our solution far more computationally and econom-
ically efficient, and thus more practical for end-user
applications. Rather, we use large transformer lan-
guage models to generate automated paraphrases of
the machine-generated canonical utterances in each
domain, and these paraphrases are used as training
data. By generating paraphrases using large trans-
former language models prior to training, we are
able to harness a portion of the power of these mod-
els without the computational cost of running a
large model during inference.

We consider several conditions under which LM-
generated paraphrases of canonical utterances may
be used to replace in-domain human-generated
paraphrases. We created models in the following
training data conditions:

» Paraphrases generated by TS5 without fine-
tuning on out-of-domain data (T5)

e Paraphrases generated by TS5 with fine-
tuning on out-of-domain human-generated
data (FINED-TUNED T5)

 Paraphrases generated by GPT-J with out-of-
domain human-generated data used as input
context (GPT-J).

To generate data for the TS and FINE-TUNED
TS5 conditions, we first fined-tuned T5-base for
paraphrasing using the PAWS dataset (Zhang et al.,
2019), including data from the Quora Question
Pairs dataset'. In the T5 condition, no further
fine-tuning is performed and this model is used
directly for paraphrasing canonical utterances. For
the FINE-TUNED TS5 condition, we hold out one
domain as the target semantic parsing domain and
further fine-tune for paraphrasing on the remaining
7 domains. This model is then used to generate

"https://www.quora.com/q/quoradata/

paraphrases for the held out domain. The process
is repeated 8 times, resulting in one model for each
domain.

GPT-J paraphrases were obtained using the GPT-
J-6B model available through HuggingFace?. Be-
cause GPT-J is designed to generate continuations
of input text, we provide the model with a con-
text consisting canonical utterance and human-
generated paraphrase pairs. As with the fine-tuning
of TS described above, paraphrases from GPT-J are
generated using out-of-domain human-generated
paraphrases as input context. We choose a target
domain for which to generate paraphrases and then
construct the context input for GPT-J by concate-
nating a canonical-paraphrase pair from each of
the non-target domains. These paraphrases are fol-
lowed by the canonical utterance from the target
domain to be paraphrased. GPT-J then generates
a paraphrase of the input canonical utterance. No
fine-tuning of GPT-J, other than that in-context
fine-tuning (Brown et al., 2020) described above,
is conducted prior to generation. Appendix A.l
shows a sample of the context provided to GPT-
J, the input canonical utterance, and the resulting
paraphrase generated by the model.

Paraphrase model fine-tuning is the only aspect
of our methodology which relies on out-of-domain
human-generated data. At no point is in-domain
human-generated data used in the semantic parsing
model development. In total we generate 10 differ-
ent paraphrase models for the three conditions; one
for T5, 8 for FINE-TUNED T35, and one for GPT-J.

When generating paraphrases via TS and GPT-J,
we recognize the fact that generated paraphrases
may hinder or improve the performance of the re-
sulting models depending on their quality. As a
result, we tested the paraphrase filtering method
described in Xu et al. (2020b), but did not find a
significant benefit to model performance. Thus, we
take no specific steps to filter paraphrases for qual-
ity in the present work. However, we consider the
number of paraphrases to generate per canonical ut-
terance n, to be a hyperparameter; this allows us to
increase the likelihood of generating quality para-
phrases while regulating for model performance.
We believe that our strong results demonstrate the
efficacy of our proposed method.

To evaluate inference-time cost and efficiency of
the models we discuss, we use the Experiment Im-

https://huggingface.co/EleutherAI/

First-Quora-Dataset-Release-Question-Pairs gpt-7j-6B
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pact Tracker toolkit from Henderson et al. (2020).
This Python toolkit tracks the run time and total
power usage (CPU and GPU) of an application and
provides an estimate of the COx2¢q cost associated
with the energy usage.

4 Experiments

We experiment with generating datasets of varying
size, ranging from one LM-generated paraphrase
per canonical utterance up to 100 paraphrases per
canonical utterance. In section 5 we discuss our
process for choosing the optimal value of n and
discuss the general effect of increasing the number
of paraphrases. We note that only canonical utter-
ances contained in the training set are paraphrased.
That is, the validation set for a particular domain is
the same regardless of the number of paraphrases
per training sample we choose to generate.

For each domain in the OVERNIGHT dataset, we
train a Bi-LSTM encoder-decoder model to gener-
ate pseudo-language canonical forms from input
natural language utterances. As the goal of this
paper is to explore the effect of using automated
paraphrasing in fixed-domain semantic parsing, we
train a separate sequence-to-sequence model for
each domain trained on LM-generated natural lan-
guage paraphrases of domain-specific canonical
utterances. The parsing models consist of an RNN
encoder with two Bi-LSTM layers of 500 units
each, and an RNN decoder with global attention,
again with two layers of 500 units each. We use a
dropout of 0.1. We experimented using pretrained
GloVe embeddings (Pennington et al., 2014) but
found no statistical improvement in our models.
Rather, embeddings are randomly initialized and
updated during model training. All models are
trained using OpenNMT (Klein et al., 2017). Train-
ing and validation sets for each domain were gen-
erated by performing a 80/20 split of its official
OVERNIGHT training set; where all human utter-
ances in the training split are discarded. Evaluation
was conducted using the official OVERNIGHT test
set for the target domain, which consists of human
utterances only.

5 Choosing the number of examples

To investigate the effect of increasing numbers of
example paraphrases on model performance, we
compared the accuracy of the resulting models on
the OVERNIGHT validation set. Figure 1 shows
the average validation accuracy across all domains

versus the number of paraphrases per canonical
utterance from fine-tuned TS.
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Figure 1: Average cross-domain validation accuracy in-
creases as the number of paraphrases from fine-tuned
TS increases.
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Figure 2: Average validation accuracy vs number of
paraphrases from fine-tuned TS5 for each domain.

We find that the average cross-domain accu-
racy generally increases as we include more ex-
ample paraphrases. This might be the case if only
a few domains greatly benefited from increased
paraphrasing, however we found that all domains
benefit from an increased number of paraphrases.
Figure 2 shows how the accuracy for each domain
increases as we increase the number of paraphrases.
Although all domains see accuracy improvements
as we increase the number of paraphrases, not all
domains benefit equally. The Basketball domain
benefits the most, with an improvement over 40%
between n = 1 and n = 100, while the Restaurants
domains benefits the least with an improvement
slightly over 10%.

What causes a domain to be more susceptible
to accuracy improvements from increased para-



phrasing is unknown. For example, the Basketball
domain contains 18% more canonical utterances
in the training set than the Restaurants domain,
so it may make sense to see greater relative im-
provement on the Basketball domain compared to
Restaurants if beginning with more canonical ut-
terances resulted in better performance from para-
phrasing. However, the Housing domain is approx-
imately half the size of the Restaurants domain,
but sees an accuracy improvement of 28% com-
pared to Restaurants’ 10%. After performing this
comparison for all domains, the accuracy improve-
ment gained from increasing the number of ex-
ample paraphrases generated does not seem to be
correlated with the number of canonical examples
in the domain. We investigated other qualities for
each domain (e.g., average utterance length, num-
ber of unique utterances, and number of distinct
utterances with label overlap) which could possibly
affect affinity for paraphrasing, but did not find any
conclusive results. See Appendix A.2 for examples
of generated paraphrases from each data condition,
for each domain.

Regardless of paraphrase quality or relative accu-
racy improvements between domains, we see that
for each domain, generating more paraphrases has
an overall positive effect on the resulting semantic
parsing model. Both the T5 and FINE-TUNED T5
conditions see similar relative accuracy improve-
ments with increasing numbers of paraphrases. Al-
though this general upward trend in accuracy im-
provement is promising, it is clear there is a point
of diminishing returns. Further, the resources re-
quired to generate the paraphrases become pro-
hibitive with an increasing number of paraphrases,
as we will discuss in section 7. For this reason we
limit our generation to n =< 100. We leave fur-
ther investigation into which data features impact
the effectiveness of paraphrasing for a particular
domain and utterance type to future work.

6 Results

Table 1 shows our results (with varying numbers
of example paraphrases) on all domains in the
OVERNIGHT dataset alongside results from pre-
vious works which do not use in-domain data. We
report accuracy on exact match of the output for
each sentence. Accurate output is defined as an
exact string match between the model output and
the corresponding canonical utterance in the test
set. Any deviation from the target canonical utter-

ance, however small, is considered inaccurate out-
put. This approach is in keeping with the method
used in previous work such as Wang et al. (2015);
Marzoev et al. (2020); Xu et al. (2020b). All re-
ported results are the average of five runs of the
target condition.

We first compare each data-condition using the
maximum number of example paraphrases per
canonical utterance. Using 100 paraphrases from
FINE-TUNED TS5 results in models which have an
average cross-domain accuracy of 58.9%. These
models outperform equivalent models trained on
human-only data on all but two domains. Com-
pared to the current state-of-the-art zero-shot
method (Xu et al., 2020b), we achieve a 3.3 per-
centage point higher cross-domain accuracy.

Next we find that paraphrases generated from T5
result in much less accurate parsing models. With
100 example paraphrases per canonical utterance,
the non-fine-tuned condition models achieve an
accuracy 15 percentage points lower than those
using fine-tuned TS. It is clear that fine-tuning on
out-of-domain data with similar sentence structure
enables TS5 to generate better paraphrases for this
task.

Finally, we see models generated using only 10
example paraphrases from GPT-J result in models
which outperform those generated with 100 exam-
ples from TS5 condition by 2.5 percentage points.
GPT-J seems to be able to generate much stronger
paraphrases than non-fine-tuned T3, as we can see
slightly better model accuracy with an order of
magnitude less the number of paraphrases, though
we should note that GPT-J does have access to a
limited amount (10 examples) of similar out-of-
domain data in the form of generation prompts.
However, when compared to the FINE-TUNED T5
condition, even with the same number of example
paraphrases used, the GPT-J condition performs
much worse by at least 5 percentage points. We
should note that we chose to generate a maximum
of 10 example paraphrases from GPT-J due to the
significant time and computational cost of running
this model, as discussed in Section 7.

As previously discussed, increasing the number
of example paraphrases per canonical utterance
increases the generated model accuracy on the vali-
dation set. Therefore, in an attempt to reduce the
total time it takes to produce a model (that is, time
spent both on paraphrase generation and model
training) one could train a model on a more mod-



condition Basketball | Blocks | Calendar | Housing | Recipes | Social | Publications | Restaurants Avg
Marzoev et al. (2020) 47 27 32 36 49 28 34 43 37
Synthetic Only 9.2 14.58 5.59 8.47 11.29 7.26 16.27 21.39 | 11.76
Human Only 75.96 33.68 494 40.74 66.78 | 64.44 59.01 47.23 | 54.66
Xu et al. (2020b) 70.1 38.4 58.9 51.9 64.4 472 56.5 57.5 55.6
Fine-Tuned T5 (10 ex) 61.38 27.02 58.33 43.7 66.76 | 54.57 54.24 47.74 51.7
Fine-Tuned T5 (50 ex) 72.43 32.58 56.15 53.04 74.17 | 59.55 56.77 53.16 | 57.23
Fine-Tuned T5 (100 ex) 76.21 36.24 57.86 55.56 75.69 | 60.86 56.52 5241 | 58.92
T5 (50 ex) 48.47 33.83 37.62 32.28 60.19 | 32.92 40.37 43.88 41.2
T5 (100 ex) 55.69 34.74 34.29 35.87 62.04 | 34.73 45.96 46.99 | 43.79
GPT-J (1 ex) 42.56 29.7 34.05 27.72 46.06 | 35.72 36.96 38.86 | 36.45
GPT-J (10 ex) 60.51 32.83 43.93 38.41 55.93 | 45.09 44.1 49.58 | 46.30

Table 1: Accuracy results and comparison to previous work. Our results are an average of five runs and others are

copied from cited papers.

est number of a paraphrases with the trade-off of
reduced accuracy. We see that even when reducing
the number of paraphrases generated, the models
generated have competitive accuracy. Training on
50 example paraphrases per canonical utterance
from fine-tuned T3 results in models which have
a cross-domain accuracy of 57.2%, still slightly
higher than both the current state-of-the-art zero-
shot models and models trained on human-only
data. Similarly, training models on 50 example
paraphrases per canonical utterance from T5 or just
1 example paraphrase per canonical utterance from
GPT-J results in a cross-domain accuracy of 41.2%
and 36.5%, respectively, competitive with Marzoev
et al. (2020).

7 Efficiency and Execution Time

W/ GPU
Bi-LSTM
AutoQA
W/0O GPU
Bi-LSTM
AutoQA

Time (s)
102.28
2898.8

Time (s)
340.78

5129.33

kWh
4.37 x 1073
0.158
kWh
3.13x 1073
4.88 x 1072

kgco?eq
1.09 x 1073
3.95 x 1072

kgCO,,,
7.85 x 1074
1.22 x 1072

Table 2: Average execution time of the Bi-LSTM
model and AutoQA with GPU (top) and on CPU only
(bottom)

Model | Time (s)| kgCO,,, kWh
TS 0.39 [2.59 x 1076[1.03 x 10~°
GPT-J| 176 [4.13x10°*[1.65 x 1073

Table 3: Averages per utterance to paraphrase for T5
and GPT-J

In this section we compare the economic and
environmental impact of our simple Bi-LSTM
encoder-decoder model with the BERT-LSTM

model from Xu et al. (2020b) by calculating the
execution time and cost of inference on the same
dataset. Further, we also compare the cost of para-
phrase generation between TS5 and GPT-J. As pre-
viously mentioned in Section 3, we use the Ex-
periment Impact Tracker toolkit (Henderson et al.,
2020) to get accurate benchmarks.

For the comparison of our Bi-LSTM model with
the BERT-LSTM model of Xu et al. (2020b), we
focus only on the cost accrued during inference
time due to the fact that over the lifetime of most
deployed neural network models, the cost associ-
ated with inference will eventually outweigh the
original cost of training (Patterson et al., 2021).
We use the publicly available Genie NLP toolkit?
along with the OVERNIGHT models found on the
author’s website 4 to compare our work to AutoQA
(Xu et al., 2020b). To give a good estimation of
the execution time and efficiency of both models
we test each on a custom data set which contains
the Basketball domain test set repeated 100 times
(a total of 39100 total utterances). Additionally,
we measure and discount the total time and energy
cost by the amounts spent loading the model(s) into
memory to better capture solely the difference in
the cost associated with inference.

Since GenieNLP generates prediction statistics
(accuracy, BLEU scores, etc) by default during in-
ference, and OpenNMT does not, we modified the
GenieNLP code slightly to omit generating these
statistics so the comparisons would be more equi-
table. Otherwise, both models are run with their
default inference parameters.

The experiment was run on a machine with an
Intel Xeon ES-2640 v4 CPU @ 2.4GHz, a 12GB

3https://github.com/stanford—oval/
genienlp

*https://wiki.almond.stanford.edu/
releases
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NVIDIA GTX 1080 Ti GPU, and 64 GB of RAM.
We run our experiment twice, once utilizing the
GPU and another only using the CPU. Again, re-
ported results are the average of five runs. Table 2
summarizes the results of the experiment.

First, when utilizing both GPU and CPU, we
find using our Bi-LSTM encoder-decoder model
results in a 28.4x speedup when compared to the
AutoQA model on the same dataset. Similarly, our
Bi-LSTM model utilizes 2.77% of the estimated
kgCO,,, and kWh cost to execute when compared
to AutoQA.

When run without using the GPU, we find a
15.1x speedup when using the Bi-LSTM model
compared to AutoQA. The difference between the
energy consumption of the two models is also re-
duced, with the Bi-LSTM model using 6.44% of
the estimated kgCO,,, and kWh cost to execute
when compared to AutoQA.

For the comparison of T5 and GPT-J for para-
phrase generation, the model is first loaded into
memory and then benchmarked solely on para-
phrase generation to focus only on the inference
cost of paraphrasing. We select 120 utterances from
the Basketball training set and they are paraphrased
once each. This is repeated 5 times and the results
are reported as the average unit divided by 120 (e.g,
seconds per utterance). The experiment was run
on a machine with an Intel Xeon ES-2620 CPU @
2.10 GHz, 512 GB of RAM, and an array of 12GB
NVIDIA GTX 1080 Ti GPUs. T5 utilized a single
GPU and GPT-J was split evenly across two GPUs.
Table 3 summarizes the results of our experiment.

We find that generating paraphrases using TS5 re-
sults in a 45x speedup when compared to paraphras-
ing the same utterance using GPT-J. Further, T5
requires just 0.63% of the kgCO,,,, and kWh cost
per utterance used by GPT-J. While we see from
the section 6 that GPT-J generated paraphrases can
be used to train a semantic parsing model with
fewer overall paraphrases than can be done with
TS, it’s clear this efficiency is paid for in the time
and energy cost required to generate them.

8 Conclusion

In this paper we investigate the use of machine-
generated paraphrases to replace human-generated
paraphrases in the framework initially laid out by
Wang et al. (2015). As pointed out by the authors
of that paper, they must limit the number of logical
forms for which they generate example natural-

language utterances in a given domain, as the num-
ber of potential logical forms is quite large. How-
ever, if we can successfully remove the human-in-
the-loop, or at least reduce their role in the process
of generating training data, we stand to expand the
number of forms which can be covered. Further,
the time required and cost of building a semantic
parser for a new domain is significantly reduced.

By training a relatively small Bi-LSTM encoder-
decoder model with paraphrases generated by a
large language model such as TS5 and GPT-J, we
seek to build an efficient system that benefits from
the linguistic and domain-relevant knowledge con-
tained within these models without the need of
using a large language model during inference.
Our findings that all human-generated data in the
OVERNIGHT dataset can be effectively replaced
with automatically generated paraphrases without
reducing model accuracy in all but two domains is
a key finding of this paper.

Further, our model performance on strictly au-
tomated paraphrases surpasses the state-of-the-art
levels presented in Xu et al. (2020b) and our choice
to use simpler parsing models is more practical for
end-user applications. We show that large language
models can be leveraged during the training phase
and their performance gains can be realized with
a fraction of the time, energy, and environmental
costs associated with deploying them at inference
time. Specifically, we show that our relatively small
LSTM encoder-decoder model uses roughly 3% of
the resources required of the current state-of-the-art
model, with an improved overall accuracy.

Finally, we show preliminary results that this
method of data generation is generalizable to other
large language models, such as GPT-J, where fine-
tuning would be impossible due to a lack of sim-
ilar data with the quantity needed, or infeasible
for most users due to the computational resources
needed to do so.

In future work, we plan to conduct a detailed
analysis of the paraphrases generated by TS5 and
GPT-J to better understand the types of canonical
utterances that these models are most capable of
paraphrasing. This will allow us to choose those
logical forms, such as highly compositional utter-
ances, that most benefit from human-in-the-loop
paraphrasing. We plan to expand this work to new
domains for which no training data currently exists
to test the effectiveness of our approach in rapidly
deploying semantic parsers for new domains.



9 Ethical considerations

The present work is part of an ongoing effort to
reduce reliance on large, computationally and en-
vironmentally costly language models in NLP re-
search. As demonstrated, our proposed method
is able to compete with previous SOTA methods
at a fraction of the cost in terms of computational
resources and CO, emissions. In an NLP environ-
ment where ever-increasing language model size
seems to be the norm, we strongly believe that har-
nessing the power of these models in an efficient
manner is essential to the long-term sustainability
of language processing technology. Additionally,
we recognize the potential for bias that exists in
current pretrained language models; and by using
large pretrained language models to effect the gen-
eration of paraphrases, there is opportunity for this
bias to propagate through these paraphrases. We
are eager to investigate methods of mitigating such
bias in our proposed paraphrase models
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A Appendix
A.1 GPT-J Context

* Original: number of steals (over a season) of
player kobe bryant whose number of played
games (over a season) is 3
Paraphrase: how many all season steals did
kobe bryant have in 3 games

Original: block that is right of block that block
1 is left of

Paraphrase: find me a block that block 1 is to
the left of

Original: number of ingredient

Paraphrase: how many ingredients are needed
Original: housing unit whose size is larger
than size of 123 sesame street

Paraphrase:

— Generated Paraphrase:

* show me apartments larger than 123
sesame street

A.2 Example Paraphrases

* Canonical: housing unit whose size is larger
than size of 123 sesame street

— Human
* housing that is bigger than 123
sesame street
* housing units outsizing 123 sesame
street
-T5
+ Housing unit whose size is larger
than size of 123 sesame street.
+ housing unit whose size is more than
the size of 123 Sesame Street House
— Fine-Tuned T5
* which housing is larger than the size
of 123same street
+ find me all the buildings with a size
larger than that of 123
- GPT-J
* show me apartments larger than 123
sesame street
+ what housing unit is not 123 sesame
street

* Canonical: person that is friends with student
whose end date is at most 2004


http://arxiv.org/abs/1409.3215
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— Human * Recipe whose preparation time is

* friend of student whose end date is cooking time of rice pudding.
not after 2004 * The baking time of rice pudding
+ find students friends who ended in recipe is at least 3 days. The cooking
2004 or before time of a potato is 0 days.
- T5 — Fine-Tuned T5
* Who is friends with a student at least * whos got a different recipe than rice
whose end date is 2004 pudding
* The person is a friend of a student * recipes prepared at least as long as
whose end date is at most 2004 rice pudding
— Fine-Tuned T5 - GPT-J
* who is a friend that is not related to * find recipes that involve cooking time
the end date 2004 greater than or equal to rice pudding
x find a pal that has an end date no later preparation time
than 2004 + what recipe can be prepared in the
- GPT-J same time as rice pudding
* students whose end date is at least « Canonical: article that has the most number
the end date of student whose friend of author

is the same person as the person

% show me students who are friends — Human
with students that are still studying * article with the largest amount of au-
thors
* Canonical: season of player kobe bryant « what article has the most authors
- T5

— Human
% article with the most authors having

the most articles with the most au-
thors having the most articles with

* which season was kobe bryant
* what year did kobe bryant play

- T5 .
the most author having the most ar-
* Kobe bryant season of player kobe ticles with the most authors having
bryant the most articles with the most author
* Kobe bryant is the championship having the least number of articles.
player. # The article with the most author(s)
— Fine-Tuned TS has the most author(s)’ names.
+ what is the season of kobe bryant — Fine-Tuned T5
* what season does kobe bryant have * which article belongs to the most peo-
- GPT-) ple
+ what season is player kobe bryant in + what article has the most number of
* what season was bryant in authors
. . L - GPT-J
¢ Canonical: r.ec:1p.e whos§ prepara‘tlon time is « what article has the most number of
at least cooking time of rice pudding
authors
— Human + what article has been written by the
+ show me recipes with preparation most number of authors
time equal to or longer than rice pud- . o . o
ding * Canonical: cuisine that is cuisine of the least
. number of restaurant
+ show me recipes that have the same
or longer preparation time as rice — Human
pudding + what cuisine is served by the fewest
- T5 restaurants
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* what cuisine has the least amount of + what block is to the right of block 1

restaurants and has a length of 3 inches
- T5 + are there any 3inch long blocks to the
% Cuisine that is the cuisine with the right of block 1
least number of restaurants - T5
% Cuisine that is cuisine of the lowest + Block of which block 1 is left and
number of restaurants whose length is 3 inches
— Fine-Tuned T5 + Block of block of which block 1 is
* which cuisine is used least in restau- left and whose length is 3 inches.
rants - Fine-TllIled TS
% what cuisine has the fewest number # which blocks are left on my left with
of restaurants a length of 3 inches
- GPT-J * which blocks are 2 inches thick and
are left of the blocks

% find me a cuisine with the least num-

ber of restaurants - GPT-J

+ block 1 that block 1 is left of and
whose length is 3 inches
* what block is left of and whose
» Canonical: meeting whose start time is larger length is 3 inches
than end time of weekly standup

% cuisine with the fewest number of
restaurants

— Human
* meetings that start later than the
weekly standup meeting
* meeting whose start time is after end
time of weekly standup
-T5
* Meeting whose start time is larger
than the end time of a weekly standup
meeting
* Meeting whose start time is larger
than the end time of weekly standups
will have the same start time as the
first time as the other morning meet-
ing.
— Fine-Tuned T5
* which meetings have a start date after
the end date of the weekly standup
* find me all people who began school
after the end date of weekly standup
- GPT-J
* what meeting takes longer to start
than weekly standup
* which meeting starts later than
weekly standup

¢ Canonical: block that block 1 is left of and
whose length is 3 inches

— Human
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