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Abstract001

Protein biology focuses on the intricate relation-002
ships among sequences, structures, and func-003
tions. Deciphering protein functions is crucial004
for understanding biological processes, advanc-005
ing drug discovery, and enabling synthetic biol-006
ogy applications. Since protein sequences de-007
termine tertiary structures, which in turn govern008
functions, integrating sequence and structure009
information is essential for accurate prediction010
of protein functions. Traditional protein lan-011
guage models (pLMs) have advanced protein-012
related tasks by learning representations from013
large-scale sequence and structure data. How-014
ever, pLMs are limited in integrating broader015
contextual knowledge, particularly regarding016
functional modalities that are fundamental to017
protein biology. In contrast, large language018
models (LLMs) have exhibited outstanding per-019
formance in contextual understanding, reason-020
ing, and generation across diverse domains.021
Leveraging these capabilities, STELLA is pro-022
posed as a multimodal LLM integrating protein023
sequence-structure representations with general024
knowledge to address protein function predic-025
tion. Through multimodal instruction tuning026
(MMIT) using the proposed OPI-Struc dataset,027
STELLA achieves state-of-the-art performance028
in two function-related tasks—functional de-029
scription prediction (FP) and enzyme-catalyzed030
reaction prediction (EP). This study highlights031
the potential of multimodal LLMs as an al-032
ternative paradigm to pLMs to advance pro-033
tein biology research. The project codes can034
be accessed via https://anonymous.4open.035
science/r/STELLA-DF00.036

1 Introduction037

Protein biology revolves around the interaction of038

three data modalities: sequences, structures, and039

functions (texts). The principle ‘sequences deter-040

mine structures, and structures determine functions’041

highlights the critical relationship among protein042

sequences, tertiary structures, and biological func-043

tions. Specifically, a protein’s tertiary structure 044

dictates how it interacts with other molecules, such 045

as substrates or inhibitors, directly affecting its bio- 046

logical activity, including enzymatic catalysis and 047

molecular recognition. Accurate understanding of 048

these biological functions is significant for advanc- 049

ing research on disease pathology, where protein 050

dysfunctions are often implicated. It also plays an 051

important role in target identification for drug dis- 052

covery, metabolic pathway analysis for engineered 053

biosynthesis, and the design of custom enzymes 054

for industrial and biotechnological applications. 055

Decades of research in protein science have 056

led to the accumulation of extensive protein struc- 057

tures, including experimentally determined ones 058

in the RCSB Protein Data Bank (PDB)1 (Berman 059

et al., 2000) and computationally predicted ones 060

in the AlphaFold Protein Structure Database 061

(AFDB)2 (Varadi et al., 2021)generated by Al- 062

phaFold 2 (AF2) (Jumper et al., 2021). Although 063

these datasets offer invaluable resources to the 064

community, most protein functions are unknown. 065

Therefore, more efforts are needed to leverage them 066

to decipher protein functions, which includes un- 067

derstanding of molecular functions, biological pro- 068

cesses, subcellular localization, enzymatic activi- 069

ties, etc. In this work, we focus on two representa- 070

tive tasks within the broader landscape of protein 071

function prediction: functional description predic- 072

tion (FP) and enzyme-catalyzed reaction prediction 073

(EP), which together reflect both general and en- 074

zymatic aspects of protein functionality. FP aims 075

to predict the comprehensive description of the bi- 076

ological roles proteins play, such as DNA repair 077

mechanisms, signal transduction pathways, and vi- 078

ral replication processes. EP specifically focuses 079

on identifying the catalytic functions of enzymes 080

by predicting the types of reactions they catalyze. 081

1https://www.rcsb.org/
2https://alphafold.ebi.ac.uk/

1

https://anonymous.4open.science/r/STELLA-DF00
https://anonymous.4open.science/r/STELLA-DF00
https://anonymous.4open.science/r/STELLA-DF00
https://www.rcsb.org/
https://alphafold.ebi.ac.uk/


To address protein function prediction, recent082

pLMs have been proposed to learn joint sequence-083

structure representations from large-scale data (Su084

et al., 2023; Li et al., 2025). Although these meth-085

ods have shown effectiveness in protein-related086

tasks, they might struggle to capture the represen-087

tation of protein functions. To address the limita-088

tion, recent studies, including Prot2Text (Abdine089

et al., 2023), ProteinGPT (Xiao et al., 2024), and090

ProtChatGPT (Wang et al., 2024a), have explored091

to apply multimodal large language models (LLMs)092

to bridge protein sequence-structure representa-093

tion and function representation. These models094

employ separate pre-trained encoders to represent095

protein sequences and structures and subsequently096

feed the joint representation into language mod-097

els. Specifically, Prot2Text takes ESM-2 as the098

sequence encoder and a Relational Graph Convo-099

lutional Network (RGCN) for structural encoding.100

ProteinGPT adopts ESM-2 for sequence representa-101

tion and takes a GVP-GNN (Jing et al., 2020) to en-102

code structural information. ProtChatGPT employs103

ESM-1b (Rives et al., 2021b) for primary struc-104

ture encoding, NetSurfP (Klausen et al., 2019) for105

secondary structure encoding, and ESM-IF1 (Hsu106

et al., 2022) for tertiary structure representation.107

Such approaches introduce architecture complexity,108

as they rely on the integration of multiple encoders109

to handle different protein modalities. This not110

only increases computational overhead, but also111

complicates model design and optimization. To112

remedy this, we investigate the feasibility of utiliz-113

ing ESM3 (Hayes et al., 2024), a recent protein lan-114

guage model (pLM), as a unified protein encoder115

within the multimodal LLM framework. ESM3116

represents sequences and structures in a unified em-117

bedding space, thereby offering a promising avenue118

to simplify model architecture while maintaining119

representation ability.120

This study introduces STELLA, a multimodal121

LLM that bridges protein language and natural lan-122

guage to enable the learning of complex sequence-123

structure and function relationships from multi-124

modal data. STELLA employs the open source125

esm3_sm_open_v1 (1.4B) protein encoder (Hayes126

et al., 2024) and empowers protein function predic-127

tion by leveraging ESM3’s unified encoding abil-128

ity and the understanding ability of LLMs. This129

mechanism enables STELLA to interpret protein130

tertiary structures as well as predict functional de-131

scriptions and enzyme-catalyzed reactions based132

on user prompts. It offers a new paradigm for un-133

derstanding proteins and extends the capabilities 134

of LLMs in the field of protein biology. STELLA 135

achieves state-of-the-art performance in both tasks, 136

highlighting the transformative potential of multi- 137

modal LLMs to advance protein biology besides 138

the development of pLMS. The primary contribu- 139

tions of this study are outlined below. 140

1. By leveraging ESM3, STELLA streamlines 141

the model architecture and improves the applicabil- 142

ity of multimodal LLMs to protein function predic- 143

tion, achieving state-of-the-art performance in pro- 144

tein functional description prediction and enzyme- 145

catalyzed reaction prediction tasks. 146

2. We curate a large-scale multimodal instruc- 147

tion tuning dataset, OPI-Struc, to facilitate the train- 148

ing and evaluation of multimodal LLMs in protein- 149

related tasks. This dataset contains diverse pro- 150

tein structures, functional annotations, and enzyme- 151

catalyzed reaction data. 152

3. This study introduces the methodology, 153

dataset, model architecture, training, and evalu- 154

ation of STELLA. It demonstrates the novelty and 155

comprehensiveness in establishing a new paradigm 156

in computational protein science (Fan et al., 2025) 157

based on multimodal LLMs, moving beyond the 158

traditional reliance on pLMs. 159

2 A first look at STELLA’s capabilities 160

through case studies 161

STELLA demonstrates satisfactory performance in 162

protein function prediction by integrating sequence- 163

structure representations into LLMs. As illustrated 164

in Figure 1 (left), STELLA excels in following nat- 165

ural language instructions and generating appropri- 166

ate responses for users. In the example, STELLA 167

correctly identifies the main function—a compo- 168

nent of the large ribosomal subunit responsible for 169

the synthesis of proteins in the cell—of a newly 170

reviewed protein G1TFE0 in Swiss-Prot. Addition- 171

ally, STELLA elaborates on the core constituents 172

of the ribonucleoprotein complex, highlighting its 173

advantage in grasping general knowledge. Further- 174

more, STELLA showcases its reasoning ability by 175

linking loss of ribosomal function to cellular dys- 176

functions. In Figure 1 (right), STELLA accurately 177

predicts the function of another newly character- 178

ized protein in Swiss-Prot, A0A1D0BR98. Upon 179

further inquiry from the user, it explains the de- 180

tails of the toxin mechanisms and provides treat- 181

ment suggestions. Both examples demonstrate 182

STELLA’s ability in protein function prediction, 183
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such as delivering informative, contextually rele-184

vant responses to diverse user prompts. Moreover,185

STELLA shows reasoning ability, which enables it186

to assist domain experts in uncovering connections187

between protein functions and disease mechanisms.188

These results highlight its potential to advance pro-189

tein biology. More examples are shown in Figure 3190

of Appendix A.191

Function of this protein (SwissProt ID: G1TFE0, 

release date is 27-Mar-2024):

Component of the large ribosomal subunit. The 

ribosome is a large ribonucleoprotein complex 

responsible for the synthesis of proteins in the cell.

Function of this protein (SwissProt ID: 

A0A1D0BR98, release date is 27-Mar-2024):

Probable ion channel inhibitor.

Could you predict the function of this 

protein? [AFDB_ID: AF-G1TFE0-F1-

model_v4.pdb]

Sure! This protein is a component of 

the large ribosomal subunit, which is 

responsible for the synthesis of proteins 

in the cell.

What are the main components of a 

large ribonucleoprotein complex?

The large ribonucleoprotein complex is 

composed of several proteins and 

ribonucleotides. The protein we're 

looking at is one of the components of 

this complex.

What is the possible result if this function 

is lost?

If this function is lost, the large 

ribonucleoprotein complex may not be 

able to function properly, leading to 

errors in protein synthesis and 

potentially affecting cellular function.

Yes, it is possible that this protein 

could be used as a toxin, perhaps to 

disrupt the normal functioning of ion 

channels in the body and cause harm.

The protein is a probable ion channel 

inhibitor.

Well, if this protein is found to be a 

toxin, then the best course of 

treatment would be to neutralize it, 

either by binding to it or by breaking 

it down into smaller pieces.

What is the function of this protein? 

[AFDB_ID: AF-A0A1D0BR98-F1-

model_v4.pdb]

So it is a possible kind of toxin?

What are the possible treatments?

Figure 1: Demo capability of STELLA. (STELLA-
ESM3-Llama-3.1-8B-Instruct). The examples in-
volve two proteins—G1TFE0 (left) and A0A1D0BR98
(right)—sourced from the newly released Swiss-Prot
2024_02. The orange box indicates the ground-truth
functional annotation. Text highlighted in green denotes
critical and correct functional information generated by
STELLA. User and assistant icons are AI-generated.

3 Related work192

3.1 Protein-text modeling193

Protein representation learning aims to extract bi-194

ologically relevant information from diverse data195

modalities, including protein language (e.g., pro-196

tein sequences and structures) and natural language197

(e.g., functional description). Aligning both modal-198

ities has emerged as an important aspect in pro-199

tein biology. For instances, ProtST (Xu et al.,200

2023) employs contrastive learning to align pro-201

tein sequence and text modalities, aiming to obtain202

biologically informative protein embeddings that203

are applicable to a variety of downstream protein-204

related tasks. Besides representation learning, Pro-205

teinDT (Liu et al., 2023c) leverages textual data to206

enhance protein design in text-to-sequence genera-207

tion tasks. Prot2Text (Abdine et al., 2023) pro-208

poses a method to align protein structures and209

functional descriptions using a fused multimodal210

encoder-decoder framework. Before the prevalence211

of LLMs, protein representation learning mainly fo-212

cuses on single modality like amino acid sequences, 213

or sequence-text alignment by contrastive learn- 214

ing. Rarely research focuses on how to effectively 215

bridge protein tertiary structures and general knowl- 216

edge encoded within LLMs, which might play an 217

important role in protein biology. 218

3.2 LLMs for protein biology 219

Recent studies have brought attention to the po- 220

tential of LLMs in advancing biomedical research, 221

spanning molecules, proteins, and RNA. In the 222

domain of protein biology, several notable devel- 223

opments have emerged. ProTokens (Lin et al., 224

2023) employs discrete and compressed protein 225

tokens that encode rich structural information for 226

LLMs. These tokens are learned through an au- 227

toencoder framework, with both the input and out- 228

put consisting of protein tertiary structures. In- 229

structProtein(Wang et al., 2023) constructs instruc- 230

tion datasets derived from a knowledge graph 231

to address the annotation imbalance present in 232

previous protein-text datasets. This dataset is 233

used to fine-tune LLMs for aligning protein se- 234

quences and natural language, enabling bidirec- 235

tional tasks—predicting functions from sequences 236

and generating sequences from natural language. 237

BioMedGPT (Luo et al., 2023) employs a fully- 238

connected layer to connect an amino acid sequence 239

encoder, ESM-2-3B (Lin et al., 2022), and Llama2- 240

Chat-7B (Touvron et al., 2023), which has been 241

incrementally pretrained on biomedical literature 242

from S2ORC (Lo et al., 2020). ProteinGPT (Xiao 243

et al., 2024), ProtChatGPT (Wang et al., 2024a) 244

and ProteinChat (Huo et al., 2024) represent re- 245

cent multi-modal LLMs designed to predict protein 246

functions or beyond. ProteinChat combines the pro- 247

tein sequence encoder xTrimoPGLM (Chen et al., 248

2024) and the Vicuna-13B model (Zheng et al., 249

2023) through a linear adapter and was trained 250

with over 1.5 million protein data triplets (protein, 251

prompt, answer) from Swiss-Prot. By taking a se- 252

quence as input, it predicts functional properties of 253

the given protein. 254

4 Methodology 255

4.1 STELLA model architecture 256

Overview. STELLA is a multimodal LLM for pro- 257

tein function prediction, drawing inspiration from 258

LLaVA (Liu et al., 2023a), a prominent vision- 259

language model architecture that integrates vision 260

encoders with LLMs. As illustrated in Figure 2, 261
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STELLA is composed of three key components: a262

protein structure encoder, a modality connec-263

tor, and a LLM. Similar to the typical two-stage264

training strategy employed by LLaVA and other265

multimodal LLMs such as Bunny (He et al., 2024),266

STELLA adopts two-stage multimodal instruction267

tuning (MMIT), which has proven effective in this268

study. What differs is that STELLA’s two stages269

of training utilize the same datasets, due to the270

extreme scarcity of protein instruction data. The271

prompt templates for training are provided in B,272

and hyperparameters in Table 7 (Appendix D).273

Protein structure encoder. The protein struc-274

ture encoder is responsible for translating protein275

tertiary structures into high-dimensional structural276

representations. In this study, we utilize ESM3, a277

leading model pretrained on multiple modalities,278

including sequence, structure, and function tokens.279

ESM3 encodes these distinct modalities as discrete280

token tracks and integrates them into a unified em-281

bedding space through transformer blocks. No-282

tably, the model incorporates geometric attention283

in its initial transformer block, effectively capturing284

atomic-level details of proteins.285

Modality connector. The modality connector286

bridges structural representations derived from the287

protein structure encoder and protein functional288

descriptions encoded into text embeddings. In this289

implementation, a simple linear layer is employed290

as the adapter, which has also proven effective in291

previous works like LLaVA (Liu et al., 2023a).292

LLM. The LLM integrated in STELLA is293

Llama-3.1-8B-Instruct (Dubey et al., 2024), a294

highly capable model that excels across mul-295

tiple benchmarks, including general knowl-296

edge (Hendrycks et al., 2021a; Wang et al., 2024b;297

Zhou et al., 2023), mathematics (Cobbe et al., 2021;298

Hendrycks et al., 2021b; Rein et al., 2023; Clark299

et al., 2018), code generation (Chen and et al.,300

2021; Liu et al., 2023b), tool-use (Yan et al., 2024;301

Srinivasan et al., 2023), long context tasks (Zhang302

et al., 2024) and multilingual ability (Shi et al.,303

2022). Additionally, the model exhibits strong304

safety features, supported by Llama Guard 3, en-305

suring reliable performance in sensitive tasks.306

4.2 Task definition307

Functional description prediction (FP). STELLA308

effectively aligns protein language and natural lan-309

guage representations via MMIT, enabling accu-310

rate prediction of protein function based on ter-311

tiary structures. The integration of LLM supports312

Tokenizer
&

Embedding

Protein
Structure
Encoder

Disease resistance 
protein required for 

incompatible 
interactions with 

avirulent strains of 
Hyaloperonospora 

arabidopsidis (downy 
mildew), isolate Hpa-
Hiks1 in cv. Columbia.Modality

Connector

Large
Language
Model

Is it within your capacity to offer a 
detailed elucidation of the function 

assigned to the protein?

Protein structure

User prompt

Output
Stage1

Stage2

Figure 2: Overview of STELLA architecture. Stage1
of MMIT fine-tunes the modality connector on the OPI-
Struc dataset while keeping the protein encoder and
LLM frozen. Stage2 continues training by jointly fine-
tuning the modality connector and LLM with different
learning rates, while the protein encoder remains frozen.
Flame indicates trainable components; Snowflake indi-
cates frozen components. Protein credits: AFDB.

diagolue-based interactions between STELLA and 313

users. This approach offers a flexible way to predict 314

protein functions. 315

Enzyme-catalyzed reaction prediction (EP). 316

In this study, enzyme-catalyzed reactions are 317

mapped to their corresponding enzyme names, 318

which serve as proxies for reactions in which the 319

associated proteins are involved. This approach 320

allows for more seamless integration with LLMs, 321

ensuring that enzyme functions are captured in a 322

way that aligns with the abilities of STELLA. 323

4.3 OPI-Struc dataset 324

Data overview. The Open Protein Instructions 325

for Structures (OPI-Struc) dataset was curated to 326

support multimodal instruction tuning (MMIT), by 327

integrating protein structural and textual modalities. 328

Corresponding to the FP and EP task, OPI-Struc 329

was organized into two main categories: Function 330

and Enzyme (see Appendix L, example L.4). The 331

Function dataset was further divided into two sub- 332

categories: Funcft (see Appendix L, example L.1) 333

and Funcmc (see Appendix L, example L.3) based 334

on label formats: free-text question-answer (ft) 335

and multiple-choice question-answer (mc), respec- 336

tively. Additionally, to reflect the iterative nature 337

of scientific discovery, 20% (49,663 samples) of 338

the Funcft_train dataset were randomly selected 339

to be augmented with enriched questions and re- 340

sponses generated by Llama-2-13B-Chat, forming 341

the Funcft_train_aug dataset (see Appendix L, ex- 342

ample L.2). The data augmentation methods are 343

detailed in Appendix J. The training and testing 344

sets and corresponding statistics are presented in 345

Table 1. To clarify, while ESM3’s training data 346

includes protein-related functional keywords, this 347
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work utilizes free-text functional descriptions of348

proteins. This distinction ensures that our testing349

data are not explicitly included in ESM3’s pre-350

training data, namely data leakage.351

Table 1: Statistics of OPI-Struc. The FP task includes
FPft and FPmc subtasks. FPft uses both a hold-out
test set and a newer Swiss-Prot release (v2401) for eval-
uation. FPmc includes two test variants (w/ and w/o
permutation). See Appendix L for examples L.1–L.4.

Task FPft

Training set/size Funcft_train (+aug)/248,315 (+49,663)
Testing set/size Funcft_test/4,203, Funcft_test_v2401/270

Metrics BLEU-4, BERT score, ROUGE
Protein source AFDB

Task FPmc

Training set/size Funcmc_train/24,000
Testing set/size Funcmc_test_1x/4,203, Funcmc_test_4x/16,812

Metrics Accuracy
Protein source AFDB

Task EP

Training set/size Enzymetrain/29,205
Testing set/size Enzymetest/5,651

Metrics Accuracy
Protein source PDB

Data explanation. Each sample of the OPI-352

Struc dataset comprises a protein tertiary structure-353

sourced from either AFDB or PDB-paired with354

task-specific natural language instructions format-355

ted as conversations, along with corresponding re-356

sponse labels. For the Function dataset, protein357

structures are obtained from AFDB, while protein358

functional descriptions are derived from the re-359

lease 2022_043 of Swiss-Prot4. To mitigate answer360

bias during model training, the multiple-choice361

training set (Funcmc_train) is constructed by ran-362

domly permuting the four answer options (A, B,363

C, D) for each sample. For evaluation, we provide364

two variants of the testing set Funcmc_test—one365

with a fixed answer order (1x) and one with ran-366

domized answer permutations (4x), ensuring a367

more robust assessment of model generalization368

across consistent and variable answer configura-369

tions. The Enzyme dataset is sourced from the370

SIFTS database (Dana et al., 2018), with origi-371

nal labels annotated using Enzyme Commission372

(EC) numbers. These EC numbers are subsequently373

mapped to enzyme names via the BRENDA En-374

3https://ftp.uniprot.org/pub/databases/
uniprot/previous_releases/release-2022_04/
knowledgebase/UniProtKB_SwissProt-relstat.html

4https://www.uniprot.org/uniprotkb?query=
reviewed:true

zyme Database5 (e.g., 1.1.1.10 → L-xylulose re- 375

ductase). To ensure data quality and consistency, 376

the entire OPI-Struc dataset underwent a rigorous 377

preprocessing pipeline, adhereing to established 378

data cleaning methods. All metadata, including 379

PubMed IDs, ECO IDs, and auxiliary annotations, 380

were systematically removed to enhance dataset 381

purity and reliability. This preprocessing step is 382

essential for minimizing noise and improving the 383

robustness of downstream modeling. We further 384

conducted detailed statistical analysis to charac- 385

terize the dataset and highlight its comprehensive- 386

ness. For instance, we examined the distribution 387

of protein sequence lengths-a proxy for structural 388

complexity-as shown in Figure 4 in Appendix E. 389

The broad variation in sequence lengths reflects 390

the dataset’s extensive coverage across proteins of 391

varying structural complexities. In addition, we an- 392

alyzed label characteristics such as the distribution 393

of functional description lengths and the frequency 394

of enzyme names (see Figure 5 in Appendix E). 395

These analysis underscores that it is important to 396

design models that are robust across diverse struc- 397

tural and functional complexities to ensure consis- 398

tent and reliable performance during evaluation. 399

Data split. To ensure consistency, (1) the Func- 400

tion dataset was split following the same strategy 401

adopted by (Abdine et al., 2023), with a maximum 402

of 40% sequence similarity allowed between the 403

training and testing sets to ensure a more rigor- 404

ous evaluation; (2) the Enzyme dataset was split 405

according to the method described in (Hermosilla 406

et al., 2021). 407

Diversification of instructions The raw data 408

were transformed into an instruction-based format 409

to support instruction tuning. To achieve variation 410

in instruction phrasing, we used web-based Chat- 411

GPT (GPT-3.5) to generate rephrased instructions. 412

For example, using the query: “Could you pro- 413

vide 100 alternative ways to rephrase the prompt 414

‘Please describe the function of the protein’?”, ap- 415

proximately 100 distinct variations of task instruc- 416

tions were produced (see the instruction list K.1, 417

K.2 and K.3 in Appendix K). Each generated in- 418

struction was mannually reviewed for accuracy and 419

relevance, ensuring that only high-quality varia- 420

tions were included in the final Function dataset. 421

We took a similar way to diversify its instructions 422

(see the instruction list K.4 and K.5 in Appendix K) 423

for the Enzyme dataset. 424

5https://www.brenda-enzymes.org/

5

https://ftp.uniprot.org/pub/databases/uniprot/previous_releases/release-2022_04/knowledgebase/UniProtKB_SwissProt-relstat.html
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5 Evaluation of STELLA425

This study sheds light on applying multimodal426

LLMs to address protein function prediction tasks.427

By systematically evaluating STELLA’s perfor-428

mance in the FP and EP tasks, we seek to elu-429

cidate both the strengths and limitations of this430

multimodal LLM in protein biology. We have431

designed five distinct evaluations based on the432

corresponding testing sets detailed in Table 1, in-433

cluding FPft_eval, FPft_eval_v2401, FPmc_eval_1x,434

FPmc_eval_4x, EPeval. Hyperparameters for evalua-435

tion are presented in Appendix D, and user prompts436

for evaluation are listed in Table 6 (Appendix C).437

5.1 Evaluation metrics438

Multiple typical metrics for natural language pro-439

cessing (NLP) tasks, including BLEU, BERT score,440

and ROUGE, are employed for comprehensive eval-441

uation of the FP task. BLEU is typically used to442

assess the similarity between two sequences in ma-443

chine translation. In particular, this study employs444

BLEU-4, a metric that evaluates the degree of 4-445

gram overlap between the generated and reference446

texts. BERT score evaluates the token-level simi-447

larity between a generated sentence and a reference448

sentence. ROUGE is a suite of evaluation met-449

rics traditionally used to compare generated text450

with reference texts to evaluate their overlap. It451

includes ROUGE-1, ROUGE-2, and ROUGE-L,452

each based on different n-gram strategies. Among453

these, ROUGE-L is particularly effective for as-454

sessing summarization and translation quality, as it455

captures overall sentence structure by emphasizing456

the longest common subsequence of the original457

and generated texts. Currently, there are no uni-458

versally established evaluation metrics specifically459

tailored for biological text generation. Therefore,460

BLEU, BERT score, and ROUGE have also been461

widely adopted in prior works to assess text gen-462

eration tasks in biological contexts. However, we463

recognize the limitations of these NLP metrics in464

aligning with biological accuracy. Therefore, be-465

sides the NLP metric and as part of our evaluation,466

we design a multiple-choice QA (MCQA) sub-467

task, FPmc, which adopts Accuracy as metrics,468

to objectively assess STELLA’s performance. In469

addition, the EP task takes Accuracy as metrics.470

5.2 Results of Functional Description471

Prediction472

The FPft_eval is designed using the hold-out test-473

ing set Funcft_test, which is also utilized for eval-474

uation in Prot2Text (Abdine et al., 2023). It 475

aims to assess STELLA’s capability to predict 476

protein functional descriptions. STELLA demon- 477

strates state-of-the-art overall performance, sur- 478

passing Prot2TextBASE and Prot2TextLARGE in 479

the FPft_eval, as shown in Table 2. 480

Comparison between STELLA and Foldseek. 481

We took Foldseek as a baseline, which includes two 482

steps: structure retrieval using Foldseek (Van Kem- 483

pen et al., 2024) and function mapping from Swiss- 484

Prot. In the first step, we used the Foldseek easy- 485

search6 tool with default parameters to search simi- 486

lar protein structures within the training set for each 487

of the 4,203 testing samples. Only the matched 488

results with an e-value < 0.001 were considered 489

and returned. In the second step, the correspond- 490

ing functional description was determined based 491

on the top-1 retrieved protein from Swiss-Prot. 492

The median e-value of the top-1 retrieved proteins 493

is 2.723e-20, indicating a high confidence in the 494

retrieval results by Foldseek. As shown in Ta- 495

ble 2, STELLA achieves a 14.6% improvement 496

over Foldseek in terms of ROUGE-L, demonstrat- 497

ing STELLA’s advantage compared to retrieval- 498

based methods. 499

Evaluation with incomplete protein struc- 500

tures. Incomplete protein data pose challenges in 501

protein biology. To address this, we conducted an 502

additional experiment to evaluate STELLA’s ability 503

to handle incomplete protein structures. Specifi- 504

cally, for the testing data, we cut away the terminal 505

10% of the protein structures to simulate incom- 506

plete structural information and assess the model’s 507

performance under these conditions. STELLA’s 508

performance see a slight decrease from 0.5257 to 509

0.4805 on ROUGE-L. Considering that the training 510

procedure was conducted using complete protein 511

structures, this slight decrease due to inconsistency 512

still demonstrates the robustness of STELLA, indi- 513

cating its applicability in more challenging tasks. 514

Additional evaluation in the MCQA subtask. 515

We recognize that FPft_eval may be impacted by 516

linguistic variability, where generated responses 517

with correct meanings differ in expression from the 518

reference. Therefore, we designed FPmc_eval_1x 519

and FPmc_eval_4x to eliminate ambiguity by pro- 520

viding predefined answer choices, which allow 521

for a more objective and standardized evaluation. 522

This method requires STELLA to not only identify 523

6https://github.com/steineggerlab/foldseek?
tab=readme-ov-file#search
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Table 2: Evaluation results of the FP task, comparing with existing work. Training recipes for STELLA-ESM3-
Llama-3.1-8B-Instruct: Funcft_train dataset. Bold and underline indicate the best and the runner-up performance.

Evaluation Model/Method BLEU-4 ↑ BERT Score ↑
ROUGE Score ↑

ROUGE-1 ROUGE-2 ROUGE-L

FPft_eval

Prot2TextBASE 0.3511 0.8430 0.5059 0.4271 0.4849
Prot2TextLARGE 0.3629 0.8520 0.5368 0.4560 0.5140
STELLA-ESM3-Llama-3.1-8B-Instruct (e3+e3) 0.4024 0.8496 0.5218 0.4487 0.5041
STELLA-ESM3-Llama-3.1-8B-Instruct (e3+e6) 0.4300 0.8564 0.5423 0.4747 0.5257
Foldseek 0.3627 0.8358 0.4799 0.4027 0.4586
Incomplete protein 0.3793 0.8421 0.4991 0.4241 0.4805

the correct answer but also engage in reasoning524

and option filtering based on contextual knowl-525

edge, thus providing a more comprehensive and526

robust assessment of its capabilities. STELLA527

achieves accuracies at Acc@FPmc_eval_1x = 80.56528

and Acc@FPmc_eval_4x = 76.18, exhibiting advan-529

tageous capabilities in terms of instruction follow-530

ing and protein understaning. Notably, without inte-531

grating LLMs, baseline models like vanilla ESM3532

and Prot2Text cannot response in a MCQA format.533

5.3 Results of Enzyme Name Prediction534

EPeval aims to assess STELLA’s ability in en-535

zyme name prediction. On top of the original536

Enzymetrain set, we exclude 10 samples due to537

their associated PDB files lacking certain atom538

coordinates necessary for embedding extraction539

with the protein structure encoder in STELLA. As540

shown in Table 3, we witnessed the performance541

from Accuracy = 88.06 to Accuracy = 88.85, by542

increasing the training epoch from 3 to 6 in stage-2543

training. At last, STELLA achieved a state-of-the-544

art result in the EP task, surpassing previous best545

Accuracy = 88.50 in CDConv (Fan et al., 2022)546

and Sable (Li et al., 2025).547

5.4 Ablation study548

5.4.1 Ablation of protein encoders and LLMs549

To further investigate the representative ability of550

different protein encoders, we visualized 4,203551

protein structure embeddings from the testing set,552

Funcft_test, generated by ESM3, Prot2Text (Ab-553

dine et al., 2023), and SaProt (Su et al., 2023),554

using UMAP, as illustrated in Figure 6. The figures555

reveal that for the five most frequently occurring556

functions in the testing set, proteins with the same557

function tend to form more compact clusters in558

the ESM3 representation space compared to the559

other two encoders. A detailed description of the560

three encoders is provided in Appendix H. Further-561

more, several leading LLMs, outlined in Table 8562

(Appendix F), were experimented via the STELLA 563

architecture, enabling an analysis of their impact 564

on STELLA’s performance. The ablation results in 565

Table 4 indicate that the integration of ESM3 and 566

Llama-3.1 yielded the best performance in the FP 567

and EP tasks. Regarding the performance in the FP 568

task, we observe a drop in FPft_eval_v2401 on the 569

newly Swiss-Prot release, where new characterized 570

proteins may introduce novel structural or func- 571

tional patterns that are underrepresented in earlier 572

training data, reflecting distributional shifts. This 573

phenomenon is a recognized challenge in represen- 574

tation learning, as biological databases continually 575

evolve. We acknowledge the importance of improv- 576

ing generalization to newly characterized proteins. 577

In the future, we plan to explore efficient continual 578

learning strategies and leverage external functional 579

annotations to enhance STELLA’s adaptability. 580

5.4.2 Ablation of training strategies 581

Training STELLA centers around two objectives: 582

cross-modality feature alignment and instruction 583

tuning. A two-stage training strategy decouples 584

these objectives, avoiding potential conflicts during 585

optimization. Stage-1 focuses on aligning protein 586

embeddings with textual embeddings by training 587

a modality connector, enabling the LLM to inter- 588

pret protein features and mitigating the interference 589

caused by the distribution gap between modalities. 590

Stage-2 emphasizes instruction tuning and task- 591

specific modeling, further enhancing the LLM’s 592

generation capabilities and generalization perfor- 593

mance. Moreover, two-stage training might help 594

prevent catastrophic forgetting—without the first- 595

stage proper modality alignment, the model may 596

overfit to textual input and neglect protein features 597

during instruction tuning. Finally, the two-stage 598

training strategy allows for higher flexibility in 599

terms of response-format prompts (e.g., MCQA 600

templates) in the second stage, which facilitates 601

more controlled and task-aligned output genera- 602
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Table 3: Evaluation results of the EP task. Acc@EP: predictions that exactly match the ground truth. Single:
Enzymetrain dataset. Bold and underline indicate the best and the runner-up performance.

Model Training manner Acc@EP ↑

UniRep (Alley et al., 2019) w/o pretrain 72.90
3DCNN (Derevyanko et al., 2018) w/o pretrain 78.80
TAPE-LSTM (Rao et al., 2019) w/o pretrain 79.90
HH-suite3 (Steinegger et al., 2019) w/o pretrain 82.60
GearNet-Edge-IEConv (Zhang et al., 2022) w/o pretrain 85.30
IEConv (Hermosilla et al., 2021) w/o pretrain 87.20
New IEConv (Hermosilla and Ropinski) w/o pretrain 87.20
CDConv (Fan et al., 2022) w/o pretrain 88.50

DeepFRI (Gligorijević et al., 2021) w/ pretrain 63.30
ProtBERT-BFD (Elnaggar et al., 2022) w/ pretrain 72.20
ESM-1b (Rives et al., 2021a) w/ pretrain 83.10
GearNet-Multiview-Contrast (Zhang et al., 2022) w/ pretrain 87.50
New IEConv (Hermosilla and Ropinski, 2022) w/ pretrain 88.10
Sable (Li et al., 2025) w/ pretrain 88.50

STELLA-ESM3-Llama-3.1-8B-Instruct(single,two-stage,e3+e3) MMIT 88.06
STELLA-ESM3-Llama-3.1-8B-Instruct(single,two-stage,e3+e6) MMIT 88.85

Table 4: Ablation of protein encoders and LLMs.
Training recipes: using single Funcft_train dataset,
training epochs of two stages are both e3. Bold and
underline indicate the best and runner-up result.

Model BLEU-4 ↑ BERT Score ↑ ROUGE Score ↑

ROUGE-1 ROUGE-2 ROUGE-L

Evaluation - FPft_eval

STELLA-ESM3-Llama-3.1-8B-Instruct 0.4024 0.8496 0.5218 0.4487 0.5041
STELLA-ESM3-Llama-3-8B-Instruct 0.4020 0.8503 0.5138 0.4478 0.5001
STELLA-ESM3-Phi-3-mini-128k-instruct 0.3807 0.8435 0.4991 0.4273 0.4839
STELLA-Prot2Text-Llama-3.1-8B-Instruct 0.4009 0.8497 0.5284 0.4454 0.5031
STELLA-Prot2Text-Llama-3-8B-Instruct 0.3892 0.8456 0.5177 0.4329 0.4915
STELLA-Prot2Text-Phi-3-mini-128k-instruct 0.3771 0.8426 0.5058 0.4210 0.4799
STELLA-Prot2Text-Mistral-7B-Instruct-v0.2 0.3889 0.8525 0.5224 0.4359 0.4949
STELLA-Prot2Text-BioMedGPT-LM-7B 0.3999 0.8488 0.5282 0.4447 0.5020
STELLA-Prot2Text-BioMistral-7B-DARE 0.3870 0.8533 0.5241 0.4357 0.4980
STELLA-SaProt-Llama-3-8B-Instruct 0.3588 0.8276 0.4685 0.3965 0.4523
STELLA-SaProt-Mistral-7B-Instruct-v0.2 0.3514 0.8251 0.4607 0.3894 0.4455

Evaluation - FPft_eval_v2401

STELLA-ESM3-Llama-3.1-8B-Instruct 0.0489 0.7565 0.2210 0.1085 0.1867
STELLA-Prot2Text-Llama-3.1-8B-Instruct 0.0425 0.7555 0.2454 0.1020 0.1919
STELLA-Prot2Text-Llama-3-8B-Instruct 0.0510 0.7605 0.2486 0.1062 0.1918
STELLA-Prot2Text-Mistral-7B-Instruct-v0.2 0.0440 0.7685 0.2529 0.1046 0.1975

Table 5: Ablation of training strategies for STELLA-
ESM3-Llama-3.1-8B-Instruct in FPft_eval. Training
dataset: Funcft_train. Bold indicates the best result.

Training strategy Stage1 epoch Stage2 epoch BLEU-4 ↑ BERT Score ↑
ROUGE Score ↑

ROUGE-1 ROUGE-2 ROUGE-L

one-stage - e1 0.2233 0.7885 0.3530 0.2631 0.3350
one-stage - e2 0.3099 0.8199 0.4346 0.3522 0.4160
one-stage - e3 0.3642 0.8363 0.4840 0.4073 0.4660

two-stage e3 e1 0.2653 0.8065 0.3938 0.3097 0.3770
two-stage e3 e2 0.3574 0.8363 0.4790 0.4028 0.4617
two-stage e3 e3 0.4024 0.8496 0.5218 0.4487 0.5041

tion. Empirically, our experimental results vali-603

date the effectiveness of the two-stage strategy. As604

shown in Table 5, two-stage training consistently605

outperforms their one-stage counterparts across all606

evaluation metrics in the FPft_eval. For the two-607

stage training, although both stages utilize the same608

data, the differences in initialization and learning609

rates between the two stages contribute to improved 610

model convergence and overall performance. 611

6 Conclusion and future work 612

This work proposes STELLA, a multimodal LLM 613

leveraging the integrated encoding ability of ESM3, 614

which bridges protein sequence-structure repre- 615

sentations with general knowledge within LLMs. 616

Through multimodal instruction tuning using the 617

proposed OPI-Struc dataset, STELLA achieves 618

state-of-the-art performance in two tasks—protein 619

functional description prediction and enzyme- 620

catalyzed reaction prediction. Beyond excelling 621

in both tasks, STELLA establishes an innova- 622

tive paradigm based on multimodal LLMs for 623

protein-related tasks, complementing traditional 624

pLM-based approaches. This work demonstrates 625

the transformative potential of STELLA as a novel 626

computational method to assist protein biology re- 627

search. Looking further, future efforts should focus 628

on designing more effective specialized tokenizers 629

for sequences and structures, encompassing more 630

downstream tasks tailored to multimodal LLMs, 631

and exploring retrieval-augmented generation or 632

agent-based techniques to enhance model capabili- 633

ties. These advances will unlock the great potential 634

of multimodal LLMs and solidify their role in driv- 635

ing the next generation innovation of computational 636

approaches in protein biology and beyond. 637
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Limitations638

While STELLA demonstrates significant advances639

in protein-related tasks as a novel computational640

approach, it still faces limitations in generalizing641

to more diverse tasks. Future improvements could642

be achieved through the development of special-643

ized tokenizers and broader integration of retrieval-644

augmented generation and agent-based techniques645

to enhance the model’s versatility. These advance-646

ments will further solidify the role of multimodal647

LLMs as promising computational models in the648

field of protein biology.649

Ethics Statement650

To the best of our knowledge, the proposed651

OPI-Struc dataset is constructed from public652

databases and does not involve any sensitive in-653

formation.654
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A Example demonstration of STELLA’s970

capabilities through case studies971

Figure 3 shows two examples of STELLA-ESM3-972

Llama-3.1-8B-Instruct to uncover protein functions973

and related properties.974

B Prompt template for training975

Box B.1: The prompt template of STELLA-
ESM3-Llama-3.1-8B-Instruct

<|begin\_of\_text|><|start\_header\_id|>user
<|end\_header\_id|>

<structure>
May I request a comprehensive breakdown

outlining the function linked to the
protein?

<|eot\_id|><|start\_header\_id|>assistant<|
end\_header\_id|>

Involved in the gluconeogenesis. Catalyzes
stereospecifically the conversion of
dihydroxyacetone phosphate (DHAP) to D-
glyceraldehyde-3-phosphate (G3P). <|eot\
_id|><|end\_of\_text|>

976

Box B.2: The prompt template of STELLA-
Prot2Text-Mistral-7B-Instruct-v0.2

<s>[INST] <structure>
May I request a comprehensive breakdown

outlining the function linked to the
protein? [/INST]Involved in the
gluconeogenesis. Catalyzes
stereospecifically the conversion of
dihydroxyacetone phosphate (DHAP) to D-
glyceraldehyde-3-phosphate (G3P)</s>

977

C Prompt template for evaluation978

Table 6 presents the user prompts used in the eval-979

uation process. Notably, we design the prompt to980

ensure that the model outputs only one of the four981

options (A, B, C, or D) in the FPmcqa task.982

D Hyperparameters for training and983

evaluation984

Stage1 aims to align a protein structure embed-985

ding space and a text embedding space. In this986

stage, the modality connector is trainable, while987

both the protein structure encoder and the LLM are988

frozen. Stage2 is dedicated to enabling STELLA to989

follow complicated natural language instructions990

and generate response dedicated to protein tasks.991

In this stage, both the modality connector and the992

LLM are trained with different learning rates, while 993

the protein structure encoder is still frozen. Both 994

stages use the same training datasets. The training 995

prompt templates follow the examples shown in 996

Appendix B. 997

The hyperparameters in two stages are summa- 998

rized in Table 7. It should be noted that we adopt 999

different learning rates for each different compo- 1000

nents of STELLA to finely control the training 1001

process. Especially, in stage2, we set the learning 1002

rate of the modality connector larger than LLM 1003

backbone, to improve LLMs’ training convergence. 1004

1005

E Analysis of data label distribution of 1006

the OPI-Struc dataset 1007

Figures 4 illustrates the distribution of protein se- 1008

quence lengths across the FP (left) and EP (right) 1009

tasks for training and testing sets. Figure 5 shows 1010

(a) the length distribution of functional descriptions 1011

in the Function dataset and (b) the frequency of en- 1012

zyme names in the Enzyme dataset. 1013

F Different composition of protein 1014

structure encoders and LLMs 1015

The architecture of STELLA is flexible and cus- 1016

tomizable to integrate various protein encoders and 1017

LLMs to form variants. We elaborately choose dif- 1018

ferent protein encoders and LLMs to investigate 1019

the effectiveness of different composition of these 1020

components, as shown in Table 8. 1021

G Embedding visualization for different 1022

protein encoders 1023

Figure 6 illustrates the UMAP visualization of pro- 1024

tein structure embeddings, generated by ESM3, 1025

Prot2Text, and SaProt, of the 4,203 testing samples 1026

in Funcft_test. 1027

H Comparison of protein structure 1028

encoders 1029

STELLA employs three different encoders 1030

ESM3 (Hayes et al., 2024), Prot2Text (Abdine 1031

et al., 2023), and SaProt (Su et al., 2023) for 1032

ablation experiments. ESM3 and Prot2Text 1033

model the interplay of sequence, structure, and 1034

function, while SaProt only models the sequence 1035

and structure modalities. This setup allows us 1036

to assess the impact of each encoder on the 1037

overall performance, providing insights into the 1038
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Function of this protein (SwissProt ID: Q9W3K5, from hold-out 

testing set):

Catalyzes the ATP-dependent ligation of L-glutamate and L-

cysteine and participates in the first and rate-limiting step in 

glutathione biosynthesis.

Function of this protein (SwissProt ID: Q5KYR2, from hold-out 

testing set):

Involved in the isomerization of 5-deoxy-glucuronate (5DG) to 

5-dehydro-2-deoxy-D-gluconate (DKG or 2-deoxy-5-keto-D-

gluconate).

What are the main functions of this protein?

[AFDB_ID: AF-Q9W3K5-F1-model_v4.pdb]

The main functions of this protein are to catalyze the 

ATP-dependent ligation of L-glutamate and L-cysteine, 

and to a lesser extent, of L-histidine and L-tryptophan.

Compare the function of glutamate-cysteine ligase with 

that of glutathione synthetase. What structural or 

mechanistic features distinguish these enzymes, and 

how do they together regulate glutathione levels?

Glutamate-cysteine ligase and glutathione synthetase 

are both involved in the synthesis of glutathione, a 

critical antioxidant in cells. However, they have 

different functions and mechanisms of action. 

Glutamate-cysteine ligase catalyzes the ligation of L-

glutamate and L-cysteine to form a peptide bond, while 

glutathione synthetase catalyzes the condensation of L-

glutamate and L-cysteine to form glutathione. The two 

enzymes have different substrate specificities and 

reaction conditions, and they work together to regulate 

glutathione levels in cells.

The isomerization reaction catalyzed by this protein has 

several potential applications in biotechnology and 

pharmaceutical production. For example, the conversion 

of 5DG to DKG could be used to produce novel 

compounds or to improve the efficiency of existing ones. 

Additionally, the reaction could be used to develop new 

biotechnological processes or to improve existing ones.

The main functions of this protein are involved in the 

isomerization of 5-deoxy-glucuronate (5DG) to 5-

dehydro-2-deoxy-D-gluconate (DKG or 2-deoxy-5-

keto-D-gluconate).

Yes, the isomerization reaction could also be used to 

produce novel antibiotics, anticancer agents, or other 

bioactive compounds. For example, the conversion of 

5DG to DKG could be used to synthesize novel 

peptidoglycan structures, which are important for 

bacterial cell wall synthesis and could potentially be 

used to develop new antibiotics.

What are the main functions of this protein?

[AFDB_ID: AF-Q5KYR2-F1-model_v4.pdb]

Describe potential industrial or medical applications of 

the isomerization catalyzed by this protein, specifically 

converting 5-deoxy-glucuronate (5DG) to 5-dehydro-

2-deoxy-D-gluconate (DKG). How might this reaction 

be utilized in biotechnology or pharmaceutical 

production?

Any further examples?

Figure 3: STELLA’s ability to engage in conversation (Model used: STELLA-ESM3-Llama-3.1-8B-Instruct).
The protein Q9W3K5 and Q5KYR2 are from the hold-out testing set of OPI-Struc. Left: protein Q9W3K5. Right:
protein Q5KYR2. Orange box: ground truth of the function. The content highlighted in green font represents the
correct and critical output of STELLA. User and assistant icons are AI-generated.

Table 6: User prompts for evaluation.

Task Testing set Response formatting prompts

FPft
Funcft_test

Funcft_test_v2401
What are the main functions of this protein?

FPmc
Funcmc_text_1x
Funcmc_text_4x

Answer with the option’s letter from the given choices directly. Please
respond to the question with an answer choice, which is either A, B, C or D.

EP Enzymetest What is the enzyme name linked to this protein?

contributions of different components to the1039

model’s effectiveness.1040

ESM3 is a large multimodal model pretrained1041

on massive sequence, structure, and function to-1042

kens using masked language modeling (MLM). It1043

encodes these modalities as discrete token tracks,1044

which are fused into a unified representation space1045

via several transformer blocks, with geometric at-1046

tention in the first block to incorporate atomic in-1047

formation. 1048

Prot2Text is a multimodal model that integrates 1049

a Relational Graph Convolution Network (RGCN), 1050

ESM-2, and GPT-2 to generate protein function an- 1051

notation. It combines two sources of information: 1052

the output of the RGCN, which processes all-atom 1053

protein structures to provide detailed structural rep- 1054

resentations, and protein sequences processed by 1055

ESM-2. The Prot2Text encoder aligns these inte- 1056
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Table 7: Hyperparameters for stage1 training, stage2 training and testing. FFT: Full Fine-tuning; LoRA: LoRA
Tuning

Config Stage1 Stage2 Testing

DeepSpeed ZeRO Stage 2 3 NA
optimizer AdamW AdamW NA

optimizer hyperparameters (β1,β2)=(0.9, 0.999), eps=1e-8 (β1,β2)=(0.9, 0.999), eps=1e-8 NA
per_device_train_batch_size 2 1(FFT)/2(LoRA) NA
gradient_accumulation_steps 4 2(FFT)/4(LoRA) NA

gradient_checkpointing True True NA
learning rate (lr) 2e-5 (Connector) 2e-4 (Connector), 2e-5 (LLM) NA

weight decay 0.0 0.0 NA
warmup steps 48 - NA
warmup ratio - 0.03 NA

lr scheduler type cosine cosine NA
training epochs 3 3 NA

GPU 4*A100 8*A100(FFT)/4*A100(LoRA) 1*A100
temperature NA NA 0.2

top_k NA NA 50
top_p NA NA 0.75

num_beams NA NA 1
max_new_tokens NA NA 1000

use_cache NA NA True
do_sample NA NA True

Figure 4: Distribution of protein sequence lengths across the FP (left) and EP (right) tasks for training and
testing sets. The variation in sequence length distribution between the training and testing sets ensures model
robustness across proteins with diverse structural complexities.

grated data with functional annotation through a1057

generative alignment approach using a text decoder.1058

SaProt is a large-scale pre-trained model utiliz-1059

ing approximately 40 million protein sequences1060

and structures, with a structure-aware vocabulary1061

that integrates residue tokens and structural tokens1062

simultaneously. It adopts an ESM-based architec-1063

ture that takes structure-aware protein sequences1064

as input, which combine protein sequence residue1065

tokens and discrete structural tokens encoded using 1066

foldseek (Van Kempen et al., 2024). However, this 1067

encoder is not aligned with functional annotation 1068

text. 1069
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Table 8: Specifications of STELLA composition of various protein structure encoders and foundation LLMs.

Protein encoder LLM Note of LLM STELLA variant

ESM3 (Hayes et al., 2024)

Llama-3.1-8B-Instruct (AI@Meta, 2024) Open source model by Meta STELLA-ESM3-Llama-3.1-8B-Instruct
Llama-3-8B-Instruct (AI@Meta, 2024) Open source model by Meta STELLA-ESM3-Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2 (Jiang et al., 2023) Open source model by Mistral AI STELLA-ESM3-Mistral-7B-Instruct-v0.2
Phi-3-mini-128k-instruct (Abdin et al., 2024) Open source model by Microsoft STELLA-ESM3-Phi-3-mini-128k-instruct
BioMistral-7B-DARE a Tailored model for biomedical domain STELLA-ESM3-BioMistral-7B-DARE
BioMedGPT-LM-7B b (Luo et al., 2023) Tailored model for biomedical domain STELLA-ESM3-BioMedGPT-LM-7B

Prot2Text (Abdine et al., 2023)

Llama-3.1-8B-Instruct Open source model by Meta STELLA-Prot2Text-Llama-3.1-8B-Instruct
Llama-3-8B-Instruct Open source model by Meta STELLA-Prot2Text-Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2 Open source model by Mistral AI STELLA-Prot2Text-Mistral-7B-Instruct-v0.2
Phi-3-mini-128k-instruct Open source model by Microsoft STELLA-Prot2Text-Phi-3-mini-128k-instruct
BioMistral-7B-DARE Tailored model for biomedical domain STELLA-Prot2Text-BioMistral-7B-DARE
BioMedGPT-LM-7B Tailored model for biomedical domain STELLA-Prot2Text-BioMedGPT-LM-7B

SaProt (Su et al., 2023)

Llama-3.1-8B-Instruct Open source model by Meta STELLA-SaProt-Llama-3.1-8B-Instruct
Llama-3-8B-Instruct Open source model by Meta STELLA-SaProt-Llama-3-8B-Instruct
Mistral-7B-Instruct-v0.2 Open source model by Mistral AI STELLA-SaProt-Mistral-7B-Instruct-v0.2
Phi-3-mini-128k-instruct Open source model by Microsoft STELLA-SaProt-Phi-3-mini-128k-instruct
BioMistral-7B-DARE Tailored model for biomedical domain STELLA-SaProt-BioMistral-7B-DARE
BioMedGPT-LM-7B Tailored model for biomedical domain STELLA-SaProt-BioMedGPT-LM-7B

a Merge (Yu et al., 2024) of Mistral-7B-Instruct-v0.1 and BioMistral-7B (Labrak et al., 2024) which was further pre-trained on top of Mistral-7B-Instruct-v0.1 using
PubMed Central Open Access from https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/

b Increamtally pre-training from Llama-2-7B-Chat with S2ORC (Lo et al., 2020) corpus.

(a)

(b)

Figure 5: (a): Length distribution of functional descrip-
tions in the Function dataset. (b): Frequency of enzyme
names in the Enzyme dataset. The enzyme name distri-
bution in the training set follows a long-tailed pattern,
but the label distribution in the test set differs signifi-
cantly from that in the training set.

I Ablation of training epochs for the 1070

training with mix3 dataset 1071

An ablation study was conducted to evaluate 1072

model performance across varying training epochs. 1073

For the training with the dataset mix3, all met- 1074

rics demonstrated consistent improvement with 1075

extended training, progressing from (e3+e1) to 1076

(e3+e3), as illustrated in Figure 7. This trend un- 1077

derscores the positive effect of prolonged training 1078

on model performance and emphasizes the signifi- 1079

cance of appropriate training duration to optimize 1080

predictive performance. Each subfigure in Figure 7 1081

shows how the scores for BLEU-4, BERT Score, 1082

ROUGE-1/ROUGE-2/ROUGE-L Scores, and Ac- 1083

curacy change over the training periods labeled as 1084

(e3+e1), (e3+e2), and (e3+e3). 1085

J Data augmentation methods 1086

The purpose of enriching the Funcft_train dataset 1087

into Funcft_train_aug is specifically to enhance the 1088

conversational capabilities of our model. The mo- 1089

tivation behind this data augmentation is to trans- 1090

form ground truth functional descriptions stored 1091

in databases into dialogues, thus preserving sci- 1092

entific accuracy as well as natural conversational 1093

interactions. The augmentation process involves 1094

the following main steps. 1095

1. Prepare ground truth functional descriptions 1096

as LLM input: We start with accurate, expert- 1097

reviewed descriptions of protein functions. For ex- 1098

ample: "Required for accurate and efficient protein 1099

synthesis under certain stress conditions. May act 1100

as a fidelity factor of the translation reaction by cat- 1101
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Figure 6: UMAP visualization of 4,203 protein structure embeddings in the testing set Funcft_test generated by
ESM3, Prot2Text, and SaProt. Each plot illustrates the clustering of protein structures based on their embeddings,
revealing the representational differences among the three encoders. The highlighted proteins belong to specific
functions as detailed in the legend. ESM3 demonstrates the strongest representative ability.

Figure 7: Metrics trend for training with the dataset mix3 over different training epochs.

alyzing a one-codon backward translocation of tR-1102

NAs on improperly translocated ribosomes. Back-1103

translocation proceeds from a post-translocation1104

(POST) complex to a pre-translocation (PRE) com-1105

plex, thus giving elongation factor G a second1106

chance to translocate the tRNAs correctly. Binds1107

to ribosomes in a GTP-dependent manner."1108

2. Prompt Llama-2-13B-Chat to generate con-1109

versational data: We utilize the Llama-2-13B-Chat1110

model to convert these structured descriptions into1111

conversational question-answer pairs. Specifically,1112

we employ the following prompt to ensure detailed1113

and meaningful dialogues: "Given a functional de-1114

scription of the protein, design two or three rounds1115

of questions and answers based on this description.1116

Ensure the content is detailed. The output format1117

is: [’Q’:, ’A’:, ’Q’:, ’A’:]."1118

3. Save the augmentated data in the format 1119

shown in the example ② in Appexdix L. 1120

K Diversified instructions generated by 1121

ChatGPT (GPT-3.5) 1122

This section presents a comprehensive collection of 1123

diversified natural language instructions (see K.1- 1124

K.5) generated by ChatGPT (GPT-3.5), designed 1125

for two tasks–FP and EP. These instructions aim 1126

to simulate realistic user queries, covering a wide 1127

range of biological contexts and linguistic styles, 1128

thereby enhancing the model’s robustness and gen- 1129

eralization across varied protein-related scenarios. 1130

L Examples from the OPI-Struc dataset 1131

This section lists examples (see L.1-L.3) from the 1132

OPI-Struc dataset, which supports multimodal in- 1133
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struction tuning for STELLA. Each example pairs1134

a protein entry with a diverse natural language1135

instruction and its corresponding output. The1136

examples span various task types, reflecting the1137

dataset’s comprehensive coverage and the model’s1138

instruction-following ability in biological contexts.1139
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Box K.1: Diversified instructions of the protein functional prediction task

• May I request an elaborate overview of the function linked to the protein?

• May I request a detailed overview of the function associated with the protein?

• May I request a detailed breakdown of the function associated with the protein?

• May I request a comprehensive account outlining the function of the protein?

• May I request a comprehensive depiction of the function pertaining to the protein?

• May I request a comprehensive breakdown outlining the function linked to the protein?’

• May I request a comprehensive breakdown outlining the function associated with the protein?

• May I request a comprehensive analysis of the function attributed to the protein?

• May I request a comprehensive account of the function pertaining to the protein?

• May I request a comprehensive overview of the function ascribed to the protein?

• May I inquire about a thorough account of the function related to the protein?

• May I inquire about a thorough explanation of the function related to the protein?

• May I inquire about a comprehensive explanation encompassing the function of the protein?

• May I inquire about a comprehensive depiction of the function encompassing the protein?

• May I inquire about a comprehensive breakdown of the function assigned to the protein?

• May I inquire about a comprehensive analysis of the function assigned to the protein?

• May I inquire about a comprehensive account of the function associated with the protein?

• May I inquire about a comprehensive explanation outlining the function of the protein?

• May I inquire about a detailed account of the function assigned to the protein?

• May I inquire about a detailed description of the function ascribed to the protein?

• Could you furnish a detailed depiction of the function encompassing the protein?

• Could you supply an extensive description of the function ascribed to the protein?

• Could you supply a thorough explanation of the function related to the protein?

• Could you offer a comprehensive elucidation of the function assigned to the protein?

• Could you offer a comprehensive breakdown of the function associated with the protein?

• Could you provide a detailed elucidation of the function encompassing the protein?

• Could you provide a detailed account of the function assigned to the protein?

• Could you provide a detailed elucidation outlining the function associated with the protein?

• Could you provide a detailed analysis of the function ascribed to the protein?

• Could you provide an in-depth explanation of the function associated with the protein?

• Could you provide a detailed description outlining the function of the protein?

• Could you share an elaborate overview of the function linked to the protein?

• Could you share a detailed elucidation of the function assigned to the protein?

• Could you share a detailed analysis of the function attributed to the protein?

• Could you share a comprehensive overview of the function encompassing the protein?

• Could you share a comprehensive description of the function encompassing the protein?

• Could you share a comprehensive breakdown of the function linked to the protein?

• Could you share a comprehensive breakdown of the function ascribed to the protein?
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Box K.2: Diversified instructions of the protein functional prediction task (continued)

• Could you share a comprehensive depiction of the function pertaining to the protein?

• Could you share a comprehensive overview of the function ascribed to the protein?

• Can you offer a comprehensive analysis of the function attributed to the protein?

• Can you share a comprehensive account of the function pertaining to the protein?

• Can you give me a detailed breakdown of the function linked to the protein?

• Can you give me a detailed depiction of the function encompassing the protein?

• Can you give me a comprehensive explanation of the function ascribed to the protein?

• Can you provide a detailed description of the function ascribed to the protein?

• Can you provide a comprehensive elucidation of the function assigned to the protein?

• Can you furnish a detailed overview of the function linked to the protein?

• Can you furnish a comprehensive explanation regarding the function of the protein?

• Can you furnish a comprehensive analysis of the function encompassing the protein?

• Can you furnish a comprehensive description of the function ascribed to the protein?

• Can you furnish a comprehensive elucidation of the function ascribed to the protein?

• Can you furnish a comprehensive description outlining the function associated with the protein?

• Can you supply a detailed breakdown of the function ascribed to the protein?

• Can you supply a comprehensive depiction of the function related to the protein?

• Can you supply a comprehensive explanation of the function related to the protein?

• Can you supply a comprehensive breakdown of the function associated with the protein?

• Can you supply a comprehensive account of the function linked to the protein?

• Can you supply a comprehensive explanation of the function assigned to the protein?

• Can you supply a comprehensive analysis of the function linked to the protein?

• Would you mind giving me a detailed breakdown of the function associated with the protein?

• Would you mind giving me a comprehensive analysis of the function attributed to the protein?

• Would you mind giving me a comprehensive description of the function attributed to the protein?

• Would you mind giving me a comprehensive account of the function attributed to the protein?

• Would you mind giving me a comprehensive depiction of the function pertaining to the protein?

• Would you mind providing a comprehensive overview of the function attributed to the protein?

• Would you mind providing a thorough explanation of the function related to the protein?

• Would you be able to furnish a detailed explanation of the function encompassing the protein?

• Would you be able to provide a detailed elucidation of the function assigned to the protein?

• Would you be able to provide a comprehensive account of the function pertaining to the protein?

• Would it be possible for you to offer an in-depth description of the function of the protein?

• Would it be possible for you to offer a thorough breakdown of the function ascribed to the
protein?

• Would it be possible for you to offer a comprehensive analysis of the function related to the
protein?

• Would it be possible for you to offer a comprehensive account linked to the function of the
protein?
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Box K.3: Diversified instructions of the protein functional prediction task (continued)

• Would it be possible for you to offer a comprehensive explanation of the function associated
with the protein?

• Would it be possible for you to offer a comprehensive depiction encompassing the function of
the protein?

• Would it be possible for you to offer a comprehensive depiction of the function ascribed to the
protein?

• Would it be possible for you to provide a comprehensive analysis of the function attributed to the
protein?

• Would it be possible for you to provide an extensive description of the function ascribed to the
protein?

• Is it within your capacity to offer a detailed elucidation of the function assigned to the protein?

• Is it within your capacity to provide a comprehensive overview of the function assigned to the
protein?

• Is it within your capacity to provide a comprehensive overview of the function linked to the
protein?

• Is it within your capacity to provide a comprehensive overview of the function associated with
the protein?

• Is it within your capacity to provide a comprehensive explanation of the function related to the
protein?

• Is it within your capacity to provide a comprehensive depiction of the function related to the
protein?

• Is it within your capacity to provide a comprehensive elucidation of the function associated with
the protein?

• Is it within your capacity to provide a comprehensive breakdown of the function linked to the
protein?

• Is it within your capability to offer a detailed account of the function pertaining to the protein?

• Is it feasible for you to give an extensive overview of the function linked to the protein?

• Is it feasible for you to supply a thorough explanation of the function related to the protein?

• Is it feasible for you to offer a comprehensive analysis regarding the function of the protein?

• Is it feasible for you to offer a comprehensive explanation regarding the function of the protein?

• Is it feasible for you to offer a comprehensive account of the function ascribed to the protein?

• Is it feasible for you to offer a comprehensive description of the function attributed to the protein?

• Is it feasible for you to provide an elaborate account of the function attributed to the protein?

• Is it possible for you to provide a comprehensive analysis of the function attributed to the protein?

• Is it possible for you to provide a detailed description of the function ascribed to the protein?

• Is it possible for you to furnish a comprehensive breakdown of the function associated with the
protein?

• Is it possible for you to furnish a comprehensive depiction of the function encompassing the
protein?
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Box K.4: Diversified instructions of the enzyme-catalyzed reaction prediction task

• Could you provide the enzyme name used for this protein?

• Can you share the enzyme name linked to this protein referred to as?

• What’s the enzyme name titled for this protein?

• Can you identify the enzyme title for this protein?

• What’s the enzyme name linked to this protein?

• Please share the enzyme terminology for this protein.

• Can you provide the enzyme name utilized for this protein?

• Could you disclose the enzyme handle for this protein?

• Can you disclose the enzyme name tagged to this protein?

• Could you inform me of the enzyme name attached to this protein?

• What’s the enzyme name for this protein labeled as?

• Can you disclose the enzyme name linked to this protein?

• Can you provide the enzyme nomenclature for this protein?

• Can you tell me the enzyme name used for this protein identified as?

• What’s the name of the enzyme associated with this protein?

• Can you reveal the enzyme tag for this protein?

• Can you provide the enzyme name attributed to this protein?

• What’s the enzyme name attributed to this protein?

• What’s the enzyme appellation for this protein?

• Could you inform me of the enzyme identifier for this protein?

• Could you share the enzyme name used for this protein?

• Can you tell me the enzyme name given to this protein?

• What’s the enzyme name employed for this protein?

• Can you specify the enzyme name assigned to this protein?

• What’s the enzyme name affixed to this protein?

• What’s the enzyme descriptor for this protein?

• I’m interested in the enzyme name attributed to this protein.

• Could you inform me of the enzyme name tagged to this protein?

• What’s the enzyme name for this protein referred to as?

• What’s the enzyme name for this protein known as?

• What’s the enzyme name for this protein?

• What’s the enzyme label for this protein?

• Can you disclose the enzyme name linked to this protein recognized as?

• Can you provide the enzyme name associated with this protein termed as?

• What’s the enzyme name employed for this protein denoted as?
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Box K.5: Diversified instructions of the enzyme-catalyzed reaction prediction task (continued)

• What’s the enzyme name assigned to this protein?

• What’s the enzyme name labeled for this protein?

• What’s the enzyme name applied to this protein?

• What’s the enzyme name associated with this protein?

• Can you share the enzyme name for this protein?

• What’s the enzyme name linked to this protein called?

• What’s the enzyme moniker for this protein?

• Could you tell me the enzyme designation for this protein?

• Can you tell me the enzyme name associated with this protein?

• I’m curious about the enzyme name assigned to this protein.

• What’s the enzyme name for this protein termed as?

• What’s the enzyme name attached to this protein designated as?

• Could you specify the enzyme name applied to this protein?

• Please specify the enzyme name linked to this protein.

• What’s the enzyme name linked to this protein recognized as?

Box L.1: An example of Funcft_train dataset

[
{
"swissprot_id": "Q0BWM9",
"sequence": "MFNKQSVSLEWAGRTLTIETGQVARQADGAVMVQYGDTIVLATAVFAKEAKPGQDFFPLTVNYQEKYFA
SGRIPGGFFKREGRPTEKETLTSRLIDRPIRPLFVDGFKHEVQVVVTTLSYDLENDADIIALVGASAALVLSGAPFMGPIGA
ARVGYKDGQYIINPTIAELEESELDLVVAGTTDAVMMVESQAAELSEDVMLGAVVAGHDAMQPVIDAIIALAEKAAKEPFAY
EPPDHSAALKSVIDTVGADLSKAYKITAKGERYAAIGAAKDKAKAALLGTDEAPGVMTPEVFKTVFKEAEASVVRGDILKTG
QRIDGRKLDQIRPIVAEAGFLPRTHGSSLFTRGETQAICVATLGTSDDEQYIDGLDGTKKEKFMLHYNFPPYSVGETGRMGG
AGRREIGHGKLAWRALKAVLPKHEDFPYTIRMVSEITESNGSSSMATVCGCSLAMMDAGVPLTRPVSGIAMGLILEGSEFAV
LSDILGDEDHLGDMDFKVAGTENGVTSLQMDIKVAGITKDIMGKALEQAKGGRMHILGEMGKALTASRGQLSENAPQMEIIK
VPTDKIRDVIGSGGKVIRGIVDETGAKVNIDDDGTVQISAMDRKSIDAAIKMIKGITAEAEVGEIYEGKVVSMKDFGIFVNF
FGPKDGLVHVSQMANKRIGHPKEMVKEGDKVWVKLMGFDERGKVRLSMKVVDQETGKELAEEAGDDASED",
"conversations": [
{
"from": "human",
"value": "Can you furnish a comprehensive description outlining the function associated

with the protein?\n<structure>"
},
{
"from": "gpt",
"value": "Involved in mRNA degradation. Catalyzes the phosphorolysis of single-stranded

polyribonucleotides processively in the 3'- to 5'-direction."
}

],
"AFDB_id": "AF-Q0BWM9-F1-model_v4"

},
]
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Box L.2: An example of Funcft_train_aug dataset

[
{
"swissprot_id": "Q1WT60",
"sequence": "MENKKLHIALLFGGNSSEHDVSKRSAHNIYDALDKDKYDVSVFMFTKKGFLLGNKDSMRIFDGENEDDVV
TEVIKDVDFSNPLANIQNLAEVKDVDVFYPVIHGNMGEDGTVQGLFRLLNKPWIGSGVASSGVSFDKDLTKKLLTLNGIRNTK
YVLVTPENKADYPYAKVAEELGETLFVKPARQGSSVGIHKVRNEEEYNAALEDGFKYDYKILVEEAIKNPREVECSVLGNRDI
KASKLGAIRIPESDDFYDYNNKFVDASGVVFEMPIKLPEKLTKEIQQMSLDAFRALDNRGLARMDFLVDKNDVPYFGEVNTLP
GFTNISLYPQLWEVSGISYSELIDQLIQLAIDEFNDNAKIHYDFTKLGTEKVGKKIIGE",
"conversations": [
{
"from": "human",
"value": "What is the main function of this protein?\n<structure>"

},
{
"from": "gpt",
"value": "The main function of this protein is cell wall formation."

},
{
"from": "human",
"value": "Can you explain the process of cell wall formation?"

},
{
"from": "gpt",
"value": "Certainly! The protein helps to synthesize and modify the cell wall, which is a

critical structure that provides support, protection, and cell-to-cell interaction.
The cell wall is composed of various components, including polysaccharides, proteins,
and other molecules. Our protein plays a key role in the synthesis and modification of
these components to form a strong and stable cell wall."

},
{
"from": "human",
"value": "How does the protein contribute to the synthesis of the cell wall?"

},
{
"from": "gpt",
"value": "The protein helps to catalyze the formation of glycosidic bonds between the cell

wall components. These bonds are crucial for the stability and integrity of the cell
wall. Additionally, the protein can also modify existing glycosidic bonds to further
strengthen the cell wall."

}
],
"AFDB_id": "AF-Q1WT60-F1-model_v4"

},
]
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Box L.3: An example of Funcmc_train dataset

[
{
"swissprot_id": "P62877",
"sequence": "MAAAMDVDTPSGTNSGAGKKRFEVKKWNAVALWAWDIVVDNCAICRNHIMDLCIECQANQASATSEECTVAWGVCNHAFH
FHCISRWLKTRQVCPLDNREWEFQKYGH",
"conversations": [
{
"from": "human",
"value": "<structure>\n
What are the main functions of this protein?\n
A. E3 ubiquitin ligase component of multiple cullin-RING-based E3 ubiquitin-protein ligase

(CRLs) complexes which mediate the ubiquitination and subsequent proteasomal
degradation of target proteins, including proteins involved in cell cycle progression,
signal transduction, transcription and transcription-coupled nucleotide excision
repair. CRLs complexes and ARIH1 collaborate in tandem to mediate ubiquitination of
target proteins, ARIH1 mediating addition of the first ubiquitin on CRLs targets. The
functional specificity of the E3 ubiquitin-protein ligase complexes depends on the
variable substrate recognition components. As a component of the CSA complex promotes
the ubiquitination of ERCC6 resulting in proteasomal degradation. Recruits the E2
ubiquitin-conjugating enzyme CDC34 to the complex and brings it into close proximity
to the substrate. Probably also stimulates CDC34 autoubiquitination. May be required
for histone H3 and histone H4 ubiquitination in response to ultraviolet and for
subsequent DNA repair. Promotes the neddylation of CUL1, CUL2, CUL4 and CUL4 via its
interaction with UBE2M. Involved in the ubiquitination of KEAP1, ENC1 and KLHL41. In
concert with ATF2 and CUL3, promotes degradation of KAT5 thereby attenuating its
ability to acetylate and activate ATM.\n

B. Part of the MIS12 complex which is required for normal chromosome alignment and
segregation and kinetochore formation during mitosis.\n

C. Catalyzes the cyanide-resistant oxidation of ubiquinol and the reduction of molecular
oxygen to water, but does not translocate protons and consequently is not linked to
oxidative phosphorylation. May increase respiration when the cytochrome respiratory
pathway is restricted, or in response to low temperatures.\n

D. Pair-rule protein expressed in a segmentally repeating pattern to define the polarity
of embryonic segments. Capable of sequence-specific DNA-binding.\n

Answer with the option's letter from the given choices directly."
},
{
"from": "gpt",
"value": "A"

}
],
"AFDB_id": "AF-P62877-F1-model_v4"

},
]

Box L.4: An example of Enzymetrain dataset

[
{
"PDB_id": "5ivp.A",
"conversations": [
{
"from": "human",
"value": "Could you inform me of the enzyme name tagged to this protein?<structure>\n"

},
{
"from": "gpt",
"value": "aminoacyl-tRNA hydrolase"

}
]

},
]
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