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Abstract
In this paper, we propose a new type of vision
transformer (ViT) based on a graph head atten-
tion (GHA). The GHA creates the graph structure
using an attention map generated from the input
patches. Because the attention map represents the
degree of concentration between image patches, it
can be regarded as a type of relationship between
patches, which can be converted into a graph
structure. To maintain an MHA-like performance
with fewer GHAs, we apply a graph attention net-
work to the GHA to ensure attention diversity and
emphasize the correlations between graph nodes.
The proposed GHA maintains both the locality
and globality of the input patches and guarantees
diversity of attention. The proposed GHA-ViT
commonly outperforms pure ViT-based models
on small-sized and a medium-sized ImageNet-
1K dataset through scratch training. A top-1 ac-
curacy of 81.7% was achieved in ImageNet-1K
with GHA-B, which is a base model with approx-
imately 29M parameters.

1. Introduction
Transformers have become one of the most powerful neural
network tools and have shown a promising performance
with sequential data, such as in natural language processing
(NLP) (Vaswani et al., 2017) and speech recognition (Pham
et al., 2019). A vision transformer (ViT) (Dosovitskiy et al.,
2021), a transformer applied in the field of computer vision,
is a leading algorithm used in various vision problems such
as image classification (Dosovitskiy et al., 2021), image
segmentation (Yan et al., 2022), object tracking (Zeng et al.,
2022), depth estimation (Ranftl et al., 2021), and action
recognition (Chen & Ho, 2022). However, these ViT-based
methods do not properly consider the spatial geometry rela-
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tionship between local regions or between global and local
regions and have limitations in reducing the number of com-
putations because they depend heavily on the combination
of multi-head attentions (MHA). In addition, because a ViT
requires a large number of training data, if it is trained with
a small dataset without a pretraining, the performance is
significantly reduced.

Contribution of This Work. In this study, to reduce the
number of operations of a ViT and preserve the global and
local features for image classification, we developed a graph
head attention (GHA) for a ViT that replaces multi-head
attentions (MHA) with fewer graph-heads using the pro-
posed graph generation and graph attention. i) Unlike other
graph-based transformers (Shen et al., 2021; Zheng et al.,
2021; Lin et al., 2021) that operate graphs and an attention
in parallel and combine the outputs, this study is the first
attempt to apply a graph to the inside of the transformer’s
head and replace the MHA with a few GHAs. ii) Unlike
a pure ViT, there is no need for a class token in patch em-
bedding, and thus the number of operations can be reduced.
iii) GHA-ViT shows a promising classification performance
with only scratch training conducted on small and medium-
sized datasets and no pre-training on large datasets. Figure
1 shows the overall architecture of the proposed GHA-ViT
model.

2. Related Work
2.1. Graph Vision Transformer Models

Shen et al.(Shen et al., 2021) proposed a graph interac-
tive transformer (GiT) for vehicle re-identification. Zheng
et al.(Zheng et al., 2021) proposed a graph-transformer
network, which is a graph representation of a whole-slide
image, and a method for fusing the transformers. Mesh
Graphormer (Lin et al., 2021) integrated a graph convolution
with self-attention to reconstruct human poses and meshes
from a single image. The vision graph neural network (ViG)
(Han et al., 2022) was the first to combine graph structures
with images. It regards each image patch as a single graph
node and employs a k-NN to build relations between each
image patch. Despite the novelty of this approach, it has the
disadvantage of capturing only the similarity of the image
patches without considering the latent image structure.
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Figure 1. Overall architecture of the proposed GHA-ViT model: (a) GHA encoder layer composed of a few graph heads, (b) The attention
score is calculated as the scaled dot product of Q and transposed K. Then, the graph generator is applied to the attention matrix AT for
selecting sub-nodes and convert it to undirected graph AD, (c) After graph generation, the value V and an undirected graph AD are
applied to a graph attention network (GAT). Based on the generated graph and node features V , GAT gives a different importance to the
neighboring nodes.

3. Graph Head Attention
The attention score is calculated as the scaled dot product
of Q and transposed K, and can be executed in parallel.
The transformer uses an MHA, and thus n heads can learn
different attentions from the input and obtain a strong atten-
tion representation through their combination (Dosovitskiy
et al., 2021). However, in reality, not all heads of the MHA
have the same effect on the attention performance of a trans-
former. Rather, only a part of the head affects the attention
performance of the transformer, and the remainder focuses
on unnecessary parts, which negatively affects the outcome
of the final attention (Michel et al., 2019). From this perspec-
tive, it is clear that an MHA is not essential in a transformer.
In this section, we propose a new transformer that can re-
ceive better attention with fewer GHAs and without the use
of multiple heads. Let X be the input of the encoder layer.
Here, X consists of P patches, and the hidden dimension of
the input patch is dh. The Q, K, and V matrices have corre-
sponding weight matrices WQ,WK and WV ∈ Rd×dh , and
Q, K, and V can be obtained through the dot product of
input H and the weight matrices. The attention matrix AT
of the head is calculated as follows:

Q = XWQ

K = XWK Q,K, V ∈ RP×dh

V = XWV

(1)

AT = softmax(
QKT

√
dh

) ∈ RP×P (2)

3.1. Graph Structure Generation

In a CNN, to provide a better generalization and perfor-
mance, the pooling layer plays an important role in reducing

the size of the feature map and broadening the receptive
field. However, this pooling operation cannot be applied
directly to the graph because there is no local information
between the graph nodes. Therefore, inspired by (Gao & Ji,
2019; Lee et al., 2019), we propose graph pooling contain-
ing local information based on a mask filter. We apply the
Top− k function to the attention matrix AT for selecting
sub-nodes with a significant connectivity. Distilled sparse
nodes can be regarded as a new form of graph structure de-
rived from an attention matrix. In other words, we consider
the sparse matrix of these nodes to be the adjacency matrix
AD of a graph.

AD = Top− k(AT, k) (3)

We can now construct a graph consisting of node patches
using the AD. Again, to consider the self-edge of the node,
AD adds identity matrix I . However, in the initial graph
constructed from AD, directed and undirected edges are
mixed. In a transformer, because the attention is created
by interactions with neighboring patches, a directed edge
cannot guarantee the correct patch attention. Therefore, we
must convert the mixed graph into an undirected graph. For
this purpose, the following graph transformation method
is proposed: First, as indicated in Eq. 4, the upper matrix
of AD and its transpose are added to form a partially undi-
rected graph:

ADtriU = triU(AD) + triU(AD)T (4)

ADtriL = triL(AD) + triL(AD)T (5)

Finally, the upper matrix ADtriU and the lower matrix
ADtriL generate an undirected graph AD through an OR
operation ∨.

AD = ADtriU ∨ADtriL (6)
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3.2. Graph Head Attention Boosting

To improve the accuracy of the image classification, a de-
tailed attention can be obtained through a combination of
MHAs. However, an MHA requires weight matrices WQ,
WK , and WV for each head. Therefore, as the number of
heads increases, more learning parameters, memories, and
computational times are required. To avoid the problems
caused by an MHA, we use fewer GHAs and show that
the transformer can operate successfully using only the pro-
posed GHA. To ensure a diversity of attention, similar to an
MHA with fewer attention heads, and to emphasize the cor-
relation between graph nodes, we apply a GAT (Veličković
et al., 2017) to a GHA. When using a GHA instead of a gen-
eral MHA mechanism, securing the diversity of attention is
an extremely important part of the successful operation of
the GHA model. We previously extracted AD representing
the relationship between node patches from the attention
matrix. We now apply a GAT to AD to conduct efficient
attention computations between the nodes with AD. From
AD and V , the attention coefficient e between nodes i and
j is obtained using the learnable weight matrix Wc.

eij = FN(Wc · vi,Wc · vj) (7)

Here, an FN is a simple single-layer feedforward neural
network that transforms the input into R1×dh × Rdh×1 →
R. The above expression indicates the importance of the
features of nodes i–j. At this time, j does not indicate
all nodes, but only the neighbors Ni of node i. Finally, if
it passes the softmax function, the following normalized
attention matrix ÃD can be calculated:

ÃDij =
exp(eij)∑

k∈Ni
exp(eik)

(8)

Eq. 8 is applied to every encoder layer to ensure the diversity
of the node features. The final GHA is produced by applying
the node feature matrix V and the weight matrix Wgat of the
GAT to ÃD as follows:

GHA(V ) = σ2(ÃD · V ·Wgat) (9)

where σ2 is a ReLU activation function. The value of GHA
is obtained through the process of Fig. 1 (c). Because the
GHA encoder consists of L layers, V is input to the first
layer, but from the second layer, V is changed to hl, the
output of each layer. GHA(hl−1) of the previous layer is
again skip-connected (element-wise sum) with input hl−1.

h́l = GHA(hl−1) + hl−1, l ∈ {1 · · ·L} (10)

After h́l is linearly normalized (LN) again and applied to
the FFN, it is similarly skip-connected to the original h́l to
produce the output of the final encoder block.

hl = FFN(h́l) + h́l, l ∈ {1 · · ·L} (11)

Finally, the output of last encoder layer L, hL ∈ RP×dh , is
passed to the readout layer. For the readout layer, sequence
pooling (seq) (Hassani et al., 2021), the mean and max
values were used to consider the diversity (Kim & Cho,
2019). The multi-readout feature Hout is calculated:

Hout = hseq ∥ hmean ∥ hmax (12)

where ∥ denotes the concatenation operation between node
features. The multi-readout feature Hout, which has passed
through the readout, is then classified using MLP. The loss
function was optimized using a soft distillation (Hinton
et al., 2015; Wei et al., 2020).

Table 1. Details on GHA-ViT model variants. dim d means hidden
dimensions in encoders, and mlp ratio means a scaling factor for
hidden dimension of MLP. In GHA-*-a / b, a means number of
layer and b is patch size.

Model head layers dim d mlp ratio

GHA-S-7/3 4 7 64 2
GHA-B-7/3 6 7 64 2
GHA-S-14/7 3 14 64 4
GHA-B-14/7 6 14 64 4

4. Dataset and Experimental Results
To evaluate the representation learning ability of the pro-
posed GHA-ViT model, we compare it with ResNet (He
et al., 2016) and MobileNetV2 (Sandler et al., 2018), which
are representative CNN models; ViT-based methods (Doso-
vitskiy et al., 2021; Touvron et al., 2021b; Hassani et al.,
2021; Yu et al., 2022); MLP-based approaches (Tolstikhin
et al., 2021; Touvron et al., 2021a; Liu et al., 2021a); and a
graph-based method (Han et al., 2022). We prove through
our experiments that the performance of the proposed model
is similar to that of other state-of-the-art (SoTA) methods
on several benchmark datasets.

4.1. Experiment Setup

Datasets. We used the ImageNet-1K (Deng et al., 2009) to
measure the capacity of the proposed GHA.

Baseline. We set the baseline of the GHA differently to
prove that the proposed GHA-ViT model can reduce the
number of heads and encoder layers. The basic structure of
GHA-ViT is based on DeiT (Touvron et al., 2021b) because
it is inherently capable of learning with a small dataset.
The baseline models have two types, GHA-Base and GHA-
Small according to the number of heads and layers. Table
1 summarizes the GHA model used as a baseline. In addi-
tion to GHA-ViT, we used ResNet (He et al., 2016) as the
CNN baseline model for the comparative experiments. The
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Table 2. Performance comparison of scratch-trained CNN and transformer-based models on the ImageNet-1K dataset. Image resolution is
same as 224× 224.

Model Params (M) MACs (G) Top-1 (%) Top-5(%)

ResNet-50 (He et al., 2016) 26 4.3 76.2 95.0
ResNet-101 (He et al., 2016) 45 7.9 77.4 95.4
ResNet-152 (He et al., 2016) 60 11.6 78.3 95.9

ViT-S-16 (Dosovitskiy et al., 2021) 47 10.1 78.1 -
DeiT-S (Touvron et al., 2021b) 22 4.6 79.8 95.0
CCT-14/7×2 (Hassani et al., 2021) 22 18.6 80.6 -
T2T-ViT-14 (Yuan et al., 2021b) 22 4.8 81.5 -
PoolFormer-S12 (Yu et al., 2022) 12 1.8 77.2 -
PoolFormer-S24 (Yu et al., 2022) 30 3.0 80.3 -
Mixer-B/16 (Tolstikhin et al., 2021) 59 12.7 76.4 -
ResMLP-12 (Touvron et al., 2021a) 15 3.0 76.6 -
gMLP-Ti (Liu et al., 2021a) 6 1.4 72.3 -
gMLP-S (Liu et al., 2021a) 20 4.5 79.6 -
ViG-Ti (Han et al., 2022) 7 1.3 73.9 92.0
ViG-S (Han et al., 2022) 23 4.5 80.4 95.2

GHA-S-14/7 10 1.8 77.4 93.5
GHA-B-14/7 29 5.9 81.7 95.8

ResNet model modified the last MLP layer to suit the num-
ber of classes for each experimental dataset. Pure ViT and
DeiT are used as transformer models for comparison with
the GHA-ViT. These methods also changed the last MLP
layer to obtain suitable outputs for each set of experimental
data.

4.2. Compare Performance with State-of-the-arts model

We conducted experiments using the ImageNet-1K dataset
to demonstrate that the proposed model works effectively
not only on small but also on medium-sized dataset. Table
2 shows the results of a performance comparison between
the proposed GHA-ViT and SoTA methods. Compared to
ResNet-152 among CNN-based methods (He et al., 2016),
the number of parameters in the GHA-S model is reduced
by up to 6-times, and the number of operations is up to 6.4-
times faster. In terms of the accuracy, the GHA-S model is
slightly inferior to ResNet-152, whereas the GHA-B model
improved the accuracy by 3.4% in Top-1 accuracy. In a
comparison with ViT-based methods (Dosovitskiy et al.,
2021; Touvron et al., 2021b; Hassani et al., 2021; Yuan et al.,
2021b; Yu et al., 2022), in terms of accuracy, the GHA-S
model increased the Top-1 accuracy by 0.5% compared
to PoolFormer-S12 under the same conditions (Param and
MACs). In the case of GHA-B, the Top-1 accuracy was the
highest at 81.7%; however, the number of operations was
1.1 higher than that of T2T-ViT-14 with a similar accuracy.
In comparison with MLP-based models (Tolstikhin et al.,
2021; Touvron et al., 2021a; Liu et al., 2021a),both the
GHA-S and GHA-B models increased their Top-1 accuracy
by approximately 2% on gMLP-Ti and gMLP-S, which have
similar numbers of parameters and operations. In addition,

in comparison with ViG methods (Han et al., 2022) using
graph structures, the numbers of parameters and operations
are slightly higher, whereas the GHA-S and GHA-B models
showed a high accuracy of 3.8% and 1.3%, respectively.
This is because the proposed GHA-ViT model can generate
a graph structure with a higher efficiency than the graph
generation method used in ViG.

5. Conclusion
In this paper, we proposed a new GHA method that can
overcome the limitations of MHA, the core module of ViT.
By converting the attention map operation from a matrix
perspective to a graph perspective, it was possible to signif-
icantly reduce the number of unnecessary operations and
parameters while maintaining the accuracy of image clas-
sification. We also proved that the attention feature space
embedded in multi-heads was not significantly different
from that when only fewer graph heads were used. In the fu-
ture, we will apply the method of combining the approaches
of graph pooling such as graph U-NET (Gao & Ji, 2019)
to improve the mask filter for constructing the graph and
for more meaningful attention output. Through these addi-
tional studies, the ViT performance of the GHA structure
is expected to be significantly improved than that of the
MHA-based ViT approaches.
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