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Abstract001

Open Relation Extraction (OpenRE) seeks to002
identify and extract novel relational facts be-003
tween named entities from unlabeled data with-004
out pre-defined relation schemas. Traditional005
OpenRE methods typically assume that the un-006
labeled data consists solely of novel relations or007
is pre-divided into known and novel instances.008
However, in real-world scenarios, novel rela-009
tions are arbitrarily distributed. In this paper,010
we propose a generalized OpenRE setting that011
considers unlabeled data as a mixture of both012
known and novel instances. To address this, we013
propose MixORE, a two-phase framework that014
integrates relation classification and clustering015
to jointly learn known and novel relations. Ex-016
periments on three benchmark datasets demon-017
strate that MixORE consistently outperforms018
competitive baselines in known relation clas-019
sification and novel relation clustering. Our020
findings contribute to the advancement of gen-021
eralized OpenRE research and real-world appli-022
cations.023

1 Introduction024

Open Relation Extraction (OpenRE) is a fundamen-025

tal task in Information Extraction (IE) that aims to026

identify and extract relational facts between named027

entities from unlabeled data. Unlike traditional028

Relation Extraction (RE), which relies on a pre-029

defined set of relations and requires end-users to030

specify their information needs and provide costly031

annotations, OpenRE operates in a more flexible032

“open-world” setting. It proactively discovers novel033

relations, generalizes them into meaningful cate-034

gories, and identifies additional instances, making035

it a more adaptable approach for large-scale IE.036

In recent years, OpenRE has attracted increas-037

ing attention from researchers. Wang et al. (2022)038

and Li et al. (2022) introduce prompt-based learn-039

ing methods and advanced clustering techniques,040

achieving impressive results on unlabeled data.041

However, existing OpenRE methods typically as- 042

sume either that the unlabeled data consists entirely 043

of novel relations or that there is prior informa- 044

tion indicating whether an instance belongs to a 045

known or novel relation. These assumptions do not 046

accurately reflect the complexities of real-world 047

scenarios. 048

Hogan et al. (2023) further dispose of the sim- 049

plifying assumptions and make new assumptions 050

that the unlabeled data includes known and novel 051

instances and that novel relations are typically rare 052

and belong to the long-tail distribution. How- 053

ever, the “long-tail” assumption may not always 054

hold, particularly in scenarios where novel rela- 055

tions emerge as newly-recognized concepts in the 056

real world that have not yet been labeled. Addi- 057

tionally, novel relations may arise when human 058

annotators label only some relations within a large 059

dataset, leaving many potential relations uniden- 060

tified. Furthermore, we observe that a noticeable 061

performance gap still exists between known and 062

novel instances (Hogan et al., 2023), highlighting 063

the potential for further OpenRE research. 064

In this paper, we relax the “long-tail” assump- 065

tion and instead assume the unlabeled data contains 066

both known and novel instances, with no restric- 067

tions on the nature of these relations. We propose 068

MixORE model to effectively classify known in- 069

stances and identify novel relations within unla- 070

beled data. MixORE has two phases: novel re- 071

lation detection and open-world semi-supervised 072

joint learning (OW-SS joint learning). 073

In the first phase, our goal is to identify potential 074

novel relations within unlabeled data. We repre- 075

sent each known relation with a one-hot vector 076

in latent space and train a Semantic Autoencoder 077

(SAE) (Kodirov et al., 2017) on labeled data. The 078

trained SAE then maps both labeled and unlabeled 079

instances into the shared latent space, where known 080

instances will cluster around their respective one- 081

hot vectors. In contrast, novel instances, which are 082

1



less likely to align with any known relations, tend083

to appear as outliers in this mapping process. Fur-084

thermore, instances in the same novel relation often085

exhibit a clustering pattern. Therefore, we leverage086

each unlabeled instance’s similarity to the known087

relation one-hot vectors as a criterion for outlier088

detection. Subsequently, we apply the Gaussian089

Mixture Model (GMM) (Pedregosa et al., 2011) to090

cluster these outliers into novel relation groups and091

extract instances closest to each cluster centroid as092

high-quality weak labels for further training.093

In the second phase, OW-SS joint learning, we094

utilize weak labels and adopt a continual learn-095

ing strategy to align our approach with the evolv-096

ing nature of OpenRE in real-world applications.097

MixORE is designed based on the insight that098

classifying known relations requires learning com-099

pact and well-separated feature representations,100

whereas detecting novel relations benefits from cap-101

turing diverse and transferable features. To achieve102

this, we incorporate contrastive learning by lever-103

aging both labeled instances and data distribution104

to form positive pairs and propose the OW-SS loss105

function, which jointly optimizes relation classifi-106

cation and clustering.107

In summary, our main contributions are:108

• We comprehensively review the assumptions109

made in previous OpenRE studies and intro-110

duce a generalized OpenRE setting.111

• We propose a two-phase framework MixORE112

that learns discriminative features for known113

relations while continuously incorporating114

novel information from unlabeled data, mak-115

ing it more adaptable to OpenRE in real-world116

scenarios.117

• Experimental results demonstrate that our118

approach achieves remarkable performance119

on both known and novel relations across120

the FewRel, TACRED, and Re-TACRED121

datasets.122

2 Related Work123

Relation Extraction (RE) is an essential Natural124

Language Processing (NLP) task and has been ex-125

tensively studied with approaches relying on su-126

pervised learning techniques trained on manually127

annotated datasets (Miller et al., 1998; Zelenko128

et al., 2002; Peng et al., 2017; Zhong and Chen,129

2021; Wadhwa et al., 2023). While RE models130

achieve high performance, their dependency on131

large-scale labeled data presents a major limitation. 132

Moreover, they operate under a “closed-world” as- 133

sumption, where relations are pre-defined, limiting 134

their ability to handle emerging or novel relations. 135

To address these challenges, OpenRE is proposed 136

to proactively identify novel relations from unla- 137

beled data in an “open-world” setting, making it 138

more suitable for real-world, large-scale informa- 139

tion extraction. 140

Existing OpenRE methods mostly operate un- 141

der two settings. The first setting is unsupervised 142

relation extraction (URE), where models identify 143

relations between named entities from unlabeled 144

data without relying on manual annotations. Liu 145

et al. (2022) propose a hierarchical exemplar con- 146

trastive learning framework that refines relation rep- 147

resentations by leveraging both instance-level and 148

exemplar-level signals for optimization. Wang et al. 149

(2023) strengthen the discriminative power of con- 150

trastive learning with both within-sentence pairs 151

augmentation and augmentation through cross- 152

sentence pairs extraction to increase the diversity 153

of positive pairs. 154

The second setting of existing methods, semi- 155

supervised OpenRE, involves training models on 156

labeled data with known relations, while the un- 157

labeled data consists entirely of novel relations or 158

is pre-divided into known and novel sets. Wang 159

et al. (2022) develop a novel prompt-based frame- 160

work that enables the model to generate efficient 161

representations for instances in the open domain 162

and learn clustering novel relational instances. Li 163

et al. (2022) design a co-training framework that 164

combines the advantage of type abstraction and the 165

conventional token-based representation. 166

There are some recent studies trying to address 167

the open-world semi-supervised learning (Open- 168

world SSL) setting, where unlabeled data contains 169

a mixture of both known and novel classes. Cao 170

et al. (2022) propose ORCA for computer vision 171

tasks. This method introduces uncertainty adaptive 172

margin loss objective to either classify unlabeled 173

image instances into one of the known classes or 174

discover novel classes and assign instances to them. 175

Hogan et al. (2023) later introduce KNoRD for 176

open-world relation extraction. With prompt-based 177

training, KNoRD effectively classifies explicitly 178

and implicitly expressed relations from known and 179

novel relations within unlabeled data. However, 180

the authors assume novel relations are typically 181

rare and belong to the long-tail distribution. In this 182

study, we relax this assumption and instead assume 183
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Figure 1: Overview of MixORE Framework.

the unlabeled data comprises both known and novel184

instances, where the known and novel relations can185

be arbitrary.186

3 Task Formulation187

We formalize the OpenRE task as follows. Let188

x = [x1, ..., xn] denote a sentence, where xi rep-189

resents the i-th (1 ≤ i ≤ n) token. In the190

sentence, a named entity pair (eh, et) is recog-191

nized in advance, where eh represents the head192

entity and et represents the tail entity. Let Dl =193

[(x1,y1), ..., (xM ,yM )] be the labeled data con-194

sists of M instances with the corresponding sen-195

tences, the target entity pairs, and relation labels.196

Let Du = [(x1), ..., (xN )] be the unlabeled data197

consists of N instances with only corresponding198

sentences and target entity pairs. We denote the set199

of relations in the labeled data as Cknown and the200

set of relations in the unlabeled test data as Cu. Fol-201

lowing Cao et al. (2022), we assume category/class202

shift Cknown ⊆ Cu (i.e., the relations encountered203

at test time may not have been explicitly labeled or204

seen during training). We define the set of novel205

relations Cnovel = Cu − Cknown.206

The goal of OpenRE is to assign known in-207

stances in Du to their respective known relations208

Cknown, while also identifying |Cnovel| novel rela-209

tion clusters, where |Cnovel| represents the number210

of novel relations in the corpus.211

4 Methodology212

In this section, we introduce the proposed213

MixORE, a two-phase framework that integrates214

relation classification and clustering to jointly learn 215

known and novel relations. Our methodology in- 216

corporates novel relation detection for obtaining 217

weak labels and open-world semi-supervised joint 218

learning (OW-SS joint learning) to progressively 219

refine the model. Figure 1 provides an overview of 220

the framework. 221

4.1 Relation Encoder 222

Given a sentence along with its named entities 223

and entity types, the relation encoder generates 224

a vector representation that captures the relation- 225

ship between the entities. To highlight the enti- 226

ties of interest, we adopt entity marker tokens, a 227

widely used technique in relation extraction models 228

(Soares et al., 2019; Xiao et al., 2020; Liu et al., 229

2022; Wang et al., 2023). 230

Specifically, for a given sentence x = 231

[x1, ..., eh, ..., et, ..., xn], we insert <e1:type> and 232

</e1:type> to denote the beginning and end of 233

the head entity eh, and similarly, <e2:type> and 234

</e2:type> for the tail entity et, where "type" 235

is replaced with the actual entity type. We use 236

BERTbase model (Devlin et al., 2019) to obtain the 237

contextualized sentence representation h. To effec- 238

tively capture relational context and enhance focus 239

on the target entity pair, we derive the following 240

fixed-length relation representation: 241

hr = [h<e1:type>|h<e2:type>] (1) 242

to express the relation between the marked entities 243

in x , where | denotes the concatenation. 244
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Figure 2: Semantic Autoencoder (SAE)

4.2 Novel Relation Detection245

In the first phase of MixORE, our objective is to246

identify potential novel relations within unlabeled247

data. These novel relations, once detected, can be248

leveraged as weak labels to enhance the training249

process, particularly in real-world scenarios where250

labeled data is scarce or unavailable.251

Our novel relation detection approach is founded252

on the assumption that known instances naturally253

cluster around their respective relation centroids,254

forming well-defined groups. In contrast, novel255

instances, which do not correspond to any known256

relations, are likely to appear as outliers. How-257

ever, in practice, the lack of labeled data for novel258

relations results in ambiguous feature representa-259

tions, making it challenging to differentiate be-260

tween known and novel relations. Additionally,261

clustering algorithms such as K-Means and Gaus-262

sian Mixture Models (GMM) often struggle with263

high-dimensional feature spaces, further complicat-264

ing the task of accurately grouping novel instances.265

To effectively learn a low-dimensional projec-266

tion function that generalizes well to both known267

and novel relations, we employ the encoder-268

decoder paradigm. In this approach, the encoder269

maps a feature vector into an intermediate low-270

dimensional space, while the decoder imposes an271

additional constraint by ensuring that the projected272

representation can accurately reconstruct the orig-273

inal feature vector. Specifically, we adopt the Se-274

mantic Autoencoder (SAE) (Kodirov et al., 2017),275

a simple and extremely efficient architecture, as276

illustrated in Figure 2.277

The labeled data Dl is first processed by the re-278

lation encoder (defined in Sec. 4.1), generating279

the input data matrix X l = [(h1
r), ..., (h

M
r )]. It280

is projected into a latent space of |Cknown| dimen-281

sional with a projection matrix W . The latent282

space is constrained to serve as a semantic repre-283

sentation space. To enforce independence among 284

relations, we incorporate one-hot vectors to encode 285

known relations and obtain the latent representa- 286

tion Sl. To further simplify the model, we use tied 287

weights, that is, the transposed projection matrix 288

W T projects the latent representation Sl back to 289

the feature space, and becomes X̂ l. The learning 290

objective is as follows: 291

min
W

∥Xl −W⊤Sl∥2F + λ∥WXl − Sl∥2F , (2) 292

where λ is a weighting coefficient that balances 293

the contributions of the first and second terms, 294

corresponding to the losses of the decoder and 295

encoder, respectively. Following Kodirov et al. 296

(2017), we efficiently derive the optimal solution 297

for W with Bartels-Stewart algorithm (Bartels and 298

Stewart, 1972). 299

During inference, we input all unlabeled data 300

Du into the relation encoder, and subsequently pass 301

the resulting relation representations Xu through 302

the encoder of the SAE to obtain the latent repre- 303

sentation Su. For each vector v in Su, we calculate 304

its cosine similarity with each known relation one- 305

hot vector and record the highest similarity score 306

as its mapping score. This process assigns each in- 307

stance in Du to the most probable known relation. 308

We designate the 5% of unlabeled instances with 309

the lowest mapping scores as outliers. 310

Instances belonging to the same novel relation 311

also tend to cluster together. We subsequently 312

employ the Gaussian Mixture Model (GMM) (Pe- 313

dregosa et al., 2011) to cluster these outliers into 314

|Cnovel| novel relation clusters. GMM assumes 315

that the data points are generated from a mixture of 316

several Gaussian distributions, each representing a 317

cluster. The model defines the probability density 318

function (PDF) of the data as: 319

p(v|Θ) =

|Cnovel|∑
i=1

πiN (v|µi,Σi), (3) 320

where p(v|Θ) is the likelihood of observing data 321

point v, πi is the mixture weight of the i-th Gaus- 322

sian component, and N (v|µi,Σi) represents the 323

multivariate Gaussian distribution with mean µi 324

and covariance matrix Σi. 325

To extract high-quality weak labels for subse- 326

quent training, we select instances closest to each 327

cluster centroid. Specifically, we retain instances 328

with a GMM posterior probability greater than 0.95, 329

ensuring that only those with high confidence in 330
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their cluster assignments are used as weak labels.331

The resulting set of weakly-labeled instances is332

denoted as Dw.333

4.3 Open-world Semi-supervised Joint334

Learning335

The ultimate goal of the Open-world SSL setting is336

to adaptively expand the model’s understanding of337

novel relations while preserving high performance338

on known relations. To effectively handle both339

known and novel relations, we employ a continual340

learning (Wang et al., 2024) strategy. In the OW-SS341

joint learning phase, the proposed MixORE model342

is first warmed up by training on Dl, which consists343

of known relations only. Following the rehearsal-344

based strategy in Continual Relation Extraction345

(Cui et al., 2021; Wu et al., 2024), MixORE is con-346

tinually trained on both labeled known instances347

Dl and the weakly-labeled novel instances Dw.348

First, for relation classification, we employ the349

following cross-entropy loss function:350

Lc = − 1

Dc

Dc∑
i=1

|Cu|∑
r=1

yirlog(ŷ
i
r), (4)351

where yir is 1 if sample i belongs to relation r oth-352

erwise 0, ŷir is the predicted probability of sample i353

belongs to relation r, |Cu| = |Cknown|+ |Cnovel| is354

the number of relations in the unlabeled data, and355

Dc represents the number of labeled instances in356

the current epoch.357

Zhang et al. (2022) demonstrate that, in com-358

puter vision tasks, discriminative features are pre-359

ferred for classifying known classes, whereas rich360

and diverse features are essential for identifying361

novel classes. Such findings should also apply362

to OpenRE tasks, as classifying known relations363

requires learning compact and well-separated fea-364

ture representations, while detecting novel relations365

benefits from capturing diverse and transferable366

features that generalize beyond the labeled data.367

Contrastive Learning, a strategy widely adopted368

by state-of-the-art RE models (Liu et al., 2022;369

Wang et al., 2023; Wu et al., 2024), enhances rela-370

tion representations by pulling semantically simi-371

lar relation sentences (positive pairs) closer while372

pushing apart sentences with different relations373

(negative pairs). We integrate contrastive learn-374

ing using two strategies to form positive pairs:375

sampling from labeled instances and leveraging376

the data distribution. This approach enables us to377

jointly capture classification signals and the un- 378

derlying data distribution, leading to more robust 379

relation representations. 380

We begin by utilizing labeled data to construct 381

positive pairs. Since weak labels can be noisy, 382

to minimize the risk of introducing false posi- 383

tive pairs from Dw, we restrict the generation 384

of positive pairs to Dl. Specifically, we sample 385

instances from Dl such that two instances shar- 386

ing the same relation form a positive pair and 387

ensure that each relation has an equal number 388

of positive pairs sampled, except in cases where 389

there are insufficient instances to enumerate. Let 390

P = [(ar
1,pr

1), ..., (ar
Dm ,pr

Dm)] denote the 391

set of relation representations of the sampled Dm 392

positive pairs. In this work, we fix the number 393

of sampled positive pairs to Dm = 5Dc. As 394

noted by Wang et al. (2023), relation semantics 395

between two sentences should not be treated as a 396

strict “same/different” distinction but rather as a 397

similarity spectrum. To handle this, the triplet mar- 398

gin loss function for the labeled data positive pairs 399

is defined as: 400

Llm =
1

Dm

Dm∑
i=1

max{dist(ai
r,p

i
r)

− dist(ai
r,n

i
r) + γ, 0},

(5) 401

where dist(·) denotes the cosine distance function, 402

ni
r represents a randomly sampled negative exam- 403

ple for ai
r, and γ, known as the margin, is a hyper- 404

parameter. 405

To further incorporate data distribution, we en- 406

courage relation representations to align more 407

closely with their respective cluster centroids while 408

pushing them away from other clusters. Each in- 409

stance and its corresponding virtual centroid are 410

treated as a positive pair, reinforcing the cluster 411

structure in the representation space. Following Liu 412

et al. (2022), we select relational exemplars at mul- 413

tiple granularities by computing cluster centroids 414

for different values of k using K-Means algorithm. 415

These exemplars dynamically adjust in response 416

to parameter updates in the relation encoder dur- 417

ing each training epoch. Since an instance either 418

belongs to a cluster or not, we use the following 419

clustering exemplar loss function: 420

Le = −
Dc∑
i=1

1

L

L∑
l=1

log
exp(hi

r · elj/τ)∑cl
q=1 exp(h

i
r · elq/τ)

,

(6) 421
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where j ∈ [1, cl] represents the j-th cluster at gran-422

ularity layer l, elj is relation representation of the423

exemplar of instance i at layer l, and τ is a is a424

temperature hyperparameter (Wu et al., 2018).425

Our overall OW-SS loss function is defined as426

the addition of classification loss Lc, labeled data427

triplet margin loss Llm, and clustering exemplar428

loss Le:429

L = Lc + Llm + Le, (7)430

which jointly optimizes relation classification and431

clustering. The model architecture consists of a432

BERT encoder followed by a fully connected linear433

layer. The BERT encoder is fine-tuned using Eq. 7,434

while the linear layer parameters are updated based435

on Eq. 4.436

4.4 Inference437

During inference, each instance is encoded using438

the trained model to obtain its relation represen-439

tation and predicted label. If the predicted label440

corresponds to a known relation, it is directly ac-441

cepted as the final result. However, since novel442

relations are trained with weak labels, their pre-443

dicted labels may not be accurate. Therefore, we444

leverage relation representations for novel relations445

instead. Specifically, employ Faiss K-Means clus-446

tering algorithm (Johnson et al., 2021), an efficient447

implementation of K-Means optimized for large-448

scale and high-dimensional data, to cluster these449

relation representations and assign relations based450

on the clustering results.451

4.5 Data Augmentation452

Several studies have demonstrated that data aug-453

mentation can significantly enhance the perfor-454

mance of RE models (Liu et al., 2021, 2022;455

Wang et al., 2023). In this work, we apply the456

data augmentation technique proposed by Wang457

et al. (2023), which leverages within-sentence pairs458

augmentation and augmentation through cross-459

sentence pairs extraction to increase the diversity460

of positive pairs.461

5 Experiments462

5.1 Datasets463

Following Hogan et al. (2023), we adopt FewRel464

(Han et al., 2018), TACRED (Zhang et al., 2017),465

and Re-TACRED (Stoica et al., 2021) datasets to466

train and evaluate our model. To simulate the467

OpenRE task in real-world scenarios, we assign468

|Cnovel| = 6 relations as novel relations for each469

dataset, and the remaining relations are considered 470

as known relations. For each known relation, we al- 471

locate half of its instances to the labeled dataset Dl. 472

The unlabeled dataset Du consists of the remaining 473

half known instances along with all instances from 474

novel relations. 475

FewRel dataset includes additional relation hi- 476

erarchies. To challenge the generalizability of 477

OpenRE models, we assign each instance its top- 478

level relation as the ground-truth label. We identify 479

six single relations without a parent and designate 480

them as novel relations. For TACRED and Re- 481

TACRED datasets, novel relations are randomly 482

selected from all relations. For more details about 483

each dataset’s split, see Table 1 and Appendix A.1. 484

Dataset |Cknown| |Dl| |Cu| |Du|
FewRel 35 22050 41 26250

TACRED 35 10074 41 11692
Re-TACRED 33 15586 39 18082

Table 1: Statistics of labeled and unlabeled datasets.

485

5.2 Baselines 486

We compare the proposed model MixORE with the 487

following state-of-the-art OpenRE methods: (1) 488

ORCA (Cao et al., 2022), (2) MatchPrompt (Wang 489

et al., 2022), (3) TABs (Li et al., 2022), (4) Hi- 490

URE (Liu et al., 2022), (5) AugURE (Wang et al., 491

2023), and (6) KNoRD (Hogan et al., 2023). Ex- 492

cept for KNoRD, these baselines are not inherently 493

designed for the generalized OpenRE setting and 494

therefore require extensions. The extended base- 495

lines and related modifications are discussed as 496

follows. 497

ORCA: As a computer vision model designed for 498

a similar generalized open-world setting, ORCA 499

does not require structural modifications. It is 500

adapted to the relation extraction task by replac- 501

ing ResNet with DeBERTa (He et al., 2021) and 502

generating relation representations. 503

MatchPrompt′ and TABs′: The OpenRE meth- 504

ods MatchPrompt and TABs are inherently limited 505

in their ability to differentiate between known and 506

novel instances within unlabeled data. To address 507

this, we treat all relations as novel and allow these 508

models to effectively cluster the unlabeled data. We 509

then apply the Hungarian Algorithm (Kuhn, 2010) 510

to align some clusters with known relations, en- 511

abling performance evaluation on both known and 512

novel relations. 513
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Dataset Method P R F1 B3 V-measure ARIPrec. Rec. F1 Hom. Comp. F1

FewRel

ORCA 0.6095 0.6328 0.6210 0.6347 0.4823 0.5481 0.6335 0.4848 0.5492 0.4318
MatchPrompt′ 0.7575 0.6271 0.6862 0.3031 0.8196 0.4426 0.4036 0.7599 0.5272 0.2394

TABs′ 0.7296 0.6955 0.7121 0.9193 0.7125 0.8028 0.9088 0.7071 0.7953 0.7746
HiURE∗ 0.4441 0.4260 0.4349 0.9660 0.8147 0.8838 0.9615 0.8042 0.8758 0.8735

AugURE∗ 0.5005 0.4770 0.4884 0.9720 0.7914 0.8723 0.9647 0.7941 0.8711 0.8568
KNoRD 0.7701 0.7775 0.7738 0.8230 0.6587 0.7318 0.8286 0.6519 0.7297 0.6945
MixORE 0.8606 0.8067 0.8328 0.9585 0.8426 0.8968 0.9490 0.8206 0.8802 0.8817

TACRED

ORCA 0.6845 0.7534 0.7173 0.7501 0.4751 0.5817 0.7381 0.4696 0.5740 0.4622
MatchPrompt′ 0.7145 0.5989 0.6516 0.9357 0.6046 0.7345 0.9288 0.6468 0.7626 0.7159

TABs′ 0.7650 0.8175 0.7904 0.8908 0.5462 0.6772 0.8937 0.6214 0.7331 0.6647
HiURE∗ 0.4976 0.4699 0.4831 0.8908 0.7289 0.8003 0.9010 0.7520 0.8194 0.7953

AugURE∗ 0.4989 0.4751 0.4867 0.8966 0.7743 0.8309 0.9071 0.7718 0.8340 0.8001
KNoRD 0.8404 0.8638 0.8519 0.8860 0.6778 0.7680 0.8967 0.7033 0.7883 0.7193
MixORE 0.8624 0.9052 0.8833 0.8973 0.8429 0.8682 0.9081 0.8182 0.8599 0.8473

Re-TACRED

ORCA 0.6578 0.7520 0.7018 0.6782 0.7810 0.7260 0.6388 0.6783 0.6579 0.5552
MatchPrompt′ 0.7160 0.5564 0.6262 0.9875 0.5416 0.6995 0.9805 0.6301 0.7672 0.6223

TABs′ 0.5976 0.6056 0.6015 0.9715 0.5054 0.6649 0.9653 0.6136 0.7503 0.5582
HiURE∗ 0.4341 0.4041 0.4185 0.9721 0.7174 0.8253 0.9694 0.7250 0.8294 0.8494

AugURE∗ 0.4551 0.4313 0.4429 0.9942 0.7575 0.8596 0.9908 0.7639 0.8625 0.8767
KNoRD 0.8493 0.8853 0.8669 0.9698 0.4763 0.6389 0.9583 0.5903 0.7306 0.5081
MixORE 0.8972 0.9349 0.9156 0.9779 0.7918 0.8750 0.9718 0.7733 0.8613 0.8925

Table 2: Performance of all methods on FewRel, TACRED, and Re-TACRED datasets. Precision (P), Recall (R),
and F1 score are reported on ground-truth known instances. B3, V-measure, and ARI evaluate the clustering
performance on ground-truth novel instances. The details of baseline methods can be found in Sec. 5.2.

HiURE∗ and AugURE∗: The original HiURE514

and AugURE models both operate in an unsuper-515

vised manner. For fair comparisons, we incorporate516

a supervised cross-entropy loss in addition to their517

overall loss function to help fine-tune their relation518

encoders. Similarly, we leverage the Hungarian519

Algorithm to assign clusters to known relations.520

Additionally, we exclude the use of ChatGPT in521

the AugURE model.522

5.3 Evaluation Metrics523

We evaluate the model performance on the un-524

labeled dataset Du. For instances belonging to525

ground-truth known relations, we measure the per-526

formance using precision, recall, and F1 score. For527

ground-truth novel relation instances, we evaluate528

clustering performance using B3 (Bagga and Bald-529

win, 1998), V-measure (Rosenberg and Hirschberg,530

2007), and Adjusted Rand Index (ARI) (Hubert531

and Arabie, 1985). For all of these metrics, higher532

values indicate better performance.533

• B3 precision and recall measure the quality534

and coverage of relation clustering, respec-535

tively. B3 F1 score is computed to provide536

a balanced evaluation of clustering perfor-537

mance.538

• V-measure is another widely used metric for539

evaluating clustering quality. Unlike B3,540

which treats each instance individually, V- 541

measure evaluates both intra-cluster homo- 542

geneity and inter-cluster completeness, offer- 543

ing a more comprehensive assessment of clus- 544

tering performance by considering the overall 545

structure of the clusters. 546

• Adjusted Rand Index (ARI) measures the level 547

of agreement between the clusters produced 548

by the model and the ground truth clusters. It 549

ranges from [−1, 1], where a value close to 1 550

indicates strong agreement, 0 represents ran- 551

dom clustering, and negative values suggest 552

disagreement. 553

5.4 Main Results 554

We evaluate MixORE against state-of-the-art base- 555

line models on the FewRel, TACRED, and Re- 556

TACRED datasets. Additional implementation de- 557

tails are provided in Appendix A.2. For all models, 558

the average performance of two random runs is 559

reported. The main results are shown in Table 2. 560

On ground-truth known relations, MixORE con- 561

sistently outperforms the baseline models across 562

all datasets, achieving the highest precision, recall, 563

and F1 score. Notably, MixORE surpasses the 564

previous best OpenRE model, KNoRD, by 5.90%, 565

3.14%, and 4.87% in F1 score on FewRel, TA- 566
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Method P R F1 B3 V-measure ARIPrec. Rec. F1 Hom. Comp. F1
MixORE 0.8606 0.8067 0.8328 0.9585 0.8426 0.8968 0.9490 0.8206 0.8802 0.8817

− NRD (pred_known) 0.7374 0.8440 0.7871 - - - - - - -
− NRD (pred_novel) - - - 0.9709 0.8065 0.8807 0.9612 0.8016 0.8741 0.8651
− Continual Learning 0.8484 0.8056 0.8264 0.8573 0.7830 0.8134 0.8648 0.7746 0.8154 0.7516
− Clustering Loss Le 0.8440 0.8063 0.8246 0.9373 0.7972 0.8615 0.9256 0.7771 0.8448 0.8382

Table 3: Ablation study on FewRel dataset.

CRED, and Re-TACRED, respectively. This high-567

lights the effectiveness of MixORE in improving568

the classification performance of known relations.569

In novel relation clustering, MixORE demon-570

strates competitive performance, consistently rank-571

ing among the top-performing models. Although572

other baselines occasionally achieve higher scores573

on certain metrics, MixORE exhibits the strongest574

overall performance, especially on the TACRED575

dataset, where it attains the highest B3 F1 score,576

V-measure F1 score, and ARI. Compared to the577

second-best model, AugURE∗, MixORE achieves578

improvements of 3.73%, 2.59%, and 4.72% in579

these metrics on the TACRED dataset, respectively.580

These results suggest that MixORE effectively581

captures meaningful relation representations while582

maintaining a balance between known relation clas-583

sification and novel relation clustering.584

5.5 Ablation Study585

To evaluate the contribution of different compo-586

nents, we conduct an ablation study by systemati-587

cally excluding specific components. The results588

on FewRel dataset are presented in Table 3.589

To assess the impact of the novel relation de-590

tection (NRD) module, we remove all the weakly-591

labeled novel instances from the training set (re-592

ferred to as “− NRD”). Without NRD, the model593

cannot distinguish between known and novel rela-594

tions in the unlabeled data, so we present the results595

as two separate settings: (1) pred_known, where596

the model assumes all relations are known and per-597

forms classification on the unlabeled data, and (2)598

pred_novel, where the model treats all relations599

as novel and performs clustering using K-Means600

algorithm. Subsequently, setting (1) and setting601

(2) are evaluated against ground-truth known and602

novel instances, respectively. The results reveal603

that excluding NRD leads to a notable -4.57% drop604

in the F1 score of known relation classification and605

a slight decline in novel relation clustering perfor-606

mance. This indicates that the weak labels play607

an essential role in enhancing the discriminative608

power on the relation classification task. 609

We also evaluate the performance of MixORE 610

without the continual learning paradigm, where 611

the model is initially provided with both labeled 612

data and the weakly-labeled novel instances (re- 613

ferred to as “− Continual Learning”). As a result, 614

we observe a minor decrease in known relation 615

classification performance and a significant drop 616

(-8.34%, -6.48%, and -13.01% in B3 F1 score, V- 617

measure F1 score, and ARI, respectively) in the 618

clustering performance of novel relations. These 619

results demonstrate that continual learning allows 620

MixORE to use previously acquired knowledge to 621

more effectively learn novel relations, making it 622

well-suited for dynamic and evolving tasks. 623

To study the advantage of incorporating data dis- 624

tribution, we exclude the clustering exemplar loss 625

function Le from MixORE’s parameter updates 626

(referred to as “− Clustering Loss Le”). The re- 627

sults show a small decrease in the classification 628

performance of known relations. For novel relation 629

clustering, we see a performance change of -3.53%, 630

-3.54%, and -4.35% in B3 F1 score, V-measure F1 631

score, and ARI, respectively. This suggests that 632

considering data distribution is beneficial for both 633

known relation classification and novel relation 634

clustering tasks. 635

6 Conclusion 636

This paper explores the generalized OpenRE task 637

and introduces MixORE, a two-phase framework 638

that jointly optimizes relation classification and 639

clustering. MixORE effectively learns discrimi- 640

native features for known relations while progres- 641

sively integrating novel information from unlabeled 642

data. Experiments on three benchmark datasets 643

show the superiority of MixORE over competitive 644

baselines, highlighting its effectiveness in balanc- 645

ing known relation classification and novel relation 646

discovery. Our work advances the OpenRE task by 647

introducing a more adaptable approach and offer- 648

ing valuable insights for both future research and 649

real-world applications. 650
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Limitations651

While our proposed framework demonstrates652

strong performance in generalized OpenRE, it has653

certain limitations that call for further exploration.654

One limitation of our approach is that it cannot655

automatically determine the number of novel re-656

lations present in the unlabeled data. Instead, it657

relies on a pre-defined number of clusters, which658

may not always align with the true distribution of659

novel relations. Future work could explore adaptive660

clustering techniques to dynamically estimate the661

number of novel relations, enhancing the flexibility662

and applicability of our framework.663

Another limitation stems from our implicit as-664

sumption that relations are independent of each665

other. In reality, relations may have hierarchical666

dependencies, such as being child or parent rela-667

tions of other relations. Our current method does668

not explicitly model these dependencies, which669

may lead to suboptimal performance. Future re-670

search could incorporate relational hierarchies into671

the learning process, enabling a more comprehen-672

sive understanding of relation dependencies and673

improving the model’s ability to handle complex674

relation structures.675

Ethics Statement676

We comply with the ACL Code of Ethics.677
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A Appendix852

A.1 Novel Relations in Each Dataset853

The six single relations without a parent we used854

as FewRel novel relations are as follows:

“publisher”
“nominated for”

“instrument”
“notable work”

“competition class”
“position played on team/speciality”

855

The randomly selected novel relations from TA-856

CRED are as follows:

“per:city_of_birth”
“org:stateorprovince_of_headquarters”

“org:member_of”
“per:date_of_death”
“per:city_of_death”

“per:children”

857

The randomly selected novel relations from Re-858

TACRED are as follows:

“per:siblings”
“org:founded_by”

“org:city_of_branch”
“per:countries_of_residence”

“per:date_of_birth”
“per:city_of_death”

859

A.2 Implementation Details860

In the first phase, we set the weighting coefficient861

to λ = 100. During the second phase, we optimize862

the loss using AdamW (Loshchilov and Hutter,863

2019). The encoder is warmed up for 2 epochs and864

continually trained for 5 epochs, all with a learning865

rate of 1e − 5. We set the margin for the triplet866

margin loss on labeled data to γ = 0.75. For the867

clustering exemplar loss function, we use a temper-868

ature parameter of τ = 0.02 and include J = 10869

negative examples. We implement the granularity870

layer with L = 4, setting cl ∈ [16, 32, 41, 64] for871

FewRel and TACRED, and cl ∈ [16, 32, 39, 64] for872

Re-TACRED. All experiments are conducted on an873

NVIDIA Tesla V100 GPU.874

This work and its associated artifacts are licensed875

under the Creative Commons Attribution 4.0 In-876

ternational (CC BY 4.0) License, allowing unre-877

stricted use, distribution, and reproduction, pro- 878

vided the original work is properly cited using stan- 879

dard academic practices. 880
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