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Abstract

Model explanations are very valuable for interpreting and debugging prediction1

models. We study a specific kind of global explanations called Concept Expla-2

nations, where the goal is to interpret a model using human-understandable con-3

cepts. Recent advances in multi-modal learning rekindled interest in concept ex-4

planations and led to several label-efficient proposals for estimation. However,5

existing estimation methods are unstable to the choice of concepts or dataset that6

is used for computing explanations. We observe that instability in explanations is7

because estimations do not model noise. We propose an uncertainty aware estima-8

tion method, which readily improved reliability of the concept explanations. We9

demonstrate with theoretical analysis and empirical evaluation that explanations10

computed by our method are stable to the choice of concepts and data shifts while11

also being label-efficient and faithful.12

1 Introduction13

With the ever increasing complexity of ML models, there is an increasing need to explain them.14

Concept-based explanations are a form of interpretable methods that explain predictions using high-15

level and semantically meaningful concepts (Kim et al., 2018). They are aligned with how humans16

communicate their decisions (Yeh et al., 2022) and are shown (Kim et al., 2018, 2023b) to be more17

preferable over explanations using salient input features (Ribeiro et al., 2016; Selvaraju et al., 2017)18

or salient training examples (Koh & Liang, 2017). Concept explanations show potential in scientific19

discovery (Yeh et al., 2022) and for encoding task-specific prior knowledge (Yuksekgonul et al.,20

2022).21

Concept explanations explain a pretrained prediction model by estimating the importance of con-22

cepts using two human-provided resources: (1) a list of potentially relevant concepts for the task,23

(2) a dataset of examples usually referred to as the probe-dataset. Estimation proceeds in two steps:24

compute the log-likelihood of concept called concept activations for every example (in the probe-25

dataset) and then aggregate their local activation scores into a globally relevant explanation. For26

example, the concept wing is considered important if the information about the concept is encoded27

in all examples of the plane class in the dataset. Because concept explanations are global, they are28

easy to interpret and have witnessed wide recognition in diverse applications (Yeh et al., 2022).29

Despite their easy interpretation, concept explanations are known to be unreliable and data expen-30

sive. Ramaswamy et al. (2022a) showed that existing estimation methods are sensitive to the choice31

of concept set and dataset raising concerns over their interpretability. Another major limitation of32

concept-based explanation is the need for datasets with concept annotations, which are necessary33

in order to explain the concept. Increasingly popular multimodal models such as CLIP (Radford34

et al., 2021) present an exciting alternate direction to provide relevant concepts, especially for com-35
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mon image applications: through their text description. Recent work has explored using multimodal36

models for training concept-bottleneck models (Oikarinen et al., 2023; Yuksekgonul et al., 2022;37

Moayeri et al., 2023), but such multimodal models are not yet thoroughly evaluated for generating38

post-hoc concept explanations.39

Our objective is to generate reliable concept explanations without requiring concept annotations. We40

observed that per-example concept activations, which are aggregated into a global explanation, can41

be noisy for irrelevant or hard-to-predict concepts. Since estimation methods do not model noise42

in concept activations, it cascades into the estimated concept explanation. As a further motivation43

for modeling uncertainty, imagine the following two scenarios, Section 4.1 presents more concrete44

scenarios leading to unreliable explanations. (1) When a concept is missing from the dataset, we45

cannot estimate its importance with confidence. Reporting uncertainty over estimated importance of46

a concept can thus help the user make a more informed interpretation. (2) The concept activations47

cannot be accurately estimated for irrelevant or hard concepts, which must be modeled using error48

intervals on the concept activations. Appreciating the need to model uncertainty, we present an es-49

timator called Uncertainity-Aware Concept Explanations (U-ACE), which we show is instrumental50

in improving reliability of explanations.51

Contributions. • We motivate the need for modeling uncertainty for faithful estimation of concept52

explanations. • We propose a Bayesian estimation method called U-ACE that is both label-free and53

models uncertainty in the estimation of concept explanations. • We demonstrate the merits of our54

proposed method U-ACE through theoretical analysis and empirical evidence on two controlled55

datasets and two real-world datasets.56

2 Background and Motivation57

We denote the model-to-be explained as f : RD → RL that maps D-dimensional inputs to L labels.58

Further, we use f [l](x) to denote lth layer representation space. Given a probe-dataset of examples:59

D = {x(i)}Ni=1 and a list of concepts C = {c1, c2, . . . , cK}, our objective is to explain the pretrained60

model f using the specified concepts. The concepts are demonstrated using potentially small and61

independent datasets with concept annotations {Dk
c : k ∈ [1,K]} where Dk

c is a dataset with positive62

and negative examples of the kth concept.63

Concept-Based Explanations (CBE) estimate explanations in two steps. In the first step, they64

learn concept activation vectors that predict the concept from lth layer representation of an ex-65

ample. More formally, we learn the concept activation vector vk for kth concept by optimizing66

vk = argmaxv E(x,y)∼D(k)
k

[ℓ(vT f [l](x), y)] where ℓ is the usual cross-entropy loss. The inner67

product of representation with the concept activation vector: vTk f
[l](x) is what we refer to as con-68

cept activations. Various approaches exist on how the concept activations are used to compute global69

explanations for the second step. Kim et al. (2018) computes sensitivity of logits to interventions70

on concept activations to compute what is known as TCAV score per example per concept and re-71

ports fraction of examples in the probe-dataset with a positive TCAV score. Zhou et al. (2018)72

proposed to decompose the classification layer weights with [v1, v2, . . . , vk] and use coefficients as73

the importance score. We refer the reader to Yeh et al. (2022) for an in-depth survey.74

Data-efficient concept explanations. A major limitation of CBEs is their need for datasets with75

concept annotations: {D1
c ,D2

c , . . . }. In practical applications, we may wish to find important con-76

cepts among thousands of potentially relevant concepts, which is not possible without expensive77

data collection. Recent proposals (Yuksekgonul et al., 2022; Oikarinen et al., 2023; Moayeri et al.,78

2023) suggested using pretrained multimodal models like CLIP to evade the data annotation cost79

for a related problem called Concept Bottleneck Models (CBM) (Koh et al., 2020). CBMs aim to80

train inherently interpretable model with concept bottleneck. Although CBMs cannot generate ex-81

planations for a model-to-be-explained, a class of algorithms propose to train what are known as82

Posthoc-CBMs using the representation layer of a pretrained task model for data efficiency. Given83

that Posthoc-CBMs base on the representation of a pretrained task model, we may use them to84

generate concept explanations. We describe briefly two such CBM proposals below.85

Oikarinen et al. (2023) (O-CBM) estimates the concept activation vectors by learning to linearly86

project from the embedding space of CLIP where the concept is encoded using its text description87
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Figure 1: Our proposed estimator: Uncertainity-Aware Concept Explanations

to the embedding space of the model-to-be-explained: f . It then learns a linear classification model88

on concept activations and returns the weight matrix as the concept importance score. Based on the89

proposal of Yuksekgonul et al. (2022), we can also generate explanations by training a linear model90

to match the predictions of model-to-be-explained using the concept activations of CLIP, which we91

denote by (Y-CBM).92

Limitation: Unreliable Explanations. We noted critical reliability concerns with existing CBEs93

in the same spirit as the challenges raised in Ramaswamy et al. (2022a). As we demonstrate in94

Section 4.1, concept explanations for the same model-to-be-explained vary with the choice of probe-95

dataset and the concept set bringing into question the reliability of explanations.96

3 Uncertainity-Aware Concept Explanations97

As summarized in the previous section, CBEs rely on concept activations for generating explana-98

tions. It is not hard to see that the activation score of a concept cannot be predicted confidently99

if the concept is hard or if it is not used by the model-to-be-explained. The noise in concept ac-100

tivations if not modeled cascades into the next step leading to high variance or poor explanations.101

Moreover, importance of a concept cannot be confidently estimated if it is missing from the dataset,102

which must be informed to the user through confidence interval on the concept’s estimated impor-103

tance score. Motivated by the role of uncertainty in estimation and for explanations, we design our104

estimator described below.105

Our approach has the following steps. (1) Estimate concept activations along with their error inter-106

val, (2) Compute and return a linear predictor model that is robust to input noise. We describe the107

estimation of concept activations and their error given an instance x denoted as m⃗(x), s⃗(x) respec-108

tively in Section 3.1. Once concept activations are computed, we proceed with the linear estimator109

as follows.110

Our objective is to learn linear model weights Wc of size L×K (recall that K is number of concepts111

and L the number of labels) that map the concept activations to their logit scores, i.e. f(x) ≈112

Wcm⃗(x). Since the concept activations contain noise, we require that Wc is such that predictions113

do not change under noise, that is Wc[m⃗(x) + s⃗(x)] ≈ Wcm⃗(x) =⇒ Wcs⃗(x) ≈ 0. I.e. the114

inner product of each row (w⃗) of Wc with s⃗(x) must be negligible. The constraint translates to a115

neat distributional prior over weights when we approximate the heteroskedastic input noise with its116

average: ϵ =
∑

x∈D
⃗s(x)

N , which is shown below.117

|w⃗T ϵ| ≤ δ, for some small δ > 0 with high probability

=⇒ w⃗T diag(ϵϵT )w⃗ ≤ δ2 =⇒ w⃗ ∼ N (0, λdiag(ϵϵT )), λ > 0

We observe therefore that the weight vectors drawn from N (0, λdiag(ϵϵT )) satisfy the invariance118

to input noise constraint with high probability (w.h.p.) for a sufficiently large λ. We now esti-119

mate the posterior on the weights after having observed the data with the prior on weights set to120

N (0, λdiag(ϵϵT )). The posterior over weights has the following closed form(Salakhutdinov, 2011)121

where CX = [m⃗(x1), m⃗(x2), . . . , m⃗(xN )] and Y = [f(x1), f(x2), . . . , f(xN )]T .122

w⃗ ∼ N (µ,Σ) where µ = Σ−1CXY, Σ−1 = βCXCT
X + (λdiag(ϵϵT ))−1 (1)
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β is the inverse variance of noise in observations. We optimise β and λ using MLE on D (Ap-123

pendix B).124

Sparsifying weights for interpretability. Because a dense weight matrix can be hard to interpret,125

we induce sparsity in Wc by setting all the values below a threshold to zero. The threshold is picked126

such that the accuracy on train split does not fall by more than κ, which is a positive hyperparameter.127

The estimator shown in Equation 1 and details on how we estimate the noise in concept activa-128

tions presented in the next section completes the description of our estimator. We call our estimator129

Uncertainity-Aware Concept Explanations (U-ACE) because it models also the uncertainty in con-130

cept activations. Algorithm 1 summarizes our proposed system.131

3.1 Estimation of concept activations and their noise132

Pretrained image-text multimodal systems can embed both images and text in a shared representation133

space, which enables one to estimate the similarity of an image to a sentence. This presents us an in-134

teresting solution approach of specifying a concept using its text description (Tk for the kth concept)135

thereby avoiding the need for concept datasets. We denote by g(x) the image embedding of x by136

CLIP and gtext(Tk) the text embedding. We may compute a concept activation score of an instance137

x for a concept k by simply computing the inner product of CLIP embeddings g(x)T gtext(Tk). We138

require, however, to estimate concept activations using the model-to-be-explained. We can do so139

if we can find a vector in the embedding space of f corresponding to gtext(Tk). We turn to the140

method proposed in Oikarinen et al. (2023) to register representation spaces. Their procedure is141

summarised below, where we wish to optimise for a weight vector vk in the representation space of142

f corresponding to wk = gtext(Tk) in g.143

Embed v in the representation space of f : e(v, f,D) = [vT f(x1), v
T f(x2), . . . , v

T f(xN )]T144

Embed wk = gtext(ck) in the representation space of g: e(wk, g,D) = [wT
k g(x1), . . . , w

T
k g(xN )]T145

optimize for v that is closest to wk: vk = argmaxv[cos-sim(e(v, f,X), e(wk, g, D̂))]146

cos(αk) ≜ cos-sim(e(vk, f,D), e(wk, g,D)), which loosely informs how well vk approximates wk.147

We may repeat the estimation procedure and set αk to sample mean for a better estimate. The mean148

concept activations and their confidence interval can now be estimated using cos(αk) as given by149

the following result, proof in Appendix C.150

Proposition 1. For a concept k and cos(αk) defined as above, we have the following result when
concept activations in f for an instance x are computed as cos-sim(f(x), vk) instead of vTk f(x).

m⃗(x)k = cos(θk)cos(αk), s⃗(x)k = sin(θk)sin(αk)

where cos(θk)=cos-sim(gtext(Tk), g(x)) and m⃗(x)k, s⃗(x)k denote the kth element of the vector.151

The mean and scale values above have a clean interpretation. If model-to-be-explained (f ) uses the152

kth concept for label prediction, the information about the concept is encoded in f and we get a153

good fit, i.e. cos(αk) ≈ 1, and a small error on concept activations. On the other hand, error bounds154

are large and concept activations are suppressed when the fit is poor, i.e. cos(αk) ≈ 0.155

Algorithm 1: Uncertainity-Aware Concept Explanations (U-ACE)

Require: D={x1,x2, . . . ,xN}, f (model-to-be-explained), g (CLIP), κ (tolerance hparam)
for y = 1, . . . , L do

Y = [f(x) for x ∈ D̂]T ▷ Gather logits
CX = [m⃗(x1), . . . , m⃗(xN )], ϵ = ED[s⃗(x)] ▷ Estimate m⃗(x), s⃗(x) (Section 3.1)
w⃗y ∼ N (µy,Σy) where µy,Σy from Equation 1 ▷ Estimate λ, β using MLL

end for
Wc = sparsify([µ⃗1, µ⃗2, . . . µ⃗L], κ) ▷ Suppress less useful weights, Section 3
return Wc, [diag(Σ1), diag(Σ2), . . . diag(ΣL)]

4 Experiments156

We evaluate U-ACE on two synthetic and two real-world datasets. We demonstrate how reliability157

of explanations is improved by U-ACE in Section 4.1. For a comparative analysis, we utilize four158
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baseline methods; Simple: , TCAV (Kim et al., 2018), O-CBM (Oikarinen et al., 2023), and Y-159

CBM. Our experiments employ a Visual Transformer (with 32 patch size called ”ViT-B/32”) based160

pretrained CLIP model that is publicly available for download. The details of our experimental161

settings can be found in the Appendix.162

4.1 Simulated Study163

Figure 2: Toy

In this section, we consider explaining a two-layer CNN model trained to classify164

between solid color images with pixel noise as shown in Figure 2. The colors on165

the left: red, green are defined as label 0 and the ones on the right are defined166

as label 1: blue, white. The model-to-be-explained is trained on a dataset with167

equal proportion of all colors, so we expect that all constituent colors of a label168

are equally important for the label. We specify a concept set with the four colors169

encoded by their literal name: red, green, blue, white. U-ACE (along with others)170

attribute positive importance for red, green and negative or zero importance for blue, white when171

explaining label 0 using a concept set with only the four task-relevant concepts and when the probe-172

dataset is the same distribution as the the training dataset. However, quality of explanations quickly173

degrade when the probe-dataset is shifted or if the concept set is misspecified.174
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Figure 3: Left, middle plots show the importance of red and green concepts while the rightmost plot
shows their importance score difference. U-ACE estimated large uncertainty in importance score
when red or green concept is missing from the dataset as seen in the left of the left and middle plots.

Unreliability due to dataset shift. We varied the probe-dataset to include varying population of175

different colors while keeping the concept set and model-to-be-explained fixed. We observed that176

importance of a concept estimated with standard CBEs varied with the choice of probe-dataset for177

the same underlying model-to-be-explained as shown in left and middle plots of Figure 3. Most178

methods attributed incorrect importance to the red concept when it is missing (left extreme of left179

plot), and similarly for the green concept (left extreme of middle plot). The explanations have led the180

user to believe that green is more important than red or red is more important than green depending181

on the probe-dataset used as shown in the right most plot. Because U-ACE also informs the user of182

uncertainty in the estimated importance, we see that the difference in importance scores between the183

two colors at either extremes is not statistically significant, also shown in the rightmost plot.184

Unreliability due to misspecified concept set. We simulate a over-complete concept set scenario185

analogous to the settings analyzed in Section A and empirically confirm the merits of U-ACE.186

Appendix I presents and evaluates on an under-complete concept setting.187
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0 10 20 30 40 50
Number of fruit concepts

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

M
os

t s
al

ie
nt

 fr
ui

t s
co

re

O-CBM
Y-CBM
U-ACE

Figure 4

Over-complete concept set. We gradually expanded189

the concept set to also include common fruit names as190

concepts along with the four initial color concepts (Ap-191

pendix H.1 contains the full list) while using an in-192

distribution probe-dataset. Figure 4 shows the most193

salient fruit concept with increasing number of fruit (nui-194

sance) concepts and note that U-ACE is far more robust195

to the presence of nuisance concepts. Robustness to ir-196

relevant concepts is important because it allows the user197

to begin with a superfluous set of concepts and find their198

relevance to model-to-be-explained instead of requiring199
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Tree Farm
Simple: tree, field, bush
O-CBM: forest, pot, sweater
Y-CBM: field, forest, elevator
U-ACE: foliage, forest, grass

Coast
Simple: sea, water, river
O-CBM: sea, island, pitted
Y-CBM: sea, sand, towel rack
U-ACE: sea, lake, island

Pasture
Simple: horse, sheep, grass
O-CBM: shaft, hoof, exhibitor
Y-CBM: field, grass, ear
U-ACE: grass, cow, banded

Runway
Simple: plane, field, sky
O-CBM: plane, fuselage, apron
Y-CBM: plane, clouds, candlestick
U-ACE: plane, windscreen, sky

Figure 5: Top-2 salient concepts plus any mistake (marked in red) from top-10 salient concepts for
a scene-classification model estimated with PASCAL (left) or ADE20K (right) probe-dataset.

to guess relevant concepts, which is ironically the very200

purpose of using concept explanations.201

4.2 Real-world evaluation202

We expect that our reliable estimator to also generate higher quality concept explanations in practice.203

To verify the same, we employ a scene classification model with ResNet-18 architecture pretrained204

on Places365 (Zhou et al., 2017a), which was publicly available. Details of our real-world experi-205

mental setup are provided in the Appendix.206

We evaluate quality of explanations by their closeness to the explanations generated using the Simple207

baseline. Simple estimates explanation using concept annotations and therefore its explanation must208

be the closest to the ground-truth. For the top-20 concepts identified by Simple, we compute the209

average absolute difference in importance scores estimated using any estimation method and Simple.210

Table 1 presents the deviation in explanations averaged over all the 50 scene labels. Figure 5 shows211

the most salient concepts for four scene labels. We note that U-ACE generated explanations are more212

convincing over O-CBM or Y-CBM. We also evaluated the explanation quality using a standard213

measure for comparing ranked lists, which is presented in Appendix H.1, and further confirms the214

dominance of U-ACE.215

Dataset shift. Ramaswamy et al. (2022a) demonstrated with results the drastic shift in concept216

explanations for the same model-to-be-explained when using ADE20K or PASCAL as the probe-217

dataset. Explanations diverge partly because (a) population of concepts may vary between datasets218

thereby influencing their perceived importance when using standard methods, (b) variance in expla-219

nations. We have demonstrated that U-ACE estimated importance scores have low variance (shown220

in Section A, 4.1) and attributes high uncertainty and thereby near-zero importance to concepts that221

are rare or missing from the probe-dataset (Section 4.1).222

Dataset↓ TCAV O-CBM Y-CBM U-ACE
ADE20K 0.13 0.19 0.16 0.09
PASCAL 0.41 0.20 0.18 0.11

Table 1: Evaluation of explanation quality. Each
cell shows the average absolute difference of im-
portance scores for top-20 concepts estimated us-
ing Simple.

Simple TCAV O-CBM Y-CBM U-ACE
0.41 0.41 0.32 0.33 0.19

Table 2: Effect of data shift. Average absolute
difference between concept importance scores
estimated using ADE20K and PASCAL datasets
for the same model-to-be-explained using differ-
ent estimation methods.

223

5 Conclusion224

We proposed U-ACE, a concept explanation method that serves as an uncertainty-aware and data-225

efficient estimator. By modeling uncertainty in its estimations, U-ACE informs users about the226

uncertainty in importance scores, addressing the reliability challenges faced by existing concept227

explanation estimators. Limitations and Future Work Our experiments centered solely on using228

CLIP for concept specification and we didn’t account for the uncertainty in CLIP’s concept knowl-229

edge. Addressing this epistemic uncertainty in future work could enhance reliability further.230
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Appendix331

A Theoretical motivation332

The motivation of this section is to demonstrate unreliability of concept explanations estimated333

using standard methods that do not model uncertainty during estimation. We particularly focus on334

unreliability due to misspecified concept set for the ease of analysis. In our study, we compared335

explanations generated using a standard linear estimator and U-ACE. Recall that posthoc-CBMs336

(O-CBM, Y-CBM), which are our primary focus for comparison, estimate explanations by fitting a337

linear model on concept activations.338

We present two scenarios with noisy concept activations. In the first scenario (over-complete con-339

cept set), we analyzed the estimation when the concept set contains many irrelevant concepts. We340

show that the likelihood of marking an irrelevant concept as more important than a relevant con-341

cept increases rapidly with the number of concepts when the explanations are estimated using a342

standard linear estimator that is ignorant of the noise. We also show that U-ACE do not suffer the343

same problem. In the second scenario (under-complete concept set), we analyzed the explanations344

when the concept set only includes irrelevant concepts, which should both be assigned a zero score345

ideally. We again show that standard linear model attributes a significantly non-zero score while U-346

ACE mitigates the issue well. In Section 4.1, we confirm our theoretical findings with an empirical347

evaluation.348

Unreliable explanations due to over-complete concept set. We analyze a simple setting where the349

output is linearly predicted from the input (x) as y = wTx. We wish to estimate the importance of K350

concepts fitted using a linear estimator on concept activations. The concept activations are computed351

using concept activation vectors (wk) that are distributed as wk ∼ N (uk, σ
2
kI), k ∈ [1,K].352

Proposition 2. The concept importance estimated by U-ACE when the input dimension is sufficiently353

large and for some λ > 0 is approximately given by vk =
uT

k w

uT
i uk+λσ2

k

. On the other hand, the354

importance scores estimated using vanilla linear estimator under the same conditions is distributed355

as vk ∼ N (
uT

k w

uT
k uk

, σ2
k

∥w∥2

∥uk∥2 ).356

Proof of the result can be found in Appendix D. If we consider a setting where only the first of the357

K random concepts is relevant and the rest random, i.e. u1 = w, σ1 ≈ 0 and uk such that uT
kw ≈358

0 ∀k ∈ [2,K]. In this setting, U-ACE estimated importance scores is 1 for the relevant concept359

and 0 for the rest, while the importance scores estimated by the vanilla linear regression model360

are normally distributed with means at 1 for the relevant concept and 0 for the irrelevant concepts.361

However, due to variance of importance scores estimated by the vanilla model, the probability that362

at least of the K-1 random concepts is estimated to be more important than the relevant concept is363

1−
∏K

k=2 Φ(
∥uk∥
σk∥w∥ ), where Φ is the CDF of standard normal. We observe that the probability of a364

random concept being estimated as more important than the relevant concept quickly converges to 1365

with the number of random concepts: K-1.366

Unreliable explanations due to under-complete concept set. We now analyze explanations when367

the concept set only includes two irrelevant concepts. Consider normally distributed inputs: x ∼368

N (0, I), and define two orthogonal unit vectors: u, v. The concept activations: c(i)1 , c
(i)
2 and label369

y(i) for the ith instance x(i) are as defined below.370

y(i) = uTx(i), c
(1)
1 = (β1u+ (1− β1)v)

Tx(i), c
(i)
2 = (β2u+ (1− β2)v)

Tx(i)

If β1, β2 are very small, then both the concepts are expected to be unimportant for label prediction.371

However, we can see with simple working (Appendix E) that the importance scores computed by a372

standard estimator are 1−β2

β1−β2
, 1−β1

β1−β2
, which are large because β1 ≈ 0, β2 ≈ 0 ∴ β1 − β2 ≈ 0. We373

will now show that U-ACE estimates near-zero importance scores as expected.374

Proposition 3. The importance score, denoted v1, v2, estimated by U-ACE are bounded from above375

by 1
Nλ , i.e. v1, v2 = O(1/Nλ) where λ > 0 is a regularizing hyperparameter and N the number of376

examples.377

Proof can be found in Appendix E. It follows from the result that the importance scores computed378

by U-ACE are near-zero for sufficiently large value of λ or N.379
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B Maximum Likelihood Estimation of U-ACE parameters: λ, β380

The posterior on weights shown in Equation 1 has two parameters: λ, β as shown below with CX381

and Y are array of concept activations and logit scores (see Algorithm 1).382

w⃗ ∼ N (µ,Σ) where µ = Σ−1CXY, Σ−1 = βCXCT
X + (λdiag(ϵϵT ))−1

We obtain the best values of λ and β that maximize the log-likelihood objective shown below.383

λ∗, β∗ = argmax
λ,β

EZ [−
β2∥Y − (CX + Z)T w⃗(λ, β)∥2

2
+ log(β)]

where Z is uniformly distributed in the range given by error intervals
Z ∼ Unif([−s⃗(x1),−s⃗(x2), . . . , ], [s⃗(x1), s⃗(x2), . . . , ])

We implement the objective using Pyro software library (Bingham et al., 2019) and Adam optimizer.384

C Proof of Proposition 1385

We restate the result for clarity.
For a concept k and cos(αk) defined as cos-sim(e(vk, f,D), e(wk, g,D)), we have the following
result when concept activations in f for an instance x are computed as cos-sim(f(x), vk) instead of
vTk f(x).

m⃗(x)k = cos(θk)cos(αk), s⃗(x)k = sin(θk)sin(αk)

where cos(θk)=cos-sim(gtext(Tk), g(x)) and m⃗(x)k, s⃗(x)k denote the kth element of the vector.386

Proof. Corresponding to vk in f , there must be an equivalent vector w in the embedding space of g.387

cos(αk) = cos-sim(e(vk, f,D), e(wk, g,D)) = cos-sim(e(w, g,D), e(wk, g,D))

Denote the matrix of vectors embedded using g by G = [g(x1), g(x2), . . . , G(xN )]T a N × D388

matrix (D is the dimension of g embeddings). Let U be a matrix with S basis vectors of size S ×D.389

We can express each vector as a combination of basis vectors and therefore G = AU for a N × S390

matrix A.391

Substituting the terms in the cos-sim expression, we have:392

cos(αk) = cos-sim(Gw,Gwk) = cos-sim(AUw,AUwk)

=
wTUTATAUwk√

(wTUTATAUw)(wT
k U

TATAUwk)
.

If the examples in D are diversely distributed without any systematic bias, ATA is proportional393

to the identity matrix, meaning the basis of G and W are effectively the same. We therefore have394

cos(αk) = cos-sim(Gw,Gwk) = cos-sim(Uw,Uwk), i.e. the projection of w,wk on the subspace395

spanned by the embeddings have cos(αk) cosine similarity. Since w,wk are two vectors that are αk396

apart, an arbitrary new example x that is at an angle of θ from wk is at an angle of θ ± αk from w.397

The cosine similarity follows as below.398

cos(θ) = cos-sim(wk, g(x)) =⇒ cos-sim(w, g(x)) = cos(θ ± αk)

= cos(θ)cos(αk)± sin(θ)sin(αk)

Because w is a vector in g corresponding to vk in f , cos-sim(w, g(x)) = cos-sim(vk, f(x)).399

D Proof of Proposition 2400

The concept importance estimated by U-ACE when the input dimension is sufficiently large and401

for some λ > 0 is approximately given by vk =
uT

k w

uT
i uk+λσ2

k

. On the other hand, the importance402

scores estimated using vanilla linear estimator under the same conditions is distributed as vk ∼403

N (
uT

k w

uT
k uk

, σ2
k

∥w∥2

∥uk∥2 ).404
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Proof. We use the known result that inner product of two random vectors is close to 0 when the405

number of dimensions is large, i.e. uT
i uj ≈ 0, i ̸= j.406

Result with vanilla estimator. We first show the solution using vanilla estimator is distributed as407

given by the result above. We wish to estimate v1, v2, . . . such that we approximate the prediction408

of model-to-be-explained: y = wTx. We denote by wk sampled from the normal distributin of409

concept vectors. We require wTx ≈
∑

k vkw
T
k x. In effect, we are optimising for vs such that ∥w−410 ∑

k vkwk∥2 is minimized. We multiply the objective by uk and use the result that random vectors are411

almost orthogonal in high-dimensions to arrive at objective argminvk
∥wT

k w− vk(w
T
k wk)∥. Which412

is minimized trivially when vk =
wT

k w
∥wk∥2 . Since wk is normally distributed with N (uk, σ

2
kI), w

T
k w =413

(uk + ϵ)Tw, ϵ ∼ N (0, I) is also normally distributed with N (uT
kw, σ

2
k∥w∥2). We approximate414

the denominator with its average and ignoring its variance, i.e. ∥wk∥2 = N (∥uk∥2, σ2
k) ≈ ∥uk∥2415

which is when ∥uk∥2 >> σ2. We therefore have the result on distribution of vk.416

Using U-ACE. Similar to vanilla estimator, U-ACE optimizes vk using the following objective.417

ℓ = argmin
v

{∥w −
∑
k

vkuk∥2 + λ
∑
k

σ2
kv

2
k}

setting
∂ℓ

∂vk
= 0 and using almost zero inner product result above, we have

− uT
k (w −

∑
j

vjuj) + λσ2
kvk = 0

=⇒ vk =
uT
kw

∥uk∥2 + λσ2
k

418

E Proof of Proposition 3419

The importance score, denoted v1, v2, estimated by U-ACE are bounded from above by 1
Nλ , i.e.420

v1, v2 = O(1/Nλ) where λ > 0 is a regularizing hyperparameter and N the number of examples.421

Proof. We first show that the values of v1, v2 in closed form are as below before we derive the final422

result.423

v1 =
S1

S2
(1− β2)

2

S1

S2
(β2

2(1− β1)2 + β2
1(1− β2)2) + λ(1− β1)(1− β2)

v2 =
S1

S2
(1− β1)

2

S1

S2
(β2

1(1− β2)2 + β2
2(1− β1)2) + λ(1− β1)(1− β2)

where S1 =
∑

i y1, S2 =
∑

i y
2
i and λ > 0 is a regularizing hyperparameter.424

We then observe that if x is normally distributed then y = wTx is also normally distributed with425

the value of S1

S2
is of the order O(1/N). Since β1, β2 are very close to 0, we can approximate the426

expression for v1 as below.427

v1 ≈ S1

S2
(1− β2)

2 1

λ(1− β1)(1− β2)
= O(1/Nλ)

428
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Importance scores from a standard estimator.429

430

When c
(1)
1 = (β1u+ (1− β1)v)

T z(i), c
(i)
2 = (β2u+ (1− β2)v)

T z(i)

we can derive the value of the label by their scaled difference as shown below
(1− β2)c1 − (1− β1)c2
(1− β2)β1 − (1− β1)β2

=
(1− β2)c1 − (1− β1)c2

β1 − β2
= uT zi = yi

=⇒ 1− β2

β1 − β2
c1 +

1− β1

β1 − β2
c2 = yi

=⇒ v1 =
1− β2

β1 − β2
, v2 =

1− β1

β1 − β2

F Additional experiment: Assessment with known ground-truth431
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Figure 6: Left: STL dataset with a spurious tag. Middle: Importance of a tag concept for three
model-to-be-explained. X-axis shows the probability of tag in the training dataset of model-to-be-
explained. Right: Average rank of true concepts with irrelevant concepts (lower is better).

Our objective in this section is to establish that U-ACE generates faithful and reliable concept expla-432

nations. Subscribing to the common evaluation practice (Kim et al., 2018), we generate explanations433

for a model that is trained on a dataset with controlled correlation of a spurious pattern. We make a434

dataset using two labels from STL-10 dataset (Coates et al., 2011): car, plane and paste a tag: U or Z435

in the top-left corner as shown in the left panel of Figure 6. The probability that the examples of car436

are added the Z tag is p and 1-p for the U tag. Similarly for the examples of plane, the probability437

of U is p and Z is 1-p. We generate three training datasets with p=0, p=0.5 and p=1, and train three438

classification models using 2-layer convolutional network. Therefore, the three models are expected439

to have a varying and known correlation with the tag, which we hope to recover from its concept440

explanation.441

We generate concept explanations for the three model-to-be-explained using a concept set that in-442

cludes seven car-related concepts and three plane-related concepts along with the two tags: U, Z. We443

obtain the importance score of the concept U with car class using a probe-dataset that is held-out444

from the corresponding training dataset (i.e. probe-dataset has the same input distribution as the445

training dataset). The results are shown in the middle plot of Figure 6. Since the co-occurrence446

probability of U with car class goes from 1, 0.5 to 0, we expect the importance score of U should447

change from positive to negative as we move right. We note that U-ACE, along with others, show the448

expected decreasing importance of the tag concept. The result corroborates that U-ACE estimates a449

faithful explanation of model-to-be-explained while also being more reliable as elaborated below.450

Unreliability due to misspecified concept set. In the same spirit as the previous section, we451

repeat the over-complete experiment of Section 4.1 and generated explanations as animal (irrelevent)452

concepts are added. Right panel of Figure 6 shows the average rank of true concepts (lower the453

better). We note that U-ACE generates expected explanations even with 50 nuisance concepts.454
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G More Related Work455

Concept Bottleneck Models use a set of predefined human-interpretable concepts as an intermedi-456

ate feature representation to make the predictions (Koh et al., 2020; Bau et al., 2017a; Kim et al.,457

2018; Zhou et al., 2018). CBM allows human test-time intervention which has been shown to im-458

prove overall accuracy (Barker et al., 2023). Traditionally, they require labelled data with concept459

annotations and typically the accuracy is worse than the standard models without concept bottle-460

neck. To address the limitation of concept annotation, recent works have leveraged large pretrained461

multimodal models like CLIP (Oikarinen et al., 2023; Yuksekgonul et al., 2022). There have also462

been efforts to enhance the reliability of CBMs by focusing on the information leakage problem463

(Havasi et al., 2022; Marconato et al., 2022), where the linear model weights estimated from con-464

cept activations utilize the unintended information, affecting the interpretability. Concept Embed-465

ding Models (CEM) (Espinosa Zarlenga et al., 2022) overcome the trade-off between accuracy and466

interpretability by learning high-dimensional concept embeddings. However, addressing the noise in467

the concept prediction remains underexplored. Collins et al. (2023) have studied human uncertainty468

in concept-based models and have shown the importance of considering uncertainty over concepts469

in improving the reliability of the model. Kim et al. (2023a) proposed the Probabilistic Concept470

Bottleneck Models (ProbCBM) and is closely related to our work. They too argue for the need to471

model uncertainty in concept prediction for reliable explanations. However, their method of noise472

estimation in concept activations requires retraining the model and cannot be applied directly when473

concept activations are estimated using CLIP. Moreover, they use simple MC sampling to account474

for noise in concept activations.475

Concept based explanations use a separate probe dataset to first learn the concept and then explain476

through decomposition either the individual predictions or overall label features. Yeh et al. (2022)477

contains a brief summary of existing concept based explanation methods. Our proposed method is478

very similar to concept based explanations (CBE) (Kim et al., 2018; Bau et al., 2017a; Zhou et al.,479

2018; Ghorbani et al., 2019). Ramaswamy et al. (2022a) emphasized that the concepts learned are480

sensitive to the probe dataset used and therefore pose problems when transferring to applications481

that have distribution shift from the probe dataset. Moreover, they also highlight other drawbacks482

of existing CBE methods in that concepts can sometimes be harder to learn than the label itself483

(meaning the explanations may not be causal) and that the typical number of concepts used for ex-484

planations far exceed what a typical human can parse easily. Achtibat et al. (2022) championed an485

explanation method that provides explanation highlighting important feature (answering “where”)486

and what concepts are used for prediction thereby combining the strengths of global and local ex-487

planation methods. Choi et al. (2023) have built upon the current developments in CBE methods for488

providing explanations for out-of-distribution detectors. Wu et al. (2023) introduced the causal con-489

cept based explanation method (Causal Proxy Model), that provides explanations for NLP models490

using counterfactual texts. Moayeri et al. (2023) also used CLIP to interpret the representations of a491

different model trained on uni-modal data.492

H Additional experiment details493

H.1 Settings494

We make a quantitative assessment with known ground-truth on a controlled dataset in Section F.495

Finally, we evaluate on two challenging real-world datasets with more than 700 concepts in Sec-496

tion 4.2.497

Baselines. Simple: Wc is estimated using lasso regression of ground-truth concept annotations498

to estimate logit values of f . This baseline is used in the past (Ramaswamy et al., 2022b,a) for499

estimating completeness of concepts. Other baselines are introduced in Section 2: TCAV (Kim500

et al., 2018), O-CBM (Oikarinen et al., 2023), Y-CBM based on (Yuksekgonul et al., 2022).501

Real-world settings We expect that our reliable estimator to also generate higher quality concept502

explanations in practice. To verify the same, we generated explanations for a scene classification503

model with ResNet-18 architecture pretrained on Places365 (Zhou et al., 2017a), which was publicly504

available. Following the experimental setting of Ramaswamy et al. (2022a), we generate explana-505

tions using PASCAL (Chen et al., 2014) or ADE20K (Zhou et al., 2017b) that are part of the Broden506
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dataset collection (Bau et al., 2017b). The dataset contains images with dense annotations with507

more than 1000 attributes. We ignored around 300 attributes describing the scene since model-to-508

be-explained is itself a scene classifier. For the remaining 730 attributes, we defined a concept per509

attribute using literal name of the attribute. We picked 50 scene labels (Appendix H.1 contains the510

full list) that have support of at least 20 in both ADE20K and PASCAL datasets.511

Standardized comparison between importance scores. The interpretation of the importance512

score varies between different estimation methods. For instance, the importance scores in TCAV513

correspond to fraction of examples that meet certain criteria while other methods the importance514

scores are the weights from linear model that predicts logits. Further, Simple operates on binary at-515

tributes and O-CBM operates on cosine-similarities as the input. For this reason, we cannot directly516

compare importance scores or their normalized variants. We instead use negative scores to obtain a517

ranked list of concepts and assign to each concept an importance score given by its rank in the list518

normalized by number of concepts. Our sorting algorithm ranks any two concepts with same score519

by alphabetical order of their text description. In all our comparisons we use the rank score if not520

mentioned otherwise.521

Other experiment details. For all our experiments, we used a Visual Transformer (with 32 patch522

size called ”ViT-B/32”) based pretrained CLIP model that is publicly available for download. We523

use l = −1, i.e. last layer just before computation of logits for all the explanation methods. U-524

ACE returns the mean and variance of the importance scores as shown in Algorithm 1, we use525

mean divided by standard deviation as the importance score estimated by U-ACE everywhere for526

comparison with other methods.527

List of fruit concepts from Section 4.1.528

apple, apricot, avocado, banana, blackberry, blueberry, cantaloupe,529

cherry, coconut, cranberry, cucumber, currant, date, dragonfruit,530

durian, elderberry, fig, grape, grapefruit, guava, honeydew, kiwi,531

lemon, lime, loquat, lychee, mandarin orange, mango, melon, nectarine,532

orange, papaya, passion fruit, peach, pear, persimmon, pineapple, plum,533

pomegranate, pomelo, prune, quince, raspberry, rhubarb, star fruit,534

strawberry, tangerine, tomato, watermelon535

List of animal concepts from Section F.536

lion, tiger, giraffe, zebra, monkey, bear, wolf, fox, dog, cat,537

horse, cow, pig, sheep, goat, deer, rabbit, raccoon, squirrel, mouse,538

rat, snake, crocodile, alligator, turtle, tortoise, lizard,539

chameleon, iguana, komodo dragon, frog, toad, turtle, tortoise,540

leopard, cheetah, jaguar, hyena, wildebeest, gnu, bison, antelope,541

gazelle, gemsbok, oryx, warthog, hippopotamus, rhinoceros, elephant542

seal, polar bear, penguin, flamingo, ostrich, emu, cassowary, kiwi,543

koala, wombat, platypus, echidna, elephant544

Scene labels considered in Section 4.2.545

/a/arena/hockey, /a/auto_showroom, /b/bedroom, /c/conference_room, /c/corn_field546

/h/hardware_store, /l/legislative_chamber, /t/tree_farm, /c/coast,547

/p/parking_lot, /p/pasture, /p/patio, /f/farm, /p/playground, /f/field/wild548

/p/playroom, /f/forest_path, /g/garage/indoor549

/g/garage/outdoor, /r/runway, /h/harbor, /h/highway550

/b/beach, /h/home_office, /h/home_theater, /s/slum,551

/b/berth, /s/stable, /b/boat_deck, /b/bow_window/indoor,552

/s/street, /s/subway_station/platform, /b/bus_station/indoor, /t/television_room,553

/k/kennel/outdoor, /c/campsite, /l/lawn, /t/tundra, /l/living_room,554

/l/loading_dock, /m/marsh, /w/waiting_room, /c/computer_room,555

/w/watering_hole, /y/yard, /n/nursery, /o/office, /d/dining_room, /d/dorm_room,556

/d/driveway557
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H.2 Addition results for Section 4.2558

We report also the tau (Wikipedia, 2023) distance from concept explanations computed by Simple as559

a measure of explanation quality. Kendall Tau is a standard measure for measuring distance between560

two ranked lists. It does so my computing number of pairs with reversed order between any two lists.561

Since Simple can only estimate the importance of concepts that are correctly annotated in the dataset,562

we restrict the comparison to only over concepts that are attributed non-zero importance by Simple.563

Dataset↓ TCAV O-CBM Y-CBM U-ACE
ADE20K 0.36 0.48 0.48 0.34
PASCAL 0.46 0.52 0.52 0.32

Table 3: Quality of explanation comparison. Kendall Tau Distance between concept importance
rankings computed using different explanation methods shown in the first row with ground-truth.
The ranking distance is averaged over twenty labels. U-ACE is better than both Y-CBM and O-
CBM as well as TCAV despite not having access to ground-truth concept annotations.

I Extension of Simulation Study564

Under-complete concept set. We now generate concept explanations with concepts set to {“red or565

blue”, “blue or red”, “green or blue”, “blue or green”}. The concept “red or blue” is expected566

to be active for both red or blue colors, similarly for “blue or red” concept. Since all the concepts567

contain a color from each label, i.e. are active for both the labels, none of them must be useful for568

prediction. Yet, the importance scores estimated by Y-CBM and O-CBM shown in the Figure 4569

table attribute significant importance. U-ACE avoids this problem as explained in Section A and570

attributes almost zero importance.571

Concept Y-CBM O-CBM U-ACE
red or blue -75.4 -1.8 0.1
blue or red 21.9 -1.9 0

green or blue -1.4 1.6 0
blue or green -23.1 1.6 0

Table 4: When the concept set is under-complete and contains only nuisance concepts, their esti-
mated importance score must be 0.
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