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Abstract

Recent advances in dynamic treatment regimes (DTRs) provide convenient optimal treatment
searching algorithms, which are tailored to individuals’ specific needs and able to maximize
their expected clinical benefits. However, existing algorithms could suffer from insufficient
sample size under optimal treatments, especially for chronic diseases involving long sequences
of decision-making. To address the aforementioned practical challenges, we propose a novel
individualized learning method that estimates the DTR with a focus on prioritizing alignment
percentages between the observed and underlying optimal regime across decision stages.
By relaxing the restriction that observed samples must be fully aligned with the optimal
regime at all treatment stages, our approach substantially improves the sample efficiency
of inverse probability weighted based approaches. In particular, the proposed learning
scheme builds a more general framework which includes the popular outcome weighted
learning framework as a special case of ours. Moreover, we introduce the notion of stage
importance scores along with an attention-based deep learning architecture to explicitly
account for heterogeneity among decision stages. We establish the theoretical properties
of the proposed method, including the Fisher consistency and finite-sample performance
bound. The proposed approach is evaluated through extensive simulations and a real-world
application to the UC COVID-19 dataset.

Keywords: Attention mechanism; Efficient learning; Health analytics; Individualized
treatment; Recommender systems

1 Introduction

There has been great interest and demand for individualized modeling and personalized
prediction, with applications ranging from medicine to education programs and marketing.
For instance, the outbreak of COVID-19 in recent years has highlighted the growing demand
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for developing an effective dynamic treatment which can be tailored to individual patients.
Dynamic treatment regime (DTR) (Tsiatis et al., 2019), as an emerging individualized
treatment approach, has thus found much attention in the medical field. In contrast
to traditional, one-size-fits-all medical treatments, DTR continuously adapts a patient’s
treatment plan based on their personal response to previous treatments and changes in
their medical conditions. Since different treatment regimes could lead to contrasting clinical
outcomes, the main goal of current medical care is to find the optimal DTR that would yield
the largest expected long-term benefits for each patient (Rubin, 1974; Robins, 1986).

However, searching for the optimal regime in practice is not an intuitive task, commonly
due to limited clinical data, complex heterogeneity among patients, and a combinatorial
number of possible treatments involved in a long sequence of decisions. Although extensive
studies have been conducted to establish the optimal DTR searching methodology, the
developed algorithms could still suffer from these empirical challenges. Current search
algorithms typically can be categorized into two main frameworks: indirect and direct value-
search. The indirect methods, such as Q-learning (Watkins and Dayan, 1992; Nahum-Shani
et al., 2012), A-learning (Murphy, 2003; Blatt et al., 2004; Shi et al., 2018), and tree-based
methods (Laber and Zhao, 2015; Tao et al., 2018) primarily model the conditional distribution
of a clinical outcome given the patients’ past covariates and treatment information, and
choose the treatment that maximizes the modeled outcome as optimal. However, as the
selection process follows backward induction, an optimal regime might not be recovered if
one of the outcome models is not correctly specified (Schulte et al., 2014). The situation
only gets worse in a chronic disease setting which involves a long sequence of decision stages.
Though one can formulate the outcome model via a semi- or non-parametric approach
(Ernst et al., 2005; Geurts et al., 2006; Zhao et al., 2009) to allow more model flexibility
and mitigate the risk of mismodeling, the fitted models oftentimes are hard to interpret and
thus less appealing for decision-makers to apply.

On the other hand, value search methods include outcome weighted learning (Zhao
et al., 2012, 2015), residual weighted learning (Zhou et al., 2017), robust estimators (Zhang
et al., 2012a,b, 2013; Shi et al., 2016; Schulz and Moodie, 2021), distributional learning (Mo
et al., 2021), and angle-based learning (Qi et al., 2020; Xue et al., 2022). These methods
directly posit a model class to the treatment regime and maximize the expected outcome
under a fitted regime. The optimal regime is defined as the maximizer over the pre-specified
function class. However, depending on the choice of density correction technique, the value
search methods could have vastly different empirical performances. For instance, outcome
weighted learning maximizes the inverse-probability weighted estimator (IPWE) of the
expected outcome, which is known to be unstable when there is an insufficient number of
optimal instances observed in the collected sample (Zhang et al., 2012a,b). Unfortunately,
such an empirical dilemma can be commonly found in real-world applications where the
optimal treatment for a new disease is barely studied, or the optimal treatment cannot be
assigned to a vast patient population due to various reasons. To improve the stability of the
IPWE, doubly-robust estimators (Zhang et al., 2013) augment a mean-zero term to capture
information from patients who receive non-optimal treatments. However, the additional
augmented term introduces an extra amount of computational burden, and there still is no
guarantee of either the propensity or the outcome model being correctly modeled, especially
when the regime involves a large number of decision steps.
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Stage-Aware Learning for Dynamic Treatments

In this paper, we propose a novel DTR estimation method, namely Stage Aware Learning
(SAL), which aims to enhance the alignment between the observed treatments and optimal
regime, while maximizing the expected outcome. The key idea is that treatment variations
between the observed and the optimal regime are now allowed to increase data efficiency. Thus,
instead of only seeking optimal regimes among patients assigned with optimal treatments at
all decision stages, our approach includes patients treated under all strategies and places
particular emphasis on those whose observed treatments align more closely with the optimal
ones. In addition, to better capture the difference in treatment effectiveness at varying
stages, we introduce the notion of stage importance scores and further propose the Stage
Weighted Learning (SWL) method based on SAL.

The proposed SAL has several unique advantages. First, all empirical clinical data are
incorporated into the value search process no matter how many stages of the observed
treatments are aligned with the optimal regime. Second, compared to the existing value
search methods, the proposed method increases the stability of the IPWE-based approach and
reduces the computational burden due to the augmentation process of the robust estimators.
Third, our method indicates a more general framework that includes the outcome weighted
learning as a special case and can be adapted to various empirical settings. In addition, SAL
implies that heterogeneity among decision stages can be explicitly included in the estimation
procedure which further facilitates estimating the optimal regime.

The main contributions of our paper are as follows. First, our work bridges the gap
between DTR searching algorithms and empirical challenges. Specifically, we overcome
the difficulties of applying IPWEs in empirical settings where few optimal instances have
been observed. Second, to the best of our knowledge, this is the first work combining a
number of IPWEs under different treatment matching scenarios in value search algorithms to
estimate optimal regimes. The flexibility of combining and weighing each IPWEs increases
the generalizability of DTR estimation methods to any empirical setting. Third, our work
builds the theoretical connection between multi-stage DTR search problems and multi-label
classification problems to simplify the optimal regime estimation procedure.

The remainder of the paper is structured as follows. In Section 2, we introduce the
notations and background of outcome weighted learning. In Section 3, we propose a
novel k-IPWE estimator and introduce the SAL and SWL methods to account for stage
heterogeneity. Section 4 presents Fisher consistencies and finite-sample performance error
bound of the proposed SWL method, and Section 5 explains the computation algorithm and
implementation details. In Section 6, extensive simulation results are presented to illustrate
the empirical performance advantages of our proposed methods. In Section 7, we apply
the proposed methods to the COVID-19 data from UC hospitals. Lastly, we conclude with
discussions in Section 8.

2 Background and Related Works

In this section, we introduce the necessary notations and assumptions used in the paper,
and formulate the multi-stage DTR estimation procedure under the Inverse Probability
Weighed Estimators (IPWE) (Horvitz and Thompson, 1952; Robins et al., 1994) framework.
In addition, we will briefly discuss Outcome Weighted Learning (OWL) (Zhao et al., 2012,
2015), which is one of the most representative learning schemes based on IPWE.
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2.1 Notation and Preliminary

Consider a balanced multistage decision setting where all patients in the study have a
total number of T stages (visits). For each patient at their jth clinic visit, where j =
1, .., T , a set of time-varying variables Xj ∈ Xj are recorded to collect individual health
status. Consequently, a new treatment assignment Aj is delivered based upon the patient’s
longitudinal historical information from their first visit to the jth visit, denoted by Hj =
Sj(X1, A1, X2, A2, .., Aj−1, Xj) ∈ Hj , where Sj is a deterministic summary function. In this
paper, we consider the binary treatment settings, i.e., Aj ∈ A = {1,−1}. In addition, we
assume that patients’ baseline information H1 = S(X1) is not confounded by treatment
assignments (Schulte et al., 2014). After the final visit, a clinical outcome R, also known as
the total reward, is obtained to reflect the benefits of the allocated treatment assignment.
More specifically, the total reward R is a sum of the pseudo immediate rewards R =

∑T
j=1 rj ,

where the immediate rewards {rj}Tj=1 are typically unobservable.

A dynamic treatment regime (DTR) is a sequence of decision rules D = {Dj : Hj 7→
A}Tj=1 that map patients’ historical information onto treatment space. The decision rules D
could also be represented by a composite function of the real-valued functions f = {fj ∈ F :
Hj 7→ R}Tj=1, where a realization of the decision that follows the treatment regime at the jth

visit is dj = Dj(Hj) = sign(fj(Hj)). Now, assume that the full trajectory of an observation
sequence {X1, a1, X2, a2, ..., XT , aT , R} follows a data distribution P . Our goal is to seek the
optimal treatment regime D∗ which yields the largest expected rewards among all regimes:

D∗ ∈ argmax
D

ED{R}. (1)

Note that the expectation operator ED in equation (1) is taken with respect to an unknown
restricted distribution {X1, A1 = d1, X2, A2 = d2, ..., Xt, AT = dT , R} ∼ PD , which describes
the probability distribution when the treatments are assigned according to the regime D . By
convention, we call the corresponding D the target regime. Since the historical information
and potential outcome under PD are unobservable, to infer the decision rules from the
observed data while avoiding confounding issues between the assignments and expected
rewards, we adopt the well-known assumptions of the stable unit treatment value assumption
(STUVA) (Rubin, 1980) and no unmeasured confounding (Robins, 1986). Additionally, we
suppose that the probabilities of assigning either treatment at every stage are positive, also
called the strong positivity assumption.

2.2 Inverse Probability Weighted Estimators

Under the afore-mentioned assumptions, it can be shown that the expected total reward
under the target regime D is estimable by leveraging the inverse probability weighting (Qian
and Murphy, 2011):

D∗ = argmax
D

ED{R} = argmax
D

E

{
R ·

∏T
j=1 I(Aj = Dj(Hj))∏T
j=1 πj(aj |Hj)

}
, (2)

where πj is the propensity score function and the density corrected expected reward is referred
to as the Inverse Probability Weighting Estimator (IPWE). Provided that the propensity
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functions are correctly specified, the optimal treatment regime D∗ is the maximizer of
the IPWE. Accordingly, learning schemes that directly estimate the optimal regime by
maximizing the IPWE estimator could be categorized as IPWE-based approaches.

In the existing literature, Outcome Weighted Learning (OWL) (Zhao et al., 2012) is
one of the popular IPWE-based approaches to finding the optimal regime from a weighted
classification perspective without the need to model the outcome. Although it was first
designed to solve a single-stage decision task, the OWL framework was later extended to
the multi-stage setting via the backwards-OWL (BOWL) and simultaneous-OWL (SOWL)
procedures (Zhao et al., 2015). BOWL applies backward induction to break down multi-
stages and searches for optimal decisions through the single-stage OWL framework. However,
BOWL only utilizes patients whose observed treatments are exactly aligned with the decision
rules at each stage during the backward process. As a result, the number of qualified patients
could decrease exponentially when the number of stages increases. To avoid the situation
where no patient is left as qualified before the backward process is completed, SOWL was
subsequently proposed to transform the multi-stage estimation problem into a single-stage
estimation problem. It simultaneously estimates the optimal regime at all stages by modeling
the product of the indicator functions in equation (2) through a convex surrogate function
ψ(z1, .., zT ) = min(z1 − 1, ..., zT − 1, 0) as follows:

V OW (f1, ..., fT )
.
= E

{
R ·min{(A1f1 − 1), ..., (AT fT − 1), 0}∏T

j=1 πj(aj |Hj)

}
. (3)

However, this surrogate function is non-smooth, and it is difficult to formulate the variable
constraints under the quadratic programming when T is large. Besides, apart from the
optimization difficulties, there is one more fundamental problem associated with the IPWEs
that remains unresolved. Due to the density ratio corrections, a reward is only involved when
an individual’s treatments are fully matched with the target regime. Such a full-matching
requirement is reflected in aligning treatments with the target regime at each backward stage
from BOWL, and the surrogate function involves all decision stages from SOWL. Clearly,
the strict full-matching requirement may lead to difficulties on both the optimization and
estimation sides. We call this phenomenon the curse of full-matching.

3 Methodology

Our paper is motivated by the curse of full-matching under the IPWE framework. In this
section, we propose a new DTR learning method, namely Stage-Aware Learning (SAL) which
allows treatment mismatches with the target regime as a resolution. We will show that the
optimized regime under SAL will achieve a more adaptable empirical performance compared
to the IPWE-based regimes when the sample size is small and the number of decision stages
is large. Furthermore, to additionally account for the heterogeneity of treatment effects at
different decision stages, we introduce the Stage Weighted Learning (SWL) method upon
SAL. In particular, we propose a finely-designed 0-1 metric called the stage importance
score where the scores favor treatment alignments on stages with large treatment effects and
hence facilitate the learning process.
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3.1 The Curse of Full-matching

To fully understand the dilemma of full-matching, we consider a conditional expectation
form of the expected total reward under the target regime D , ED [R] in equation (2) as,

ED{R} = E

 R∏T
j=1 πj(aj |Hj))

∣∣∣∣∣∣
T∏
j=1

I(Aj = Dj(Hj)) = 1

︸ ︷︷ ︸
Full-matching expected reward

·P

 T∏
j=1

I(Aj = Dj(Hj)) = 1


︸ ︷︷ ︸

Target regime assignment rate

.

(4)

In equation (4), the expected reward to be maximized is determined by two major
factors: first, the expected reward among the population whose observed treatments are
fully matched with the target regime D , i.e., full-matching expected reward ; and second,
the probability of assigning treatments conforming with the target regime at all stages, i.e.,
target regime assignment rate. At the population level, the probability of assigning any
arbitrary dynamic regime is ensured to be non-zero due to the strong positivity assumption.
However, if the optimal regime assignment rate is small among the patient population, it is
highly possible that none of the sampled patients may fully follow the optimal treatments at
all stages, and thus the optimal regime is infeasible in practice.

We demonstrate this phenomenon with the concrete illustrative example presented in
Figure 1. The optimal treatment regime (A1 = 1, A2 = 1) yields the highest expected
total reward of value 100, but with an extremely small assignment rate equaling 0.5%. In
such a scenario, on average, only 1 person out of 200 sampled patients could fulfill the
full-matching requirement. Hence, it might require many more samples to be collected before
IPWE-based approaches could estimate the optimal regime and achieve near-asymptotic
properties. Furthermore, note that the above example consists of only two decision stages. In
practice, a growing number of stages tends to make estimation even harder since the target
regime assignment rate will decrease exponentially. For instance, even if the assignment rate
of the optimal decision at each stage is 80%, after 10 stages, the full-matching rate of the
optimal regime at all stages can easily drop to 10% (0.810).

Figure 1: An example to illustrate the curse of full-matching. We consider a sequential randomized
trial with a static treatment regime setting (Tsiatis et al., 2019). The assignment rate πta specifies
the probability of allocating treatment a at stage t. The expected total rewards and assignment rates
under corresponding regimes are presented in the rightmost column.
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The above example implies that the IPWE-based approaches intrinsically require a
full-matching condition to achieve competitive performance. Unfortunately, this condition is
likely to be too restrictive to satisfy in practice, especially when the sample size is small and
the number of stages is large. This motivates us to propose a novel framework which can
break the curse of full-matching.

3.2 The k-partially Matching Estimator: k-IPWE

The empirical performance of IPWE-based approaches is largely restricted by the full-
matching assignment rate of the optimal regime among the patient populations. Though we
might not control how treatments are administrated according to the optimal regime at every
decision stage, in the following, we propose to relax the strict full-matching requirement by
allowing decision discrepancies between the assigned treatments and the target regime D at
T − k number of stages, where 0 ≤ k ≤ T . In other words, the optimal regime is allowed to
partially match the treatment sequence at exactly k number of arbitrary decision stages.
Hence, the probability of patients receiving optimal decisions at k number of stages could be
much larger than the probability of patients receiving optimal decisions at all stages. We call
this relaxed version of the full-matching requirement the k-partially matching requirement.

To formalize the notation, we let random variable K denote the number of correct
alignments between treatments {Aj}Tj=1 and decisions from an arbitrary target regime D ,

K
.
= |A ∩D | =

T∑
j=1

I(Aj = dj). (5)

If we specify K to be a realized value k within the range {0, .., T}, we are constraining
our optimal regime search to the patient population who are k-partially matched with the
optimal regime. A more extreme k value (e.g., k = 0 or k = T ) corresponds to a more
restricted alignment requirement. Under the IPWE framework, only patients with K = T
are included in the estimation procedure.

When K = k, a new restricted unknown distribution is induced, i.e., (X1, A1 =
d̃1, ..., XT , AT = d̃T , R) ∼ PD(k) , where d̃j = (−1)I(j∈K)+1 · dj indicates that at any stage
0 ≤ j ≤ T , the decision d̃j is the same as the target regime dj only if j is among the indexes
of k arbitrary matching stages K (i.e., d̃j = dj if j ∈ K). Subsequently, PD(k) is a distribution
of an observation sequence where its k out of T assignments {Aj}j∈K are followed by the
regime D . Based on the derivation of k-matching potential outcomes provided in Appendix
A, we can similarly adopt the density ratio correction and obtain an IPWE for the expected
rewards evaluated under the new measure PD(k) . We denote the new estimator ED(k) [R] as
k-IPWE and present the results in proposition 1:

Proposition 1. Under the SUTVA and no unmeasured confounding assumptions, the
expected total reward under the target regime D with k number of matching stages equals

ED(k) [R] = E

{
R · I(|A ∩D | = k)∏T

j=1 πj(aj |Hj)

}
, (6)

and the corresponding maximizing regime D̃(k) is defined as
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D̃(k) = argmax
D

ED(k){R}. (7)

The regime D̃(k) maximizing the k-IPWE would yield the largest expected reward if
patients were treated by D at k number of stages. In addition, note that we do not require
the k matching stages to be the same for each individual. As long as there is an exact
k number of treatment matchings between the assignments and target regime D , those
patients’ rewards are involved in the maximization process. As a result, the k-IPWE provides
a superior level of flexibility.

However, the performance of the proposed k-IPWEs still depends on the pre-selected
k value. The purpose of designing the K treatment matching number is to increase the
conditional probability of the constrained population receiving optimal treatments. When
the value k is poorly selected, the probability of patients being k-partially matched could be
small, and we could encounter a similar aforementioned empirical dilemma. For instance, in
a population with a 99% full-matching assignment rate, specifying the random variable K
with values other than T leads to a small k-partially matching rate. In other words, the
curse of full-matching can be effectively minimized only if the pre-specified k has the highest
k-partially matching probability, i.e., k = argmaxk∈{0,..,T} P (K = k). Finding such a k
value is doable but computationally cumbersome, and yet not every patient will participate
in the optimization process due to the population conditional constraints. To reduce the
uncertainty of selecting k values and potentially include all individuals from the sample, we
further construct a learning method based on k-IPWE which can incorporate all scenarios
of k-partially matching through applying a weighting scale on the matching number K.

3.3 Stage-Aware Learning Method (SAL)

In the following, we propose a novel learning method to combine all levels of k-IPWEs
into one single estimation task. This would address the dependencies of k-IPWEs at the
pre-selected k-values. Since the new estimator accounts for treatment and regime matching
status at any number of stages, we name the new learning method as the Stage-Aware
Learning (SAL).

Specifically, we weight each k-IPWE by k/T , proportional to the number of matching
stages k, and estimate the optimal regime simultaneously by maximizing the following SAL
value function derived in Appendix B,

V SA(D) =
T∑
k=0

k

T
· ED(k){R} = E

{
R · 1T

∑T
j=1 I(Aj = Dj(Hj))∏T
j=1 πj(aj |Hj)

}
, (8)

We denote the estimated maximizing regime D̃ = argmaxD V
SA(D). In our choice, the

applied weights increasing with the k value indicate that, we prioritize the regime which
has closer alignment with the optimal decisions, and meanwhile, achieves higher expected
rewards during estimation. Structurally, the weighting component of the final SAL value
function resembles the formulation of the Hamming loss (Tsoumakas and Katakis, 2007),
which has the following three unique advantages.

First of all, compared to the IPWE value function (2), the SAL value function replaces the
product of indicator functions with the correct treatment alignment percentage. Therefore,

8



Stage-Aware Learning for Dynamic Treatments

instead of excluding patients completely if one of their observed treatments is not aligned
with the optimal decision, SAL still considers those patients but discounts their rewards
based on the degree of alignment between observed and optimal treatments across all of
the decision stages. That is, even if the decision sequence is long, the new learning process
is able to utilize all available patients’ outcomes and maximize the alignment percentages
over those with high rewards. As a result, all patients and their treatment strategies will be
participated into the optimal regime searching procedure.

Secondly, the SAL learning scheme is now analogous to a multi-label classification frame-
work. Instead of employing a surrogate function involving all decision stages simultaneously
in outcome weighted learning (3), regime can be optimized at each individual stage to match
with the optimal decisions. This leads to computational convenience as the optimization of
the Hamming loss function has been well established and the multi-stage learning task can
be segmented into several single-stage sub-tasks.

Furthermore, our proposed SAL suggests a more general DTR learning framework by
allowing a probability distribution on the matching number K. Suppose the density function
of K is proportional to a scale function ϕ(·). After taking the iterated expectation of
k-IPWEs under all possible choices of k values, we obtain a new estimator of the expected
rewards aimed to maximized for any arbitrary target regime D ,

EK
{
ED(k){R}

}
=

T∑
k=0

ϕ(k) · ED(k){R} = E

{
R · ϕ (|A ∩D |)∏T
j=1 πj(aj |Hj)

}
. (9)

The new estimator results in a generic form where the total rewards are weighted by the
density of K. In return, the maximization procedure not only finds the regime that yields the
largest expected total rewards, but also identifies the one which matches with the observed
treatment sequence closest to the underlying distribution of the treatment matching number.
Additionally, compared to the previous regime estimator D̃(k) based on the k-IPWE in
equation (7), the general estimator no longer constrains the rewards under a sub-population
of patients. Instead, it takes every patient’s reward into account as long as the density is
positive for all matching number K, i.e., ϕ(k) > 0 ∀k ∈ {1, .., T}.

Importantly, the induced general framework allows a flexible specification of the density
scale function ϕ(·), which can be used to summarize our prior knowledge of how well the
observed treatments match with the optimal regime given the k matching number. For
instance, the proposed SAL method adopts a linear scale function (i.e., ϕ(k) = k) under our
assumption that patients are more likely to receive a larger number of treatment assignments
which coincide with the optimal regime. More choices of the ϕ(·) function will be left in
Remark 1. In particular, we demonstrate that the outcome weighted learning IPWE-based
method is a special case of ours under our general framework.

Remark 1. The outcome weighted learning IPWE-based framework can be recovered when
a degenerated density function (ϕ(k) = I(k = T )) is specified. It assumes the probability of
the assigned treatments fully aligning with the target regime at all decision stages is equal to
1. Consequently, only patients qualifying the full-matching requirement can be counted in the
regime estimation process, and the resulting maximizing regime D̃ is equivalent to the optimal
treatment regime D∗, which enjoys all of the pre-established theoretical results in (Qian and
Murphy, 2011; Zhao et al., 2015). Similarly, when K follows a degenerated distribution
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ϕ(k) = I(k = j) at other stages j (0 ≤ j < T ), we can solve the general framework under the
k-IPWE and obtain the maximizing regime D̃ = D̃(j). It assumes there is most likely only
one type of matching scenario between the assigned treatments and the optimal regime in
the empirical data. Furthermore, several matching scenarios can be combined together. For
instance, when the distribution density is specified as ϕ(k) = 1

2 · I(k = T ) + 1
2 · I(k = T − 1),

the maximizing regime D̃ will optimize both IPWE and (T − 1)-IPWE at the same time
without preference due to the equal 1/2 weights. As a result, it would yield the largest total
rewards if the patient has followed all, or all but one, decisions suggested by D .

In summary, we propose a novel SAL method, along with a more general DTR estimation
framework, to improve data efficiency and empirical adaptivity of IPWE-based methods in
this subsection. By combining each level of k-IPWEs, we attend to all matching scenarios
and relax the selection of the K value. Through imposing higher weights to k-IPWEs with
larger k value, SAL possesses the empirical-driven interpretation of searching samples with
high rewards and large optimal treatment matching percentages. In the next subsection,
we will further propose a weighted learning scheme based on SAL to incorporate stage
heterogeneity and facilitate the learning process.

3.4 Stage Weighted Learning Method (SWL)

The SAL method transforms the DTR estimation into a multi-label classification problem.
It simultaneously maximizes the total rewards and matching percentages between observed
and optimal decisions. Individually, the total rewards component captures the combined
treatment effects across all decision stages, while the matching percentage component
promotes overall optimal treatment alignment. However, due to the uniform stage weights
(1/T ) outlined in equation (8), the SAL learning scheme faces an additional empirical
challenge when attempting to pinpoint the treatment effects at each individual decision
stage. That is, when dealing with samples that share the same matching percentage but
possess different total rewards, it requires extra number of matching scenarios to segment the
difference in the expected rewards to a single stage. To enhance the stage heterogeneity and
facilitate learning process of treatment effects at each stage, we propose the Stage Weighted
Learning (SWL) method corresponding to stage importance scores.

The stage importance scores are real-valued metrics designed to compare and quantify
the relative importance of treatment effects among all decision stages. We denote the
importance score at the jth stage to be ωj , where ωj ∈ [0, 1] and

∑T
j=1 ωj = 1 for any j in

{1, .., T}. Intuitively, a higher stage importance score indicates a more substantial treatment
effect contributing to the total rewards. Formally, it affects patients’ stage-wise rewards as

rij = rj(Hij , Aij) = r̃j(ωj , Hij , Aij), (10)

where rj : H×A 7→ R+ is an original immediate reward function at jth decision stage and
we further assume there exists a counterpart reward function r̃j : R[0,1] × H × A 7→ R+,
which takes the stage importance score as an additional parameter and is able to disintegrate
the decision stage-level heterogeneity effect from its original reward. To illustrate, consider a
typical reward function consisted of two components: main effect α and treatment effect β,
i.e., rij = αij +βij . An exemplary reward counterpart indexed by the stage importance score
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could be represented as, rij = αij+ωj · βijωj
= αij+ωj ·β̃ij . Noticeably, with a direct association

with the treatment effect, the stage importance scores measure the intrinsic heterogeneity
existed at each decision stage and are invariant to individual patients. Correspondingly, we
utilize the importance scores to include stage heterogeneity and hereby introduce the stage
weighted learning method as

V SW (D)
.
= E

{
R ·

∑T
j=1 ωj · I(Aj = Dj(Hj))∏T

j=1 πj(aj |Hj)

}
. (11)

Compared to SAL, the SWL scheme rescales the reward by a weighted average of the
treatment alignments. Treatment mismatch on stages with large importance scores would
lead to a substantial loss in total expected rewards; whereas the expected rewards only
have minor fluctuations at stages with negligible importance scores, regardless of treatment
assignments. In other words, the nonidentical stage importance scores impose additional
stage heterogeneity on the learning scheme, and push the method to prioritize improving
treatment alignment accuracy at important stages with large importance scores. In essence,
maximizing the aforementioned value function is equivalent to solving a weighted multi-label
classification, where the importance scores could be viewed as the label weights.

However, the estimation of the importance scores is non-trivial, mainly because the
immediate rewards used to evaluate the treatment effects at each stage are unobservable.
To solve this challenge, we estimate the immediate reward counterpart functions and the
importance scores scalars from a semi-parametric point of view. Since the expected total
reward is the summation of expected immediate rewards, we minimize the L2 loss between
total rewards and constructed surrogate rewards, i.e.,

{ω̂1, ..., ω̂T } = argmin
(ω1,...,ωT )∈R|T |

[0,1]
, (r̃1,...,̃rT )∈R|T |

E


R− T∑

j=1

r̃j (ωj , Hj , Aj)

2 . (12)

Considering the importance scores represent the relative significance of treatment effects
at each decision stage, we leverage the attention mechanism and propose the attention-
based recurrent neural network architecture in Figure 2, which allows us to estimate the
unobservable immediate rewards and approximate the importance scores.

The idea behind the attention mechanism (Bahdanau et al., 2014) is to scale an input
sequence by relevance to the predicting outcomes, with a more relevant part being assigned
a higher weight. These weights focus the attention of the prediction model on the most
relevant part of the input sequence to improve model performance. In our scenario, we view
the stage importance scores as the attention weights so that stages with higher contributions
and more relevance to the final total rewards possess larger attention weights. Therefore,
the weights not only explicitly impose stage heterogeneity on the proposed neural network,
but also direct the network to pay more attention to the stages with large treatment effects
when predicting the total rewards. The final importance scores are estimated empirically
based on the loss function presented in (13) and the attention framework in Figure 2, i.e.,

{ω̂1, ..., ω̂T } = argmin
(ω1,...,ωT )∈R|T |

1

n

n∑
i=1

Ri − T∑
j=1

r̃j(ωj · (Hj(Xij , Ai,j−1|Hi,j−1), Aij))

2

. (13)
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Figure 2: Architecture of stage importance scores searching network. The stage importance scores
are treated as the attention weights applied on the patients’ historical information by the LSTM
layer (Hochreiter and Schmidhuber, 1997), and are later estimated by minimizing the MSE between
the observed and surrogate total rewards after the fully-connected (FC) layers transformation.

Note that we do not limit the parametric form of the reward counterpart function. For
illustration purposes, we represent the reward function with a fully-connected (FC) network
due to its flexible capability of function approximation (DeVore et al., 2021). In addition,
we adopt a long-short term memory (LSTM) network (Hochreiter and Schmidhuber, 1997)
to capture the unobserved patients’ historical information Ht at stage t using up-to-date
patients’ covariate information X1:t and past treatments A1:(t−1). With estimated importance
scores, we can search for the optimal treatment regime under the SWL value function (11),
via maximizing the objective function with a smooth convex surrogate function ψ (Bartlett
et al., 2006):

D̂SW
ψ = (f̂ψ1, ..., f̂ψT )SW = argmax

{f1,...,fT }∈F |T |

1

n

n∑
i=1

Ri
∑T

j=1 ω̂j ψ(aij · fj(Hij))∏T
j=1 πj(aij |Hij)

. (14)

In particular, we can employ the logistic function as a surrogate to the indicators, i.e.,
ψ(x;λ) = (e−λx + 1)−1. The hyper-parameter λ controls the growth rate where a larger λ
value makes the surrogate converge to the 0-1 indicator function faster.

To conclude, the proposed SWL method inherits the property of treatment mismatching
from SAL and further adopts stage heterogeneity via the empirical stage importance scores
estimated from the attention-based recurrent neural network. The resulting SWL scheme is
able to estimate the sequential DTR under the weighted multi-label classification framework.
In the next section, we will present the theoretical results of the proposed SWL method.

4 Theoretical Results

In this section, we present the theoretical results of the proposed SWL method. In Theorem
1, we show the Fisher consistency of the SWL surrogate estimator D̃SW

ψ compared to the
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SWL optimal regime D̃SW . Next, we demonstrate the SWL Fisher consistency of the optimal
regime D∗ in Theorem 2, and establish the finite-sample performance error bound with
a flexible metric entropy in Theorem 3. To the best of our knowledge, Theorem 2 is the
first theoretical result to fully discuss the gap in Fisher consistency between multi-stage
DTR methods and the multi-label classification framework. The proof of the theorems and
additional Lemmas are provided in Supplemental Materials.

We first introduce our notation for the technical developments. We let G|T | be a generic
product function space; and denote g∗ = (g∗1, ..., g

∗
T ) ∈ G|T | and g∗

ψ = (g∗ψ1, ..., g
∗
ψT ) ∈ G|T | as

the optimal treatment regimes with respect to the SWL value function V SW (11) and its
surrogate counterpart V SW

ψ , respectively. Moreover, we define a parametric product function

space F |T |, where we search the maximizer f∗ = (f∗1 , ..., f
∗
T ) ∈ F |T | and f∗ψ = (f∗ψ1, ..., f

∗
ψT ) ∈

F |T | for the function approximations for g∗ and g∗
ψ, respectively. Given the observed data,

we further define f̂n = (f̂ψ1, ..., f̂ψT ) ∈ F |T | as the empirical maximizer of the SWL objective

function V̂ SW
ψ (14). Before establishing the theoretical results, we present the following

necessary regularity conditions.

Assumption 1. (Finite Reward) The total reward is positive and upper-bounded by a finite
constant M, i.e., 0 ≤ ∥R∥∞ ≤M <∞.

Assumption 2. (Positivity) The propensity score πj(aj |Hj) is lower-bounded by a positive
real number, c0, s.t. 0 < c0 ≤ πj < 1.

Assumption 3. (No Approximation Error) Suppose for any parameterized functional space
F |T |, the approximation error ϵapp satisfies the following:

ϵapp := sup
g∈G|T |

inf
f∈F |T |

∥g − f∥∞ = 0.

Assumption 1 is a standard assumption, which requires the total reward to be positive and
bounded. Assumption 2 indicates that the probability of assigning any treatment to arbitrary
stages is positive in the observational studies. Assumption 3 defines an approximation error
ϵapp due to the difference between the parameterized space F |T | and the generic space G|T |.
By setting ϵapp to zero, the assumption states that for any function sequence g in the generic
function space G|T |, we can find a function sequence f in the parameterized space F |T | such
that f = g. Equivalently, it can be shown that the optimal regime g∗ belongs to F |T | and
g∗ = f∗.

4.1 Surrogate Fisher consistency

The adoption of surrogate functions eases the optimization procedure. In this subsection, we
establish the Fisher consistency between the value function V SW and its surrogate form V SW

ψ .
Specifically, we show that the optimal surrogate treatment decision sign(f∗ψj) is aligned with
the optimal decision sign(f∗j ) at each stage. The obtained result is presented in Theorem 1.

Theorem 1. Let ψ(a, f ;λ) : A×F×Λ 7→ R be a surrogate function with tuning parameters λ
that satisfies ψ(a, f ;λ) = ψ(−a,−f ;λ) and sign(ψ(1, f ;λ)− ψ(−1, f ;λ)) = sign(f). Then,

13



for all t = 1, ..., T and Ht ∈Ht,

sign(f∗ψt(Ht)) = sign(f∗t (Ht)) = argmax
at∈{−1,1}

E

rt +

T∑
j=t+1

rj

∣∣∣∣∣∣ At = at, Ht

 . (15)

Theorem 1 guarantees the same treatment decisions could be obtained from the surrogate
estimators and the maximizing regime under the SWL scheme. This validates the usage of
smooth surrogate functions to approximate the indicator functions at each decision stage
which cannot be solved under the IPWE framework. In addition, according to Lemma 4, the
surrogate is only required to be an even function and produce the same sign as the treatment
effect. In fact, a wide class of surrogate functions, such as indicators, logistic functions, and
binary cross-entropy, satisfies such requirements and increases the optimization flexibility of
the proposed SWL method.

In the following subsection, we also demonstrate the Fisher consistency between SWL
and the optimal DTR D∗ = {D∗

j}Tj=1. The optimal decision d∗t on arbitrary stage t from
equation (1) has the form of

d∗t = D∗
t (Ht) = argmax

at∈{−1,1}
E

rt +

T∑
j=t+1

rj

∣∣∣∣∣∣ At = at, Ht, {Aj}Tj=t+1 = {d∗j}Tj=t+1

 . (16)

Compared to SWL maximizing regime f∗ in equation (15), the optimal DTR D∗ also aims to
maximize expected future reward, but further assumes every future treatment step matches
with the optimal decision. Hence, depending on the underlying behavioral distributions of
rewards and treatment assignments, SWL could recover D∗ asymptotically only under much
more stringent conditions.

4.2 Fisher consistency: optimal treatment dominance

To fill in the gap between SWL and optimal DTR, we investigate the boundary condition
where the SWL estimators might produce different treatment decisions from the optimal
regime. This condition could be quantified via the relationships between the treatment
effects and expected future rewards, and is defined as

Condition 1. (Optimal Treatment Dominance) Any decision Stage t, where 1 ≤ t ≤ T , is
said to be dominated by the optimal treatment if

Ψt(Ht; {d∗j}Tt+1) · P
(
{Aj}Tt+1 = {d∗j}Tt+1

)
≥

E
{

Ψt(Ht; {Aj}Tt+1)
∣∣ {Aj}Tt+1 ̸= {d∗j}Tt+1

}
· P

(
{Aj}Tt+1 ̸= {d∗j}Tt+1

)
, (17)

where Ut(Ht; {Aj}Tt+1) = E{
∑T

j=t+1 rj |Ht, {Aj}Tt+1} is the expected future reward result-

ing from preassigned future actions after the tth decision stage, and Ψt(Ht; {Aj}Tt+1) =∣∣E{
rt + Ut(Ht; {Aj}Tt+1)

∣∣ At = 1, Ht

}
− E

{
rt + Ut(Ht; {Aj}Tt+1)

∣∣ At = −1, Ht

}∣∣ represents
the absolute difference in the expected total rewards due to treatment at Stage t, i.e., the
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treatment effect. Overall, Condition 1 indicates optimal treatment dominance if the treat-
ment effect of the optimal decisions, weighted by its matching probability, is larger than
any other combination of non-optimal decisions. Then, if Condition 1 is satisfied at every
decision stage, Fisher consistency between SWL and optimal DTR can be reached,

Theorem 2. For all stages t = 1, ..., T and Ht ∈Ht, sign(f∗ψt) = sign(f∗t ) = d∗t if and only
if Stage t is dominated by the optimal treatment effect.

As Theorem 2 shows, Fisher consistency depends on the dominance of the optimal
treatments. For a better understanding of Condition 1, we begin with an extreme sce-
nario where every individual receives the optimal decisions. Obviously, optimal deci-
sions in this case are dominant as there is no other regime assigned, and Condition 1

is satisfied at every stage, i.e., P
(
{Aj}Tt+1 ̸= {d∗j}Tt+1

)
= 0. Furthermore, since the ex-

pected future reward E
{∑T

j=t+1 rj

∣∣∣ Ht

}
is equal to the expected future optimal reward

E
{∑T

j=t+1 rj

∣∣∣ Ht, {Aj}Tj=t+1 = {d∗j}Tj=t+1

}
, it is straightforward to show that the SWL

maximizing regime f∗ is the same as the optimal DTR d∗.
In a more general sense, Condition 1 considers the treatment effects and the optimal

regime assignment rate at the same time when estimating the treatment regime. Though the

optimal regime could be hardly assigned to the patients, i.e., P
(
{Aj}Tt+1 = {d∗j}Tt+1

)
is small,

the optimal decision d∗t is still preferred if its treatment effect is much larger and therefore

dominates other regimes, i.e., Ψt(Ht; {d∗j}Tt+1) > E
{

Ψt(Ht; {Aj}Tt+1)
∣∣∣ {Aj}Tt+1 ̸= {d∗j}Tt+1

}
.

On the other hand, if the treatment effects of all possible regimes are similar, the SWL
estimators choose the decision which is more often applied to the population. Accordingly,
due to Condition 1, our proposed SWL is able to recover the optimal regime and adaptively
make treatment changes based on the treatment effect and the regime-assigned rate from
the collected empirical data.

4.3 Finite-sample performance error bound

Theorems 1 and 2 establish the consistency properties of the proposed SWL method. To
investigate finite sample performance of the proposed approach, we also establish the
performance error bound and investigate the convergence rate. In the following, we require
measuring the function space complexity for the parameterized functional space F .

Assumption 4. (Capacity of Function Space) Let F = {f ∈ F : ∥f∥ ≤ 1} and H1, ...,Hn ∈
H. There exist constants C > 0 and 0 < α < 1 such that for any u > 0, the following
condition on metric entropy is satisfied:

logN2(u,F , H1:n) ≤ C
(

1

u

)2α

. (18)

Assumption 4 characterizes the functional space complexity with the logarithmic mini-
mum number of balls with radius u required to cover a unit ball in F , and is satisfied under
various functional spaces such as the reproducing kernel Hilbert space (RKHS) and Sobolev
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space (Van de Geer, 2000; Steinwart and Christmann, 2008). Consequently, the performance
bound between V SW (f∗) and V̂ SW

ψ (f̂n) is provided in the following theorem.

Theorem 3. Under Assumptions 1-4, there exist constants C1 > 0 and 0 < α < 1 such that
for any δ ∈ (0, 1), w.p. at least 1− δ, the performance error is upper-bounded by:

∣∣∣V SW (f∗)− V̂ SW
ψ (f̂n)

∣∣∣ ≤ M

cT0

T∑
j=1

ωjϵn,j︸ ︷︷ ︸
Surrogate error

+
6(α+ 1)

α

[
αC1

√
T

n

(
λM

4cT0

)α] 1
α+1

+
9M

cT0

√
log 2/δ

2n︸ ︷︷ ︸
Empirical estimation error

,

(19)
where ϵn,j = supAj ,Hj

|I(Ajfj(Hj) > 0)− ψ(Ajfj(Hj);λn)|.

In Theorem 3, the finite-sample performance bound can be broken down into two separate
bounds: the surrogate error bound between V SW and V SW

ψ and the empirical estimation

error bound of V SW
ψ . As a result, the SWL performance error convergence rate could be

obtained at O(ϵn,j + n−1/(2α+2)). In particular, the first term depends on the choice of
the surrogate function. When the surrogate is well-selected as a logistic function, e.g.,
ψ(x;λn) = (e−λnx + 1)−1 with a rate hyper-parameter λn, the surrogate error ϵn,j vanishes
to zero at the rate of O(e−n), which is much faster than the second term; and therefore the
performance error bound could be reduced to O(n−1/(2α+2)).

Furthermore, based on the O(n−1/(2α+2)) convergence rate, Theorem 3 provides the
finite-sample upper bound which validates the estimation risk and demonstrates how SWL
converges under different parametric space settings. For instance, when the historical
information H is an open Euclidean ball in Rd and the functional space is specified as the
Sobolev space Wk(H) where k > d/2, one can choose α = d/2k to obtain an error upper
bound of rate at O(n−d/2(d+2k)). In addition, when the functional space is finite, the upper
error bound could reach the best rate at O(n−1/2) as α → 0, which achieves the optimal
rate provided in the literature (Zhao et al., 2015, 2019).

To summarize, our finite-sample performance error bound recovers the best-performing
convergence rate found in the existing literature and meanwhile provides a non-asymptotic
explanation of the proposed multi-stage DTR method in empirical settings. With different
choices of metric entropy, the performance error bound can be flexibly adapted to various
functional spaces and is not limited to the RKHS discussed in Zhao et al. (2015). In
addition, our metric condition from Assumption 4 only needs to be satisfied under a more
relaxed empirical L2-norm on the collected samples H1:n, compared to the supremum norm
assumption in Zhao et al. (2019).

5 Implementation and Algorithm

In this section, we provide our main algorithm for stage importance scores searching and
the optimal SWL regime estimation. The goal is to find a set of optimal parameters that
minimizes the MSE of rewards (13) and maximizes the objective function of SWL (14).

The algorithm starts with finding the stage importance weights by constructing the neural
network as specified in Figure 2, which could be summarised into two major steps. First, we
model the deterministic summary function S via LSTMs and estimate patients’ historical
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information Hj at each stage. Second, we use the estimators of stage importance scores to
scale Hj and apply fully-connected (FC) layers on the weighted historical information to
estimate the total rewards. Once the surrogate total rewards are estimated, the MSE loss
between the observed and surrogate total rewards can be computed, and the parameters in
the neural networks are updated from the back-propagation process with stochastic gradient
descent (SGD)-based optimizers (Robbins and Monro, 1951).

For estimating the optimal regime, there are still two missing pieces need to be filled in
according to the SWL objective function (14): the function representations of the target
regime and the propensity scores of each observed treatment. In this proposed algorithm,
we model the treatment rules {fj}Tj=1 with a FC-network. Since the treatment rule could
be linear or non-linear, we adjust the activation functions applied on each layer within the
network accordingly. To estimate the propensity sores, we apply the logistic regression for
each individual at each stage j, i.e., {π̂ij}ni=1. Finally, we combine every component and
managed to present the entire workflow in Algorithm 1.

Algorithm 1 Stage Weighted Learning

1. Initialize stage weights {ωj}Tj=1; the LSTMs parameterized by θL; the stage-weight FC-
network parameterized by θs; the treatment FC-network parameterized by θf ; learning
rate λ; maximum iterations Tmax; and a stopping error criterion ϵs

2. Input all observed sequence {(Xi1, Ai1, Xi2, Ai2, ..., XiT , AiT , Ri)}ni=1

3. For k ← 1 to Tmax do

4. Compute gradient w.r.t. θl, θs and {ωj}Tj=1 as

5. Lk
1 = 1

n

∑n
i=1

[
Ri −

∑T
j=1 FCθs ((ωj · LSTMθl(Xij , Ai,j−1))

]2
6. Update parameters of interests ({ωj}Tj=1, θl, θs)

k ← ({ωj}Tj=1, θl, θs)
k−1 − λ · ∇Lk

1

7. Stop if |Lk
1 − Lk−1

1 | ≤ ϵ

8. Normalize ω̂j = exp(|ω̂j |)/
∑T

j=1 exp(|ω̂j |) and finalize Ĥij = LSTMθk
l
(Xij , Ai,j−1)

9. Estimate {(π̂ij)Tj=1}ni=1 via logistic regressions on Aij ∼ 1 + Ĥij

10. For k ← 1 to Tmax do

11. Compute gradient w.r.t. θf as

12. Lk
2 = − 1

n

∑n
i=1

[
Ri∏T

j=1 π̂ij
·
∑T

j=1 ω̂j ·
(

exp(−Aij · FCθk
f
(Ĥij))) + 1

)−1
]

13. Update parameters of interests θkf ← θk−1
f − λ · ∇Lk

2

14. Stop if |Lk
2 − Lk−1

2 | ≤ ϵ

15. Return estimated treatment regime network θ̂f = θkf

Algorithm 1 demonstrates the end-to-end procedure of the SWL optimal regime esti-
mation, which adopts the standard SGD optimization method, but other techniques could
be also considered to improve the convergence and estimation results. For instance, Adam
optimizer (Kingma and Ba, 2014) could be a suitable alternative to improve the convergence
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performance of SGD on highly-complex and non-convex objective functions. In addition,
instead of setting learning rates to be constant presented in the algorithm, utilizing cosine
annealing warm-restart schedule (Loshchilov and Hutter, 2016) and different initialization
seeds (Diamond et al., 2016) could improve the optimization to achieve a better local
convergence. Furthermore, we can also tune the hyper-parameters, such as the learning rate
and the number of network hidden layers, by conducting a d-fold cross-validation on the
dataset. The detailed cross-validation procedure is described as follows. The dataset is first
randomly partitioned into d evenly-sized subsets, and then the neural network is trained on
each of the (d− 1) subsets and tested on one remaining subset. After averaging d testing
loss, the set of hyper-parameters with minimal testing loss is selected as optimal ones based
on the empirical dataset. Once the two-step algorithm is converged and the maximal value
of the objective function is reached, we obtain the optimal empirical SWL regime.

6 Simulation

In this section, we present simulation studies to showcase the empirical advantages of our
proposed methods over popular multi-stage DTR frameworks; e.g., QLearning (Zhao et al.,
2009), BOWL (Zhao et al., 2015), residual weighted learning (RWL) (Zhou et al., 2017) and
the augmented IPWE-based approach (AIPW) (Zhang et al., 2013), where the later two
methods are robust estimators. Specifically, we investigate the effects of the sample size,
number of stages, optimal regime assignment rate and regime function complexity on the
model performance. Furthermore, we show the advantages of incorporating stage importance
scores when stage heterogeneity exists in the decision stages.

The general simulation setting is described as follows. First of all, a total number of
20 features {Xi1k}20k=1 are independently generated from a standard normal distribution
N(0, 1) at baseline (t = 1), and progress according to the treatment assigned at the previous
decision stage, i.e.,

Xi,t+1,k =

{
0.8 ·Xitk + 0.6 · ϵ if Ait = 1

0.6 ·Xitk + 0.8 · ϵ if Ait = 0
(20)

where Gaussian random noise ϵ ∼ N(0, 1). The variance of the generated covariates is kept
constant and the treatment heterogeneity is incorporated.

We design the optimal treatment regime function at each decision stage under linear
and non-linear settings. Under the linear setting, the optimal regime function is a linear
combination of the covariates without interactions; whereas under the nonlinear setting, we
select functions gt from a basis of functions {X,X2, X3, arctanX, sign(X)}, and interaction
terms are included among the transformed covariates to increase the function complexity.
Accordingly, we formalize the optimal treatment regime generation procedure, i.e.,

f∗t (Xt) =

{∑
j∈J βtj ·X.,t,j Linear setting∑
j∈J βtj ·

∏
s∈Sj

gts (X.,t,s) Non-linear setting.
(21)

Here, βtj ∼ N(0, 1), J is the randomly selected covariate index with cardinality |J | ∼
Unif(1, 20), Sj is a random index set with cardinality |Sj | ∼ Unif(1, 3) specifying the
interaction terms for the jth transformed covariate, and each gts is a nonlinear function
randomly sampled from the pre-specified functional basis. Consequently, the optimal decision
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functions and the number of covariates contributing to the optimal treatment rule vary at
each decision time, and can be expanded to long decision sequences.

We further define a linear immediate reward function after obtaining the optimal decision
d∗t from the optimal regime at each step as

rt(Xt,At) = ωt

∑
j∈Jr

βrtj ·X.,t,j

 +At · d∗t

 + ϵr, (22)

where |Jr| ∼ Unif(5, 20), βrtj ∼ N(0, 1) and ϵr ∼ N(0, 1). Notice that the reward function
consists of three main components: the base reward from patients’ covariates, the treatment
effect, and the stage importance scores. To specify the values of the importance scores
{ωt}Tt=1, we randomly sample from a Dirichlet distribution with important stages having
a weight parameter of 100 and non-important stages having weight parameter 1, i.e.,
{ωt}Tt=1 ∼ Dirichlet({1, 100}). Correspondingly, important stages have larger importance
scores and hence more substantial treatment effects. Based on the immediate rewards, the

total rewards can be computed via Ri = R(Xi,Ai) = E
{∑T

t=1 rt(Xit, Ait)
}

and the value

function V (X,A) = 1
n

∑n
i=1Ri is used to evaluate the performance of the assigned regime.

In general, for each specification of listed parameters under the general setting, we
repeat experiments 50 times for data generation. All methods are trained using 80% of the
simulated training data, and evaluated on the 20% testing set via value functions and the
matching accuracy between the estimated and optimal treatment regimes. Due to page
restrictions, we provide partial experiment results in Supplemental Materials.

6.1 Effects of sample size and number of decision stages

Sample sizes and the number of decision stages are the two important factors that affect the
curse of full matching as introduced in section 3.1. To comprehensively examine the effects
of these two factors on our proposed algorithm, we first conduct simulations on sample sizes
n = 500, 1000, 5000, and the number of decision stages T = 5, 8, 10 where treatments At are
randomly matched with the nonlinear optimal decisions at 50% chance and the number of
important stages is set to 0. The results of model performance are summarized in Table 1.

According to Table 1, we notice that SWL outperforms all other competing methods
with respect to the estimated total rewards. Given a fixed number of stages, every single
model deteriorates as expected when the sample size decreases as indicated by the smaller
values of estimated total rewards, but the improvement margin of SWL compared to the
best-performing competing method increases. In particular, when T = 5, the SWL improves
the estimated total rewards nearly seven times as much, from 8.51% to 56.63%, as the sample
size decreases from 5000 to 200. In addition, the difference between our model performance
and other competing methods enlarges with an increasing number of decision stages. For
instance, when n = 5000, the improvement rates increase from 8.51% to 64.42% as T grows
from 5 to 10. This implies that the proposed method has a more efficient utilization of the
observed information and the SWL has more advantages when the sample size is small and
the number of treatment stages is large.
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T n QLearning AIPW RWL BOWL SWL Oracle
Imp-rate

(To Best)

5 5000 0.107 (0.042) 0.247 (0.024) 0.106 (0.053) 0.343 (0.018) 0.372 (0.026) 0.601 (0.004) 8.51%

1000 0.102 (0.044) 0.147 (0.033) 0.099 (0.063) 0.239 (0.032) 0.268 (0.045) 0.601 (0.014) 11.87%

500 0.093 (0.047) 0.105 (0.039) 0.114 (0.063) 0.185 (0.051) 0.247 (0.047) 0.598 (0.020) 33.44%

200 0.064 (0.069) 0.074 (0.052) 0.140 (0.066) 0.116 (0.070) 0.220 (0.069) 0.600 (0.030) 56.63%

8 5000 0.043 (0.027) 0.091 (0.015) 0.055 (0.025) 0.143 (0.014) 0.191 (0.016) 0.375 (0.005) 33.10%

1000 0.030 (0.028) 0.052 (0.016) 0.054 (0.024) 0.080 (0.021) 0.145 (0.022) 0.375 (0.009) 80.85%

500 0.033 (0.029) 0.035 (0.025) 0.066 (0.027) 0.058 (0.03) 0.140 (0.028) 0.378 (0.015) 110.88%

200 0.014 (0.038) 0.008 (0.039) 0.053 (0.035) 0.022 (0.037) 0.125 (0.04) 0.370 (0.024) 134.96%

10 5000 0.021 (0.024) 0.055 (0.01) 0.043 (0.017) 0.086 (0.012) 0.141 (0.014) 0.300 (0.006) 64.42%

1000 0.016 (0.021) 0.031 (0.011) 0.041 (0.017) 0.044 (0.015) 0.112 (0.021) 0.300 (0.007) 151.80%

500 0.015 (0.025) 0.018 (0.018) 0.039 (0.021) 0.030 (0.019) 0.109 (0.021) 0.299 (0.012) 179.49%

200 0.003 (0.027) 0.006 (0.024) 0.039 (0.027) 0.014 (0.031) 0.106 (0.021) 0.298 (0.019) 175.13%

Table 1: Estimated total rewards when the optimal regime is nonlinear, assigned treatment
At ∼ Bernouli(0.5) · d∗t and no important stage. Standard errors are listed next to the estimated
means. The Oracle stands for the best estimated total rewards if all treatments are assigned optimaly.
The improvement rate compares SWL against the best performer of competing methods.

6.2 Full-matching rates between assigned and optimal treatments

We illustrate the curse of full matching under various sample sizes and numbers of stages.
However, the empirical dilemma could compromise the convergence of the DTR methods
at the same time. To describe a more straightforward association between full-matching
rates and model performance while minimizing the effects from non-convergent results, we
set n = 5000, T = 10, and directly adjust the matching probabilities between assigned and
optimal treatment. The full-matching rates are 0.510 ≈ 0.001, 0.710 ≈ 0.03, and 0.810 ≈ 0.1.

Matching Probability

(P (
∑10

t=1 I(At = d∗t ) = 10)
QLearning AIPW RWL BOWL SWL Oracle

Imp-rate

(To BOWL)

Scenario 1 (0.100) 0.044 (0.022) 0.102 (0.012) 0.098 (0.014) 0.196 (0.008) 0.207 (0.007) 0.300 (0.006) 5.61%

Scenario 2 (0.030) 0.042 (0.023) 0.094 (0.013) 0.090 (0.015) 0.170 (0.010) 0.203 (0.009) 0.300 (0.006) 19.41%

Scenario 3 (0.001) 0.041 (0.022) 0.090 (0.010) 0.086 (0.016) 0.144 (0.009) 0.201 (0.012) 0.300 (0.006) 39.58%

Table 2: Estimated total rewards of listed models when n = 5000, T = 10, and the treatments
are matched with the nonlinear optimal decisions based on the pre-specified full-matching rates.
Standard errors are provided in parentheses. Improvement rates compare SWL against BOWL.

Based on the results presented in Table 2, we observe that the proposed SWL method
outperforms the rest of the competing methods, and the improvement rates against BOWL
increase as the full-matching probability decreases. This result is expected since the IPWE-
based approaches (BOWL and RWL) rely heavily on the number of full-matching treatments
from the empirical samples in order to achieve convergence. In contrast, the proposed SWL
model is more adaptive to all matching scenarios by design and thus is more robust against
small full-matching rates. In addition, the relatively stable performance of the AIPW model
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suggests that the augmentation term in the AIPW estimator might lessen the curse of
full-matching compared to the IPWEs. However, under the scenario where the propensity
mechanism can be easily found, the additional potential outcome model increases the
computational burden of AIPW and therefore further deteriorates its performance compared
to BOWL and SWL. Finally, we remark that the difference between the performance of
BOWL and RWL indicates that the adoption of an unsmooth surrogate function involving all
stages in (3) used in RWL induces more empirical optimization difficulty when the decision
sequence is long; whereas the proposed smooth SWL objective function (14) maximizes
regimes at each stage separately, and hence eases the optimization process.

6.3 Optimal regime function complexities

In this numerical study, we are interested in analyzing the sensitivity of our proposed method
to the functional complexity of the underlying optimal regime. Specifically, we also consider
the linear treatment regimes and include the homogeneous decision rule setting where the
optimal rules are the same at all time points, i.e. f∗j = f∗1 for all 2 ≤ j ≤ T . Note that the
homogeneous rules can be oftentimes encountered in a high-frequency treatment session as
the optimal regime is unlikely to update in a short period of time. We combine the results
of four settings when T = 10 in Figure 3.

Figure 3: Sensitivity plots of estimated total rewards under four function settings against sample
sizes. The number of decision stages is set to 10 for this example.

As algorithms are converging, a decrease in the performance improvement rate/slope is
expected. According to this criterion, we observe that the proposed SWL method converges
to Oracle faster than all other methods. For instance, under the linear homogeneous
treatment rule setting, SWL achieves an averaged 95% matching accuracy, compared to 72%
for BOWL when the sample size reaches 1000. Though the presented empirical results can
be affected by the implementation and choices of hyper-parameters, based on the similar
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performance increasing rate between SWL and BOWL when the sample size is larger than
2000, we can confirm with the developed theoretical results that our SWL reaches the same
state-of-the-art asymptotic convergence rate as BOWL. In addition, from the deteriorated
performance in the nonlinear heterogeneous setting compared to the linear homogeneous
setting, we verify that the increasing level of functional complexity raises the optimization
difficulties and hinders the model convergence rate with limited empirical examples.

6.4 Stage heterogeneity: number of important stages

In this subsection, we illustrate the advantages of incorporating stage heterogeneity with the
stage importance scores. We adjust the level of heterogeneity by changing the number of
important stages, where fewer important stages induce stronger heterogeneity. In addition,
to maximize the heterogeneity among stages, we consider the linear homogeneous decision
rule setting where the optimal rules are linear and stay the same at all time points, i.e.
f∗j = f∗1 for all 2 ≤ j ≤ T . Note that the homogeneous rules can be frequently encountered
in a high-frequency treatment session, as the optimal regime is unlikely to be updated in a
short period of time. Figure 4 provides the obtained results when n = 500 and T = 10.

As shown, while the proposed SAL with linear prior still outperforms the rest of the
competing methods under the first three scenarios, the importance scores can further improve
the performance of SAL with a greater margin when the heterogeneity among the stages
gets stronger. Moreover, the stability of the SAL can be improved with the stage weights
when strong stage heterogeneity exists. We conclude that the proposed stage importance
scores are able to explicitly incorporate stage heterogeneity into the SAL framework and
can be used for regime searching on stages which contribute to improving treatment effects.

Important-Stage

counts
QLearning AIPW RWL BOWL SAL-linear SWL Oracle

Imp-rate

(To SAL)

8 0.063 (0.098) 0.103 (0.071) 0.001 (0.052) 0.165 (0.073) 0.402 (0.31) 0.542 (0.269) 0.896 (0.037) 34.84%

5 0.098 (0.098) 0.2 (0.084) -0.01 (0.047) 0.253 (0.087) 0.484 (0.283) 0.746 (0.157) 0.889 (0.025) 54.22%

3 0.114 (0.142) 0.304 (0.133) 0.007 (0.056) 0.361 (0.133) 0.522 (0.226) 0.811 (0.107) 0.883 (0.018) 55.28%

1 0.161 (0.253) 0.424 (0.169) -0.007 (0.065) 0.594 (0.133) 0.452 (0.134) 0.782 (0.109) 0.828 (0.022) 72.88%

Table 3: The estimated total rewards of listed models under three scenarios of numbers of important
stages when n = 500, T = 10, and optimal treatment rule is linear and homogeneous. Improvement
rate compares SWL against SAL with linear prior.

7 Data Analysis

In this section, we apply the proposed method to UC COVID Research Data Sets (UC
CORDS) (University of California Health, July 15, 2020), which combines timely COVID-
related testing and hospitalization healthcare data from six University of California schools
and systems. As of December 2022, UC CORDS include a total number of 108,914 COVID
patients, where 31,520 of them had been hospitalized and 2,333 of them had been admitted
to the ICU. Aiming to facilitate hospital management by reducing inpatients’ length of
stay at hospitals and further prevent them from developing more severe symptoms, we are
interested in selecting effective treatments tailored to individual patients.
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Figure 4: Boxplots of the estimated total rewards of listed methods versus the number of important
stages when n = 500, T = 10, and the optimal treatment rule is linear and homogeneous.

One of the first few FDA-approved drugs that have been found effective against covid
was Dexamethasone (Ahmed and Hassan, 2020). However, the precise treatment plan using
Dexamethasone still remains unclear. As suggested by Waterer and Rello (2020), clinicians
need to consider individual risks especially among elderly patients with age over 65 years
old and patients with comorbidities, such as diabetes and cardiovascular diseases. In fact,
according to the UC CORDS medical records, elderly patients spend 3 more days on average
in both hospitals and ICUs compared to younger patients. Thus, our goal is to apply DTR
methods to provide an optimal individualized treatment decision for Dexamethasone (i.e.,
whether the patient should take the drug or not) with the incorporation of heterogeneity
among patients at a decision stage.

In this application, we list two emerging technical challenges. First, the number of
decision stages involved can be large during the average 7 days of inpatient stay, and unlike
the infinite horizon DTR method (Ertefaie and Strawderman, 2018; Zhou et al., 2022), a
finite number of treatment stages is considered in this application. As a result, an efficient
DTR estimation method should be robust against the curse of full-matching, e.g., long
decision sequences and few patients receiving optimal treatments. Second, according to Lee
et al. (2021) who found an early administration of Dexamethasone can reduce hospital stay,
we speculate that stage heterogeneity exists in evaluating the treatment effect, and therefore
examine methods which can incorporate timing effects on the estimation procedure. Taking
the above two challenges into account, the proposed SAL framework and SWL are able to
fulfill these needs for this real-data application.

We first pre-process UC CORDS data following the procedure elaborated in Supplemental
Materials. Then we fit the proposed models and competing methods to search for the optimal
DTR of Dexamethasone which can reduce the number of inpatient or ICU day stays for
admitted patients. In this application, patients receiving a total number of 5, 8, and 10
treatment decisions during their stay in the hospital are included. We randomly select
80% of the data as a training set and repeat the process 20 times to obtain a Monte-Carlo
sample of the model performance scores. All methods are evaluated under the empirical
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value outcome according to Zhao et al. (2015), i.e.,

V̂ d =
En

{
R ·

∏T
j=1 I(aj = dj)/

∏T
j=1 π̂j(aj |Hj)

}
En

{∏T
j=1 I(aj = dj)/

∏T
j=1 π̂j(aj |Hj)

} . (23)

To show the model performance, we list the estimated outcomes in terms of hospitalization
days in Table 4 and Figure 5, where a smaller value indicates better model performance.

Stay Type Number of Stage QLearning AIPW RWL BOWL SAL-linear SWL

ICU 5 (n=623) 18.217 (17.920) 15.251 (11.720) 10.455 (10.240) 11.720 (9.412) 3.305 (7.832) 5.855 (4.666)

8 (n=345) 44.200 (16.167) 41.300 (17.254) 7.173 (6.237) 10.340 (8.295) 4.913 (3.375) 6.749 (7.636)

Inpatient 5 (n=3256) 10.108 (3.291) 10.003 (6.660) 9.493 (1.507) 11.525 (2.212) 9.019 (3.051) 7.790 (2.861)

8 (n=1876) 24.950 (11.200) 19.815 (13.451) 9.589 (2.790) 7.012 (0.389) 6.704 (3.541) 5.664 (3.263)

10 (n=1419) 27.712 (10.713) 27.800 (10.884) 11.412 (4.031) 15.129 (12.910) 5.582 (2.318) 4.817 (1.958)

Table 4: Estimated number of hospitalization days obtained from DTR methods under two different
stay types: Inpatient and ICU. The sample size is listed next to the number of stages.

Both Table 4 and Figure 5 show that the SAL framework achieves the overall best
performance in terms of reducing the length of hospital stay for patients following the
suggested DTR. Specifically, the proposed method reduces almost 70% of the ICU duration
from 10 days to 3 days, compared to the RWL method when a total of 5 decision stages is
involved. Apart from the averaged performance, our methods attain leading model stability
compared to other competing methods. In particular, the SWL can further improve the
model stability of SAL under a larger sample case, where the stage importance scores can
be better-captured by the attention-based neural network.

Figure 5: Boxplots of the estimated number of inpatient days by the number of important stages.

Based on our analyses, we can summarize that the Q-Learning has difficulties to estimate
the outcome when a large number of decision stages are involved and the underlying reward
mechanism is complicated, especially in the case of COVID where the association of recovery
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time and Dexamethasone treatment still remains unclear. Meanwhile, the AIPW directly
estimates the DTR and achieves slightly better results than the Q-Learning. But with the
augmentation term, the AIPW might suffer similar challenges, such as outcome estimation
and increasing computation burden. Note that RWL and BOWL are both based on the
IPWE framework and require a sufficient number of patients to receive optimal treatments
at all stages. Thus, as the number of stages increases and the number of involved patients
decreases, both methods show deteriorating performance and larger variance. In comparison,
our methods are able to combine the efficiency of IPWE-based methods and meanwhile
improve model stability by taking into account heterogeneity-matching schemes between the
observed and underlying optimal regimes. Our real-world application to the UC CORDS
dataset demonstrates the superior empirical performance of the proposed SAL framework.

8 Discussion

In this paper, we propose a novel individualized learning framework for estimating the optimal
dynamic treatment regime. The proposed framework utilizes the matching status between the
observed and underlying optimal regime at any stage and substantially improves the sample
efficiency of the inverse-probability-weighted approaches. With the stage importance scores,
the proposed framework incorporates stage heterogeneity and therefore more accurately
captures the differences in treatment effectiveness at various stages. In theory, we establish
the Fisher consistency and a finite-sample performance error bound, which achieves the best
convergence rate in the literature and provides a non-asymptotic explanation.

There are future improvements and extensions for our work. For example, to estimate the
stage importance scores, we construct an attention-based neural network in the current work.
As a result, the estimated importance scores remain fixed at all stages and provide a general
interpretation of the importance of a stage among the patient population. However, the
treatment stage heterogeneity could vary among the patients. As for future exploration, we
can incorporate the multi-head attention architecture (Vaswani et al., 2017) which provides
individualized stage importance scores at the patient level. In addition, we can provide a
data-driven procedure to estimate the prior distributions for the SAL framework, and devise
a smooth surrogate function for the non-convex component of the general k-IPWE.
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