
Physica A 466 (2017) 211–223

Contents lists available at ScienceDirect

Physica A

journal homepage: www.elsevier.com/locate/physa

Resistance maximization principle for defending networks
against virus attack✩

Angsheng Li ∗, Xiaohui Zhang, Yicheng Pan
State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, Beijing, 100190, PR China

h i g h l i g h t s
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a b s t r a c t

We investigate the defending of networks against virus attack.We define the resistance of a
network to be the maximum number of bits required to determine the code of the module
that is accessible from randomwalk, fromwhich randomwalk cannot escape.We show that
for any network G, R(G) = H1(G)−H2(G), where R(G) is the resistance of G, H1(G) and
H2(G) are the one- and two-dimensional structural information ofG, respectively, and that
resistance maximization is the principle for defending networks against virus attack. By
using the theory, we investigate the defending of real world networks and of the networks
generated by the preferential attachment and the security models. We show that there
exist networks that are defensible by a small number of controllers from cascading failure of
any virus attack. Our theory demonstrates that resistance maximization is the principle for
defending networks against virus attacks.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

It was shown that network topology is universal in nature, society, and industry [1]. Erdös–Rényi proposed the first
model [2,3] (The ER model in short) to capture complex systems based on the assumption that real systems are evolved
randomly. The ERmodel explores the well-known small-diameter property of networks, that the diameter of a network of n
nodes is O(log n); this property is the essence of the small-world phenomenon, and is the first general property of networks.
The small-world phenomenon of networks is simply guaranteed by some randomness in the sense that, for any graph, if
we add a small number of edges randomly and uniformly in the graph, the diameter of the new graph is small with high
probability.

Barabási and Albert [4] proposed a graph generator by introducing preferential attachment as an explicit mechanism, the
model is thus called the preferential attachment (PA) model. Consequently, networks generated by the PA model naturally
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follow a power law. It has been shown thatmost real networks follow a power law so that power law is the second universal
property of networks [1].

In fact, the current highly connected world is assumed to be supported by numerous networking systems. Real networks
are not only too important to fail, but also too complicated to understand. An immediate question is hence: Canwe guarantee
the security of activities in a highly connected network? It could be possible that a small number of attacks or even random
errors of individuals may cause a global failure of the networks. And even worse, it seems that power law and small world
property (the main advantages of networks) are obstacles of achieving security of networks.

Typical attacks have two types [5–10]. The first type is the physical attack of removal of some nodes or edges. It has been
shown that in scale-free networks of the preferential attachment (PA)model [4], the overall network connectivitymeasured
by the sizes of the giant connected components and the diameters does not change significantly under random removal of
a small fraction of nodes, but vulnerable to removal of a small fraction of the high-degree nodes [10–12].

The second type is the cascading failure of attacks, which naturally appeared in rumor spreading, disease spreading,
voting, and advertising [13,5,6]. One of the main features of networks in the current highly connected world is that failure
of a few nodes of a network may cause a cascading failure of the whole network. For instance, the failure of a few US
commercial banks caused the 2008 global financial crisis all over the world. It has been shown that in scale-free networks of
the preferential attachment model even a weakly virulent virus can spread [14]. This explains a fundamental characteristic
of security of networks [9].

For the physical attacks or random errors of removal of nodes, it was shown that the optimal networks resisting both
physical attacks and random errors have at most three values of degrees for all the nodes of the networks [15], that
networks having the optimal robustness resisting both high-degree nodes attacks and random errors, have a bimodal
degree distribution [16]. To enhance the robustness of networks, it was proposed [17] the acquaintance immunization
strategy,which calls for the immunization of randomacquaintances of randomly chosen nodes, andmore recently, a security
enhancing algorithmwas proposed in Ref. [18] by randomly swapping two edges for a number of pairs of edges. The results
are all for security or robustness of physical attacks or random errors. More seriously, the graphs that are thus characterized
as secure or robust are far from real graphs, because the graphs have only two or three choices of degrees for all the nodes,
which never occurs in real networks. Li, Li, Pan and Zhang [19] proposed a dynamical model, the securitymodel of networks,
that generates secure networks. Li and Pan [20] showed that with appropriately chosen affinity exponent a, the networks
generated by the security model are provably secure against small-scaled virus attacks.

Gao, Barzel and Barabási [21] proposed the notion of resilience to measure the ability of a network to resist various
perturbations. The measure of resilience depends on appropriate choice of the functions that represent the dynamical laws
of the network. Li and Pan [22] proposed the notion of structural information and established the fundamental theory of
dynamical complexity of networks. Given a network G and a natural number K , the K -dimensional structural information
of G is defined to be the number of bits required to determine the K -dimensional code of the node that is accessible from
random walk in G. The structural information is a measure that represents the dynamical complexity of the network, and
that determines and decodes the natural hierarchical structure of the network in which noises and random variations are
maximally excluded. Based on the theory of structural information, Li et al. [23] proposed the notions of resistance and
security index of networks, and showed that both the resistance and security index of a network measure the power of the
network to resist cascading failure of intentional virus attacks.

An interesting open question is: how to control virus spreading in networks? What are the defending principles of
networks? In the present paper, we will answer these questions.

We investigate the defending of networks based on our new notion of resistance of networks. The resistance of a network
is the greatest number of bits required to determine the code of the module of the network that is accessible from random
walk from which random walk cannot escape. The resistance characterizes the force of the network to resist the spreading
of a virus that randomly infects its neighbors. We discover the resistance law of networks that the resistance of a graph G is
the difference of the one-dimensional structural information and the two-dimensional structural information of the graph.
This explores that resistance maximization is equivalent to the minimization of two-dimensional structural information
and the maximization of the one-dimensional structural information of networks. According to this principle, if a network
G is given, then the one-dimensional structural information is directly determined by the topology of the network, and the
two-dimensional structural information is determined by a partition of the vertices of the network which must be found
by an algorithm; if the network is constructed to realize the maximum security, we will need two requirements: the first
is to maximize the one-dimensional structural information and the second is to minimize the two-dimensional structural
information. The two requirements can be combined together, in which case, the new condition is to minimize the ratio
of the two-dimensional structural information and the one-dimensional structural information, that is, to maximize the
security index of the network, referred to Ref. [23].

Based on the theory, we propose a resistance maximization algorithm E and a controller defining algorithm C to find
the controllers that prevent global failure from virus attacks. We show that for appropriately large affinity exponent, the
networks generated by the security model are defensible by a small number of controllers, in the sense that, after protecting
the small set of controllers, any virus attack on the network can only cause the infection of a small number of vertices
of the network, and that the networks of the preferential attachment model cannot be protected by any small set of
controllers. Our results demonstrate that there is a defending principle of networks, which consists of both the resistance
maximization and the heterogeneity of the external degrees defined by the resistancemaximization principle.We also show
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that our defending principle ensures that there are certain real world networks that are defensible by a small number of
controllers.

2. Resistance of networks

We investigate the problem of defending networks against super virus spreading caused by any attack on the networks.
Given a network G = (V , E), a super virus at a node v infects all the neighbors of v immediately. Therefore, if G is

connected, then a single node that is infected by a super virus will eventually infect the whole network. To control the super
virus spreading in a network, we find a small set of controllers C , a subset of V , such that the controllers cannot be infected
and such that the controllers ensure that any super virus can infect only a small number of nodes of the network.

We investigate the problem of finding the small set of controllers.
In real world, we observe that in many cases, a few or even a single virus may infect a constant fraction of the nodes of

networks. It has been a challenge to understand the laws of virus spreading and to control the virus spreading in networks.
The challenge depends on a number of issues such as: (i) the strategy of attacks, (ii) the mechanisms of the viruses, and
(iii) the number of viruses etc.

Considering the case that a virus randomly infects its neighbors, Li et al. [23] proposed the notions of resistance and
security index of networks, and showed that both the metrics do measure the ability of a network to resist the cascading
failure caused by a small number of intensional virus attacks.

However, our problem here is to control the spreading of super virus attacks, where a super virus infects all its neighbors
immediately. The problem is harder than that in Ref. [23]. For solving the problem, we need some notions proposed by Li
et al. [23]. In particular, we will need the notion of resistance of graphs.

Given a network G = (V , E), suppose there is partition P of G such that random walk with stationary distribution in G
easily goes to a small module X of P after which it is not easy to escape from the module X . In this case, we know that the
spreading of the virus is restrained by the partition P of G. According to the hypothesis above, we define the resistance of G
given by a partition P .

Given a connected graph G, suppose that P is a partition of G. The resistance of G by P [23] is defined as follows:

RP (G) = −

L
j=1

Vj − gj
2m

log2
Vj

2m
, (1)

where Vj is the volume of the jth module Xj of P , and gj is the number of edges from Xj to nodes outside Xj.
In Eq. (1), in the jth term− Vj−gj

2m log2
Vj
2m , Vj−gj

2m =
Vj−gj
Vj
·

Vj
2m is the probability that a randomwalk goes to the jth module Xj

after which the random walk fails to escape from the module Xj, and− log2
Vj
2m is the number of bits required to determine

the code of the jth module Xj in P .
Therefore, RP (G) is the overall number of bits required to determine the code of the module X satisfying:

• X is accessible from random walk with stationary distribution in G, and
• Once the random walk arrives at X , it cannot escape from X .

The resistance of a graph G is defined as follows:

R(G) = max
P
{RP (G)}, (2)

where P runs over all the partitions of G.
According to the definition in Eq. (2), R(G) is the greatest overall number of bits required to determine the code of the

module of G, which is accessible from random walk and from which random walk cannot escape.
Intuitively, the resistance of a networkGmeasures quantitatively the force ofG to block virus spreading inG by a partition

of G.
The definition in Eq. (2) explores a defending principle of networks.
Resistance maximization principle of networks:

1. Given a network G = (V , E), if there is a partition P such that the resistance of G defined by P is large, then G has strong
ability to resist the cascading failure of any virus attack.

In this result, we notice that we do not need to find the partition P such that RP (G) is large. The existence of such a
partition P has already guaranteed the strong ability of the network to resist cascading failures of any virus attack.

2. However, to measure the security of the network, we need to find a partition P of G such that RP (G) is large.
3. Given a network G, the resistancemaximization of G is the principle for defending virus spreading in G. That is, to control

the virus spreading caused by attack on G, we have to find the partition P of G such that RP (G) is maximized among all
the partitions of G. The defending strategy of Gmay be built based on the found partition P .
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Clearly, the metric of resistance is interesting in general. To see this, let us consider the following example. Suppose that
G = (V , E) is a connected graph such that the resistance R(G) of G is extremely small.

According to Eq. (1), for any vertex partition P of G,

RP (G) = −

L
j=1

Vj − gj
2m

log2
Vj

2m

is very small.
This implies that for most j, − Vj−gj

2m log2
Vj
2m is small. For such a j, we have that either Vj−gj

2m is small or − log2
Vj
2m is small.

The former means that random walk easily leaves Xj, if it starts at some node in Xj, and the latter means that the Vj is large.
Consequently, if eachmodule X ofP is small, then randomwalk easily goes from onemodule to another. Thismeans that for
any partition P of small sets of the vertices of G, random walk in G easily travels among the modules of P . This argument
indicates that G has some small set expansion property, in the sense that, for any small set X of V , with high probability,
random walk from X quickly leaves X .

Therefore it is interesting to character the resistance of graphs and to explore the roles of themetric of resistance for both
static graphs and evolving networks. The question is widely open, for which the foundation is the structural information
theory founded by Li and Pan [22].

The resistance of networks introduced above is closely related to the one- and two-dimensional structural information
of networks. To understand this, we introduce the metrics of one- and two-dimensional structural information proposed by
Li and Pan in Ref. [22].

3. Structural information of networks

Given a connected graph G = (V , E) and a natural number K , the K -dimensional structural information of G is the
least number of bits required to determine the K -dimensional code of the node that is accessible from the random walk
with stationary distribution in G. The definition explores that K -dimensional structural information minimization is the
principle of the natural K -level structure of the graph. In particular, two-dimensional structural information minimization
is the principle for discovering the natural community structure of a network.

3.1. Positioning entropy—one-dimensional structural information

Let G = (V , E) be a connected graph with n nodes and m edges. For each node i ∈ {1, 2, . . . , n}, let di be the degree of i
in G, and let pi = di/2m. Then the vector p = (p1, p2, . . . , pn) is the stationary distribution of a random walk in G.

We define the positioning entropy of G or one-dimensional structural information of G as follows:

H1(G) = H(p) = H


d1
2m

, . . . ,
dn
2m


= −

n
i=1

di
2m
· log2

di
2m

. (3)

By definition, H1(G) is the amount of information needed to determine the code of the node that is accessible from a
step of random walk with stationary distribution in G.

H1(G) is a dynamical notion about random walk in G. It is different from the Shannon entropy to determine the code of
the node by a random selection among the nodes of the graph.

3.2. Structural information: two-dimensional structural information

The one-dimensional structural information of graph G can be naturally extended to the two-dimensional case.
Given a connected graph G = (V , E), suppose that P = {X1, X2, . . . , XL} is a partition of V . By using the partition P , we

encode the nodes of G by two-dimensional vectors as follows: for a node v, we encode v by a pair (i, j) such that i is the code
of v in its module X and j is the code of the module X that contains v.

Considering the information needed to determine the two-dimensional codes of the node that is accessible from the
random walk with stationary distribution in G,

We define the structural information of G by P , or the two-dimensional structural information of G given by P as follows:

HP (G) :=

L
j=1

Vj

2m
· H


d(j)
1

Vj
, . . . ,

d(j)
nj

Vj


−

L
j=1

gj
2m

log2
Vj

2m

= −

L
j=1

Vj

2m

nj
i=1

d(j)
i

Vj
log2

d(j)
i

Vj
−

L
j=1

gj
2m

log2
Vj

2m
, (4)
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where L is the number of modules in partition P , nj is the number of nodes in module Xj, d
(j)
i is the degree of the ith node in

Xj, Vj is the volume of module Xj, and gj is the number of edges with exactly one endpoint in module j.
According to the definition,HP (G) is the average number of bits needed to determine the code (i, j) of the node accessible

from a step of random walk in G, where i is the code of the node in its own community, and j is the code of the community
of the accessible node.

Now we are ready to define the structural information, or two-dimensional structural information of graphs.
Given a connected graphG, define the structural information of G or two-dimensional structural information of G as follows:

H2(G) = min
P
{HP (G)}, (5)

where P runs over all the partitions of G.
According to the definition in Eq. (5), for a connected graph G = (V , E), the two-dimensional structural information

H2(G) of G is the least overall number of bits needed to determine the two-dimensional code of the node that is accessible
from the random walk with stationary distribution in G.

Li, Li and Pan [24] and Li et al. [25] have designed a community finding algorithm E on the basis of the minimization
of the two-dimensional structural information of graphs, and shown that the algorithm E exactly identifies or precisely
approximates the natural communities in many networks both generated by models and evolved in nature. Li, Yin and
Pan [26] have developed a three-dimensional genemap for defining tumor types and subtypes based on the two- and three-
dimensional structural information of cell sample networks.

4. Resistance law of networks

By the definition of the one-dimensional structural information and the additivity of the Shannon entropy function, we
have the following local resistance law of networks:

For any graph G and any partition P of G,

RP (G) = H1(G)−HP (G). (6)

By the definition in Eqs. (3) and (4), for the partition P of V ,

HP (G) = −

L
j=1

Vj

2m

nj
i=1

d(j)
i

Vj
log2

d(j)
i

Vj
−

L
j=1

gj
2m

log2
Vj

2m
, (7)

and

H1(G) = H


d1
2m

, . . . ,
dn
2m


= −

n
i=1

di
2m
· log2

di
2m

. (8)

By the additivity of the entropy function, for the partition P ,

H1(G) = −

L
j=1

Vj

2m

nj
i=1

d(j)
i

Vj
log2

d(j)
i

Vj
−

L
j=1

Vj

2m
log2

Vj

2m
.

The resistance of G by P is

RP (G) = −

L
j=1

Vj − gj
2m

log2
Vj

2m
= H1(G)−HP (G).

The local resistance law follows.
According to Eqs. (2), (5) and (6), the resistance, one- and two-dimensional structural information satisfy the following:
Global resistance law of networks: For any graph G,

R(G) = H1(G)−H2(G). (9)

Therefore, the local resistance law in Eq. (6) and the global resistance law in Eq. (9) demonstrate that the following
principle holds.

Defending principle of networks:

• For arbitrarily given graph G, the resistance maximization is equivalent to the structural information minimization.
This is because for a given network G, the one-dimensional structural information has already been completely

determined by the topology of G. However, for an evolving network, resistance maximization is both the maximization
of one-dimensional structural information and the minimization of two-dimensional structural information.
• Resistance maximization is the principle for controlling virus spreading in the network G.
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We show that the defending principle of networks above holds. For this, we develop a resistancemaximization algorithm
E and a controller algorithm C. We show that for some networks, our algorithms find a small number of controllers that
guarantee that the majority of the nodes or almost all the nodes of the networks cannot be infected by any virus attack,
including the super virus attack, on any node of the networks. In this case, we say that the networks are defensible, and
non-defensible, otherwise.

The resistance law provides a foundation for a theoretical direction about themetric of the resistance of networks, details
are referred to Ref. [22].

5. Algorithms and methods for network defense

5.1. Algorithm C for defining controllers of networks

Given a network G = (V , E), and a partition P of V , a controller of P in G is to prevent the infection of super viruses
among different modules in P . For this, we introduce an algorithm to define the global controllers of G on the basis of a
partition P .

Suppose that P = {X1, X2, . . . , XN} is a partition of G = (V , E). We will give an algorithm to find k global controllers of
G, denoted by C.

C proceeds as follows.

(1) For every node y, define the external degree of y to be the number of edges from y to nodes outside y’s own community,
denoted by dE(y).

(2) Let x be the node with greatest external degree. Then:
• enumerate x into X ,
• for every y, if y ∉ X , there is an edge between x and y and x and y are in distinct communities, then set

dE(y)← dE(y)− 1.
(3) If |X | = k, then output X and terminate.
(4) Otherwise. Then go back to step (2) above.

5.2. Resistance maximization algorithm E

According to the resistance law, that is, R(G) = H1(G)−H2(G), the maximization of the resistance is equivalent to the
minimization of the structural information of G. We design our community detection algorithm on the basis of structural
information minimization. We will use a simple greedy algorithm to find a partition which minimizes the structural
information of the network G introduced in Refs. [24–26].

Suppose thatP = {X1, X2, . . . , XL} is a partition of V . For i, jwith 1 ≤ i, j ≤ L, by definition in (4), if we obtain a partition
P ′ from P by merging Xi and Xj, the difference of structure entropies of the two partitions is given by

∆P
i,j(G) = −

Vi

2m

ni
k=1

d(i)
k

Vi
log

d(i)
k

Vi
−

Vj

2m

nj
k=1

d(j)
k

Vj
log

d(j)
k

Vj
+

VX

2m

ni+nj
k=1

d(i,j)
k

VX
log

d(i,j)

VX

−
gi
2m

log
Vi

2m
−

gj
2m

log
Vj

2m
+

gX
2m

log
VX

2m
(10)

=
1
2m
[(Vi − gi) log Vi + (Vj − gj) log Vj − (VX − gX ) log VX + (gi + gj − gX ) log 2m], (11)

where X = Xi ∪ Xj, VX is the volume of X , gX is the number of edges from X to nodes outside of X , d(i,j)
k is the degree of the

kth node in X .
If there is no edge between Xi and Xj, then gX = gi + gj. In this case,

∆P
i,j(G) =

1
2m
[(Vi − gi) log Vi + (Vj − gj) log Vj − (VX − gX ) log VX ]

=
1
2m


(Vi − gi) log

Vi

Vi + Vj
+ (Vj − gj) log

Vj

Vi + Vj


< 0. (12)

Therefore, ∆P
i,j(G) is locally computable, and if there is no edge between Xi and Xj, then ∆P

i,j(G) ≤ 0.
The algorithm, written by E , proceeds as follows.
Given a network G:

(1) Set the initial partition such that each module contains a single node,
(2) recursivelymerge themodules Xi and Xj such that the corresponding∆P

i,j(G) ismaximized, until there is no suchmerging
operation, in which case, output the corresponding partition P .
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Fig. 1. The fraction of nodes saved on the networks of the preferential attachment model by our defending algorithm E and C. The parameter d is the
number of average edges in the PAmodel. In this experiment, the number of nodes of the networks is 10,000, d is from 1 to 20 with unit 1, and the number
of controllers k is from 1 to 500 with unit 1. For each type of the model, we generate 100 networks. The average and minimum are taken over the 100
networks for each type. (a) and (b) are the average fraction and the minimal fractions of nodes saved, respectively.

It has been shown that the algorithm E exactly identifies or precisely approximates true communities in many networks
either generated by models or real world networks [24–26].

Clearly, the algorithm E is a greedy algorithm to find a partition P towards the maximization of the resistance of G.
Our method for defending networks consists of the resistance maximization algorithm E and the controller defining

algorithm C. The experimental method for models of networks is given in the next subsection.

5.3. Experimental methods

Given a network G = (V , E) and a natural number k, we find a partitionP of G by the resistancemaximization algorithm
E , we define k controllers of G by the algorithm C on the basis of partition P . Let C be the set of defined controllers. Suppose
that G has been defined C as the sets of controllers of G. Our experiments of virus spreading on G proceeds as follows:

(i) Every node in C is a controller of G.
(ii) For every x ∈ V \ C , attack x by a super virus. Let Ix be the set of nodes that are infected by the super virus attack on x,

and Sx be the complement of Ix in G.
(iii) Let SGavg be the average size of Sx for all x ∈ V \ C , and let SGmin be the least size of Sx for all x ∈ V \ C .

Our experiments for the security model, the preferential attachment model and the small world model proceed as
follows:

(1) For each type, we generate 100 networks G1,G2, . . . ,G100.
(2) For each network Gi, we define the partition of Gi by the resistance maximization algorithm E and the controller

algorithm C to define the controllers of Gi.
(3) We define Savg to be the average SGiavg for all i from 1 to 100.
(4) We define Smin to be the minimal SGimin for all i from 1 to 100.

6. Results

6.1. PA model

In Fig. 1, we depict the color codes of the average and minimal fractions of nodes saved by our defending algorithms E
and C for the networks of the preferential attachment model.

According to Fig. 1, we observe the following results:

(1) For the mean, according to Fig. 1(a), we have:
(a) For d = 1, there is a column of color codes≈ 0.4 for controllers of sizes from very small to 500.
(b) For d > 1, the color codes are almost the same for all numbers of controllers from 1 to 500, and the uniform color

codes are as small as 0.1.
(2) For the minimum, according to Fig. 1(b), we have:

(a) For d = 1, there is a column of color codes≈ 0.4 for controllers of sizes from very small to 500.
(b) For d > 1, the color codes are almost the same for all numbers of controllers from 1 to 500, and the uniform color

codes are as small as 0.1.
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The results demonstrate that the networks of the preferential attachment model with d > 1, are non-defensible, at least
by our defending method consisting of resistance maximization algorithm E and controller defining algorithm C, and that
the networks of the PA model with d = 1 actually are trees, in which a small constant fraction of nodes can be saved by a
small number of controllers (less than 1% of nodes of the networks) the defined by our method.

The clear color codes for d = 1 and d > 1 in Fig. 1 suggest some interesting theoretical problems. For example, we
conjecture that for a network of the PAmodel with d > 1, any small set (o(n), say) of controllers can save at most o(n)many
nodes of the network. Clearly, theoretically proving such kind of results would be very interesting in both network theory,
computer science, mathematics and even physics.

6.2. Networks generated by the security model

We have seen that the networks of the PA model are non-defensible for super virus spreading. Are there networks that
are defensible?

Li et al. [19,20] proposed the following security model of networks. We introduce it below.
The security model proceeds as follows:
Given an affinity exponent a ≥ 0 and a natural number d,

(1) Let Gd be an initial d-regular graph such that each node has a distinct color and called seed.
For each step i > d, let Gi−1 be the graph constructed at the end of step i− 1, and pi = 1/(log i)a.

(2) At step i, we create a new node, v.
(3) With probability pi, v chooses a new color, in which case,

(i) we call v a seed,
(ii) (preferential attachment) create an edge (v, u) where u is chosen with probability proportional to the degrees of

nodes in Gi−1, and
(iii) (randomness) create d− 1 edges (v, uj), where each uj is chosen randomly and uniformly among all seed nodes in

Gi−1.
(4) Otherwise, then v chooses an old color, in which case,

(i) (randomness) v chooses uniformly and randomly an old color as its own color and
(ii) (homophyly and preferential attachment) create d edges (v, uj), where uj is chosen with probability proportional to

the degrees of all nodes of the same color as that of v in Gi−1.

We verify that the defending method here controls super virus spreading in the networks of the security model.

6.3. Varying the affinity exponent a of the security model

Fig. 2 depicts the color codes of the average fraction of nodes that are saved by our defending method from the infection
of super virus spreading in the networks of the security model, as the affinity exponent a increases.

According to Fig. 2, we observe the following results:

(1) For each d, there is a golden boundary Bd such that it is narrow and it divides the square into two areas, the dangerous
area, colored blue, and the secure area, colored red.

This shows that there is a phase transition from dangerous area to secure area for the networks of security model,
which is given by the golden curve in each of Fig. 2(a)–(d).

(2) The golden boundary B2 for d = 2 in Fig. 2(a) decreases as the affinity exponent a increases up to a ≈ 1.6, and then
increases as a increases after≈ 1.6. In particular, for d = 2, if a = 1.6, then 50 controllers globally protect the networks,
on the average.

(3) For d ≥ 4, the golden belt Bd decreases as the affinity exponent a increases. Furthermore, for each d, for a = 2, 50
controllers protect the networks from the global infection of any super virus, on the average.

(4) By comparing Fig. 2(a)–(d), the affinity exponent required by the secure area increases as d increases.

Fig. 3 depicts the color codes of the minimal fraction of nodes that are saved by our defending method from the infection
of super virus spreading in the networks of the security model as the affinity exponent a increases.

According to Fig. 3, we observe the following results:

(1) The same as that in Fig. 2, for every d, there is a golden curve Cd which distinguishes the dangerous area and the secure
area of the whole area, and the curve Cd is similar to the golden boundary Bd in Fig. 2.

(2) For every d, and every a, the number of controllers is larger than Cd(a), then the small set of controllers ensures that for
any network of the security model, and any super virus attack, almost of the nodes of the network are protected from
the infection of the super virus. On the other hand, if the number of controllers is slightly less than Cd(a), then the least
number of nodes saved by the controllers is only a small fraction of the nodes of the network.

(3) If d > 2, and a is appropriately large, equal to 2 say, then 50–70 controllers are sufficient to protect the global failure of
the networks from the infection of any super virus attack.
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Fig. 2. The color codes of the average fraction of nodes saved by our defending method on the networks of the security model with n = 10,000, affinity
exponent a from 1 to 2 with unit 0.1. The number of controllers is from 1 to 500 with unit 1. For each type of the network, we generate 100 networks. The
average is computed over the 100 networks generated for each type. (a), (b), (c) and (d) are for d = 2, 4, 8 and 16, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

The results demonstrate that for every nontrivial d, the number of controllers required to protect the network from
global failure of super virus attack is decreasing as the affinity exponent a increases, so that for appropriately large affinity
exponent a, a small number of controllers defined by our defendingmethod protect the security of the networks from super
virus attack. Equally interesting, there is a phase transition phenomenon from the dangerous area to the secure area of the
networks generated by the security model. The phase transition is determined by a function Kd(a) such that if the number
k of controllers k is larger than Cd(a), then the network is protected from super virus attack.

6.4. Varying d of the security model

Fig. 4 depicts the color codes of the average fraction of nodes saved by our defending method on the networks of the
security model as d varies.

According to Fig. 4, we observe the following results:

(1) For a = 0. In this case, the security model becomes a dynamical randommodel, which generates connected and random
graphs. According to Fig. 4(a), we have:
(a) If d = 1, then for almost all small k of controllers, the color codes are approximately equal, and are around 0.4.
(b) If d > 1, then for all k from 1 to 500, the color codes are almost all less than 0.1.
(c) The color codes are similar to that in Fig. 1(a) for the preferential attachment model.

(2) If a = 0.5, then the color codes in Fig. 4(b) are similar to that in Fig. 4(a).
(3) If a = 1, according to Fig. 4(c), we have:

(a) there is a secure area, which is the read left-upper corner cut by the line through points (0, 200) and (5, 500), and
(b) there is a dangerous area, colored blue, which is approximately the lower part of line k = 200.

(4) For a = 1.5, according to Fig. 4(d), we have:
(a) there is a golden curve g such that if the number of controllers is larger than g(d), then the networks are protected.
(b) if the number of controllers is less than g(d), then the majority of nodes of the networks are probably infected by a

super virus.
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Fig. 3. The color codes of the minimal fraction of nodes saved by our defending method on the networks of the security model with n = 10,000, affinity
exponent a from 1 to 2 with unit 0.1. The number of controllers is from 1 to 500 with unit 1. For each type of the network, we generate 100 networks. The
minimum is computed over the 100 networks generated for each type. (a), (b), (c) and (d) are for d = 2, 4, 8 and 16, respectively. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5 depicts the color codes of the minimal fraction of nodes saved by our defending method on the networks of the
security model as d varies.

According to Fig. 5, we observe that the color codes in Fig. 5 are similar to that in Fig. 4.
Figs. 4 and 5 show that for appropriately large affinity exponent a, the networks of the security model are defensible by

a small set of controllers, for which the small number of controllers of the networks is robust to the varying of d, and that
the size of controllers of the networks is largely determined by the affinity exponent a of the model.

6.5. Real world networks

In this subsection, we look at the application of our algorithm to find controllers for various real world networks.
Fig. 6 depicts the curves of the fractions of nodes saved for four real world networks by our algorithms E and C.
The four networks are the following:

(1) US airports
It is the directed graph of flights between US airports in 2010. An edge represents a connection from one airport to

another and the weight of an edge shows the number of flights on that connection in the given direction. The graph
contains 1572 nodes, and 28,235 edges. The graph can be found in US airport network data, 2015, [http://konect.uni-
koblenz.de/networks/opsahl-usairport].

(2) The US power grid.
It contains the information of the power grid of theWestern States of the United States of American. A node is either

a generator, or a transformator, or a substation. An edge represents a power supply line. The Network contains 4941
nodes, and 6594 edges. The network can be found in [http://konect.uni-koblenz.de/networks/opsahl-powergrid].

(3) Gnutella peer-to-peer network, August 9, 2002
This is a snapshot of the Gnutella peer-to-peer file sharing network at August 9, 2002. Nodes represent hosts in the

Gnutella network topology and edges represent connections between the Gnutella hosts.
The graph contains 8104 nodes, and 26,008 edges. We use P2P No 9 to denote the graph.

http://konect.uni-koblenz.de/networks/opsahl-usairport
http://konect.uni-koblenz.de/networks/opsahl-usairport
http://konect.uni-koblenz.de/networks/opsahl-usairport
http://konect.uni-koblenz.de/networks/opsahl-powergrid
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Fig. 4. The color codes of the average fraction of nodes saved by our defendingmethod on the networks of the security model as d varies. For each type, we
generate 100 networks. The average is computed over the 100 networks. (a), (b), (c) and (d) are for a = 0, 0.5, 1 and 1.5, respectively. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

(4) Google+
This directed network contains Google+ user to user links. A node represents a user, and a directed edge denotes

that one user has the other user in his circles. The graph contains 23,613 nodes and 39,230 edges.
The graph can be found in Google+ network dataset—KONECT, May 2015. [http://konect.uni-koblenz.de/networks/

ego-gplus] and in Ref. [27].

According to Fig. 6, we observe the following results:

(1) Google+ is protected by a set of controllers of size less than 0.05% nodes of the network.
(2) The power grid is protected by a set of controllers of 5% nodes of the network.
(3) For both the P2P and the US airports, the networks cannot be protected by a set of controllers of 5% of the size of the

networks.

7. Defending principles of networks

Fig. 1 shows that the networks of the preferential attachmentmodel are non-defensible by a small number of controllers.
Figs. 4(a) and 5(a) show that if the affinity exponent a = 0, then the networks of the security model cannot be protected by
a small number of controllers, in which case, the networks of the security model are basically random graphs. The results
demonstrate that the networks generated by the classical PA model or dynamical random model cannot be protected by a
small number of controllers.

The results in Figs. 2, 3, 4(d) and 5(d) demonstrate that for appropriately large affinity exponent a, the networks of the
security model are defensible through a small number of controllers. Therefore, there exist networks that can be protected
by a small number of controllers.

Our defending method consists of two algorithms, the resistance maximization algorithm E and the controller defining
algorithm C. Algorithm E assumes the following:

Resistance hypothesis: Resistance maximization is the principle for security and defending of networks.
This hypothesis assumes that virus randomly spreads. According to this hypothesis, the resistance maximization

algorithm E finds a partition P of G such that a virus may easily walk to a (small) module X of P after which it is hard
to escape.

http://konect.uni-koblenz.de/networks/ego-gplus
http://konect.uni-koblenz.de/networks/ego-gplus
http://konect.uni-koblenz.de/networks/ego-gplus
http://konect.uni-koblenz.de/networks/ego-gplus
http://konect.uni-koblenz.de/networks/ego-gplus
http://konect.uni-koblenz.de/networks/ego-gplus
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Fig. 5. The color codes of the minimum fraction of nodes saved by our defending method on the networks of the security model as d varies. For the each
type, we generate 100 networks. The minimum is computed over the 100 networks. (a), (b), (c) and (d) are for a = 0, 0.5, 1 and 1.5, respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(a) Real networks, Mean. (b) Real networks, Min.

Fig. 6. The fraction of nodes saved on the networks of four real world networks by our defending algorithm E and C. In this experiment, number of
controllers is up to 5% of the nodes of the networks. The average and minimum are taken over all possible super virus attacks of the networks. (a) and (b)
are the average fraction and the minimal fractions of nodes saved, respectively.

Our algorithm C assumes the following:
Top external degree hypothesis: The nodes of the top external degrees are the controllers of networks from cascading

failure of virus attacks.
Intuitively, the hypothesis is correct, because the controllers defined by this way prevent the virus to spread from a

module to another. Therefore, viruses can spread in only the small communities of the network.
According to the two hypotheses above, we know that a network G can be protected by a small number of controllers, if

the following properties hold:
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(1) The resistance maximization principle ensures that there is a partition P of G such that the resistance of G by P is
maximal or large.

(2) Using P , we define the external degree dE(x) for every node x.
(3) If:

(i) for most x, dE(x) = 0,
(ii) there is only a small number of nodes x such that dE(x) is nontrivially large.

(1)–(3) ensure that a small number of controllers guarantee that the cascading failure set of any virus, including the super
virus infect only a small number of nodes in G.

Therefore, the defending principle of networks consists of two hypotheses, the first is the resistance maximization
principle, and the second is the external degree principle in (1)–(3) above.

We remark that resistance maximization is a necessary, but insufficient condition for defending the networks. However,
nevertheless, resistance maximization is the principle for finding the partition that may block virus spreading in networks.

8. Conclusions and discussions

We proposed the notion of resistance of networks, and established the resistance law of networks. The notion of
resistance explores that resistance maximization is the principle for the security of networks against cascading failures of
viruses that randomly spread. The resistance law implies that resistance maximization is equivalent to the minimization of
two-dimensional structural information of the networks.We proposed the algorithm E tomaximize resistance of networks,
and the algorithm C to define controllers of networks. We showed that for the networks generated by the preferential
attachment model, there is no a small set of controllers that prevent global cascading failure of virus attacks. We showed
that for appropriately large affinity exponent a, for the networks generated by the security model, there is a small set of
controllers which ensure that any super virus attack never cause a global failure of the networks. Therefore, there exist
networks that are defensible by a small number of controllers. According to the results, we proposed a defending principle
for networks, which consists of two hypotheses, the first is the resistancemaximization, and the second is the heterogeneity
of the external degrees of the nodes defined by the partition found by the resistancemaximization principle.We also showed
that the networks of the security model have a phase transition determined by a golden curve as a function gc(a) of the
affinity exponent such that if the number of controllers is slightly larger than gc(a), then the networks are controlled, and
if the number of controllers is slightly smaller than gc(a), then single virus may cause a global failure of the network. We
show that for some real world networks, there is a small set of controllers that protect the networks from global failure of
any super virus attack.
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