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Abstract
Raman spectroscopy is widely used across life
and material sciences to characterize the chemical
composition of samples in a nondestructive, label-
free manner. Many applications entail the unmix-
ing of signals from mixtures of molecular species
to identify the individual components present and
their proportions, yet conventional methods for
chemometrics often struggle with complex mix-
ture scenarios encountered in practice. Here, we
develop autoencoder neural network models for
hyperspectral unmixing of Raman spectroscopy
data, which we systematically validate using syn-
thetic and experimental benchmark datasets we
created in-house. Our results demonstrate that
autoencoders provide improved accuracy, robust-
ness and efficiency compared to standard unmix-
ing methods. We also showcase the applicability
of our approach to complex biological settings by
showing improved biochemical characterization
of volumetric Raman imaging data from a human
leukemia monocytic cell line.

1. Introduction
Raman spectroscopy (RS) is a powerful optical modality that
facilitates the identification, characterization and quantifica-
tion of the molecular composition of chemical and biologi-
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cal specimens, offering in-depth insights into their structure
and functionality (Movasaghi et al., 2007; Talari et al., 2015;
Butler et al., 2016; McCreery, 2005; Smith & Dent, 2019).
RS interrogates the vibrational modes of molecules through
the analysis of inelastic scattering of monochromatic light
from matter, thereby enabling the nondestructive, label-free
fingerprinting of chemical species (Koningstein, 2012; Szy-
manski, 2012; Colthup, 2012; Jones et al., 2019; Bocklitz
et al., 2016). As a result, RS has become an important
analytical tool in a myriad of scientific domains, from chem-
istry (Schlücker, 2014; Dodo et al., 2022), biology (Pezzotti,
2021; Smith et al., 2016; Shipp et al., 2017; Cialla-May
et al., 2017), and medicine (Kong et al., 2015; Ember et al.,
2017; Pence & Mahadevan-Jansen, 2016; Balan et al., 2019;
Auner et al., 2018; Tanwar et al., 2021), to materials sci-
ence (Fernández-Galiana et al., 2023; Kumar, 2012; We-
ber & Merlin, 2013), pharmacology (Wang et al., 2018;
Paudel et al., 2015), environmental science (Halvorson &
Vikesland, 2010; Ong et al., 2020; Terry et al., 2022), food
quality control (Li & Church, 2014; Pang et al., 2016), and
even forensics (Chalmers et al., 2012; Khandasammy et al.,
2018; Izake, 2010).

Despite the wealth of information RS affords, the analysis
and interpretation of experimental RS data remains a ma-
jor challenge (Ryabchykov et al., 2018; Guo et al., 2021;
Gautam et al., 2015). Many important applications entail
the analysis of complex mixtures of molecular species co-
existing and interacting at micro- and nanoscales. Such
complexity can hinder the qualitative and quantitative in-
vestigation of RS measurements, especially when dealing
with the biomolecular diversity of biological samples (Byrne
et al., 2016; Gautam et al., 2015).

Hyperspectral unmixing (also known as (hyper)spectral de-
convolution or multivariate curve resolution) aims to re-
solve such mixed signals (Li et al., 2017; Olmos et al.,
2017) by identifying the individual components present
(endmember identification) and/or quantifying their propor-
tions (abundance estimation). Popular approaches include
N-FINDR (Winter, 1999) and Vertex Component Analysis
(VCA) (Nascimento & Dias, 2005) for endmember iden-
tification, and Non-negative Least Squares (NNLS) (Law-
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Figure 1. Hyperspectral unmixing for Raman spectroscopy using autoencoder neural networks. a, Diagram of the task of hyperspectral
unmixing. b, Hyperspectral unmixing as a self-supervised autoencoder learning problem: the decoder learns to derive endmembers
and the encoder learns the corresponding fractional abundances. c, Encoders can accommodate different concepts from representation
learning, such as convolutional layers and attention, to improve feature extraction and provide more accurate and robust unmixing. d,
Decoders can be structured to model different linear and non-linear mixing models.

son & Hanson, 1995) and Fully Constrained Least Squares
(FCLS) (Heinz et al., 2001) for abundance estimation (Li
et al., 2017; Hedegaard et al., 2011). However, such tech-
niques, which originated in the field of remote sensing (Ke-
shava & Mustard, 2002; Harris, 2006), have limitations for
the unmixing of RS data. Specifically, these methods are
restricted to linear mixing; lack robustness to data artifacts
abundant in RS data (e.g., dark noise, baseline variations,
cosmic spikes); rely on additional assumptions (e.g., end-
members present as ‘pure pixels’ in the data); and are com-
putationally demanding for large datasets (e.g., imaging and
volumetric Raman raster scans).

In this work, we introduce an approach for RS hyperspec-
tral unmixing based on autoencoder (AE) neural networks,

which we systematically validate against conventional meth-
ods for unmixing using a comprehensive array of synthetic
and experimental Raman spectroscopy data.

2. Background
Hyperspectral unmixing in Raman spectroscopy. Ra-
man spectra can be represented as vectors x ∈ Rb

+, whose
components correspond to the intensity of inelastically scat-
tered light binned over b wavelength/wavenumber bands.
Such measurements can be treated as the result of an un-
derlying mixing of n ‘pure’ components, defined by their
Raman signatures mi ∈ Rb

+, i = 1, . . . , n (endmembers),
and their respective proportions {αi}ni=1, αi ∈ R+ (frac-
tional abundances). Hyperspectral unmixing is the inverse
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problem of recovering the endmembers and fractional abun-
dances from a (collection of) measurement(s) x (Figure 1a).

Standard methods for unmixing, such as N-FINDR, VCA,
NNLS and FCLS, operate under the linear mixing model
(LMM), where measurements are assumed to be a linear
combination of the endmembers x = Mα =

∑n
i=1 αimi,

where M =
[
m1 m2 · · · mn

]
is an b × n non-

negative matrix containing the n endmember signatures, and
α = (α1, α2, · · · , αn)

T is an n× 1 vector storing the cor-
responding abundances. The abundances αi are constrained
to be non-negative (i.e., the abundance non-negativity con-
straint (ANC), αi ≥ 0,∀i), and are forced to sum to 1 when
corresponding to proportions (i.e., the abundance sum-to-
one constraint (ASC), ||α||1 = 1 ). Refer to Appendix A for
more information about standard techniques for unmixing.

Autoencoders. Autoencoders are a family of neural net-
work models consisting of two sub-networks (encoder and
decoder) connected sequentially (Goodfellow et al., 2016).
The encoder E : Rb → Rm, usually m ≪ b, transforms
input data x to a lower-dimensional latent space represen-
tation z = E(x), which the decoder D : Rm → Rb uses
to produce reconstructions x̂ = D(z) of the original input.
AE models are typically trained in a self-supervised man-
ner by minimizing a loss function L(x, x̂) that measures
the discrepancy between the input x and the reconstruction
x̂. During training, the encoder progressively learns a la-
tent representation that captures the most salient features of
the input data, whereas the decoder learns how to recover
the data from the latent representation. AEs have recently
emerged as a framework for hyperspectral unmixing in re-
mote sensing (Palsson et al., 2022; Zhang et al., 2020b;
Wang et al., 2022; Bhatt & Joshi, 2020; Chen et al., 2022),
yet their utility for RS data remains largely unexplored.

3. Raman unmixing autoencoders
The dual functionality of autoencoders can be harnessed to
design AE models for hyperspectral unmixing: the latent
representations z = E(x) can be interpreted as fractional
abundances (with respect to an input spectrum x), and the
decoder D(·) acts as a mixing function on these represen-
tations by encoding endmember signatures and other inter-
actions (Figure 1b). This setup provides a highly adaptable
and versatile framework for unmixing.

Encoder design. On the one hand, the learning of physi-
cal and biochemical features in the encoder can be enhanced
by adopting strategies from representation learning, such as
convolutional layers to capture spectral and/or spatial corre-
lations among neighboring bands and/or pixels (Zhang et al.,
2018; Palsson et al., 2020; Elkholy et al., 2020), or atten-
tion mechanisms to model long-range dependencies (Ghosh

et al., 2022) (Figure 1c). In addition, sparsity, part-based
learning and denoising objectives can be adopted to enhance
explainability and robustness (Ozkan et al., 2018; Qu & Qi,
2018; Su et al., 2018; 2017; Qu et al., 2017). In this work,
we consider four types of encoders encompassing a vari-
ety of architectures, from standard dense layers to more
contemporary convolutional and attention mechanisms (see
Appendix B for more details): 1) an encoder consisting of
fully connected layers (Dense); 2) an encoder with a 1D con-
volutional feature extractor block, followed by a fully con-
nected part (Convolutional); 3) a transformer-based encoder
that uses multi-head attention (Transformer) (Vaswani et al.,
2017); and 4) a transformer-based encoder with a 1D convo-
lutional feature extractor (Convolutional Transformer).

Decoder design. On the other hand, the design of the
decoder allows for flexible modeling of input data to account
for various mixture models, e.g., linear, bilinear and post-
nonlinear (Figure 1d) (Chen et al., 2022; Shahid & Schizas,
2021; Zhao et al., 2021), akin to introducing an inductive
prior with respect to the mixture model directly via the
AE architecture. The two types of decoders we develop
are: 1) a decoder for linear unmixing, which consists of
a single fully connected layer defined by a b × m weight
matrix W , with reconstructions reducing to x̂ = Wz; and
2) a decoder of the same architecture for bilinear unmixing
based on the Fan model (Fan et al., 2009), where additional
bilinear interaction terms are calculated such that x̂ = Wz+∑m

k=1

∑m
l=1,
l ̸=k

zkwk ⊙ zlwl, where zk, zl are components of

z, and wk,wl are column vectors of W .

Physics-inspired constraints. To guide the AE learning
and reinforce the physical interpretation of unmixing, we
incorporate appropriate physical constraints into the AE
architectures, e.g., non-negativity of endmembers and frac-
tional abundances, and sum-to-one abundances. We enforce
fractional abundance constraints through the choice of a
latent space activation function. We use softmax to en-
force both ANC and ASC; or, when interested in ANC
only, a ‘softly-rectified’ hyperbolic tangent function given
by f(x) = 1

γ ln(1 + eγ∗tanh(x)), γ = 10, designed to en-
sure abundances are non-negative (between 0 and 1) but do
not necessarily add up to one. To ensure the non-negativity
of endmembers, we constrain the weight matrix W in our
decoders by clipping negative values to zero.

Model training and evaluation. We train our AE models
in a self-supervised fashion by minimizing a loss based on
spectral angle divergence (SAD) (Kruse et al., 1993) be-
tween input and reconstructed spectra. We compare AE per-
formance to conventional unmixing approaches: N-FINDR
and VCA as endmember extraction algorithms followed
by NNLS or FCLS to derive fractional abundances. When
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Figure 2. Experimental validation on Raman spectroscopy data from sugar solutions. a, Schematic diagram of sugar mixture preparation.
Two sets of data are acquired—high and low signal-to-noise ratio (SNR) data, by using integration times of 5 s and 0.5 s, respectively. b,
Endmember signatures estimated from reference spectra (high SNR) additionally collected from pure solutions. c-d, Summary of unmixing
performance for: an idealized scenario with augmented data including reference spectra (c); and original data without augmentation (d).
Confidence intervals are given as one standard deviation around the sample mean (n = 5).

ground truth information is available, accuracy is quantified
with respect to two measures - mean squared error (MSE)
for fractional abundances, and SAD for endmembers. For
each evaluation, we first assign derived and ground truth
endmembers (and corresponding abundances) via the Hun-
garian algorithm with SAD as the objective to minimize.

4. Experimental validation
To validate the approach, we evaluate the performance of the
unmixing AE models we developed on a range of synthetic
and experimental RS data.

Validation on synthetic Raman mixtures. First, we con-
duct a systematic validation on synthetic Raman datasets of
variable complexity (with vs without artifacts, linear vs non-
linear mixing, different mixing levels), which we generated
in-house using a custom data generator (see Appendix C for
further experimental details). We find that our AE models
significantly outperform methods like N-FINDR+FCLS and
VCA+FCLS across virtually all 11 types of datasets (see
Figure 4c-d in Appendix). We also observe that all AE mod-
els are faster and less computationally expensive than the
two conventional methods (see Figure 5 in Appendix).

Validation on experimental Raman data from sugar mix-
tures. Next, we validate the unmixing performance of
AEs on real experimental data. In particular, we conduct
benchmark analyses on data from a library of 240 sugar
mixtures prepared in-house with four types of sugar (glu-
cose, sucrose, fructose, maltose) at different concentrations
(Figure 2a). To consider different signal-to-noise (SNR)
conditions, we acquired high SNR (1920 spectra) and low
SNR (7680 spectra) measurements using a custom Raman
microspectroscopy platform at integration times of 5 s and
0.5 s, respectively. We perform unmixing on these data to
identify the content of each mixture, i.e., types of sugar and
their concentrations (see Appendix D). The ground truth is
defined by the experimental concentrations and the endmem-
ber signatures we obtain from reference spectra measured
from 5 additional pure solutions (Figure 2b). As with the
synthetic data above, we benchmark the performance of our
four AE models (linear decoders) against N-FINDR+FCLS
and VCA+FCLS.

First, we consider an idealized scenario, purposefully de-
vised to favor conventional methods, whereby endmembers
are present in the data. To do this, we augment our data with
the additional reference spectra we measured. When such
‘pure pixels’ are available, we observe that conventional
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Figure 3. Improved volumetric Raman imaging of a THP-1 cell with unmixing autoencoders. a, A brightfield image of the studied THP-1
cell. b, A cross-section reconstruction of the cell (layer z = 7) obtained by overlaying the fractional abundances derived by: VCA+NNLS,
our Dense AE, and our Deep Dense AE. c, Results obtained with the Deep Dense AE model, displaying the spatial distribution of the
individual fractional abundances and the associated endmember signatures. Brightfield and Raman data from Kallepitis et al. (2017).

methods (NFINDR+FCLS, VCA+FCLS) perform compara-
bly to AEs on clean, high SNR data (Figure 2c). Yet, AEs
already provide improved performance in low SNR regimes.

In many experimental applications, however, the underly-
ing endmembers are not present in the data and cannot be
separately obtained (e.g., target-agnostic applications, or un-
known species). To consider this, we analyzed our original
data without augmentation. Our results in Figure 2d demon-
strate that, in such situations, AEs substantially outperform
conventional methods in both low and high SNR settings.

Real biological application: volumetric Raman imaging
of a cell. Lastly, we use unmixing autoencoders to analyze
a low-SNR volumetric RS raster scan of a human leukemia
monocytic (THP-1) cell (Figure 3a) (Kallepitis et al., 2017).
Using Raman chemometrics, the composition of the cell is
probed to study its morphology in a nondestructive, label-
free manner. After loading and preprocessing the data using
RamanSPy (Georgiev et al., 2024), we conduct unmixing
with: 1) VCA+NNLS - as in the original paper; 2) Dense AE

- our simplest and most computationally efficient AE model;
and 3) Deep Dense AE - an extension of Dense AE with
a deeper encoder with five layers. We derive 20 endmem-
bers, which we characterize via peak assignment to identify
biochemical species present in the scanned cell, such as de-
oxyribonucleic acid (DNA), proteins, triglycerides (TAGs),
phospholipids (PLPs) and cholesterol esters.

Figure 3b shows the reconstructions of the cell created by
overlaying selected fractional abundances derived by each
method, revealing the spatial organization of key cellular
organelles, including the nucleus, cytoplasm, lipid bodies
and membranes. Although direct comparisons are challeng-
ing due to the lack of ground truth, we observe that our AE
models, especially our Deep Dense AE, enable more precise
spectral and compositional information (Figure 3c). No-
tably, unlike the original VCA+NNLS approach, our AEs
detect cholesterol, an important functional and structural
component in cells (Kritharides et al., 1998; Tall & Yvan-
Charvet, 2015; Saha et al., 2017). More information about
analysis and peak characterization provided in Appendix E.
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5. Conclusion
In summary, we have presented an autoencoder-based
methodology for hyperspectral unmixing in Raman spec-
troscopy, which we validated on a wide array of synthetic
and experimental datasets. Our results demonstrate that au-
toencoders are adept at handling diverse mixture scenarios
and exhibit robustness against data artifacts, offering an ef-
fective, versatile and efficient framework for RS unmixing.
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Fernández-Galiana, Á., Bibikova, O., Pedersen, S. V., and
Stevens, M. M. Fundamentals and Applications of
Raman-Based Techniques for the Design and Develop-
ment of Active Biomedical Materials. Advanced Materi-
als, pp. 2210807, 2023.

Gautam, R., Vanga, S., Ariese, F., and Umapathy, S. Re-
view of multidimensional data processing approaches for
Raman and infrared spectroscopy. EPJ Techniques and
Instrumentation, 2:1–38, 2015.

Georgiev, D., Pedersen, S. V., Xie, R., Fernández-Galiana,
A., Stevens, M. M., and Barahona, M. RamanSPy:
An Open-Source Python Package for Integrative Raman
Spectroscopy Data Analysis. Analytical Chemistry, 2024.

Ghosh, P., Roy, S. K., Koirala, B., Rasti, B., and Scheunders,
P. Hyperspectral unmixing using transformer network.
IEEE Transactions on Geoscience and Remote Sensing,
60:1–16, 2022.

Goodfellow, I., Bengio, Y., and Courville, A. Autoencoders.
In Deep learning, chapter 14, pp. 499–523. MIT Press,
2016.

Guo, S., Popp, J., and Bocklitz, T. Chemometric analysis
in Raman spectroscopy from experimental design to ma-
chine learning–based modeling. Nature Protocols, 16
(12):5426–5459, 2021.

Halvorson, R. A. and Vikesland, P. J. Surface-enhanced
Raman spectroscopy (SERS) for environmental analyses,
2010.

Harris, A. T. Spectral mapping tools from the earth sciences
applied to spectral microscopy data. Cytometry Part A:
The Journal of the International Society for Analytical
Cytology, 69(8):872–879, 2006.
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A. Standard methods for hyperspectral unmixing
N-FINDR and VCA are geometric methods based on the concept of a simplex in Euclidean space. N-FINDR exploits the
fact that, under the linear mixing model, endmembers represent vertices of a simplex spanning the data, and operates by
iteratively finding a set of points (endmembers) that maximizes the volume of the simplex they form. In contrast, VCA finds
endmembers by projecting the data onto directions orthogonal to the subspace spanned by previously found endmembers and
identifying new endmembers as the farthest points in these directions, effectively constructing a simplex that encompasses
all data points. In both methods, the number of endmembers to extract is specified a priori by the user. Once endmember
signatures M are derived, optimization-based algorithms such as NNLS and FCLS are employed to estimate the fractional
abundances α for a given spectrum x by minimizing the reconstruction error between the observed data and the model
minα ∥Mα− x∥2. NNLS imposes the ANC, whereas FCLS imposes both the ANC and ASC.

B. Autoencoder architectures
Dense AE. This autoencoder employs an encoder comprising 2 fully connected (or dense) layers. The first layer projects
spectra of dimension b to hidden features of dimension 128 (Leaky ReLU activation with a slope of 0.02), which the second
layer further projects to latent representations of dimension n (n is the number of endmembers to extract). In the Deep
Dense AE model used in the analysis of the THP-1 cell, we increase the number of hidden layers to five, comprising 512,
256, 128, 64 and 32 neurons, respectively, before the final layer of size n.

Convolutional AE. This model extends the Dense AE by adding a convolutional block before the dense layers. The
convolutional block consists of two layers of 1D convolutions connected in parallel, each comprising 16 filters of size 3 and
16 filters of size 5 (ReLU activation; input padded with zeroes). The outputs from these two layers are concatenated and
merged (channel-wise) via a 2-dimensional dense layer to produce representations of dimension b, which are then fed to the
Dense encoder described above.

Transformer AE. In this transformer-based encoder, input spectra are first projected to features of size 32 through a fully
connected layer, and then fed to a transformer encoder layer comprising a multi-head attention block with 2 attention heads
of size 32 (Vaswani et al., 2017), followed by two fully connected layers expanding the features to size 64 (ReLU activation)
and condensing back to 32 (no activation). We apply layer normalization (Ba et al., 2016) and dropout (10%) (Srivastava
et al., 2014) after the multi-head attention block and the fully connected layers. The output of the transformer block is then
channeled into the last fully connected layer of size n.

Convolutional Transformer AE. In this model, the Transformer AE architecture is extended with the same convolutional
block used in the Convolutional AE, here added before the transformer-based encoder block.

Decoder choice. Our linear unmixing decoder architecture consists of a single fully connected layer using the identity
activation function without bias. This results in a layer defined by a b×m weight matrix W , where output reconstructions
x̂ become

x̂ = DLin(z) = Wz . (1)

Our bilinear Fan decoder has the same architecture as the linear decoder but also calculates the additional bilinear interaction
terms during each forward pass as follows:

x̂ = DBilin(z) = Wz+

m∑
k=1

m∑
l=1,
l ̸=k

zkwk ⊙ zlwl, (2)

where zk, zl are components of z, and wk,wl are column vectors of W .

C. Benchmark results on synthetic data
C.1. Generating synthetic Raman mixtures

The synthetic data generation process we adopt is as follows (see Figure 4a for overview).
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Generating endmembers. For each synthetic dataset, we first generate n endmembers spanning b spectral bands. For
the scope of this work, n = 5 and b = 1000. Each endmember mi ∈ Rb

+ is created by a superposition of a set of npeaks,i
Gaussian peaks of different amplitude, width and location, randomly sampled as follows. The number of peaks is sampled
from a discrete uniform distribution npeaks,i ∼ U(5, 9). Each peak p is described by p = hpσp

√
2πN (bp, σp), where

N (·) represents a Gaussian distribution. The height of the peak is defined as hp = h1 · h2, where h1 = 1 + 5hβ with
hβ ∼ Beta(1, 3) and h2 ∼ U(0.1, 1). The center of the peak is sampled from bp ∼ U(10, b− 10), and the width of the peak
is defined as σp = wpσ, with σ ∼ U(0.1, 1). We create two types of endmembers: clean and noisy. For the former, we
produce peaks with wp = 1. For the latter, we augment clean endmembers by adding nsmall

peaks,i ∼ U(50, 99) smaller peaks
sampled with h1 = 1/3 and wp = 2, thus making noisy endmembers better resemble experimental Raman signatures.

Generating fractional abundances. For visualization purposes, we present the fractional abundance profiles in the form
of two-dimensional scenes comprising H ×W pixels, where each pixel represents a fractional abundance vector α ∈ Rn

+.
Here, we set H = W = 100, resulting in 10000 spectra per scene/dataset. In the simplest scene (Chessboard), we split
the scene into 20× 20 square patches, each containing a single randomly assigned endmember (i.e., all 400 pixels in each
patch are the same one-hot vector). Our second scene (Gaussian) consists of n Gaussian functions equally spaced along the
diagonal of the scene. After each pixel is normalized to comply with the ASC, we obtain abundance profiles representing
different levels of overlap of components. Our last fractional abundance scene (Dirichlet) corresponds to a highly mixed
scene, where each pixel is individually sampled from a n-dimensional Dirichlet distribution, producing a random mixture of
all endmembers. Note that the fractional abundance profile of each pixel in all three scenes complies with both ANC and
ASC.

Mixing model. Having generated a set of endmembers and an underlying fractional abundance scene, mixed data
measurements x ∈ Rb are created based on a mixing model chosen by the user. In this study, we consider linear mixtures
and bilinear mixtures based on the Fan model.

Adding data artifacts. Finally, data artifacts (noise, baseline, cosmic spikes) can be optionally added to create more
realistic synthetic Raman spectra. Here, we add Gaussian noise ϵ ∈ Rb to each spectrum, with independent and identically
distributed components ϵi ∼ N (0, σN ). Further, we add a baseline signal B = hB arctan(π[1 : b]/b) ∈ Rb to each
spectrum with probability pB . Finally, with probability pS , a cosmic spike of intensity S ∼ hSU(0.75, 1.25) is added to
each spectrum at a band bS ∼ U{2, b− 2}. In our experiments: σN = 0.1, pB = 0.25 hB = 2, , pS = 0.1, hS = 5.

C.2. Synthetic datasets

Using the generator we developed, we can produce synthetic Raman mixtures with different characteristics (e.g., number
and type of endmembers, abundance profiles, mixture model, data artifacts) with full knowledge of the ‘ground truth’
endmembers and fractional abundances. This allows us to quantify and compare the performance of unmixing approaches
(see Figure 4b for unmixing of an example synthetic dataset).

Using our data generator, we produce 11 types of synthetic datasets of variable complexity, based on four mixture scenarios
over three fractional abundance scenes. In order of complexity, the four mixture scenarios are: 1) a linear mixture with
clean endmembers and no data artifacts (ideal); 2) a linear mixture with clean endmembers, but contaminated with artifacts
representing dark noise, baseline variations and cosmic spikes (+artifacts); 3) a linear mixture with noisy endmembers (i.e.,
containing additional smaller noise peaks) and artifacts (+realistic); and 4) a bilinear mixture based on the Fan model with
noisy endmembers and artifacts (+bilinear). For each of the four mixture scenarios, we generate three dataset variants (two
for the +bilinear scenario since no bilinear interactions are present in our Chessboard scene) based on custom 100× 100
fractional abundance scenes. This produces 10k spectra per dataset, organized into two-dimensional scenes for visualization
purposes. In increasing level of mixing, we have: 1) a scene comprising well-separated patches, each containing a single
species (Chessboard scene); 2) a semi-mixed scene given by a Gaussian mixture of species (Gaussian scene); and 3) a
highly-mixed scene where each pixel represents a random sample of species drawn from a Dirichlet distribution (Dirichlet
scene). Thus, our synthetic datasets cover varied mixing scenarios, from the ideal Chessboard dataset, which is trivial for
conventional methods, to noisier, more complex mixtures containing different types of artifacts.
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Figure 4. Benchmarking autoencoders on synthetic Raman mixtures. a, Schematic of our synthetic data generation workflow. b,
Representative results for the six algorithms (two conventional and four AEs) on an example synthetic dataset (Chessboard+artifacts
scenario): endmembers (left), and fractional abundances (right). c-d, Summary of unmixing performance on synthetic datasets of variable
mixing level and complexity: linear mixtures (c), bilinear mixtures (d). Confidence intervals are given by one standard deviation around
the sample mean (n = 25 samples: 5 datasets with 5 model repetitions each).
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C.3. Model training and evaluation on synthetic Raman mixtures

Autoencoders were trained on synthetic data using the Adam optimizer (learning rate 0.001) over 10 epochs, with spectral
angle distance as a loss function between input and reconstructed spectra. The latent dimensionality m of each AE model is
set to 5 for the ideal mixture scenario, and 6 for the other mixture scenarios with data artifacts. Both ANC and ASC are
enforced for all experiments on synthetic data. Each experiment on the synthetic data was performed on 5 datasets and 5
model initializations using different random seeds, resulting in 5× 5 = 25 replicates per evaluation, or 1650 experiments in
total: 6 models (2 conventional, 4 AEs) × 11 dataset variants × 25 replicates. Random seeds were kept the same across
mixture scenarios to allow direct comparison.

C.4. Benchmark results

Benchmark results on linear mixtures. We first discuss our results on the nine dataset variants created through the
linear mixture scenarios (1-3). Such data complies with the linear mixing assumption of conventional methods and, for
consistency, we equip the AE models with a decoder for linear unmixing. Figure 4c summarises the performance of the
six models (two conventional and four AEs) across the nine dataset variants, with experiments performed over 5 distinct
datasets and 5 model initializations for each variant. We find that the AE models outperform the two conventional methods,
providing more accurate endmembers and fractional abundances across virtually all scenarios and abundance scenes. The
AEs recover the performance of the conventional methods on the simple ideal Chessboard datasets, and the improvement in
AE performance becomes increasingly prominent for mixture scenarios with higher levels of noise and data artifacts.

Non-linear unmixing with autoencoders. We next proceed to our benchmark analysis on synthetic data generated using a
non-linear mixture model (i.e., +bilinear scenario). This time, we equip AEs with a decoder specific to the bilinear mixture
model, which is achieved by merely adapting the decoder architecture. Our experimental results are displayed in Figure 4d.
Again, we observe that all four AE models provide a substantial improvement in unmixing accuracy compared to standard
unmixing methods for both endmember and abundance estimation.

C.5. Computational efficiency

The computational complexity and scalability of unmixing methods can become a significant bottleneck in real-world
applications, particularly for imaging and volumetric Raman scans, which can contain hundreds of thousands of spectra. To
examine this issue, we profile the computational cost of our four AE methods (linear decoders) and the two conventional
methods on synthetic datasets (ideal scenario, Chessboard scene) of increasing size up to 250000 spectra. The number
of endmembers to extract was set to n = 5 for all methods. For each experiment, we performed 3 separate evaluations,
measuring the wall time of each method (including the training time for autoencoders). All experiments were conducted
on a MacBook Air laptop with an Apple M2 chip (8-core CPU, 10-core GPU, and 16-core Neural Engine). To be fair to
conventional algorithms, we include the full training time for autoencoders and use CPU computation to avoid any advantage
from GPU acceleration.

Figure 5 shows that all AE models are faster than N-FINDR+FCLS and VCA+FCLS, which are already among the most
computationally lightweight conventional unmixing techniques (Bioucas-Dias et al., 2012).

D. Analysis of experimental RS data from sugar mixtures
D.1. Preparation of sugar solutions

We prepared 1mol/L solutions of each type of sugar (sucrose, fructose, maltose, and glucose) by dissolving the appropriate
weight of sugar into 40mL of ultrapure distilled water (Invitrogen™ – UltraPure™ DNase/RNase-Free Distilled Water). The
weights of sugars dissolved were 13.83 g for sucrose (Thermo Scientific Chemicals – Sucrose, 99%), 7.279 g for fructose
(Thermo Scientific Chemicals – D-Fructose, 99%), 15.171 g for maltose (Thermo Scientific Chemicals – D-(+)-Maltose
monohydrate, 95%) and 7.279 g for glucose (D-(+)-Glucose, AnalaR NORMAPUR® analytical reagent). All solutions were
mixed and vortexed in standard 50mL centrifuge tubes until no solute was visible.

Sugar mixtures were prepared in standard 96-well plates, with a volume of 375 µL per well. A full factorial experiment
was performed comprising 4 volume levels for each sugar (0 µL, 30 µL, 75 µL and 120 µL), filled with distilled water where
necessary. Discarding the mixtures exceeding the volume of the well and the one that contains no sugar, 240 distinct
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Figure 5. Computational efficiency of autoencoders and conventional methods on synthetic datasets with an increasing number of spectra.
Each dot represents the average across 3 evaluations (confidence intervals based on one standard deviation are small and not visible to the
eye). AE models are equipped with decoders for linear unmixing. Data generated under Chessboard +artifacts.

mixtures were prepared. In addition, 5 extra ‘pure’ solutions (i.e., 375 µL of water, sucrose, fructose, maltose, or glucose)
were prepared, which we used to extract reference spectra for each chemical species. This resulted in a total of 245 wells
distributed in three standard 96-well plates. Mixtures were stirred using standard 200 µL pipettes before spectral acquisition
to ensure good mixing.

D.2. Raman measurements from sugar solutions

All spectra were acquired using a custom Raman microspectroscopy platform designed for high-throughput analysis known
as B-Raman. This platform is based on the Thorlabs Cerna® and features the BWTek BRM-785-0.55-100-0.22-SMA laser
excitation source and the Ibsen EAGLE Raman-S spectrometer. The instrument was calibrated using an Argon wavelength
calibration source (AR-2 – Ocean Insight) reference lamp before data collection. The excitation wavelength was 785 nm
and the power incident to the samples was 36.3mW. The Raman scattering was collected in reflection via a Leica N PLAN
10x/0.25 objective with 0.25 numerical aperture. The raw spectra were acquired over the spectral wavenumber range of
142–3684.8 cm−1.

Spectra were measured from the center (horizontal) of each well at a fixed depth that was established to provide the highest
signal. Two sets of data were collected from each well, at 5 s and 0.5 s integration times, to compare unmixing performance
on low and high signal-to-noise ratio (SNR) data. Several measurements were collected from each well, resulting in a total
of 240 solutions × 2 measurements × 4 repetitions = 1920 high-SNR measurements (1960 with reference spectra); and
240 solutions × 8 measurements × 4 repetitions = 7680 low-SNR measurements (7840 with reference spectra). Ground-
truth endmembers signatures were obtained by taking the median (band-wise) of the reference spectra (40 in high SNR
setup, and 160 in low SNR setup) collected from the 5 additional wells containing pure solutions. Ground truth fractional
abundances were determined by calculating the ratio of the components present in each mixture.

D.3. Preprocessing and analysis of sugar data

First, we preprocess each sugar dataset: 1) cropping to the region 400–1800 cm−1; 2) baseline correction with Adaptive
Smoothness Parameter Penalized Least Squares (ASPLS) (Zhang et al., 2020a)—smoothing parameter λ = 105, differential
matrix of order 2, maximum iterations set to 100, exit criteria with tolerance t = 0.001; 3) global vector normalization,
where each observation is divided by the highest magnitude observed in the data. Baseline removal is important to ensure
models extract relevant features (i.e., characteristic peaks) as opposed to merely capturing the trend.

To perform hyperspectral unmixing, we set the number of endmembers to extract to n = 5, and we follow similar training
and evaluation protocols to those employed for the synthetic data, but we increase the number of epochs to 15 for low SNR
data and 50 for high SNR data given the more limited number of spectra collected. We also incorporate an additional MSE
term in the training loss L of autoencoders on high SNR data:

L(x, x̂) = SAD(x, x̂) + λMSE(x, x̂), (3)

with λ = 1000. This term breaks the invariance to scale and leads to better abundance estimation given the weak water
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endmember. The standard SAD loss was used for experiments on low SNR. Each experiment is repeated for 5 model
initializations.

E. Analysis of volumetric RS data from THP-1 cell
The volumetric Raman scan of the THP-1 cell (Kallepitis et al., 2017) was collected using 0.3 s integration time and
comprises a z = 1, . . . , 10 stack of ten 40 × 40 raster scans, organized into a single volumetric hypercube for analysis.
We preprocess the data before unmixing using the following protocol: 1) spectral cropping to the fingerprint region 700–
1800 cm−1; 2) cosmic spike removal using the algorithm in (Whitaker & Hayes, 2018) with kernel of size 3 and z-value
threshold of 8; 3) denoising with Savitzky-Golay filter using a cubic polynomial kernel of size 7 (Savitzky & Golay, 1964);
4) baseline correction using Asymmetric Least Squares (AsLS) with smoothing parameter λ = 106, penalizing weighting
factor p = 0.01, differential matrix of order 2, maximum iterations set to 50, exit criteria with tolerance threshold of
t = 0.001 (Eilers & Boelens, 2005); 5) global MinMax normalization to the interval [0, 1].

Unmixing is performed following the same AE training protocol as in other analyses, with the number of training epochs set
to 20, and the number of endmembers to extract to n = 20. Here, we also discard the constraint that fractional abundances
must sum to one. Out of the 20 endmembers we obtain, we display the 5 deemed most biologically relevant following peak
assignment as per the original paper (Kallepitis et al., 2017). For VCA+NNLS, two of those five endmembers corresponded
to the same cell organelle, namely cytoplasm, and were visualized using the same color in the merged reconstruction
displayed in Fig. 3b.

Cell organelles were determined based on the following peaks: PBS buffer - 1637 cm−1 (water peak); cytoplasm - 1005 cm−1

(phenylalanine), 1250 cm−1 (Amide III), 1659 cm−1 (Amide I) and 1445 cm−1 (CH deformations of proteins and lipids);
TAGs/PLPs - 1092 cm−1 (C–C stretching ), 1308 cm−1 (CH2 twists), 1445 cm−1 (CH deformation), and 1661 cm−1 (C=C
stretching); nucleus/DNA - 790 cm−1 (symmetric phosphodiester stretch and ring breathing modes of pyrimidine bases)
and 1103 cm−1 (symmetric dioxy-stretch of the phosphate backbone); cholesterol - 1069 cm−1 and 1134 cm−1 (cholesteryl
stearate), 1300 cm−1 (CH2 twists), and 1443 cm−1 (CH deformation) (Kallepitis et al., 2017; Zhang et al., 2012; Movasaghi
et al., 2007).


