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ABSTRACT

An increasing interest in learning to forecast for time-series of high-dimensional
observations is the ability to adapt to systems with diverse underlying dynamics.
Access to observations that define a stationary distribution of these systems is
often unattainable, as the underlying dynamics may change over time. Naively
training or retraining models at each shift may lead to catastrophic forgetting
about previously-seen systems. We present a new continual meta-learning (CML)
framework to realize continual slow-and fast adaptation of latent dynamics (CoS-
Fan). We leverage a feed-forward meta-model to infer what the current system
is and how to adapt a latent dynamics function to it, enabling fast adaptation
to specific dynamics. We then develop novel strategies to automatically detect
when a shift of data distribution occurs, with which to identify its underlying
dynamics and its relation with previously-seen dynamics. In combination with
fixed-memory experience replay mechanisms, this enables continual slow update
of the what-how meta-model. Empirical studies demonstrated that both the meta-
and continual-learning component was critical for learning to forecast across non-
stationary distributions of diverse dynamics systems, and the feed-forward meta-
model combined with task-aware/-relational continual learning strategies signifi-
cantly outperformed existing CML alternatives.

1 INTRODUCTION

Learning to forecast from time-series observations of high-dimensional data, such as series of im-
ages, is becoming importantly crucial in various applications. Among recent advances, one repre-
sentative approach is to learn the dynamics function governing these observations in an abstracted
latent space as a means to forgo the need for direct supervision (and by extension, direct knowl-
edge) on the system’s latent variables (Chung et al., 2015; Krishnan et al., 2015; Karl et al., 2017;
Yildiz et al., 2019; Fraccaro et al., 2017; Botev et al., 2021). This is often realized as a sequential
latent variable model (sLVM) with a latent dynamics function zt = f(z<t; θ) and the latent states’
emission back to observation space xt = g(zt) (Yildiz et al., 2019; Jiang et al., 2023).

Recent advances have moved towards modeling similar-yet-distinct dynamics that arise from hetero-
geneous systems (Jiang et al., 2023). One approach that has garnered increasing attention involves
learning-to-learn a latent dynamics function via meta-models capable of rapid adaptation. The suc-
cess of these methods rely on two key fundamental assumptions: 1) training samples are available
from all systems of interest and this distribution does not change at test time, known as a stationary
task distribution, and 2) each sample has an identifier linking it to a specific system. These assump-
tions often break down in time-series forecasting, where data samples arrive as a stream over time
such that neither a stationary distribution of systems nor the incoming samples’ system identifiers
is guaranteed, This represents a scenario of non-stationary task distributions with unknown task
boundaries or identifiers, where traditional meta-learning approaches have limited applicability.

The emerging research area of continual meta-learning (CML) is relevant to lifting these restric-
tions. CML elevates continual learning (CL) – originally designed to manage non-stationary data
distributions (Van de Ven & Tolias, 2019) – to meta-learners over non-stationary task distributions
(Riemer et al., 2018; Joseph & Gu, 2021). Examples include weight regularization on meta-models
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(He et al., 2019) or sample-storing reservoir to approximate task stationarity (Joseph & Gu, 2021).
Unfortunately, existing CML works have predominantly focused on supervised image classifica-
tion (Joseph & Gu, 2021; Riemer et al., 2018; Caccia et al., 2020) or low-dimensional regression
tasks (He et al., 2019), leaving open challenges towards its adoption in latent dynamics forecasting.
Two potential challenges stand out. First, current CML research largely employs gradient-based
meta-learners, such as model-agnostic meta-learning (MAML) (Finn et al., 2017) which, although
effective for image-based tasks, can fail to generalize to a broader range of problem domains. This
limitation was noted in meta-reinforcement-learning that focuses on short-term forecasting of action
sequences (Mishra et al., 2017), Second, many CML approaches lack a task-identification mecha-
nism (Joseph & Gu, 2021; Riemer et al., 2018), which prevents them from fully utilizing the potential
of bi-level optimization for the meta-learners to learn to adapt to all previously seen tasks.

Our contributions. This work introduces a new what-how & when framework for continual slow-
and-fast adaptation of latent neural dynamics (CoSFan) across sequentially presented non-stationary
distributions of dynamics systems (i.e., tasks,) all without prior knowledge of task boundaries or
identifiers. It has two major contributions. First, we propose a what-how meta-model to infer what
the current system is and how to adapt a dynamics function to it (Jiang et al., 2023), in a feed-forward
manner to realize fast adaptation to specific dynamics systems. We show that this feed-forward
meta-model provides a stronger algorithmic prior than gradient-based optimization (e.g., MAML)
for adaptation, offering significantly faster adaptation and improved predictive performance.

Second, we propose novel strategies to automatically detect when a shift of data distribution occurs
and, based on which, to identify the underlying dynamics systems and their relations. In combination
with fixed-memory experience replay mechanisms, this enables pairing of context-query samples to
fully utilize bi-level optimization for continual slow update of the what-how meta-models. Specifi-
cally, we propose two alternative strategies: a simple boundary-based pseudo-labeling mechanism,
paired with standard reservoir sampling (Vitter, 1985), to maintain a stationary approximation of the
observed samples and their tasks IDs over time; and a cluster-based labeling mechanism, employ-
ing continual Bayesian Gaussian mixture models (GMM) on the what-embedding extracted by the
meta-model, to approximate task distribution via a distilled representation of task relations.

We evaluated CoSFan in time-series forecasting in two comparative studies. First, we compared
CoSFan with state-of-the-art latent dynamics models and their continual extensions, evaluating the
necessity of both the meta- and continual-components in learning to adapt across non-stationary
task distributions. Second, we compared with its alternative formulations based on existing CML
works, evaluating the benefits of the proposed what-how meta-models and their continual learning
strategies. In a series of increasingly complex continual learning settings with high-dimensional rep-
resentations of Hamiltonian systems, we quantitatively and qualitatively demonstrated C’s capacity
to detect and learn new tasks while preventing catastrophic forgetting in sequential tasks. Models
and experimental codes are available at https://github.com/qu-gg/CoSFan.

2 RELATED WORKS

Learning-to-learn latent dynamics. Recent advances have focused on modeling similar-yet-
distinct dynamics manifested as heterogeneous samples, particularly through meta-learning (Jiang
et al., 2023; Wang et al., 2022; Kirchmeyer et al., 2022) and multi-environment learning (Yin et al.,
2021; Zintgraf et al., 2019). One effective approach of increasing interest extends latent dynamics
functions via meta-learning (Wang et al., 2022; Jiang et al., 2023), where each dynamic system is
treated as a task, and meta-models learn-to-learn to rapidly adapt the latent dynamics function to dif-
ferent tasks. Both MAML- (Kirchmeyer et al., 2022) and feed-forward based meta-learners (Jiang
et al., 2023) have shown success in real-world applications, such as cross-subject clinical forecasting
(Jiang et al., 2022) and cross-buoyancy turbulent flow forecasting (Wang et al., 2022).

Unfortunately, meta-learning fundamentally assumes tasks are independent and identically dis-
tributed (Khoee et al., 2024), which can lead to poor generalization for significantly different tasks at
meta-test time (Hospedales et al., 2021). Furthermore, it relies on a stationary training distribution,
assuming all relevant tasks are present and labeled during training to pair context and query samples
for bi-level optimization (Hospedales et al., 2021). In time-series forecasting, these assumptions
hinder the continuous aggregation of knowledge as unique dynamic systems may phase in and out
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Figure 1: A) Overview of CoSFan, showing the what-how meta-model continually aggregate a
heterogeneous data stream with a reservoir that identifies tasks via Gaussian mixture models. B)
Comparison of the proposed model to relevant CML work.

without prior knowledge. Identifying appropriate auxiliary mechanisms to continually learn how to
adapt latent dynamic functions in non-stationary task settings remains an open challenge.

Continual meta-learning. Recent developments at the intersection of continual learning and
meta-learning, known as continual meta-learning (CML), offer inspiration. By leveraging estab-
lished continual methods, such as reservoir sampling (Riemer et al., 2018; Joseph & Gu, 2021) or
Bayesian Gradient Descent (He et al., 2019), on the meta-learner, it allows the meta-learner to be
continually trained on a sequence of tasks. However, existing studies focus primarily on supervised
image classification tasks (Joseph & Gu, 2021; Riemer et al., 2018; Caccia et al., 2020) or low-
dimensional regression problems (He et al., 2019). The potential of CML in the space of time-series
or latent dynamics forecasting remains unexplored, leaving two primary open questions.

First, most prior CML works leverage gradient-based meta-learners, specifically MAML (Finn et al.,
2017) and its variants. While effective in image and classification domains, MAML’s algorithmic
prior of gradient descent has been shown to be ill-fit for adapting the task landscape of other domains
(Mishra et al., 2017). In meta-reinforcement-learning where the task distributions cannot neatly
collapse into one mode, for instance, the shared initialization that MAML uses often results in sub-
optimal adaptive performance on isolated tasks (Mishra et al., 2017; Vuorio et al., 2019; Fu et al.,
2023). Moreover, gradient-based meta-learners require fine-tuning for every incoming task, even for
known tasks, which is sensitive to optimization hyper-parameters and computationally inefficient
(Nguyen et al., 2021; Mishra et al., 2017). Meta-models with alternative algorithmic priors, such as
feed-forward hyper-networks, remains unexplored in the broader scope of CML.

Second, meta-learning’s signature bi-level optimization depends on known task identifiers to pair
context and query samples. How to achieve this in task-agnostic settings – where neither task bound-
ary nor identifier is known – is unresolved. Existing CML approaches bypass this through either reg-
ularization techniques (He et al., 2019; Harrison et al., 2020; Caccia et al., 2020) or MAML-based
strategies to align gradients between new and previous tasks in a memory buffer (Riemer et al.,
2018; Joseph & Gu, 2021). Limitations of the latter are discussed above, while the former often
faces capacity saturation and instability in high-dimensional settings (Joseph & Gu, 2021).

CoSFan breaks through the reliance of mainstream CML methods on MAML-variants, demonstrat-
ing the effectiveness of feed-forward meta-models, combined with automatic task identification and
task-relation modeling, in fully leveraging bi-level meta-optimization over non-stationary task dis-
tributions. We position our work against prior CML works in Fig. 1B. Discussion of other related
areas, e.g., CL and meta-continual-learning, and other algorithmic priors is included in Appendix A.
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3 PROBLEM FORMULATION

Consider the problem of learning to forecast the trajectory of a data sequence x0:T when only given
access to l initial frames of observations x0:l (l ≪ T ), where xt ∈ RD at time t is high in dimension.
Latent dynamics forecasting approaches this by learning the dynamic function governing some low-
dimensional latent representations zt ∈ Rd (d≪ D) and its mapping to xt. We learn to do so from
many observed samples of x0:T . Depending on the diversity and distribution of the observed data,
below we introduce the setting for this problem in layers, building up from the simplest setting of
learning from single systems to learning from non-stationary distributions of multiple systems.

Single-System Forecasting. Let us start with the simplest setting where all observed samples of
x0:T has a shared generative low-dimensional dynamic system T . Leveraging the commonly used
sLVM framework (Botev et al., 2021; Jiang et al., 2023), the modeling consists of three components:

i) An encoder z0 = encϕ(x0:l), parameterized by ϕ, to infer z0 from the sub-sequence x0:l:

ii) A dynamics function fθ parameterized by θ, to describe the evolution of zt over time and comes in
many forms - from linear combinations of transition matrices (Karl et al., 2017; Fraccaro et al., 2017)
to neural ordinary differential equations (NODE) (Chen et al., 2018; Yildiz et al., 2019). We opt for
the latter in this work, which describes the continuous evolution of zt as zt = z0 +

∫ t
0
fθ(zτ )dτ .

iii) An emission function xt = decρ(zt), parameterized by ρ, to map zt’s to xt’s in parallel.

Given the final forecasted sequence x̂0:T from the few-frame input x0:l, the difference in the forecast
and the ground truth L(x̂0:T ,x0:T ) can be used as a loss signal to optimize the parameters {ϕ, θ, ρ}.

Heterogeneous-Dynamics Extension. Now consider an extension where multiple dynamics sys-
tems, {Tj}Mj=1, exist, each with an unknown system variable c(Tj). Examples include varying sets
of parameters for a predator-prey model (Kirchmeyer et al., 2022) or image sequences of objects
affected by various Hamiltonian systems (Jiang et al., 2023). Under this setting, a fundamental lim-
itation of fθ as desdribed above emerges: it learns a single parameter set θ global to all training
sequences; as such, it lacks the ability to adapt to unknown dynamics at test-time. It is easy to see
then, when only given the partial sequence to forecast from, we need a mechanism to infer what the
current system is and to know how to adapt to this system in order to perform across all dynamics si-
multaneously. Formally, this means that fθ should now be conditioned on a changing context c(Tj)
as: zt = fθ(z<t, c(Tj)) in order to change forecasting given the same input of past frames.

Non-Stationary Extension. Lastly, consider an additional condition in which the set of dynamics
systems, i.e., tasks {Tj}Mj=1, are presented in a sequential order {T1, T2, ..., TM}. We consider the
continual-learning scenario where neither the boundary between tasks nor the label of any task is
known (Van de Ven & Tolias, 2019). We also assume the presence of local stationarity where data
from each task are presented for some period of time. This allows the forecasting method to optimize
sufficiently and stably before a new task has the potential of appearing.

Goal of the Learner. Overall, we aim to learn a model which can continually adapt the latent
dynamics function zt = fθ(z<t; c(Tj)) to different dynamics systems over a non-stationary stream
of such systems - without the availability of a known boundary or identifier for these systems.

4 METHODOLOGY

We present a what-how & when CML framework as illustrated in Fig. 1A, where a fast-adaptation
meta-model infers what the current task is and how to adapt the dynamics function accordingly
(Section 4.1), while a slow-adaptation of the meta-model occurs on an approximated stationary task
distribution enriched with task identifiers and relations when a task shift occurs (Section 4.2).

4.1 What-How - FAST ADAPTATION BY INFERRING & USING A DYNAMICS’ CONTEXT

The concept of what & how is broadly applicable across meta-learner algorithms: the what compo-
nent extracts the context c(Tj) from k sequences {xs,i0:T,j}ki=1 = T s

j , called the context set for task
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Tj ; the how component maps c(Tj) to a task-specific predictive function fθ(z<t; c(Tj)) to forecast
on unknown query sequences xq0:T,j’s. In the commonly used MAML techniques in CML, a shared
parameter set θinit is adapted into a task-specific parameter set θtask (what) by taking a few gradi-
ent optimization steps (how) over T s

j . While successful in image classification and low-dimensional
regression, they have been shown unsuitable in broader domains, notably in meta-reinforcement
learning which act on action sequences of action (Mishra et al., 2017).

We propose a more general what & how method for CML that learns the adaptation algorithm in a
feed-forward manner, eliminating the need for gradient-based updates at test-time. We use a non-
linear encoder, termed the context encoder, to embeds and aggregate the context data into a lower-
dimensional representation (what), along with a feed-forward hyper-network that transforms this
representation into task-specific latent dynamic functions (how). We contrast these two what-how
models from the lens of algorithmic prior (Section 4.1.2) and adaptation efficiencies (Section 4.1.3).

4.1.1 FEED-FORWARD WHAT-HOW META-MODELS FOR LATENT DYNAMICS FORECASTING

What. Given the context set T s
j , we encode each sequence xs,i0:T,j to its individual embedding cs,ij

through the use of a learnable encoding function eψ . We then use an averaging function to extract
the shared knowledge over the set where k is the size of the set:

c(Tj) =
1

k

∑k

i=1
cs,ij , where cs,ij = eψ(x

s,i
0:T,j), xs,i0:T,j ∈ T s

j . (1)

How. To use the inferred c(Tj) to adapt the latent dynamics function, we employ a hyper-network
(Ha et al., 2016) hγ to map c(Tj) to the task-specific parameters of the latent dynamics function as:

θ = hγ(c(Tj)). (2)

For the hyper-network architecture, we consider a simple linear transformation as the what-encoder
already provides a sufficiently complex non-linear mapping to the task context variable.

Meta-Objective. The meta-learner’s parameters are optimized by minimizing the error between
the forecasted and ground-truth query sequences across all tasks, with each task evaluated individ-
ually in parallel and their errors aggregated. The loss function for a given task is expressed as:

LTj
=

∑
xq
0:T,j∼Tj

||x̂q0:T,j − xq0:T,j ||
2, where x̂q0:T,j = decρ(fθ(c(Tj))(encϕ(x

q
0:l,j))). (3)

As such, across the tasks, the meta-objective becomes:

min
ϕ,ρ,γ,ψ

∑
Tj∼p(T )

LTj , (4)

which jointly optimizes the sLVM’s parameters {ϕ, ρ} and the what-how meta-parameters {γ, ψ}.

4.1.2 HYPER-NETWORKS AS ALGORITHMIC PRIORS

Recent work in meta-learning has formalized the concept of algorithmic priors, the underlying al-
gorithms used for adaptation, ranging from gradient-based methods to general approaches that learn
the adaptation algorithm itself (Mishra et al., 2017). The latter, often realized using recurrent archi-
tectures, is sensitive to context set permutations and entangles input representations with the learning
algorithm. These factors have historically constrained general meta-learners in complex domains,
leading to the prevalent use of gradient-based techniques (Huisman et al., 2023).

In comparison, hyper-networks have seen success in adapting latent dynamics functions in station-
ary settings (Kirchmeyer et al., 2022). They also have inductive biases that promote weight transfer
across tasks while minimizing gradient interference (Jayakumar et al., 2020), which make them a
suitable general algorithmic prior for addressing the transfer-interference trade-off in non-stationary
tasks (Riemer et al., 2018). Meanwhile, unlike gradient-based methods that rely on a global initial-
ization vector for all tasks, feed-forward what-how meta-models learn complex non-linear mappings
that structure tasks in an embedding space suited for diverse adaptations. Thus, hyper-networks over-
come the limitations of general algorithmic priors while avoiding the constraints of gradient-based
methods in diverse task landscapes (Mishra et al., 2017; Vuorio et al., 2019; Fu et al., 2023).
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4.1.3 FEED-FORWARD ADAPTATION EFFICIENCY

Feed-forward approaches are more efficient than gradient-based approaches in both meta-training
and meta-testing for two key reasons. First, hyper-networks require only a single forward pass to
adapt, avoiding the costly, often repeated, backpropagation steps. Second, gradient-based methods
typically require a sequential loop over tasks to aggregate losses and update meta-weights, as most
automatic differentiation libraries lack support for parallelized computation branches (Utkarsh et al.,
2024). This limits the use of architectures like NODE, where model evaluation involves sequential
integration over dynamic functions. In contrast, feed-forward methods can easily parallelize per-task
weights (e.g., using vectorized maps) and are unaffected by task quantity.

Dedicated works have resulted in first-order gradient methods for computational efficiency (Nichol
et al., 2018) and subsequent CML methods that eliminate the sequential loop (Joseph & Gu, 2021).
In Section 5.3, we evaluate these CML approaches in terms of adaptation speed and training times.

4.2 When - CONTINUAL FAST & SLOW ADAPTATION OF LATENT DYNAMICS

The learning objective as defined in Equations 3 and 4 is optimized over a stationary distribution of
tasks, as in standard meta-learning practice. As such, despite its ability to infer context and adapt
its dynamics, its meta-components become susceptible to catastrophic forgetting in non-stationary
task settings. Additionally, the absence of task identifiers complicates meta-learning, as pairing
context-query data becomes infeasible. Therefore, it is necessary to incorporate mechanisms to
automatically detect task boundaries (4.2.1), combat catastrophic forgetting (4.2.2), and identify
tasks and their relations to accurately match query samples to their relevant context (4.2.2).

4.2.1 TASK BOUNDARY DETECTION

Similar to many other CML works (Caccia et al., 2020; He et al., 2019), we choose the most recent
k observations to function as the context set for the current task. This is a sound choice given the
local stationarity assumption. When a task shift occurs, the tasks underlying the context and query
sequences differ, resulting in a noticeable dip in prediction performance. We leverage this, via a
simple yet effective threshold mechanism proposed in (Caccia et al., 2020), to flag a task boundary
via ||Lj,n − Lj,n−1|| > ν where Lj is the current task loss, n is the global batch index, and ν is
determined based on the dataset. Further rationale and details for determining ν are in Appendix C.7.

4.2.2 RESERVOIR SAMPLING BASED ON TASK IDS AND TASK RELATIONS

In the non-stationary setting where only the data of one task is actively streaming in at a given
time and no task identifiers are available, two challenges arise in applying meta-learning: i) how to
obtain and aggregate errors from prior tasks to update the meta-weights and ii) how to accurately
pair context and query samples from the same task, especially for previous tasks without active data.

Existing works approach this by standard reservoir sampling method, a simple algorithm that tracks
the number of samples (N ) seen and, for each incoming sample, overwrites an existing buffer sample
with probability M/N where M is the size of the reservoir. To realize meta-learning in this task-
agnostic reservoir, recent work leverages the approximate equivalence between meta-learning and
continual learning objectives in aligning the current task’s gradient Tj with the average gradient of
previous tasks T0:j−1 (Riemer et al., 2018; Joseph & Gu, 2021). This alignment can then be achieved
by using the current task’s samples as context to obtain parameters θTj , and evaluate the meta-loss
using θTj on all past tasks’ samples in the reservoir (Joseph & Gu, 2021). We refer to this approach
as Task-Agnostic Reservoir Sampling and demonstrate in Section 5.3 that this is less effective in
CML compared to full bi-level meta-optimization that uses context-query pairing.

Task-Aware Reservoir Sampling. To make the reservoir task-aware, we leverage the boundary
detection mechanism, assuming each boundary to represent a unique dynamics system and assigning
pseudo-labels with a boundary counter. When sampling from the reservoir, context-query pairs are
easily matched by using each sample’s pseudo-label. In situations where the data stream contains
numerous task boundaries or unbalanced task representations, this approach can lead to an increas-
ingly fragmented buffer, resulting in overfitting to specific context-query pairs or quickly forgetting
rare tasks under-represented in the buffer. We experimentally validate these issues in Section 5.4.
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Task-Relational Experience Replay. To make the reservoir be aware of task relations, we lever-
age a Bayesian Gaussian mixture model (GMM) that automatically identifies clusters within the
reservoir over time and determines a sample’s relation to them. At detected task boundaries
Tj → Tj+1, we fit the GMM on context-embeddings from the reservoir’s samples Creservoir

j along

with an auxiliary memory buffer Cactive
j from the active task Tj . To maintain continuity, we reuse

the previous GMM components and their weights to initialize the current clustering. New samples
are integrated by initializing a new mixture component based on the mean and covariance of Cactive

j .
The weight of this component after refitting determines if these samples represent a new task (high
weight) or a re-emerged task (low weight, covered by an existing component). To avoid the number
of components from exploding, we remove inactive components with weights below 0.05.

Given the fit mixture components Q and the set of context-embeddings {Creservoir
j , Cactive

j }, the
reservoir Rj is re-balanced in a novel way by allocating M/Qsize samples to each component,
where Qsize is the number of components. Components with more samples than their allocated size
have excess samples discarded, ensuring the reservoir remains within its memory limit.

Mj ,Rj =

Q∑
q=1

πqN ({Creservoir
j , Cactive

j }|µq, σq),
Q∑
q=1

πq = 1 (5)

where πq is the weight of a component. The resulting sample cluster assignments Mj serve as
pseudo-labels, enabling context-query pairing when sampling the reservoir. In Section 5.4, we show
that this approach addresses frequent task transitions and the presence of rare tasks.

4.3 CONTINUAL META-OBJECTIVE AND OPTIMIZATION

Continual Approximation of the Meta-Objective. We can now continually approximate the true
stationary meta-objective in Equation 4 as below, bounded by the extent to which the sample reser-
voir Rj approximates the true data distribution of a task Tj and to which the approximated task
identifiers Mj approximate the true task assignments Ij :

min
ϕ,,ρ,γ,ψ

∑
Tj∼p(T )

E(Rj∼Tj ,Mj∼Ij)[LRj
(Mj)]. (6)

Cluster Embedding Regularization. To guide meta-model optimization to structured clusters,
we use regularization from deep clustering (Manduchi et al., 2021) as a MSE between the meta-
embeddings cj of the reservoir samples and their closest cluster mean µ∗ (by Euclidean distance):

Lcluster
Tj

=
∑

||c(Tj)− µ∗ ||2 (7)

5 EXPERIMENTS

We evaluate CoSFan as follows. In Section 5.2, we compared CoSFan to representative latent
dynamic models with continual extensions, to examine the need of both meta- and continual-
formulations in this domain. In Section 5.3, we explored the benefits of CoSFan’s what-how and
when components over existing CML strategies. In Section 5.4, we analyzed the strengths and lim-
itations of task-aware and task-relational replay strategies. Appendix C contains further ablations.

5.1 EXPERIMENTAL SETUP

Data. First, we considered data where the underlying dynamics is governed by the same equation
but with different parameters. We used benchmark image-based time-series of balls bouncing in a
box (Fraccaro et al., 2017; Jiang et al., 2023), influenced by 6 evenly-spaced directions of gravity
and sampled 4500 sequences from each with varying initial positions and velocities. The magnitude
of gravitational forces was kept constant. We refer to this as gravity-6. Next, we explored a broader
setting involving a collection of different dynamics, each with a range of heterogeneity within the
system. In addition to bouncing balls (Fraccaro et al., 2017), we included Hamiltonian pendulums,
Hamiltonian mass-spring systems, and two-body systems (Botev et al., 2021). For each dynamics,
we selected 3 parameter configurations, resulting in a total of 12 dynamics with 1500 samples each.
We refer to this as mixed-physics. Additional data details and visualizations are in Appendix D.0.1.
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Figure 2: DST performance comparison on mixed-physics over existing latent dynamics models
and their continual extensions. All methods were run over 5 random seeds.

Metrics. We evaluated two quantitative metrics for latent dynamics forecasting: 1) the MSE of the
forecasted images at the pixel level; and 2) a distance metric (DST) proposed by (Jiang et al., 2023)
to measure the Euclidean distance between the ground-truth and forecasted objects. To evaluate the
ability of a model to learn continually, we followed (Riemer et al., 2018) and presented the above
forecasting metrics in two perspectives: Retained Performance (RP) and Learning Performance
(LP). RP metrics represent the average performance across all tasks after they are sequentially con-
sidered, emphasizing a model’s ability to retain performance on older tasks. LP metrics reflect the
average performance on a task immediately after it is learned, measuring a model’s effectiveness in
incorporating new information. To assess the extent of catastrophic forgetting, we also reported the
average difference between LP and RP metrics, referred to as Backward Transfer and Interference
(BTI), with negative values indicating increased forgetting (Riemer et al., 2018).

When comparing the choice of the what-how meta-models in Section 5.3, we include two additional
metrics related to computational efficiency. Time-to-Adapt-N (TTA-N) represents the average time
it takes, in seconds, for a model to adapt to its context data in the presence ofN tasks. Time-to-Train
(TTT) represents the average time it takes, in minutes, for a model to train over a sequence of tasks.

Implementation Details. Discussion on the implementation-specifics are included in Ap-
pendix D.0.3, detailing reservoir sizes, sequence lengths, and hardware considerations.

5.2 THE NEED OF WHAT-HOW AND WHEN: COMPARISON WITH EXISTING LATENT DYNAMIC
MODELS AND THEIR CONTINUAL EXTENSIONS

Models. We first compared CoSFan with representative latent dynamic models and their continual
extensions. The baseline latent dynamic models included Deep Kalman Filters (DKF) (Krishnan
et al., 2015), Variational Recurrent Neural Networks (VRNN) (Chung et al., 2015), a Residual
Recurrent Generative Network (RGNRes) (Botev et al., 2021), and a meta-learning realization of
the RGNRes (MetaRGNRes) using the proposed what-how meta-model. We evaluated these four
models under four experience replay settings: i) Naive Learning (NL) where no past samples are
replayed, ii) Exact Replay (ER) where the reservoir can accommodate all past samples, iii) Task-
Agnostic Reservoir Sampling, and iv) Task-Aware Reservoir Sampling as described in Section 4.2.2.

Results. We present results on the DST metric on mixed-physics in Fig. 2, with gravity-6 results
and complete metrics in Appendix B.1. The gray and blue shaded results respectively represented
worst- and best-case scenarios, where the models had no (NL) or full (ER) access to examples from
previous tasks. In ER, the addition of the meta-model significantly improved all performance met-
rics, clearly demonstrating the benefits of the what-how model for learning across dynamic systems.

Looking at LP, the effect of experience replay on a model’s ability to learn the ”current” task var-
ied across datasets: while performance on mixed-physics was relatively unaffected, the absence of
experience replay had a greater impact on gravity-6. Looking at RP, all models struggled to retain
performance on previous tasks when experience replay was absent (NL). The inclusion of a memory
component, whether task-agnostic or task-aware as proposed, effectively addressed forgetting and
stabilized all models, achieving results comparable to exact replay (ER). However, it is the combi-
nation of the what-how meta-model and the task-aware reservoir sampling strategy that delivered
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Figure 3: MetaRGNRes with task-aware reservoir (left) overcomes alleviate catastrophic forgetting
in the continual setting compared to MetaRGNRes without any experience replay (right).

Figure 4: MSE comparison on gravity-6 over existing CML formulations, averaged over 5 seeds.

significant improvements over all alternatives. This demonstrates the importance of both the con-
tinual and meta-learning components, as proposed, for learning to forecast non-stationary dynamics
systems. Fig. 3 shows the per-task performance of MetaRGNRes when continually learning over
sequentially presented tasks, with (left) and without (right) task-aware experience replay strategies.

5.3 DESIGN CHOICES FOR WHAT-HOW & WHEN: COMPARISON WITH EXISTING CML

Models. We now considered alternative formulations for each of the what-how and when compo-
nents in CoSFan using existing CML methods (by adopting them from their original implementa-
tions). The initial state encoder and decoder backbones, as well as the architecture of the dynamics
function, are identical across these baselines. Differences arise from 1) the design of the what-how
meta-models, and 2) the continual learning strategy. More specifically:

Choice of meta-model (what-how): We considered the proposed feed-forward what-how meta-
model in comparison to the MAML-based meta-model most commonly used in existing CML works
(Riemer et al., 2018; Joseph & Gu, 2021; Caccia et al., 2020; Harrison et al., 2020; He et al., 2019).
We evaluate the MAML method with 1- and 5-inner gradient steps for dynamics adaptation.

Choice of continual-strategy (when): We considered the proposed Task-Aware Reservoir Sampling
in comparison to two continual-learning strategies used in existing CML works: standard Task-
Agnostic Reservoir Sampling from Section 4.2.2 (Riemer et al., 2018; Joseph & Gu, 2021) and
uncertainty-based weight regularization via Bayesian Gradient Descent (BGD) (He et al., 2019).

Results. Fig. 4 present the MSE results on gravity-6, with results on mixed-physics and full
metrics in Appendix B.2. Among the three continual learning strategies, BGD-based weight regu-
larization (leftmost group) resulted in the lowest performance in both LP and RP. Compared to task-
agnostic reservoir, task-aware reservoir showed significant (gravity-6) to moderate (mixed-physics)
improvements in retaining performance and reducing negative interference. While the task-agnostic
approach (middle group) showed better LP for MAML (blue) at the cost of catastrophic forgetting,
the task-aware approach (rightmost group) showed little negative to even positive transfer.

Comparing meta-model choices, the feed-forward approach with a task-aware reservoir outper-
formed all other combinations of meta-models and continual strategies. Interestingly, in a task-
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Figure 5: A) Task-Relational’s reservoir’s meta-embeddings throughout mixed-physics. Black stars
represent GMM mixture means. B) Task-Relational vs. Task-Aware strategies on imbalanced tasks
where the first task appears once while others cycle. Considered dynamics are highlighted in gray.

agnostic setting, the feed-forward approach performed similarly or worse than MAML. This con-
firmed our suspicion that while the task-agnostic setting works reasonably well for MAML-based
strategies to learn a shared initialization, it limits the potential of general meta-learners. Overcoming
this limitation via CoSFan has the potential to advance the state-of-the-art in CML.

Table 1: CML adaptation efficiency compari-
son. All methods were adapted on 1200 batches.
MAML-X refers to the X number of inner-steps.

Model Metric T-Agnostic T-Aware

MAML-1
TTA-1 [s] 0.0148(0.0009) 0.0150(0.0080)
TTA-12 [s] 0.0149(0.0069) 0.1602(0.0058)
TTT [min] 38.8(0.2) 116.3(11.0)

MAML-5
TTA-1 [s] 0.0618(0.0077) 0.0670(0.0096)
TTA-12 [s] 0.0636(0.0074) 0.7475(0.0413)
TTT [min] 91.5(0.7) 302.8(22.7)

FF
TTA-1 [s] 0.0018(0.0048) 0.0017(0.0043)
TTA-12 [s] 0.0018(0.0043) 0.0017(0.0005)
TTT [min] 30.0(0.3) 85.2(5.5)

Comparing computational efficiency in Table 1,
the feed-forward method significantly outper-
formed MAML in both training and adapta-
tion times across all continual strategies. While
task-aware MAML had a linear slowdown in
adaptation per task present, the feed-forward’s
parallelized forward pass was unaffected.

5.4 TASK-AWARE
VS. TASK-RELATIONAL BUFFERS

CoSFan trained with the Task-Relational strat-
egy showed a small dip in RP (averaging
20.7%) compared to the Task-Aware approach, remaining significantly better than all other base-
lines (full numerical results are in Appendix B.3). The performance drop may be due to some
samples being misclassified into the wrong dynamics cluster, leading to incorrect context sets. This
came with a benefit of automatically inferring relationships between all encountered tasks. Fig. 5A
illustrates the reservoir’s context embeddings and clusters over time, showing both aligned well with
the underlying dynamics. Two Hamiltonian systems have their three parameter sets collapse into 1-2
clusters, suggesting the optimization found them insufficiently distinct to warrant separate clusters.

Effect of Rare Tasks. We expect task relation distillation to scale more effectively with numerous
boundaries or recurring tasks. Fig. 5B shows results from an example where the first task appeared
once, and three other tasks cycled through 40 boundaries, with the reservoir limited to 500 samples.
The Task-Aware approach discarded most of the first task’s data, retaining only 15 samples by the
end, leading to deteriorating performance on this task. In contrast, the Task-Relational approach
retained an even distribution of 125 samples per task, retaining stable rare-task performance.

6 CONCLUSIONS & DISCUSSION

We introduced CoSFan, a CML framework of what-how & when, which adapts latent neural dy-
namics to non-stationary distributions of dynamical systems - without task boundaries or identifiers.
Additional ablation results show robustness to the size of k-shot context set (Appendix C.4), learn-
ing rate modulation (Appendix C.5), and increasingly restricted reservoir sizes (Appendix C.3). We
show a resilience to gradual task shifts (Appendix C.8) . We also justify the task boundary threshold
ν (Appendix C.7) and use of cluster embedding regularization (Appendix C.6). Limitations. Test-
ing on real-world datasets and on broader CML tasks (e.g., meta-reinforcement learning) is needed
to support our findings. The assumption of local stationarity may limit some applications.
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A RELATED WORKS

In addition to learning-to-learn latent dynamics and CML, the proposed work is also relevant to the
areas of research in continual learning and meta-continual learning.

Continual-learning. Relevant to these limitations is the research area of continual learning, in
which the fundamental goal is to handle data non-stationarity as the ability to simultaneously pre-
serve old performance while accelerating the aggregation of new knowledge. Under this framework,
incoming data is seen as a sequence of distinct tasks expressing unique properties that differentiate
themselves (Van de Ven & Tolias, 2019). A multitude of approaches have been proposed under
continual learning to alleviate catastrophic forgetting, with the most representative approaches cat-
egorized as: i) rehearsal-based methods that approximate the stationary training distribution via
storing or generating samples over time (Robins, 1995), ii) structural methods that preserve sub-
networks of neural networks over time to maintain per-task performance (Rusu et al., 2016), and iii)
regularization-based methods that leverage the sequentially learned Bayesian posteriors as priors
that constrain learning on new tasks (He et al., 2019).

However, an underlying assumption of these continual methods is that, regardless of what tasks have
been or are being learned, the network is able to learn a set of parameters that can perform well across
all tasks. In heterogeneous time-series forecasting, this is often an invalid assumption as the input-
output mapping can conflict as the same observation can provide different forecasts depending on the
(potentially unknown) system context. As such, naı̈ve continual learning is not directly applicable
to this setting as it lacks both task-inference and context-aware adaptation mechanisms.

Meta-continual learning. The recent field of meta-continual learning (MCL), though similar in
name and approaches considered, is distinct from CML in its goal and optimization. CML uses
continual learning techniques to enable the training of meta-learning models over a distribution of
tasks that appears sequentially over time. Its goal is to preserve the performance of the meta-model
on the previous tasks, even when little-to-no data for those tasks are available, while also aggregating
knowledge from the current task. Conversely, MCL aims to frame the continual learning problem as
a meta-learning problem, in which each meta-task is some variation on the order that the continual
learning tasks are presented in. Its goal is to meta-learn the continual learning algorithm such that
on a new sequence of tasks, it can adapt quickly. Unlike CML, which has context-dependent targets,
MCL assumes a fixed target distribution of some x-y mapping. Due to differences in the goal of the
meta-models and the data settings considered, we do not consider MCL relevant to our evaluation
and omit comparisons against their methods.

Summary of related work. The terminology and goals of meta-continual learning and continual
meta-learning are nuanced and often challenging to distinguish, as both adapt the same fundamental
methods to different ends. We defer to the breakdown in (Caccia et al., 2020) for a formalized review
of MCL and CML, and how they relate to meta-learning and continual-learning, respectively.

Alternative algorithmic priors. Beyond gradient-based and feed-forward hyper-networks, se-
quence learners such as Transformers (Vaswani, 2017) are powerful architectures for extracting
knowledge in high-dimensional settings. In standard meta-learning, Transformers have been used
as algorithmic priors (Chen & Wang, 2022) by combining an initial token set of parameters with to-
kenized context data to adapt the weights, a conceptually similar approach to gradient-based meta-
learners’ initial parameter set. A recent CML work (Vladymyrov et al.) further explores using
Transformer architectures as hyper-networks to generate target network weights based on the con-
text set. In their framework, the weights generated for a previous task are reused as parameter tokens
to update the current task’s weights alongside active task samples. Notably, this method omits the
use of a replay buffer, relying instead on weights updated iteratively through active samples. While
this approach primarily targets image classification tasks, adapting it to latent dynamics settings
offers a promising direction for future exploration.

In this work, we focus on applying feed-forward algorithmic priors, specifically in the form of a
hyper-network, and comparing their performance to the standard CML approach of gradient-based
meta-learners. However, exploring other algorithmic priors represents an intriguing avenue for fu-
ture research.
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B FULL QUANTITATIVE RESULTS

B.1 COMPLETE SECTION 5.2 RESULTS

Here we include the full numerical experimental results for the comparison to existing latent dy-
namics baselines on gravity-6 and mixed-physics in Table 2 and Table 3, respectively. The numer-
ical results of these methods trained under the stationary distribution, where all tasks are available
simultaneously and have known task identifiers, are shown in Table 4.

As well, we include a similar visualization as in Fig. 2 but for MSE on mixed-physics in Fig. 6 and
for DST and MSE on gravity-6 in Fig. 7 and Fig. 8, respectively.

Table 2: Performance comparison on gravity-6 over existing latent dynamics models and their con-
tinual extensions. All methods were run over 5 seeds.

Naive Exact Replay Boundary Reservoir
Model Metric DST MSE DST MSE DST MSE

DKF
LP 9.13(1.07) 0.0234(0.0003) 6.39(0.07) 0.0219(0.0001) 7.98(1.06) 0.0228(0.0004)
RP 8.80(0.77) 0.0234(0.0003) 6.79(0.11) 0.0222(0.0001) 7.13(0.47) 0.0226(0.0003)
BTI 0.33(0.30) 0.0000(0.0000) -0.39(0.15) -0.0003(0.0001) 0.85(0.97) 0.0002(0.0003)

VRNN
LP 9.17(0.27) 0.0221(0.0000) 4.69(0.18) 0.0150(0.0001) 7.49(0.71) 0.0190(0.0011)
RP 10.07(0.51) 0.0215(0.0000) 8.99(0.17) 0.0214(0.0002) 9.08(0.78) 0.0225(0.0018)
BTI -0.91(0.27) 0.0006(0.0000) -4.30(0.19) -0.0065(0.0003) -1.59(0.57) -0.0035(0.0015)

RGNRes
LP 9.23(0.52) 0.0195(0.0002) 2.73(0.16) 0.0129(0.0002) 3.82(0.53) 0.0146(0.0009)
RP 12.63(1.30) 0.0203(0.0001) 7.83(0.17) 0.0199(0.0005) 7.48(0.20) 0.0214(0.0008)
BTI -3.40(1.45) -0.0009(0.0001) -5.10(0.15) -0.0071(0.0005) -3.66(0.34) -0.0068(0.0010)

MetaRGNRes
LP 9.92(0.32) 0.0199(0.0002) 1.62(0.08) 0.0111(0.0002) 1.67(0.09) 0.0114(0.0001)
RP 13.04(1.22) 0.0207(0.0001) 1.57(0.03) 0.0108(0.0001) 1.72(0.08) 0.0120(0.0002)
BTI -3.12(1.31) -0.0008(0.0001) 0.05(0.06) 0.0002(0.0002) -0.05(0.07) -0.0006(0.0003)

Table 3: Performance comparison on mixed-physics over existing latent dynamics models and their
continual extensions. All methods were run over 5 seeds.

Naive Exact Replay Boundary Reservoir
Model Metric DST MSE DST MSE DST MSE

DKF
LP 2.73(0.39) 0.0228(0.0013) 2.52(0.24) 0.0220(0.0006) 2.93(0.41) 0.0231(0.0006)
RP 4.49(0.33) 0.0445(0.0110) 2.78(0.31) 0.0223(0.0008) 2.84(0.31) 0.0226(0.0007)
BTI -1.76(0.66) -0.0217(0.0115) -0.15(0.03) -0.0003(0.0003) 0.09(0.12) 0.0005(0.0005)

VRNN
LP 2.48(0.23) 0.0164(0.0010) 2.71(0.38) 0.0169(0.0007) 2.97(0.51) 0.0182(0.0009)
RP 4.87(1.01) 0.0434(0.0034) 3.70(0.45) 0.0214(0.0006) 3.78(0.52) 0.0234(0.0005)
BTI -2.50(0.84) -0.0270(0.0034) -0.99(0.19) -0.0045(0.0008) -0.81(0.21) -0.0052(0.0011)

RGNRes
LP 2.43(0.82) 0.0162(0.0022) 1.56(0.00) 0.0143(0.0000) 1.92(0.33) 0.0162(0.0010)
RP 4.75(0.32) 0.0578(0.0141) 2.94(0.00) 0.0188(0.0000) 2.70(0.30) 0.0208(0.0008)
BTI -1.87(0.91) -0.0415(0.0120) -1.38(0.00) -0.0045(0.0000) -0.78(0.07) -0.0046(0.0005)

MetaRGNRes
LP 1.32(0.00) 0.0128(0.0000) 1.54(0.07) 0.0139(0.0007) 1.56(0.14) 0.0141(0.0007)
RP 4.52(0.00) 0.0736(0.0000) 1.59(0.08) 0.0140(0.0009) 1.61(0.13) 0.0154(0.0008)
BTI -3.19(0.00) -0.0608(0.0000) -0.05(0.09) -0.0001(0.0003) -0.05(0.02) -0.0013(0.0002)

Table 4: Performance comparison on gravity-6 and mixed-physics over existing latent dynamics
models trained on the true stationary distribution. All methods were run over 5 seeds.

gravity-6 mixed-physics
Model DST MSE DST MSE

DKF 6.41(0.00) 0.0220(0.0000) 4.14(0.03) 0.0220(0.0001)
VRNN 8.86(0.14) 0.0192(0.0000) 4.37(0.05) 0.0201(0.0001)

RGNRes 7.37(0.12) 0.0185(0.0001) 2.37(0.02) 0.0203(0.0001)
MetaRGNRes 3.51(0.45) 0.0197(0.0011) 2.34(0.23) 0.0194(0.0011)
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Figure 6: MSE performance comparison on mixed-physics over existing latent dynamics models
and their continual extensions. All methods were run over 5 seeds.

Figure 7: DST performance comparison on gravity-6 over existing latent dynamics models and their
continual extensions. All methods were run over 5 seeds.

Figure 8: MSE performance comparison on gravity-6 over existing latent dynamics models and their
continual extensions. All methods were run over 5 seeds.
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B.2 COMPLETE SECTION 5.3 RESULTS

Here we include the full numerical experimental results for the comparison to existing CML for-
mulations on gravity-6 and mixed-physics in Table 6 and Table 5, respectively. Table 7 shows the
complete efficiency comparison, including BGD.

As well, we include a similar visualization as in Fig. 4 but for DST and MSE on mixed-physics in
Fig. 9 and Fig. 10, respectively, and for DST on gravity-6 in Fig. 11.

Table 5: Performance comparison on mixed-physics over existing CML formulations and the feed-
forward approach. All methods were run over 5 seeds.

BGD Task-Agnostic Task-Aware
Model Metric DST MSE DST MSE DST MSE

Feed-Forward
LP 10.92(0.00) 0.0563(0.0000) 1.76(0.21) 0.0162(0.0014) 1.56(0.14) 0.0141(0.0007)
RP 8.50(0.00) 0.0563(0.0000) 2.70(0.20) 0.0219(0.0012) 1.61(0.13) 0.0154(0.0008)
BTI 2.42(0.00) -0.0000(0.0000) -0.94(0.01) -0.0057(0.0003) -0.05(0.02) -0.0013(0.0002)

MAML [1-Step]
LP 6.66(1.18) 0.0505(0.0039) 1.83(0.20) 0.0164(0.0009) 2.68(0.13) 0.0182(0.0008)
RP 5.90(0.59) 0.0516(0.0037) 2.67(0.34) 0.0208(0.0011) 2.62(0.14) 0.0185(0.0010)
BTI 0.77(0.99) -0.0011(0.0010) -0.84(0.17) -0.0044(0.0007) 0.06(0.07) -0.0003(0.0003)

MAML [5-Step]
LP 9.60(4.38) 0.0503(0.0045) 2.18(0.35) 0.0176(0.0009) 3.07(0.58) 0.0192(0.0008)
RP 10.70(6.25) 0.0515(0.0036) 2.81(0.40) 0.0207(0.0014) 2.92(0.43) 0.0186(0.0007)
BTI -1.10(1.96) -0.0012(0.0020) -0.63(0.11) -0.0031(0.0008) 0.15(0.22) 0.0006(0.0004)

Table 6: Performance comparison on gravity-6 over existing CML formulations and the feed-
forward approach. All methods were run over 5 seeds.

BGD Task-Agnostic Task-Aware
Model Metric DST MSE DST MSE DST MSE

Feed-Forward
LP 8.22(0.54) 0.0235(0.0004) 4.47(3.39) 0.0143(0.0019) 1.67(0.09) 0.0114(0.0001)
RP 11.11(0.33) 0.0243(0.0001) 8.81(2.65) 0.0206(0.0007) 1.72(0.08) 0.0120(0.0002)
BTI -2.90(0.72) -0.0009(0.0004) -4.35(0.79) -0.0063(0.0022) -0.05(0.07) -0.0006(0.0003)

MAML [1-Step]
LP 8.57(1.27) 0.0236(0.0007) 2.12(0.05) 0.0129(0.0002) 5.34(0.24) 0.0165(0.0005)
RP 10.68(0.53) 0.0244(0.0001) 7.24(0.18) 0.0199(0.0003) 5.94(0.44) 0.0174(0.0004)
BTI -2.11(1.37) -0.0008(0.0007) -5.12(0.16) -0.0070(0.0003) -0.60(0.41) -0.0009(0.0007)

MAML [5-Step]
LP 7.70(0.76) 0.0232(0.0006) 2.56(0.48) 0.0137(0.0006) 4.67(1.89) 0.0156(0.0018)
RP 10.19(0.87) 0.0242(0.0005) 6.81(0.14) 0.0198(0.0007) 5.31(2.43) 0.0156(0.0017)
BTI -2.49(0.79) -0.0010(0.0006) -4.25(0.43) -0.0061(0.0002) -0.64(0.76) -0.0000(0.0005)

Table 7: Complete adaptation efficiency comparison on the choice of meta-model and continual-
strategy. All methods were adapted over 100 batches of data across the 12 mixed-physics’ dynamics,
timing each batch independently. Bold and italic indicate 1st- and 2nd-best metrics, respectively.

Model Metric BGD Task-Agnostic Reservoir Task-Aware Reservoir

MAML [1-Step]
TTA [1] (seconds) 0.0155(0.0011) 0.0148(0.0009) 0.0150(0.0080)
TTA [12] (seconds) 0.0152(0.0013) 0.0149(0.0069) 0.1602(0.0058)
TTT (minutes) 126.3(4.7) 38.8(0.2) 116.3(11.0)

MAML [5-Step]
TTA [1] (seconds) 0.0637(0.0025) 0.0618(0.0077) 0.0670(0.0096)
TTA [12] (seconds) 0.0623(0.0015) 0.0636(0.0074) 0.7475(0.0413)
TTT (minutes) 315.8(6.5) 91.5(0.7) 302.8(22.7)

Feed-Forward
TTA [1] (seconds) 0.0017(0.0005) 0.0018(0.0048) 0.0017(0.0043)
TTA [12] (seconds) 0.0018(0.0006) 0.0018(0.0043) 0.0017(0.0005)
TTT (minutes) 122.1(3.4) 30.0(0.3) 85.2(5.5)

17



Published as a conference paper at ICLR 2025

Figure 9: DST performance comparison on mixed-physics over existing CML formulations and the
feed-forward approach. All methods were run over 5 seeds.

Figure 10: MSE performance comparison on mixed-physics over existing CML formulations and
the feed-forward approach. All methods were run over 5 seeds.

Figure 11: DST performance comparison on gravity-6 over existing CML formulations and the
feed-forward approach. All methods were run over 5 seeds.
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B.3 COMPLETE SECTION 5.4 RESULTS

Here we include the full numerical experimental results for the comparison between the Task-Aware
Reservoir Sampling methods and the Task-Relational Experience Replay on gravity-6 and mixed-
physics in Table 8. As well, Fig. 12 and Fig. 13 show the per-task performance of both continual
strategies when continually learning over the sequentially presented tasks, on mixed-physics and
gravity-6 respectively.

Best Practice. We suggest using the Task-Relational approach under limited memory scenar-
ios, or when there is prior knowledge about frequent switching among recurring tasks or under-
representation of rare tasks. In settings where it is assumed only novel tasks will show up over time,
the Task-Aware method is sufficient to identify the tasks and comes with better training efficiency.

Table 8: Comparison between Task-Aware Reservoir Sampling and Task-Relational Experience Re-
play. 5 seeds were tested. Bold and italic indicate 1st- and 2nd-best metrics, respectively.

Task-Aware Reservoir Sampling Task-Relational Experience Replay
Model Metric DST MSE DST MSE

mixed-physics
LP 1.56(0.14) 0.0141(0.0007) 1.61(0.12) 0.0143(0.0008)
RP 1.61(0.13) 0.0154(0.0008) 1.91(0.22) 0.0172(0.0012)
BTI -0.05(0.02) -0.0013(0.0002) -0.29(0.14) -0.0029(0.0007)

gravity-6
LP 1.67(0.09) 0.0114(0.0001) 1.67(0.07) 0.0115(0.0002)
RP 1.72(0.08) 0.0120(0.0002) 2.11(0.26) 0.0128(0.0006)
BTI -0.05(0.07) -0.0006(0.0003) -0.44(0.31) -0.0013(0.0007)

Figure 12: Performance comparison per-task over the continual sequence between Task-Aware
Reservoir Sampling and Task-Relational Experience Replay evaluated on mixed-physics.

Figure 13: Performance comparison per-task over the continual sequence between Task-Aware
Reservoir Sampling and Task-Relational Experience Replay evaluated on gravity-6.
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C ADDITIONAL ABLATION RESULTS

C.1 ADDITIVE VS. MULTIPLICATIVE INTERACTIONS

The original meta-sLVM formulation proposed by (Jiang et al., 2023) considers an additive condi-
tioning mechanism, where the derived context variable c(Tj) conditions the latent dynamics func-
tion by concatenating it with the latent state, represented as z∗0 = [z0, c(Tj)], before propagating the
dynamics. In this work, we choose the hyper-network conditioning mechanism instead, as prior eval-
uations of conditioning interactions suggest that multiplicative interactions, such as those enabled
by hyper-networks, are a super-set of additive interactions and provide stronger inductive biases for
a broader range of function families (Jayakumar et al., 2020).

Table 9 compares the performance of the additive mechanism with the proposed hyper-network con-
ditioning method, both evaluated using Task-Aware Reservoir Sampling on mixed-physics. Fig. 14
highlights the progression of the tasks’ metrics over the course of training between both methods.
The results indicate comparable performance between the two methods, suggesting that the consid-
ered baselines do not require the additional flexibility of multiplicative interactions, and that this
flexibility does not hinder convergence.

Table 9: Performance comparison between the additive conditioning mechanism from (Jiang et al.,
2023) and the proposed hyper-network conditioning mechanism evaluated on mixed-physics

Learned Retained Interference
Method DST↓ MSE↓ DST↓ MSE↓ DST↓ MSE↓

Hypernet 1.56(0.14) 0.0141(0.0007) 1.61(0.13) 0.0154(0.0008) -0.05(0.02) -0.0013(0.0002)
Additive 1.61(0.08) 0.0145(0.0006) 1.62(0.10) 0.0155(0.0009) -0.01(0.08) -0.0010(0.0004)

Figure 14: Performance comparison per-task over the continual sequence between the additive con-
ditioning mechanism from (Jiang et al., 2023) and the proposed hyper-network conditioning mech-
anism evaluated on mixed-physics.
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C.2 COMPUTATIONAL REQUIREMENTS OF TASK-RELATIONAL EXPERIENCE REPLAY

In this section, we evaluate the computational and memory requirements of Task-Relational Expe-
rience Replay during training. Notably, this replay strategy does not impact adaptation efficiency
at test time and introduces additional computational demands only at detected task boundaries. For
fitting the Bayesian Gaussian Mixture Model, we utilize the scikit-learn library due to its robust
implementation and feature set. This process is performed on the CPU, requiring data transfer be-
tween the GPU and CPU for the meta-embeddings, which may introduce a minor slowdown in the
presented results here. While a GPU-based implementation would eliminate this transfer and pro-
vide computational speed-ups, we note that the current CPU-based fitting remains efficient, with
execution times within seconds for the datasets evaluated.

To assess the scalability of the Bayesian Gaussian Mixture Model with respect to task numbers and
reservoir size, we varied the reservoir size from 500 to 4500 samples in increments of 1000. For each
configuration, over a range of 12 unique dynamics, we measured the average mixture model fitting
time (in seconds), the average memory usage during fitting (in MB), and the average memory usage
after fitting (in MB). Fig. 15 presents these metrics when applied over 5 seeds. The results indicate
favorable scalability in both memory and speed requirements as the reservoir size and number of
unique dynamics increase.

We measured the Time-to-Train metric for the Task-Relational Experience Replay mechanism and
compared it to the Task-Aware Reservoir Sampler on the mixed-physics dataset, using a reservoir
size of 4500 samples and averaging results over 5 seeds. The Task-Aware mechanism required
83.04± 0.67 minutes to train, while the Task-Relational mechanism required 85.20± 2.25 minutes,
indicating a relatively minor increase of 2.5% in training time for the additional benefits provided
by task-relational modeling.
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Figure 15: Memory and speed performance ablation on the Task-Relational Experience Replay
mechanism over increasing reservoir sizes and number of unique dynamics.
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C.3 EFFECT OF RESERVOIR SIZE

We investigated the task-aware feed-forward method across increasing reservoir sizes on mixed-
physics to understand the extent to which it can preserve performance as less and less data becomes
available for prior tasks. The results are shown in Fig. 16 for MSE and Fig. 17 for DST . It can
be seen that while Learning Performance remains similar across the reservoir sizes, the Retained
Performance and catastrophic forgetting exhibited lessens up to a certain point before beginning to
stabilize at the higher numbers.

Figure 16: MSE performance of the task-aware feed-forward meta-model on varying reservoir sizes
for mixed-physics.

Figure 17: DST performance of the task-aware feed-forward meta-model on varying reservoir sizes
for mixed-physics.
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C.4 EFFECT OF CONTEXT-SET k

We performed an ablation for the feed-forward model with task-aware reservoir sampling over in-
creasing k-shot context set sizes on mixed-physics, shown in Fig. 18 for MSE and Fig. 19 for DST
. A slight trend of improvement can be seen in the Retained Performance as the number of samples
in the context set increases, though notably it is the variance exhibited in the Learning Performance
and Backwards-Transfer Inference of DST that decreases at higher k-shots.

Figure 18: MSE performance of the task-aware feed-forward meta-model on varying k-shot sizes
for mixed-physics.

Figure 19: DST performance of the task-aware feed-forward meta-model on varying k-shot sizes
for mixed-physics.
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C.5 EFFECT OF UPDATE MODULATION um

Learning rate schedulers are often essential for achieving good convergence in deep learning (Botev
et al., 2021). However, this presents a unique challenge in settings where task boundaries are un-
known. While local stationarity could guide scheduling, available strategies (i.e., fully reducing
the learning rate by the end of a window or maintaining a higher learning rate) pose potential op-
timization risks. Inspired by the update modulation schema described in (Caccia et al., 2020), we
tested using a dynamic modulation coefficient that scales the learning rate based on the loss in-
curred at each timestep. This coefficient is calculated using the equation um = 1− e−υx, where the
hyper-parameter υ adjusts the modulation’s likelihood scale from 0 to 1.

Results of an ablation over varying values for υ are presented in Fig. 20 and Fig. 21 for MSE
and DST, respectively. Interestingly, we found that neither the presence nor value of the update
modulator had much of an effect on overall convergence. We attribute this to the datasets having a
generally stable likelihood range from batch to batch as well as the choice of an adaptive learning
rate may provide enough of a stabilization that an additional component on top shows little effect.

Figure 20: MSE performance of the task-aware feed-forward meta-model on varying update modu-
lation um values for gravity-6.

Figure 21: DST performance of the task-aware feed-forward meta-model on varying update modu-
lation um values for gravity-6.
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C.6 EFFECT OF CLUSTER REGULARIZATION

We performed an ablation study on the cluster regularization term for the feed-forward model with
task-relational experience replay, evaluating its effect across a range of β values in the loss function.
Fig. 22 and Fig. 23 presents the numerical results for MSE and DST, respectively, on the mixed-
physics task. The inclusion of the cluster regularization term stabilized the BTI of the meta-model
across different seeds though left LP and RP mostly unaffected as the weight increased.

Fig. 24 visualizes the final reservoir context-embedding space for models with no regularization
and with a regularization strength of 1e-2. The inclusion of the regularization term improved the
separation of the Two-Body equations into more distinct clusters and, notably, disentangled the
Gravity dynamics from the Pendulum system.

Figure 22: MSE performance of the task-relational feed-forward meta-model methods on varying
cluster regularization β values for mixed-physics.

Figure 23: DST performance of the task-relational feed-forward meta-model methods on varying
cluster regularization β values for mixed-physics.

Figure 24: t-SNE visualization of the reservoir’s resulting context-embedding space for a model
with no cluster regularization (left) and with a β of 1e-2 for cluster regularization (right).
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C.7 TASK BOUNDARY THRESHOLD ν

We investigated the task boundary detection mechanism and justify the use of the threshold param-
eter, ν. Fig. 25 and Fig. 26 show the progression of the task-aware feed-forward model’s training
likelihood across the tasks for both gravity-6 and mixed-physics across the 5 seeds, respectively.
Markers show the flagged performance dip on the task boundary where context and query sets stem
from different origins. For both datasets, it is clear that a significant dip occurs at the task switch,
making it feasible to use a task boundary detection method. We note that the choice of ν is dependent
on the data distribution and expected likelihood ranges.

Rather than a static threshold value, it may be possible to instead maintain an online estimate of the
training likelihood mean µLj

and standard deviation σLj
, flagging a new task whenever a likelihood

comes in that is out-of-distribution via:

||Lj,n − Lj,n−1|| > µLj
+ (2.5 ∗ σLj

) (8)

Figure 25: Progression of the feed-forward’s training likelihood over tasks on gravity-6, highlight-
ing via markers the performance dip exhibited at task boundaries across the seeds. Shaded areas
represent one standard deviation.

Figure 26: Progression of the feed-forward’s training likelihood over tasks on mixed-physics, high-
lighting via markers the performance dip exhibited at task boundaries across the seeds. Shaded areas
represent one standard deviation.
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C.8 PERFORMANCE UNDER GRADUAL TASK BOUNDARIES

Our task boundary detection mechanism relies on identifying performance dips during task shifts
when context and query samples originate from disjoint tasks. A potential limitation of this approach
arises when task shifts are gradual, resulting in a mixture of samples from the current and next tasks.
In this section, we present an ablation study on increasingly mixed task boundaries, evaluating the
detection accuracy of the task boundary mechanism and the overall training performance under these
conditions.

To evaluate this, we tested the Task-Aware Reservoir Sampler (noting that the task boundary detec-
tion mechanism is identical in the Task-Relational setting) under a scenario where mixed batches
of current and next-task samples are introduced at task boundaries. The mixed batches varied in
composition, with the percentage of new-task samples incrementally decreasing from 100% to 20%
of the total batch size. Following the initial mixed batch, the subsequent batch consisted entirely of
new-task samples to assess whether the task boundary mechanism could correct to new the samples
or if it failed due to the sliding window of likelihoods used for detection.

Fig. 27 and Fig. 28 present the 5-seed results of the boundary detection experiments on mixed-
physics and gravity-6 datasets, respectively. These figures show the percentage of identified task
boundaries across the mixture percentages for the fixed (mixed) batch as well as the percent of addi-
tional boundaries identified on the subsequent (pure) batch. Note that the second batch percentages
are additive to the mixed batch percent, so the difference between them is the performance of the
correction. They additionally include the mean and standard deviation of the recorded likelihood
differences. Note that, even at higher percentages of new data, the identification rate may be below
100%. This can occur in cases where technically different dynamics, based on parameter configu-
rations, are optimized under a single cluster because the model does not find their realizations to be
sufficiently distinct to justify separate clusters. This phenomenon is illustrated in Fig. 5, where two
of the Hamiltonian equations (Pendulum and Mass-Spring) with unique parameter configurations
collapse into 1–2 clusters each.

Table 10 and Table 11 summarize the overall performance metrics and the number of successfully
identified task boundaries across varying mixture percentages. For both datasets, the total number of
task boundaries differs slightly from the expected 18 (mixed-physics) and 12 (bouncing-ball) due
to omitting cases where the same task appears back-to-back.

For mixed-physics, as the percentage of new samples decreased, the number of tasks identified
during the mixed batch dropped significantly. However, the subsequent correction batch managed to
capture the majority of boundaries. The mean of the mean likelihood differences steadily decreased,
overlapping with the threshold hyper-parameter ν around 40%. The standard deviation of the mean
likelihood difference remained stable across all percentages. For the overall performance metrics,
a steady though modest decline in all metrics was observed. Despite the decline, the method still
performed significantly better than the baseline gradient-based meta-learners.

In contrast, for gravity-6, which features harder-to-distinguish dynamics from the high-dimensional
observations, performance at gradual task boundaries was notably worse. Even the correction batch
succeeded in only 45% of cases as the percentage decreased. The mean likelihood difference began
overlapping with ν earlier, at 60%, and its standard deviation showed a sharp drop around 40%.
In the performance metrics, a significant decrease in the performance occurred across all metrics.
However, we note that in this dataset still, the method performed better than the baseline gradient-
based meta-learners.

The boundary detection mechanism demonstrates some resilience to gradual task boundaries, but
a noticeable decline in identification success occurs as the signal produced by mismatched sam-
ples weakens. For datasets with more diverse dynamics, such as mixed-physics, this effect is less
pronounced. However, for datasets with harder-to-distinguish dynamics, such as bouncing-ball,
this limitation becomes more significant. Given this, auxiliary components to handle increasingly
gradual task boundaries is required to extend this framework to a broader set of complex continual
meta-learning settings. We note that despite the decrease in identification success, that the method
still outperformed related Task-Agnostic versions. We posit that the Task-Aware setting only fully
degenerates to the Task-Agnostic setting when all task boundaries are missed and that the inclu-
sion of even some task-identification can still provide significant benefit to the meta-optimization.
Further study of this result with additional ablation is needed, which we leave as future work.
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A straightforward modification to the detection mechanism is to incorporate a recent buffer of like-
lihoods over steps and compare the mean of that buffer to the new likelihood. While this adjustment
may not resolve issues with identifying mixed batches, it could enhance the resilience of the cor-
rection steps that follow. The current boundary detection mechanism relies solely on the likelihood
from the previous step, which allows gradual task boundaries to slowly shift the distribution of like-
lihoods into the range of the new task without producing a significant enough difference to surpass
the detection threshold ν.

Figure 27: Gradual task boundary ablation for the Task-Aware Reservoir Sampling mechanism on
mixed-physics. Left) Percent of the total boundaries identified between the mixed task boundary
step and the subsequent pure batch of only new samples. Middle) Mean of the mean likelihood
differences as calculated by boundary detection mechanism in Sec. 4.2.1. Dotted black line refers
to the considered threshold hyper-parameter in experiments. Right) Standard deviation of the mean
likelihood differences.

Figure 28: Gradual task boundary ablation for the Task-Aware Reservoir Sampling mechanism on
gravity-6. Left) Percent of the total boundaries identified between the mixed task boundary step and
the subsequent pure batch of only new samples. Middle) Mean of the mean likelihood differences
as calculated by boundary detection mechanism in Sec. 4.2.1. Dotted black line refers to the consid-
ered threshold hyper-parameter in experiments. Right) Standard deviation of the mean likelihood
differences.
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Table 10: Performance metrics for the gradual task boundary ablation for the Task-Aware Reservoir
Sampling mechanism on mixed-physics. % New Data represents how much of the batch at the task
boundary is composed of new samples, with 20% meaning only 20% of the given batch is new sam-
ples while the remaining 80% is the current task. # Tasks Identified represents how many boundaries
were successfully flagged by the boundary mechanism out of the average total boundaries.

Learned Retained Interference
% New Data # Tasks Identified DST↓ MSE↓ DST↓ MSE↓ DST↓ MSE↓

100% 16.0(0.9)/17.4 1.59(0.11) 0.0143(0.0005) 1.58(0.06) 0.0154(0.0009) 0.01(0.07) -0.0012(0.0004)
80% 15.8(0.7)/17.4 1.72(0.22) 0.0145(0.0006) 1.68(0.12) 0.0159(0.0008) 0.04(0.11) -0.0015(0.0002)
60% 15.0(0.9)/17.4 1.74(0.24) 0.0146(0.0007) 1.69(0.23) 0.0155(0.0008) 0.04(0.04) -0.0009(0.0003)
40% 15.0(1.3)/17.4 1.75(0.20) 0.0146(0.0008) 1.69(0.16) 0.0155(0.0009) 0.06(0.08) -0.0009(0.0003)
20% 13.6(1.5)/17.4 1.79(0.19) 0.0149(0.0005) 1.82(0.21) 0.0155(0.0008) -0.03(0.14) -0.0006(0.0004)

Table 11: Performance metrics for the gradual task boundary ablation for the Task-Aware Reser-
voir Sampling mechanism on gravity-6. % New Data represents how much of the batch at the task
boundary is composed of new samples, with 20% meaning only 20% of the given batch is new sam-
ples while the remaining 80% is the current task. # Tasks Identified represents how many boundaries
were successfully flagged by the boundary mechanism out of the average total boundaries.

Learned Retained Interference
% New Data # Tasks Identified DST↓ MSE↓ DST↓ MSE↓ DST↓ MSE↓

100% 9.0(0.6)/11.4 1.72(0.09) 0.0117(0.0002) 1.64(0.06) 0.0118(0.0003) 0.08(0.09) -0.0000(0.0004)
80% 9.0(0.6)/11.4 1.71(0.04) 0.0117(0.0001) 1.66(0.08) 0.0118(0.0002) 0.05(0.08) -0.0001(0.0002)
60% 7.2(3.2)/11.4 3.13(2.41) 0.0135(0.0030) 2.80(1.75) 0.0142(0.0036) 0.32(0.67) -0.0008(0.0006)
40% 5.2(2.6)/11.4 3.61(2.26) 0.0147(0.0030) 2.87(1.53) 0.0143(0.0035) 0.75(0.81) 0.0004(0.0012)
20% 5.4(0.5)/11.4 2.14(0.81) 0.0122(0.0012) 1.70(0.07) 0.0115(0.0003) 0.44(0.82) 0.0007(0.0012)
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D IMPLEMENTATION DETAILS

In this section, we give the specific hyper-parameters on each experiment over all models, as well as
resources and considerations for each. All experiments were run on NVIDIA RTX3090 GPUs with
24GB memory in instanced cloud systems to control hardware purity. We used PyTorch 1.13.1 and
scikit-learn 1.4.2 for deep learning optimization and GMM fitting, respectively.

D.0.1 DYNAMICS SCHEMATIC VISUALIZATIONS

We present visualizations of the schematics of the considered dynamics and their governing equa-
tions in Fig. 29. In Fig. 30, we present ground truth sequence visualizations for each of the governing
equations.

Figure 29: Schematic-based visualizations of the varying dynamics along with their underlying
equations. Context variables that differentiate tasks within the same dynamic are highlighted in
blue.

Figure 30: Image-based visualizations of the varying dynamics.

D.0.2 DATA GENERATION DETAILS

Bouncing Ball dynamics were simulated through the PyMunk Physics Engine (www.pymunk.
org), following the procedure of (Jiang et al., 2023). For gravity-6, we choose gravitation forces of
[60◦, 120◦, 180◦, 240◦, 300◦, 360◦] with a time simulation ∆t = 0.25 and initial velocity angle lim-
its between [0◦, 180◦]. For the 3 Bouncing Ball dynamics of mixed-physics, we choose gravitation
forces of [90◦, 210◦, 330◦], keeping the other settings the same.

The Hamiltonian equations were simulated through the Deepmind Hamiltonian Suite (https://
github.com/google-deepmind/dm_hamiltonian_dynamics_suite), following the
procedures and suggested initial values described in (Botev et al., 2021). Notably, we took the red
color channel from the simulations to turn them from RGB to grayscale. No friction values were
considered. For the Pendulum equation, we considered three gravitational values of [2, 3, 4]. For
the Two-Body equation, we considered three gravitational values of [1, 2, 3]. For the Mass-Spring
equation, we considered three spring constants of [1, 2, 3].
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D.0.3 EXPERIMENT IMPLEMENTATION DETAILS

All models were trained to forecast 20 timesteps using only the first 3 frames, with the exception
of DKF and VRNN, which were given 8 frames for fairness. For both datasets, we set the window
of local stationarity to 1500 iterations, where each iteration is composed of 32 active task samples.
For CL, we used a reservoir size that can accommodate approximately 25% of the total data at any
given time, resulting in a reservoir size of 4500 for both gravity-6 and mixed-physics. Ablations
on reservoir sizes and their impact are provided in Appendix C.3. The size of the k-shot context
set was fixed at k = 15 for the main experiments, although we include an ablation over varying
sizes in Appendix C.4. We used public implementations of DKF and VRNN for training. To ensure
fairness, comparable model components to the meta-models were scaled to maintain consistent total
parameter counts of 1 million trainable parameters. Shared backbone components had identical
hyper-parameters, while model-specific hyper-parameters were tuned.

To test LP and RP metrics, we considered held-out testing sets of every dynamics, for both gravity-6
and mixed-physics. To test LP, whenever a task boundary was detected, the task that just finished
was evaluated on its testing set for its performance. At the end of the task sequence, on the resulting
model, we evaluated it on every task independently and averaged their performances to get the RP
metric. BTI, then, was the average difference between all task’s first LP (in the event that a task
re-emerged throughout the sequence) and their respective RP.

D.0.4 ARCHITECTURE FOR META MODELS

The implementation of the considered meta-models is here: TBD. We use Hydra (Yadan, 2019)
to handle configuration setup, in which every model’s configuration file is available in the configs/
folder. The specific models, memory, and datasets to use can be changed via command-line argu-
ments (e.g., model=metargnres memory=boundary dataset=mp). The 5 seeds considered are 1111,
2222, 3333, 4444, 5555. Detailed hyperparameter values are shown below for the feed-forward and
MAML models, as well as the existing latent dynamics models. These settings are shared across
memory settings and datasets.

Feed-Forward Architecture

• Domain Input: 20 observation timesteps of 32× 32 dimensions
• Initialization Input: 3 observation timesteps of 32× 32 dimensions
• Optimizer: AdamW, 5× 10−3 learning rate
• Gradient Norm Clipping: 5
• Transition: Recurrent Generative Network (RGN-res)
• Batch size: 32 active, 32 reservoir
• zt Latent Size: 8
• Transition Network: [SiLU(Linear(8, 64)), SiLU(Linear(64, 64)), Tanh(Linear(64, 8))]
• Domain Encoder Filters: [32, 64, 32]
• Domain Time Units: [10, 5, 1]
• Initial Encoder Filters: [32, 64, 128]
• Emission Filters: [128, 64, 32, 1]
• z0 KL Beta: λ1 = 10−2

• c KL Beta: λ2 = 10−3

• c Cluster Loss Beta: λ2 = 10−3

MAML Architecture

• Domain Input: 20 observation timesteps of 32× 32 dimensions
• Initialization Input: 3 observation timesteps of 32× 32 dimensions
• Inner Optimizer: SGD, 5× 10−4 learning rate
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• Outer Optimizer: AdamW, 5× 10−3 learning rate

• Gradient Norm Clipping: 5

• Transition: Recurrent Generative Network (RGN-res)

• Batch size: 32 active, 32 reservoir

• zt Latent Size: 8

• Transition Network: [SiLU(Linear(8, 64)), SiLU(Linear(64, 64)), Tanh(Linear(64, 8))]

• Domain Encoder Filters: [32, 64, 32]

• Domain Time Units: [10, 5, 1]

• Initial Encoder Filters: [32, 64, 128]

• Emission Filters: [128, 64, 32, 1]

• z0 KL Beta: λ1 = 10−2

• c KL Beta: λ2 = 10−3

VRNN Architecture

• Input: 8 observation and 12 prediction timesteps of 32× 32 dimensions

• Optimizer: AdamW, 1× 10−3 learning rate

• Gradient Norm Clipping: 5

• Batch size: 32 active, 32 reservoir

• Latent state dim zt: 32

• Dropout probability: 0.2

• Dense X Size: 512

• Dense Z Size: 512

• Dense H(X)-Z Size: 256

• Dense H(Z)-X Size: 256

• Dense H(Z) Size: 256

• RNN Layers: 2

• RNN Dim: 128

• Beta coefficient: 1.0

• Activation: LeakyReLU(1.0)

DKF Architecture

• Input: 8 observation and 12 prediction timesteps of 32× 32 dimensions

• Optimizer: AdamW, 1× 10−3 learning rate

• Gradient Norm Clipping: 5

• Batch size: 32 active, 32 reservoir

• Transition: RNN Unit

• Encoder Units: [1024, 512, 256, 256]

• RNN Units: 256

• Correction Units: 256

• Transition Units: 256

• Emission Filters: [128, 64, 32, 1]
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RGNRes Architecture

• Initialization Input: 3 observation timesteps of 32× 32 dimensions
• Optimizer: AdamW, 5× 10−3 learning rate
• Gradient Norm Clipping: 5
• Transition: Recurrent Generative Network (RGN-res)
• Batch size: 32 active, 32 reservoir
• zt Latent Size: 32
• Transition Network: [SiLU(Linear(32, 256)), SiLU(Linear(256, 256)), Tanh(Linear(256,

32))]
• Initial Encoder Filters: [32, 64, 128]
• Emission Filters: [128, 64, 32, 1]
• z0 KL Beta: λ1 = 10−2
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