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Abstract

This paper proposes a new method for estimat-001
ing a direction in a word embedding space cor-002
responding to an interpretable semantic prop-003
erty such as gender, race, or religion. Our tech-004
nique assumes that words can be assigned nu-005
merical scores that quantify their association006
with the target property. We estimate the sub-007
space by maximizing the covariance or corre-008
lation of these scores with the projection of009
word embeddings along the subspace. Using010
our technique, we show that word embedding011
spaces in English, French, and Chinese contain012
subspaces that encode gender, race, religion,013
sentiment, word length, and national popula-014
tion. We then apply our technique to the mit-015
igation of gender and racial bias from word016
embeddings. We find that using our technique017
to estimate a gender or race subspace improves018
performance on several benchmarks.019

1 Introduction020

One of the most famous empirical results in natural021

language processing is the discovery that a range of022

semantic properties are encoded by distinguished023

interpretable subspaces of the word embedding024

space (Mikolov et al., 2013a; Rothe and Schütze,025

2016; Jang and Myaeng, 2017; Arora et al., 2018;026

Şenel et al., 2018; Shin et al., 2018; Ethayarajh027

et al., 2019a). A simple way to probe the structure028

of these subspaces is through linear analogies: let-029

ting JwK ∈ Rd denote the embedding of a word w,030

we expect words participating in an analogy such031

as king : queen :: man : woman to exhibit the rela-032

tion JkingK − JqueenK ≈ JmanK − JwomanK ≈ g,033

where the subspace span(g) represents the concept034

that relates the word pairs. A rich body of literature035

on the interpretation of word embedding spaces036

has identified subspaces corresponding to syntactic037

and semantic features (Mikolov et al., 2013b; Ba-038

roni et al., 2014), quantificational features (Linzen039

et al., 2016), and specific lexical properties such as040

national capitals (Mikolov et al., 2013a) and gen- 041

der and ethnic stereotypes (Bolukbasi et al., 2016; 042

Manzini et al., 2019). 043

Linear analogies provide a simple and intuitive 044

method for intrinsic evaluation of word embed- 045

dings by validating the existence of interpretable 046

subspaces (Yaghoobzadeh and Schütze, 2016). But 047

recent techniques in NLP, particularly in social 048

bias mitigation (Bolukbasi et al., 2016; Zhao et al., 049

2018; Ravfogel et al., 2020), require not only that 050

interpretable subspaces exist, but also that a ba- 051

sis for these subspaces can be precisely estimated. 052

Unfortunately, it is difficult to estimate subspaces 053

using analogy-based methods because of the re- 054

quirement that words be paired. This requirement 055

is difficult to satisfy in domains such as race where 056

there is no obvious way to define word pairs. In 057

domains that are more amenable to analogies, the 058

labor intensity of constructing word pairs limits the 059

amount of data that can be used in the estimation of 060

an interpretable subspace. For example, Bolukbasi 061

et al.’s (2016) estimation of the gender subspace 062

only uses ten word pairs. 063

This paper presents two novel algorithms for 064

identifying interpretable embedding subspaces, 065

with particular focus on applications to bias mit- 066

igation. In contrast to previous methods, our ap- 067

proach does not require word pairs or manually 068

crafted sets of words designed to capture some 069

semantic concept. Instead, we assume that proper- 070

ties encoded by embedding subspaces are numer- 071

ically valued, and that these values can be mea- 072

sured empricially through human judgments, pub- 073

lic datasets, or world knowledge databases. Our 074

two methods are therefore applicable to any prop- 075

erty for which each word can be assigned a numer- 076

ical value, and they can incorporate large, existing 077

sets of labeled words at little to no additional an- 078

notation cost. Given a corpus of words annotated 079

with numerical scores, our first method, covariance 080

maximization (MaxCov), estimates an interpretable 081
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subspace by maximizing the covariance between082

the scores and the projections of word embeddings083

to this subspace. Our second method, correlation084

maximization (MaxCorr), is similar to MaxCov, but085

maximizes correlation instead of covariance.086

After introducing our two algorithms, we test087

them using two sets of experiments. First, we con-088

duct an intrinsic evaluation of MaxCov and Max-089

Corr by attempting to find interpretable subspaces090

that represent gender, race, religion, sentiment,091

word length, and national population in English,092

French, and Chinese. In almost all cases, we are093

able to identify subspaces that correlate with our094

data with ρ > .6. Then, we apply our method to095

the downstream task of social bias mitigation, and096

show that using MaxCov or MaxCorr to identify097

the gender or race subspace improves performance098

on several benchmarks.099

2 Related Work100

Interpretable embedding subspaces play an impor-101

tant role in projection-based debiasing,1 a two-step102

pipeline for bias mitigation proposed by Bolukbasi103

et al. (2016). The first step is to estimate an inter-104

pretable subspace encoding a social attribute such105

as gender. Then, word embeddings are “debiased”106

by surgically altering their projections onto this107

subspace. The contribution of the present paper is108

to improve upon the first step of this process.109

Estimating Gender Spaces. Most work on110

projection-based debiasing focuses on removing111

gender bias from English-language embeddings.112

The simplest conceivable method for finding a113

“gender subspace” is to use the difference vector114

span(JsheK − JheK). This method is used by Dev115

et al. (2020). Generalizations of this approach are116

used by Ethayarajh et al. (2019b), who take several117

difference vectors to form a basis for a multidi-118

mensional subspace, and Dev and Phillips (2019),119

who use the first principal componenent of a set120

of difference vectors as a one-dimensional gender121

basis.122

Bolukbasi et al. (2016) use a method similiar to123

Dev and Phillips (2019); but instead of using differ-124

ence vectors, they take pairs of word embeddings125

and center them around the origin. Another method126

involves using the weight vector of a support vector127

machine (Ravfogel et al., 2020). The method most128

similar to ours is the DensRay algorithm proposed129

1This term is due to Stańczak and Augenstein (2021).

by Dufter and Schütze (2019). Like our approach, 130

DensRay employs maximization, but treats gender 131

as a binary rather than continuous variable. Their 132

objective maximizes the distance between opposite- 133

gender words and minimizes the distance between 134

same-gender words along the gender subspace. 135

Other Properties and Languages. Bolukbasi 136

et al.’s (2016) method has been generalized to 137

removing gender bias from Swedish embeddings 138

(Sahlgren and Olsson, 2019) as well as racial and 139

religious bias from English embeddings (Manzini 140

et al., 2019). Ravfogel et al. (2020) also explore re- 141

moving racial bias, but at the sequence level rather 142

than the word level. 143

3 Estimating Interpretable Subspaces 144

Our approach to estimating interpretable word em- 145

bedding subspaces assumes that we have access to 146

a set of reference words W, such that each word 147

w ∈W is associated with a score s(w) along some 148

semantic dimension. Our goal is to find a unit vec- 149

tor g such that for each w ∈ W, g>JwK ≈ s(w). 150

In MaxCov, we choose g to be the vector that max- 151

imizes the covariance between g>JwK and s(w). 152

MaxCorr works similarly, except we maximize cor- 153

relation instead of covariance. We show that these 154

two methods can be implemented straightforwardly 155

using efficient algorithms. 156

3.1 Covariance Maximization 157

Formally, MaxCov estimates g as follows: 158

g = argmax
‖v‖=1

cov
w∈W

(v>JwK, s(w)). 159

This method is similar to PCA, except that instead 160

of finding the direction of greatest variance in the 161

embeddings, we find the direction of greatest co- 162

variance with the scores assigned to the reference 163

words. It turns out that MaxCov is computed by 164

the formula g = a/‖a‖, where 165

a =
∑
w∈W

(s(w)− s)(JwK−w) 166

and the variables s = meanw∈W(s(w)) and w = 167

meanw∈W(JwK) denote the average score and aver- 168

age embedding of the reference words, respectively. 169

We derive this formula in Appendix A.1. 170

3.2 Correlation Maximization 171

In MaxCorr, g is estimated as 172

g = argmax
‖v‖=1

corr
w∈W

(v>JwK, s(w)). 173
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To compute MaxCorr, we fit a linear regression174

model175

s(w) = a>JwK + b,176

and take g = a/‖a‖. The validity of this approach177

is proven in Appendix A.2, where we verify for-178

mally that a/‖a‖ is indeed the direction of greatest179

correlation with s(w).180

4 Exploring Embedding Subspaces181

We begin by using MaxCov and MaxCorr to deter-182

mine what kinds of continuous properties are rep-183

resented in embedding spaces by an interpretable184

subspace. In this experiment, we search for sub-185

spaces encoding information about gender, race,186

religion, and sentiment, as well as population and187

orthography. We apply our method to word embed-188

dings in English, French, and Chinese.189

4.1 Data190

To fit an interpretable subspace, we obtain ref-191

erence words and scores from publicly available192

datasets. These datasets are enumerated in Table 1,193

which identifies each dataset by an abbreviated194

name. We use three different kinds of data for195

extracting scores.196

Human Judgments. Human judgment studies197

from psychology, social science, and behavioral198

science provide a direct measure of stereotypical199

associations between words and semantic proper-200

ties. For this experiment, we use human judgment201

data for gender (female vs. male), race (African202

American vs. European American), and sentiment203

(positive valence vs. negative valence). All scores204

were elicited from participants using a Likert scale,205

with the exception of Mo18-S (Mohammad, 2018),206

which elicited valence rankings that were then in-207

terpolated using best–worst scaling.208

Frequencies. Certain words, such as personal209

names or country names, are associated with par-210

ticular social identities. For example, most people211

named Mary are female, while most people named212

John are male. We leverage demographic statistics213

in order to extract scores for gender, race, and re-214

ligion. For gender, we use census data on given215

names from the United States Social Security Ad-216

ministration (SSA, 2019), the French National In-217

stitute of Statistics and Economic Studies (INSEE,218

2019), and the Chinese National Citizen Identity219

Information Center2 (NCIIC, Bao, 2021). For race, 220

we use data on surnames from the 2010 United 221

States Census (United States Census Bureau, 2021), 222

which reports the frequencies among six racial cat- 223

egories of the 1,000 most common names. For 224

religion, we use statistics from the Pew Research 225

Center (2012) on the religious composition of 233 226

countries and territories. 227

For the SSA, INSEE, and NCIIC data, we con- 228

vert the reported frequency counts into a gender 229

rating by estimating the probability that a person 230

with a given name is female according to Laplace’s 231

(1814) rule of succession: 232

s(w) =
# female individuals named w + 1

# individuals named w + 2
. 233

Since the United States Census and Pew Research 234

data do not report exact counts for each demo- 235

graphic group, we instead use percentages reported 236

in those datasets, which are precise to one-tenth of 237

a percentage point. 238

Counts. Our data on national population come 239

from World Bank Open Data (2022). For ortho- 240

graphic word length, we simply compute the length 241

of the 1,000 most frequent words that have not been 242

filtered out from our word embedding spaces (see 243

Subsection 4.2).3 We define the length of an En- 244

glish or French word to be the number of charac- 245

ters in that word; we define the length of a Chinese 246

word to be the total combined stroke count of all 247

characters in that word. Unlike the datasets based 248

on frequencies, we directly use the scores reported 249

in these datasets without converting them into per- 250

centages. 251

4.2 Procedure 252

The goal of this experiment is to determine the 253

extent to which semantic properties are represented 254

by interpretable embedding subspaces that can be 255

discovered by MaxCov and MaxCorr. We fit an 256

interpretable subspace with MaxCov and MaxCorr 257

using 75% of each dataset in Table 1, and measure 258

how well the subspace predicts the scores assigned 259

to the remaining 25%. We measure the quality of an 260

interpretable subspace span(g) via the correlation 261

between s(w) and g>JwK. 262

2Since Chinese given names are unique to the individual,
the NCIIC dataset does not report frequency of given names
per se, but rather the number of occurrences of individual Chi-
nese characters in given names assigned to men and women.

3The word length data are not listed in Table 1.
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Name Source N Property Word Type Locale Type Range

KT03-G Kennison and Trofe (2003) 232 Gender Professions EN-US Judgments 1–7
Ga08-G Gabriel et al. (2008) 127 Gender Professions EN-GB Judgments 0–100
Ga08-G Gabriel et al. (2008) 127 Gender Professions FR-CH Judgments 0–100
SKB19-G Scott et al. (2019) 5,553 Gender Miscellaneous EN-GB Judgments 1–7
SSA-G SSA (1880–2019) 99,444 Gender Given Names EN-US Frequencies 0–1
INSEE-G INSEE (1900–2019) 35,010 Gender Given Names FR-FR Frequencies 0–1
Ba21-G Bao (2021) 2,614 Gender Given Names ZH-CN Frequencies 0–1
Census-Ra US Census (2010) 1,000 Race Surnames EN-US Frequencies 0–1
SD18-Ra Stelter and Degner (2018) 159 Race Given Names EN-US Judgments 1–7
Pew-Re Pew Research Center (2010) 233 Religion Countries N/A Frequencies 0–1
SKB19-S Scott et al. (2019) 5,553 Sentiment Miscellaneous EN-GB Judgments 1–9
Mo18-S Mohammad (2018) 19,971 Sentiment Miscellaneous EN-CA Judgments 0–1
Gi12-S Gilet et al. (2012) 835 Sentiment Miscellaneous FR-FR Judgments 1–7
Ba21-S Bao (2021) 2,614 Sentiment Given Names ZH-CN Judgments 1–5
Ya17-S Yao et al. (2017) 1,100 Sentiment Miscellaneous ZH-CN Judgments 1–9
Population World Bank Open Data (2022) 217 Population Countries N/A Counts N/A

Table 1: Datasets used to assign scores to words. “N” denotes the total number of words (including compounds)
provided by each dataset. For human judgment and frequency count datasets, “Locale” denotes the language the
words are presented in and the country where the data were elicited; for datasets involving countries, we translate
country names into target languages, using single-token names whenever possible. For datasets from the SSA,
INSEE, US Census, and the Pew Research Center, dates denote the time period over which data were collected.

Embeddings. We use 300-dimensional word em-263

beddings for all three languages. We use GloVe264

embeddings trained on the 42-billion-token Com-265

mon Crawl corpus (Pennington et al., 2014) for En-266

glish and fastText embeddings (Grave et al., 2018)267

for French. For Chinese, we use embeddings pro-268

vided by Li et al. (2018), which are trained using269

Skip-gram with negative sampling (Mikolov et al.,270

2013b) with character-level features (Chen et al.,271

2015) on the Mixed-large dataset.272

Preprocessing. We filter out all English and273

French words containing non-alphanumeric char-274

acters, as well as Chinese words containing non-275

Chinese characters. We then filter out all but the276

50,000 most frequent words in each language be-277

fore normalizing the embeddings to unit length.278

Unlike the English GloVe embeddings, the279

French fastText embeddings are case-sensitive. For280

datasets based on given names and country names,281

we capitalize each word according to orthographic282

conventions in French; for datasets based on com-283

mon nouns, we consider both capitalized and all-284

lowercase versions of each word. For word length285

data, we follow the capitalization used in the word286

embeddings.287

Validation. To account for the possibility of over-288

fitting to the reference words, we perform 4-fold289

cross validation and report the mean result obtained290

across the folds. We measure the significance of291

our results using a two-sided permutation test in292

which the experiment is repeated 1,000 times with 293

the scores randomly shuffled for each dataset. We 294

use the average result of the permutation test as a 295

baseline for comparison. 296

4.3 Results 297

The results of our exploration are shown in Table 2. 298

Baseline values from the permutation test range 299

from−.008 to .005 for both MaxCov and MaxCorr 300

for all three languages. All results are statistically 301

significant, with p ≤ .008. 302

In most cases, we are able to find an inter- 303

pretable embedding subspace that robustly encodes 304

the scores given by our datasets. The only excep- 305

tion is the Ya17-S sentiment dataset, for which 306

MaxCov achieves a cross-validated correlation of 307

only .297. Two other datasets with weaker results 308

are the Unaffiliated religion data from Pew-Re and 309

the Native American race data from Census-Ra. 310

The high quality of the interpretable subspace for 311

word length relative to the permutation test baseline 312

seems surprising at first glance, given that none of 313

the three word embedding models contain features 314

that explicitly encode this information. However, 315

this result is explained by the observation that word 316

length is inversely correlated with frequency and 317

other statistics, which are accessible to word em- 318

bedding models during training (Zipf, 1936; Pianta- 319

dosi et al., 2011). 320

Between MaxCov and MaxCorr, it does not ap- 321

pear that either algorithm consistently outperforms 322
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Dataset N MaxCov MaxCorr

English
KT03-G 202 .678 .675
Ga08-G 81 .465 .605
SKB19-G 4,517 .707 .793
SSA-G 7,949 .693 .745
SD18-Ra 117 .834 .826
Census-Ra (White) 924 .827 .865
Census-Ra (Black) 924 .660 .635
Census-Ra (Asian) 924 .793 .844
Census-Ra (Native) 924 .483 .410
Census-Ra (Multi.) 924 .786 .726
Census-Ra (Latino) 924 .917 .916
Pew-Re (Christian) 194 .773 .817
Pew-Re (Muslim) 194 .776 .819
Pew-Re (Unaff.) 194 .539 .453
SKB19-S 4,517 .756 .852
Mo18-S 16,834 .671 .776
Population 187 .523 .409
Word Length 1,000 .607 .622

French
Ga08-G 96 .737 .758
INSEE-G 3,139 .720 .276
Pew-Re (Christian) 183 .682 .726
Pew-Re (Muslim) 183 .619 .642
Pew-Re (Unaff.) 183 .410 .396
Gi12-S 530 .820 .534
Population 174 .434 .431
Word Length 1,000 .676 .691

Chinese
Ba21-G 1,798 .593 .596
Pew-Re (Christian) 183 .753 .663
Pew-Re (Muslim) 183 .755 .738
Pew-Re (Unaff.) 183 .564 .394
Ba21-S 1,798 .672 .746
Ya17-S 914 .297 .116
Population 181 .576 .470
Word Length 1,000 .563 .638

Table 2: Results for the embedding subspace exploration
experiment. “N” represents the number of words in
each dataset for which an embedding is available after
filtering.

the other. Figure 1 shows, in fact, that the two al-323

gorithms are strongly correlated with one another324

in performance. The two outliers in this plot rep-325

resent the INSEE-G and Gi12-S datasets. In both326

cases, MaxCorr resulted in significant overfitting,327

as illustrated in Figure 2.328

5 Social Bias Mitigation329

In this second experiment, we apply MaxCov and330

MaxCorr to the task of removing social bias from331

word embeddings. Our goal is to assess the suitabil-332

ity of interpretable subspaces estimated using Max-333

Cov and MaxCorr for this task, compared to exist-334

ing methods. We do this by replicating a number335

of different evaluations of bias from the literature336

and observing the extent to which each subspace337

0.3 0.4 0.5 0.6 0.7 0.8 0.9
MaxCov Result

0.2

0.4

0.6

0.8

M
ax

Co
rr 

Re
su

lt

MaxCov vs. MaxCorr Results
English
French
Chinese

Figure 1: The relationship between MaxCov and Max-
Corr results (ρ = .902 for English, ρ = .371 for French,
and ρ = .908 for Chinese). The two French outliers
represent the INSEE-G and Gi12-S datasets.
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Figure 2: MaxCorr overfitting on Gi12-S. Plots compare
scores from the dataset with the projections of embed-
dings onto the interpretable subspace.

estimation method reduces the amount of bias mea- 338

sured. Our evaluations are implemented using the 339

WEFE libary (Badilla et al., 2020). 340

5.1 Experimental Setup 341

In each of the following analyses, we compare the 342

pre-trained embeddings from the previous section 343

with embeddings that have been debiased accord- 344

ing to an interpretable subspace identified using 345

MaxCov, MaxCorr, or a baseline method. For all 346

subspace estimation methods, debiasing is accom- 347

plished using the strong debiasing technique pro- 348

posed by Prost et al. (2019). Let span(B) be an 349

interpretable subspace, where B is orthonormal. 350

The strongly debiased version of a word embed- 351

ding JwK with respect to B is given by 352

w = JwK−
∑
b∈B

projb(JwK), 353

where projb(JwK) is the projection of JwK onto b. 354
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5.2 Baselines355

For comparison, we consider three baseline meth-356

ods of estimating interpretable subspaces for bias357

mitigation.358

Tuples. The Tuples method of Bolukbasi et al.359

(2016) uses a combination of several word pairs360

such as she–he in order to estimate a subspace. We361

use a generalization of this method by Manzini et al.362

(2019), which allows for word tuples of arbitrary363

length such as African–Caucasian–Asian in order364

to compute subspaces for multivalent properties365

such as race or religion. Given a set T ⊆ Wn of366

n-tuples of words, a basis B for a k-dimensional367

interpretable subspace is estimated by taking the368

first k principal components of the set369

⋃
(w1,w2,...,wn)∈T

{
JwiK− mean

1≤j≤n
(JwjK)

}n

i=1

,370

normalized to unit length.371

SVM. The SVM method of Ravfogel et al. (2020)372

estimates an interpretable subspace g = a/‖a‖ by373

taking a to be the weight vector of a linear support374

vector machine (SVM) that classifies word embed-375

dings into one or more semantic categories. This376

makes g orthogonal to the hyperplane that sepa-377

rates the categories. When debiasing embeddings378

with respect to gender, Ravfogel et al. (2020) con-379

struct the training dataset for the SVM by taking380

the word embeddings with the 7,500 highest and381

7,500 lowest values in the JsheK− JheK direction.382

DensRay. Like our approach, the DensRay383

method (Dufter and Schütze, 2019) uses a set of384

words W accompanied by scores s(w). The inter-385

pretable subspace is estimated by minimizing386

g = argmin
‖v‖=1

∑
u,w∈W

s(u)s(w)
∥∥∥v>(JuK− JwK)

∥∥∥2387

where for all w ∈ W, s(w) is either 1 or −1. For388

example, if g represents gender, then s(he) = 1389

and s(she) = −1. Intuitively, DensRay attempts390

to find the subspace that maximizes similarity be-391

tween same-category words while minimizing sim-392

ilarity between opposite-category words.393

Appendix B describes implementational details394

for MaxCov, MaxCorr, and the three baseline meth-395

ods, including word lists and datasets used to esti-396

mate each subspace.397
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Figure 3: Target words from the English WEAT 6 test,
visualized according to their mean cosine similarity to
the two sets of attribute words. Arrows connect un-
debiased word embeddings to debiased ones.

5.3 Word Embedding Association Test 398

The Word Embedding Association Test (WEAT, 399

Caliskan et al., 2017) compares two sets of tar- 400

get words T1,T2 in terms of their distance to two 401

sets of attribute words A1,A2. For a target word 402

w ∈ T1 ∪ T2, the quantity 403

sA1,A2(w) = mean
a∈A1

(cos(JwK, JaK)) − 404

mean
b∈A2

(cos(JwK, JbK)) 405

measures the degree to which w is, on average, 406

closer to words in A1 than A2. For example, 407

if A1 = {he, him,male} and A2 = {she, her, 408

female}, then sA1,A2(science) > 0 means that the 409

word science is closer to “male” words than “fe- 410

male” words. From this individual bias metric, an 411

effect size is computed by aggregating bias mea- 412

sures across all target words: 413

meanu∈T1(sA1,A2(u))−meanv∈T2(sA1,A2(v))

stdevw∈T1∪T2(sA1,A2(w))
. 414

A positive effect size indicates that T1 has a greater 415

bias towards A1 and against A2 than T2 does. A 416

negative effect size is interpreted analogously. An 417

effect size of 0 indicates lack of bias. 418

Results. Table 3 shows effect sizes computed for 419

the six WEAT tests from Caliskan et al. (2017) that 420

measure bias in terms of binary race and binary gen- 421

der. We also run the French- and Chinese-language 422

WEAT tests from Kurpicz-Briki (2020) and Jiao 423

(2021), respectively. In almost all cases for En- 424

glish, strong debiasing with MaxCov is the most 425

effective method for debiasing, while MaxCorr is 426

more effective for French. Note in particular that 427

the baseline methods struggle when applied to race 428

or to French-language word embeddings, and that 429
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Targets Attributes None Tuples SVM DensRay MaxCov MaxCorr

English (Caliskan et al., 2017)
3 White vs. Black Pleasant vs. Unpleasant 1.40 1.40 1.40 1.40 .96 1.26
4 White vs. Black Pleasant vs. Unpleasant 1.51 1.52 1.47 1.52 .79 1.30
5 White vs. Black Pleasant vs. Unpleasant 1.37 1.37 1.35 1.37 .25 1.19
6 Male vs. Female Career vs. Family 1.69 1.23 1.06 1.69 .97 1.38
7 Math vs. Arts Male vs. Female 1.50 .33 .11 1.53 .06 .27
8 Science vs. Arts Male vs. Female 1.05 −1.36 −.53 1.06 −.52 −.22

French (Kurpicz-Briki, 2020)
6-fr1 Male vs. Female Career vs. Family .77 1.05 .90 .80 .84 .43
6-fr2 Male vs. Female Career vs. Family 1.07 1.25 1.18 1.07 1.11 .85
7-fr Math vs. Arts Male vs. Female .64 1.52 .61 .68 .49 .53
8-fr Science vs. Arts Male vs. Female −.33 .18 −.35 −.33 −.54 −.45

Chinese (Jiao, 2021)
7 Math vs. Arts Male vs. Female 1.49 .63 1.49 1.50 1.07 1.22
8 Science vs. Arts Male vs. Female 1.04 .67 1.08 1.05 .11 .09

Table 3: Effect sizes from the WEAT test (closer to 0 is better), calculated from embedding spaces debiased using
various methods. The leftmost column shows identifiers assigned to individual WEAT tests by Caliskan et al. (2017),
Kurpicz-Briki (2020), and Jiao (2021).

Female Asian Hispanic

None .474 .098 .004
Tuples .315 .094 .006
SVM .385 .096 .020
DensRay .476 .103 .007

MaxCov .326 .078 .011
MaxCorr .283 .112 .015

Table 4: R2 values from the occupation statistics analy-
sis (lower is better).

the SVM-based method additionally struggles with430

Chinese-language embeddings. In contrast, Max-431

Cov and MaxCorr are able to reduce bias in almost432

every case, regardless of language or semantic prop-433

erty.434

Figure 3 shows visually that debiasing has a435

greater effect on “female” words than on “male”436

words. As indicated by the angles of the arrows,437

debiasing methods differ in terms of the extent to438

which they make target words more similar to one439

of the two attributes versus the other.440

5.4 Relation to Occupation Statistics441

Next, we apply an analysis due to Garg et al. (2018),442

which relates gender and racial bias in word em-443

beddings with occupational statistics. The analy-444

sis tests the hypothesis that gender and racial bias445

measured in word embeddings linearly predict the446

demographics of various professions.447

Let 1, 2, . . . , n be a collection of demo-448

graphic groups, represented by attribute word sets449

A1,A2, . . . ,An. Assume that group n is desig-450

nated as the “unmarked” group (males for gender451

and Whites for race). Given a profession word p, 452

let pi be the percentage of workers in p belong- 453

ing to group i. The bias of the word embedding 454

JpK with respect to group i is measured by relative 455

norm distance (RND), defined as 456

rndi(p) = mean
j 6=i

(‖JpK− aj‖)− ‖JpK− ai‖ 457

where ai = meana∈Ai(JaK) for all i. RND is sim- 458

ilar to the quantity sA1,A2(p) from Caliskan et al. 459

(2017), except that it uses Euclidean distance in- 460

stead of cosine similarity and compares a single 461

target word with several attribute word sets. The 462

occupational bias of group i in profession p is mea- 463

sured by 464

occ-biasi;n(p) =
pi − pn
pi + pn

. 465

Given a set of professions, we compute a linear re- 466

gression between occupation bias and RND score 467

for each non-majority group (i.e., not male or 468

White), and report theR2 value of the regression. If 469

R2 is close to 0, then RND and occupation bias are 470

not linearly related, indicating that bias measured 471

by RND does not reflect bias empirically measured 472

through demographics. 473

Setup. Following Garg et al. (2018), we conduct 474

two versions of the experiment. In the first run, 475

we use two groups: female and male; and in the 476

second run, we use three groups: Asian, Hispanic, 477

and White. Gender debiasing is implemented in 478

the same way as in the WEAT test. For race debias- 479

ing, we use a 3-dimensional embedding subspace 480

7



Gender Race
Original WEAT 6–8 WEAT 3–5

None .898 .869 .584
Tuples 1.000 .988 .589
SVM .987 .978 .567
DensRay .897 .869 .581

MaxCov .945 .940 .825
MaxCorr .976 .965 .627

Table 5: Spearman correlations from the ECT test
(higher is better).

representing all three racial categories.4 We use oc-481

cupation statistics from 2015, which are the most482

recent data provided by Garg et al. (2018).483

Results. The results are reported in Table 4. Prior484

to debiasing, we measure a high R2 value for fe-485

male bias and lower R2 values for racial bias, with486

RND almost completely uncorrelated with occu-487

pational bias for the Hispanic group. Among the488

five debiasing methods, MaxCorr is most effec-489

tive in removing female bias, while MaxCov is490

most effective in removing Asian bias. For the491

Hispanic group, most debiasing methods worsen492

the R2 value rather than improving it. This sug-493

gests that debiasing methods may unintentionally494

introduce bias if it is not already detected in the495

embedding space.496

5.5 Embedding Coherence Test497

Finally, we subject our subspace estimation meth-498

ods to the embedding coherence test (ECT, Dev499

and Phillips, 2019). Whereas the WEAT test and500

the occupation statistics analysis measure bias by501

the distance of target words to attribute words, the502

ECT test instead considers the ranking of target503

words in terms of their distance to attribute words.504

In the ECT test, we are given sets of attribute505

words A1 and A2 along with a set of profession506

words P. Two rankings of the profession words507

are computed, based on cos(meanw∈Ai(JwK), JpK)508

for p ∈ P and i ∈ {1, 2}. Bias is measured by the509

Spearman correlation between the two rankings.510

Setup. We replicate the original conditions of511

Dev and Phillips (2019), which measures gender512

bias using the list of profession words and the513

gendered word pairs from Bolukbasi et al. (2016).514

This setup gives an unfair advantage to the Tuples515

method, however, because the gendered word pairs516

are the same as the word pairs used in the Tuples517

4Details are provided in Appendix B.

method, meaning that the Tuples method estimates 518

bias precisely with respect to the specific words 519

used in the test. To alleviate this, we run a sec- 520

ond ECT test for gender bias using the “male” and 521

“female” words from WEAT 6–8 as attributes. To 522

measure racial bias, we run a third ECT test using 523

the “European American” and “African American” 524

words from WEAT 3–5 as attributes. 525

Results. The results of the test are shown in Ta- 526

ble 5. This time, more gender bias is measured 527

before debiasing than racial bias. With the excep- 528

tion of DensRay, all subspace estimation methods 529

perform remarkably well in improving ECT results 530

for gender, with the Tuples method performing the 531

best. Unsurprisingly, the Tuples method performs 532

perfectly when its defining words are used as the 533

attribute sets. On race, none of the estimation meth- 534

ods substantially impact ECT results, except for 535

MaxCov and MaxCorr, with the former removing 536

most of the measured bias. 537

6 Conclusion 538

Most approaches to the estimation of interpretable 539

subspaces rely on the exploitation of lexical struc- 540

tures such as male–female word pairings. Unfor- 541

tunately, such symmetries are only available for a 542

small range of concepts: Black–White word pairs, 543

for example, are not readily available in most lan- 544

guages. However, by treating semantic properties 545

as continuous rather than binary, MaxCov and Max- 546

Corr instead exploit the structure of the real num- 547

bers. As our experiments show, numerical scores 548

can be obtained for a large number of reference 549

words at a low cost and with great flexibility. The 550

strength of our approach is especially impactful 551

in racial debiasing, where previous methods suffer 552

from a lack of lexical symmetries that encode race. 553

As Gonen and Goldberg (2019) point out, inter- 554

pretable subspaces are not the only way for em- 555

bedding spaces to encode semantic properties, and 556

projection-based debiasing does not fully solve the 557

problem of bias on its own. Nonetheless, our tech- 558

nique improves the quality of interpretable sub- 559

spaces and expands their applicability to a greater 560

range of properties. We plan to further explore 561

these applications in future work. 562
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A Derivation of MaxCov and MaxCorr832

In this appendix we derive the algorithms for Max-833

Cov and MaxCorr. We assume that we have access834

to a set of reference words W, where each reference835

word w ∈W is associated with a score s(w) ∈ R.836

A.1 Covariance Maximization 837

The formula for MaxCov is straightforwardly de- 838

rived from the definition of covariance. We assume 839

a uniform distribution on W, so that expected val- 840

ues over W can be identified with means over W. 841

Theorem 1. Let W be a set of reference words, 842

and let s : W→ R be a scoring function. Let 843

a =
∑
w∈W

(s(w)− s)(JwK−w), 844

where 845

s = mean
w∈W

(s(w)) and w = mean
w∈W

(JwK). 846

Then, 847

a

‖a‖
= argmax

‖v‖=1
cov
w∈W

(v>JwK, s(w)). 848

Proof. By definition, 849

cov
w∈W

(v>JwK, s(w)) 850

= mean
w∈W

(
(v>JwK− v>w)(s(w)− s)

)
851

=
1

|W|

(∑
w∈W

(s(w)− s)(JwK−w)

)>
v. 852

For any vector u 6= 0, the unit vector v that maxi- 853

mizes u>v is v = u/‖u‖. Thus, writing 854

u =
1

|W|

(∑
w∈W

(s(w)− s)(JwK−w)

)
, 855

we have 856

u

‖u‖
= argmax

‖v‖=1
cov
w∈W

(v>JwK, s(w)). 857

The theorem follows from the observation that u = 858

a/|W|, thus u/‖u‖ = a/‖a‖. 859

A.2 Correlation Maximization 860

In MaxCorr, we fit a linear model 861

s(w) = a>JwK + b, 862

and take our interpreted direction to be g = a/‖a‖. 863

Intuitively, corrw∈W(v>JwK, s(w)) measures the 864

extent to which a linear relationship exists between 865

v>JwK and s(w). When fitting the above linear 866

regression, we are finding the vector a that maxi- 867

mizes the linear relationship between a>JwK and 868

s(w). Thus, a gives us the direction of the sub- 869

space that maximizes correlation. 870
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Theorem 2. Let W be a set of reference words,871

and let s : W→ R be a scoring function. Let872

a∗, b∗ = argmin
a,b

MSE
w∈W

(a>JwK + b, s(w)),873

where MSE is the mean squared error, given by874

MSE
x∈X

(φ(x), ψ(x)) =
1

|X|
∑
x∈X

(ψ(x)− φ(x))2875

for a finite set X and functions ψ, φ : X → R.876

Then,877

a∗

‖a∗‖
= argmax

‖v‖=1
corr
w∈W

(v>JwK, s(w)).878

Proof. Fix a unit vector v. Let av, bv be the result879

of fitting a linear regression model between v>JwK880

and s(w):881

av, bv = argmin
a,b

MSE
w∈W

(av>JwK + b, s(w)).882

We use the fact that883

corr
w∈W

(v>JwK, s(w))884

= corr
w∈W

(avv
>JwK + bv, s(w))885

=

√
1− MSEw∈W(avv>JwK + bv, s(w))

varw∈W(s(w))
,886

which follows from the invariance of correlation887

under linear mappings and the partition of sums of888

squares. Since889

MSE
w∈W

(avv
>JwK + bv, s(w))890

≥ MSE
w∈W

(a∗>JwK + b∗, s(w))891

by the definition of a∗ and b∗, we have892

corr
w∈W

(avv
>JwK + bv, s(w))893

≤ corr
w∈W

(a∗>JwK + b∗, s(w))894

= corr
w∈W

(av∗v∗>JwK + bv∗ , s(w)),895

where v∗ = a∗/‖a∗‖. Thus,896

corr
w∈W

(av∗v∗>JwK + bv∗ , s(w))897

= max
‖v‖=1

corr
w∈W

(avv
>JwK + bv, s(w))898

= max
‖v‖=1

corr
w∈W

(v>JwK, s(w)),899

whence the theorem immediately follows.900

B Implementation of Interpretable 901

Subspace Estimation Methods 902

This appendix provides implementational details 903

for MaxCov, MaxCorr, the Tuples method, the 904

SVM method, and DensRay, as they are used in 905

the social bias mitigation experiment of Section 5. 906

Across the three evaluation methods considered in 907

the experiment, a total of five interpretable sub- 908

spaces are estimated: 1-dimensional male–female 909

gender subspaces in English, French, and Chinese; 910

a 1-dimensional Black–White English race sub- 911

space used for WEAT 3–5 and the ECT test; and 912

a 3-dimensional White–Asian–Hispanic English 913

race subspace used in the occupation statistics 914

analysis. For the purposes of this appendix, the 915

terms “Black,” “White,” “Asian,” and “Hispanic” 916

are based on racial categories in the United States 917

(African Americans, European Americans, Asian 918

Americans, and Hispanic Americans, respectively). 919

In all cases except when the Tuples Method is 920

used, a basis for the 3-dimensional White–Asian– 921

Hispanic subspace is estimated by orthonormal- 922

izing bases for three separate 1-dimensional sub- 923

spaces. 924

B.1 MaxCov and MaxCorr 925

The four 1-dimensional subspaces are estimated 926

using the following datasets. 927

• English Gender: SKB19-G 928

• French Gender: Ga08-G 929

• Chinese Gender: Ba21-G 930

• Black–White Race: SD18-Ra 931

The White–Asian–Hispanic race subspace is con- 932

structed by combining subspaces estimated from 933

the “White,” “Asian,” and “Hispanic” columns of 934

the Census-Ra dataset. 935

B.2 Tuples Method 936

Table 6 shows all word tuples used for the Tu- 937

ples method. The English Gender word pairs are 938

from Bolukbasi et al. (2016), while the first three 939

columns of the Race words are from Manzini et al. 940

(2019). The French Gender and Chinese Gender 941

words were obtained by manually translating the 942

English Gender words. The three gender subspaces 943

are estimated using the pairs from the English Gen- 944

der, French Gender, and Chinese Gender sections 945
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English Gender French Gender Chinese Gender Race

she he elle il 她 他 black caucasian asian hispanic
her his sa son 她们 他们 african caucasian asian latino

woman man femme homme 女人 男人 black white asian hispanic
mary john Marie Jean 玛丽 约翰 africa america asia mexico

herself himself la le 女儿 儿子 africa america china mexico
daughter son fille fils 母亲 父亲 africa europe asia mexico
mother father mère père 姐姐 哥哥

gal guy meuf mec 姊妹 兄弟
girl boy fille garçon 女孩 男孩

female male féminine masculin 女 男

Table 6: Words used to estimate gender and race subspaces via the Tuples method. The English Gender words are
from Bolukbasi et al. (2016); the first three columns of Race words are from Manzini et al. (2019).

of Table 6. The Black–White race subspace is esti-946

mated using the procedure of Manzini et al. (2019):947

the first three columns of the Race section are used,948

and the subspace is given by the first principal com-949

ponent of the difference vectors. The White–Asian–950

Hispanic subspace is estimated using the last three951

columns of the Race section and taking the first952

three principal components of the difference vec-953

tors.954

B.3 SVM Method955

As described in Subsection 5.2, for each 1-956

dimensional subspace we train an SVM using word957

embeddings with the 7,500 highest and lowest pro-958

jections onto some subspace span(Jw1K − Jw2K),959

where (w1, w2) is a pair of reference words repre-960

senting the target semantic concept. We use the961

following word pairs for the four 1-dimensional962

spaces.963

• English Gender: she–he964

• French Gender: elle–il965

• Chinese Gender: 女–男966

• Black–White Race: blacks–whites967

For the White–Asian–Hispanic subspace, we com-968

bine three 1-dimensional subspaces obtained us-969

ing the pairs whites–hispanics, whites–asians, and970

asians–hispanics.971

B.4 DensRay972

Table 8 shows the word sets used for DensRay. Fol-973

lowing Dufter and Schütze (2019), we use the kin-974

ship terms from Mikolov et al. (2013a) in order to975

estimate the English gender subspace. These words976

are shown in the English Male Kinship Terms977

and English Female Kinship Terms sections of Ta-978

ble 8. Likewise, the French and Chinese gender979

subspaces are also estimated using kinship terms. 980

The French kinship terms were translated by the 981

authors, while the Chinese kinship terms were ob- 982

tained from the Wikipedia page Chinese kinship.5 983

For Black–White race we use the given names from 984

Kiritchenko and Mohammad (2018), shown in the 985

African American Given Names and European 986

American Given Names sections of Table 8. The 987

remaining sections of the table consist of family 988

names from Garg et al. (2018). Using these sets of 989

names, we estimate the White–Asian–Hispanic sub- 990

space by combining a White–Asian subspace, an 991

Asian–Hispanic subspace, and a Hispanic–White 992

subspace. 993

C Dataset Permissions 994

Table 7 lists the permissions for the datasets used 995

to estimate interpretable subspaces with MaxCov 996

and MaxCorr. Table 1 contains a mixture of public- 997

domain government publications, open access aca- 998

demic publications, and closed access publications. 999

For each open access dataset, we provide a link to 1000

its associated license. 1001

5https://en.wikipedia.org/wiki/
Chinese_kinship
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Data Source Open Access? License

Kennison and Trofe (2003) No N/A
Gabriel et al. (2008) No N/A
Gilet et al. (2012) No N/A
Pew Research Center (2012) Yes Pew Research Center Terms of Use
Yao et al. (2017) No N/A
Mohammad (2018) Yes CC BY 4.0
Stelter and Degner (2018) Yes CC BY 4.0
National Institute of Statistics and Economic Studies (2019) Yes License Ouverte/Open License 2.0
Scott et al. (2019) Yes CC BY 4.0
United States Social Security Administration (2019) Yes CC0 1.0
Bao (2021) Yes GPL-3
United States Census Bureau (2021) Yes Public Domain
World Bank Open Data (2022) Yes CC BY 4.0

Table 7: Permissions for the data sources listed in Table 1, including hyperlinks to licenses for open-access datasets.

English Male Kinship Terms
(Mikolov et al., 2013a)

boy, brother, brothers, dad, father, grandfather, grandpa, grandson, groom, he,
his, husband, king, man, nephew, policeman, prince, son, sons, stepbrother,
stepfather, stepson, uncle

English Female Kinship Terms
(Mikolov et al., 2013a)

aunt, bride, daughter, daughters, girl, granddaughter, grandma, grandmother,
her, mom, mother, niece, policewoman, princess, queen, she, sister, sisters,
stepdaughter, stepmother, stepsister, wife, woman

French Male Kinship Terms beau-fils, beau-frère, beau-père, fils, fils, frère, frères, garçon, grand-père,
homme, il, mari, marié, neveu, oncle, papa, papi, petit-fils, policier, prince,
père, roi, son

French Female Kinship Terms belle-fille, belle-mère, belle-sœur, copine, elle, femme, fille, filles, fillette,
grand-mère, maman, mamie, mariée, mère, nièce, petite-fille, policière,
princesse, reine, sa, sœur, sœurs, tante

Chinese Male Kinship Terms 丈夫, 亲王, 他, 他们, 伯伯, 伯父, 侄儿, 侄女婿, 侄子, 儿子, 兄, 兄
弟, 公公, 内兄, 内弟, 叔叔, 叔父, 哥哥, 国王, 堂兄, 堂弟, 外孙儿,
外孙女婿, 外孙子, 外父, 外甥, 外祖父, 大伯, 大舅, 女婿, 妹夫, 姊
夫, 姐夫, 姑夫, 姑父, 姥爷, 姨夫, 姨父, 姨甥, 孙儿, 孙女婿, 孙子,
家公, 小叔, 小舅, 岳丈, 岳父, 弟, 弟弟, 新郎, 父亲, 爷爷, 爸爸, 王
子, 男人, 男孩, 祖父, 老公, 老爷, 舅父, 舅舅, 表兄, 表弟, 襟兄, 襟
弟

Chinese Female Kinship Terms 丈母, 伯娘, 伯母, 侄女, 侄媳妇, 儿媳, 公主, 堂妹, 堂姊, 堂姐, 堂
嫂, 外孙女, 外孙媳妇, 外母, 外甥女, 外祖母, 大姑, 大姨, 大嫂, 太
太, 女亲王, 女人, 女儿, 女孩, 女王, 奶奶, 她, 她们, 妈妈, 妯娌, 妹,
妹妹, 妻子, 姊, 姊姊, 姐姐, 姑妈, 姑姐, 姑姑, 姑母, 姑表姊, 姑表
嫂, 姥姥, 姨妈, 姨妹, 姨姐, 姨母, 姨甥女, 婆婆, 婶婶, 婶母, 媳妇,
嫂, 嫂子, 孙女, 孙媳妇, 家姑, 家婆, 小姑, 小姨, 小婶, 岳母, 弟妇,
新郎, 母亲, 皇后, 祖母, 老婆, 舅妈, 舅母, 表妹, 表姊, 表姐, 表嫂,
闺女, 阿姨

African American Given Names
(Kiritchenko and Mohammad, 2018)

alonzo, alphonse, darnell, ebony, jamel, jasmine, jerome, lakisha, lamar,
latisha, latoya, leroy, malik, nichelle, shaniqua, shereen, tanisha, terrence, tia,
torrance

European American Given Names
(Kiritchenko and Mohammad, 2018)

adam, alan, amanda, andrew, betsy, courtney, ellen, frank, harry, heather, jack,
josh, justin, katie, kristin, melanie, nancy, roger, ryan, stephanie

European American Family Names
(Garg et al., 2018)

adams, allen, anderson, clark, davis, harris, jackson, johnson, jones, lewis,
martin, moore, nelson, robinson, scott, taylor, thompson, williams, wilson,
wright

Asian American Family Names
(Garg et al., 2018)

chang, chen, cho, chu, chung, hong, huang, khan, kim, li, lin, liu, ng, shah,
singh, tang, wang, wong, wu, yang

Hispanic American Family Names
(Garg et al., 2018)

alvarez, castillo, castro, cruz, diaz, garcia, gomez, gonzalez, lopez, martinez,
medina, mendoza, perez, rivera, rodriguez, ruiz, sanchez, soto, torres, vargas

Table 8: Words used to estimate gender and race subspaces via DensRay.
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