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Abstract

This paper proposes a new method for estimat-
ing a direction in a word embedding space cor-
responding to an interpretable semantic prop-
erty such as gender, race, or religion. Our tech-
nique assumes that words can be assigned nu-
merical scores that quantify their association
with the target property. We estimate the sub-
space by maximizing the covariance or corre-
lation of these scores with the projection of
word embeddings along the subspace. Using
our technique, we show that word embedding
spaces in English, French, and Chinese contain
subspaces that encode gender, race, religion,
sentiment, word length, and national popula-
tion. We then apply our technique to the mit-
igation of gender and racial bias from word
embeddings. We find that using our technique
to estimate a gender or race subspace improves
performance on several benchmarks.

1 Introduction

One of the most famous empirical results in natural
language processing is the discovery that a range of
semantic properties are encoded by distinguished
interpretable subspaces of the word embedding
space (Mikolov et al., 2013a; Rothe and Schiitze,
2016; Jang and Myaeng, 2017; Arora et al., 2018;
Senel et al., 2018; Shin et al., 2018; Ethayarajh
et al., 2019a). A simple way to probe the structure
of these subspaces is through linear analogies: let-
ting [w] € R? denote the embedding of a word w,
we expect words participating in an analogy such
as king : queen :: man : woman to exhibit the rela-
tion [king] — [queen] ~ [man] — [woman] ~ g,
where the subspace span(g) represents the concept
that relates the word pairs. A rich body of literature
on the interpretation of word embedding spaces
has identified subspaces corresponding to syntactic
and semantic features (Mikolov et al., 2013b; Ba-
roni et al., 2014), quantificational features (Linzen
et al., 2016), and specific lexical properties such as

national capitals (Mikolov et al., 2013a) and gen-
der and ethnic stereotypes (Bolukbasi et al., 2016;
Mangzini et al., 2019).

Linear analogies provide a simple and intuitive
method for intrinsic evaluation of word embed-
dings by validating the existence of interpretable
subspaces (Yaghoobzadeh and Schiitze, 2016). But
recent techniques in NLP, particularly in social
bias mitigation (Bolukbasi et al., 2016; Zhao et al.,
2018; Ravfogel et al., 2020), require not only that
interpretable subspaces exist, but also that a ba-
sis for these subspaces can be precisely estimated.
Unfortunately, it is difficult to estimate subspaces
using analogy-based methods because of the re-
quirement that words be paired. This requirement
is difficult to satisfy in domains such as race where
there is no obvious way to define word pairs. In
domains that are more amenable to analogies, the
labor intensity of constructing word pairs limits the
amount of data that can be used in the estimation of
an interpretable subspace. For example, Bolukbasi
et al.’s (2016) estimation of the gender subspace
only uses ten word pairs.

This paper presents two novel algorithms for
identifying interpretable embedding subspaces,
with particular focus on applications to bias mit-
igation. In contrast to previous methods, our ap-
proach does not require word pairs or manually
crafted sets of words designed to capture some
semantic concept. Instead, we assume that proper-
ties encoded by embedding subspaces are numer-
ically valued, and that these values can be mea-
sured empricially through human judgments, pub-
lic datasets, or world knowledge databases. Our
two methods are therefore applicable to any prop-
erty for which each word can be assigned a numer-
ical value, and they can incorporate large, existing
sets of labeled words at little to no additional an-
notation cost. Given a corpus of words annotated
with numerical scores, our first method, covariance
maximization (MaxCov), estimates an interpretable



subspace by maximizing the covariance between
the scores and the projections of word embeddings
to this subspace. Our second method, correlation
maximization (MaxCorr), is similar to MaxCov, but
maximizes correlation instead of covariance.

After introducing our two algorithms, we test
them using two sets of experiments. First, we con-
duct an intrinsic evaluation of MaxCov and Max-
Corr by attempting to find interpretable subspaces
that represent gender, race, religion, sentiment,
word length, and national population in English,
French, and Chinese. In almost all cases, we are
able to identify subspaces that correlate with our
data with p > .6. Then, we apply our method to
the downstream task of social bias mitigation, and
show that using MaxCov or MaxCorr to identify
the gender or race subspace improves performance
on several benchmarks.

2 Related Work

Interpretable embedding subspaces play an impor-
tant role in projection-based debiasing,' a two-step
pipeline for bias mitigation proposed by Bolukbasi
et al. (2016). The first step is to estimate an inter-
pretable subspace encoding a social attribute such
as gender. Then, word embeddings are “debiased”
by surgically altering their projections onto this
subspace. The contribution of the present paper is
to improve upon the first step of this process.

Estimating Gender Spaces. Most work on
projection-based debiasing focuses on removing
gender bias from English-language embeddings.
The simplest conceivable method for finding a
“gender subspace” is to use the difference vector
span([she] — [he]). This method is used by Dev
et al. (2020). Generalizations of this approach are
used by Ethayarajh et al. (2019b), who take several
difference vectors to form a basis for a multidi-
mensional subspace, and Dev and Phillips (2019),
who use the first principal componenent of a set
of difference vectors as a one-dimensional gender
basis.

Bolukbasi et al. (2016) use a method similiar to
Dev and Phillips (2019); but instead of using differ-
ence vectors, they take pairs of word embeddings
and center them around the origin. Another method
involves using the weight vector of a support vector
machine (Ravfogel et al., 2020). The method most
similar to ours is the DensRay algorithm proposed

"This term is due to Stariczak and Augenstein (2021).

by Dufter and Schiitze (2019). Like our approach,
DensRay employs maximization, but treats gender
as a binary rather than continuous variable. Their
objective maximizes the distance between opposite-
gender words and minimizes the distance between
same-gender words along the gender subspace.

Other Properties and Languages. Bolukbasi
et al.’s (2016) method has been generalized to
removing gender bias from Swedish embeddings
(Sahlgren and Olsson, 2019) as well as racial and
religious bias from English embeddings (Manzini
et al., 2019). Ravfogel et al. (2020) also explore re-
moving racial bias, but at the sequence level rather
than the word level.

3 Estimating Interpretable Subspaces

Our approach to estimating interpretable word em-
bedding subspaces assumes that we have access to
a set of reference words W, such that each word
w € W is associated with a score s(w) along some
semantic dimension. Our goal is to find a unit vec-
tor g such that for each w € W, g' [w] ~ s(w).
In MaxCov, we choose g to be the vector that max-
imizes the covariance between g ' [w] and s(w).
MaxCorr works similarly, except we maximize cor-
relation instead of covariance. We show that these
two methods can be implemented straightforwardly
using efficient algorithms.

3.1 Covariance Maximization

Formally, MaxCov estimates g as follows:

g = argmax cov (v [w], s(w)).
loll=1 wEW

This method is similar to PCA, except that instead
of finding the direction of greatest variance in the
embeddings, we find the direction of greatest co-
variance with the scores assigned to the reference
words. It turns out that MaxCov is computed by
the formula g = a/||al|, where

a= ) (s(w)-3)([w] - )

weWw

and the variables 5 = mean,cw(s(w)) and w =
mean,,ew([w]) denote the average score and aver-
age embedding of the reference words, respectively.
We derive this formula in Appendix A.1.

3.2 Correlation Maximization

In MaxCorr, g is estimated as

g = argmax corr (v ' [w], s(w)).
lofj=1 wEW



To compute MaxCorr, we fit a linear regression
model

s(w) = a' [w] + b,

and take g = a/||a||. The validity of this approach
is proven in Appendix A.2, where we verify for-
mally that a/||a|| is indeed the direction of greatest
correlation with s(w).

4 Exploring Embedding Subspaces

We begin by using MaxCov and MaxCorr to deter-
mine what kinds of continuous properties are rep-
resented in embedding spaces by an interpretable
subspace. In this experiment, we search for sub-
spaces encoding information about gender, race,
religion, and sentiment, as well as population and
orthography. We apply our method to word embed-
dings in English, French, and Chinese.

4.1 Data

To fit an interpretable subspace, we obtain ref-
erence words and scores from publicly available
datasets. These datasets are enumerated in Table 1,
which identifies each dataset by an abbreviated
name. We use three different kinds of data for
extracting scores.

Human Judgments. Human judgment studies
from psychology, social science, and behavioral
science provide a direct measure of stereotypical
associations between words and semantic proper-
ties. For this experiment, we use human judgment
data for gender (female vs. male), race (African
American vs. European American), and sentiment
(positive valence vs. negative valence). All scores
were elicited from participants using a Likert scale,
with the exception of Mo18-S (Mohammad, 2018),
which elicited valence rankings that were then in-
terpolated using best—worst scaling.

Frequencies. Certain words, such as personal
names or country names, are associated with par-
ticular social identities. For example, most people
named Mary are female, while most people named
John are male. We leverage demographic statistics
in order to extract scores for gender, race, and re-
ligion. For gender, we use census data on given
names from the United States Social Security Ad-
ministration (SSA, 2019), the French National In-
stitute of Statistics and Economic Studies (INSEE,
2019), and the Chinese National Citizen Identity

Information Center? (NCIIC, Bao, 2021). For race,
we use data on surnames from the 2010 United
States Census (United States Census Bureau, 2021),
which reports the frequencies among six racial cat-
egories of the 1,000 most common names. For
religion, we use statistics from the Pew Research
Center (2012) on the religious composition of 233
countries and territories.

For the SSA, INSEE, and NCIIC data, we con-
vert the reported frequency counts into a gender
rating by estimating the probability that a person
with a given name is female according to Laplace’s
(1814) rule of succession:

_ # female individuals named w + 1

s(w) =

# individuals named w + 2

Since the United States Census and Pew Research
data do not report exact counts for each demo-
graphic group, we instead use percentages reported
in those datasets, which are precise to one-tenth of
a percentage point.

Counts. Our data on national population come
from World Bank Open Data (2022). For ortho-
graphic word length, we simply compute the length
of the 1,000 most frequent words that have not been
filtered out from our word embedding spaces (see
Subsection 4.2).> We define the length of an En-
glish or French word to be the number of charac-
ters in that word; we define the length of a Chinese
word to be the total combined stroke count of all
characters in that word. Unlike the datasets based
on frequencies, we directly use the scores reported
in these datasets without converting them into per-
centages.

4.2 Procedure

The goal of this experiment is to determine the
extent to which semantic properties are represented
by interpretable embedding subspaces that can be
discovered by MaxCov and MaxCorr. We fit an
interpretable subspace with MaxCov and MaxCorr
using 75% of each dataset in Table 1, and measure
how well the subspace predicts the scores assigned
to the remaining 25%. We measure the quality of an
interpretable subspace span(g) via the correlation
between s(w) and g ' [w].

2Since Chinese given names are unique to the individual,
the NCIIC dataset does not report frequency of given names
per se, but rather the number of occurrences of individual Chi-
nese characters in given names assigned to men and women.
3The word length data are not listed in Table 1.



Name Source N  Property Word Type Locale Type Range
KT03-G Kennison and Trofe (2003) 232 Gender Professions EN-US  Judgments 1-7
Ga08-G Gabriel et al. (2008) 127  Gender Professions EN-GB  Judgments 0-100
Ga08-G Gabriel et al. (2008) 127  Gender Professions FR-CH  Judgments 0-100
SKB19-G Scott et al. (2019) 5,553  Gender Miscellaneous EN-GB  Judgments 1-7
SSA-G SSA (1880-2019) 99,444  Gender Given Names EN-US  Frequencies 0-1
INSEE-G INSEE (1900-2019) 35,010 Gender Given Names FR-FR  Frequencies 0-1
Ba2l1-G Bao (2021) 2,614  Gender Given Names ZH-CN  Frequencies 0-1
Census-Ra  US Census (2010) 1,000 Race Surnames EN-US  Frequencies 0-1
SD18-Ra Stelter and Degner (2018) 159 Race Given Names EN-US  Judgments 1-7
Pew-Re Pew Research Center (2010) 233  Religion Countries N/A Frequencies 0-1
SKB19-S Scott et al. (2019) 5,553 Sentiment  Miscellaneous EN-GB  Judgments 1-9
Mol8-S Mohammad (2018) 19,971 Sentiment  Miscellaneous EN-CA  Judgments 0-1
Gil2-S Gilet et al. (2012) 835 Sentiment  Miscellaneous  FR-FR  Judgments 1-7
Ba2l-S Bao (2021) 2,614 Sentiment  Given Names ZH-CN  Judgments 1-5
Yal7-S Yao et al. (2017) 1,100 Sentiment  Miscellaneous ZH-CN  Judgments 1-9
Population ~ World Bank Open Data (2022) 217  Population  Countries N/A Counts N/A

Table 1: Datasets used to assign scores to words. “N” denotes the total number of words (including compounds)
provided by each dataset. For human judgment and frequency count datasets, “Locale” denotes the language the
words are presented in and the country where the data were elicited; for datasets involving countries, we translate
country names into target languages, using single-token names whenever possible. For datasets from the SSA,
INSEE, US Census, and the Pew Research Center, dates denote the time period over which data were collected.

Embeddings. We use 300-dimensional word em-
beddings for all three languages. We use GloVe
embeddings trained on the 42-billion-token Com-
mon Crawl corpus (Pennington et al., 2014) for En-
glish and fastText embeddings (Grave et al., 2018)
for French. For Chinese, we use embeddings pro-
vided by Li et al. (2018), which are trained using
Skip-gram with negative sampling (Mikolov et al.,
2013b) with character-level features (Chen et al.,
2015) on the Mixed-large dataset.

Preprocessing. We filter out all English and
French words containing non-alphanumeric char-
acters, as well as Chinese words containing non-
Chinese characters. We then filter out all but the
50,000 most frequent words in each language be-
fore normalizing the embeddings to unit length.

Unlike the English GloVe embeddings, the
French fastText embeddings are case-sensitive. For
datasets based on given names and country names,
we capitalize each word according to orthographic
conventions in French; for datasets based on com-
mon nouns, we consider both capitalized and all-
lowercase versions of each word. For word length
data, we follow the capitalization used in the word
embeddings.

Validation. To account for the possibility of over-
fitting to the reference words, we perform 4-fold
cross validation and report the mean result obtained
across the folds. We measure the significance of
our results using a two-sided permutation test in

which the experiment is repeated 1,000 times with
the scores randomly shuffled for each dataset. We
use the average result of the permutation test as a
baseline for comparison.

4.3 Results

The results of our exploration are shown in Table 2.
Baseline values from the permutation test range
from —.008 to .005 for both MaxCov and MaxCorr
for all three languages. All results are statistically
significant, with p < .008.

In most cases, we are able to find an inter-
pretable embedding subspace that robustly encodes
the scores given by our datasets. The only excep-
tion is the Yal7-S sentiment dataset, for which
MaxCov achieves a cross-validated correlation of
only .297. Two other datasets with weaker results
are the Unaffiliated religion data from Pew-Re and
the Native American race data from Census-Ra.
The high quality of the interpretable subspace for
word length relative to the permutation test baseline
seems surprising at first glance, given that none of
the three word embedding models contain features
that explicitly encode this information. However,
this result is explained by the observation that word
length is inversely correlated with frequency and
other statistics, which are accessible to word em-
bedding models during training (Zipf, 1936; Pianta-
dosi et al., 2011).

Between MaxCov and MaxCorr, it does not ap-
pear that either algorithm consistently outperforms



Dataset N MaxCov MaxCorr
English
KTO03-G 202 678 .675
Ga08-G 81 465 .605
SKB19-G 4,517 107 793
SSA-G 7,949 .693 745
SD18-Ra 117 834 .826
Census-Ra (White) 924 .827 865
Census-Ra (Black) 924 660 .635
Census-Ra (Asian) 924 793 844
Census-Ra (Native) 924 483 410
Census-Ra (Multi.) 924 .786 726
Census-Ra (Latino) 924 917 916
Pew-Re (Christian) 194 773 817
Pew-Re (Muslim) 194 776 819
Pew-Re (Unaff.) 194 539 453
SKB19-S 4,517 756 852
Mol8-S 16,834 671 776
Population 187 523 409
Word Length 1,000 .607 622
French
Ga08-G 96 737 758
INSEE-G 3,139 720 276
Pew-Re (Christian) 183 .682 726
Pew-Re (Muslim) 183 .619 642
Pew-Re (Unaff.) 183 410 .396
Gil2-S 530 820 534
Population 174 434 431
Word Length 1,000 .676 691
Chinese
Ba21-G 1,798 .593 596
Pew-Re (Christian) 183 753 .663
Pew-Re (Muslim) 183 755 738
Pew-Re (Unaff.) 183 564 .394
Ba21-S 1,798 .672 746
Yal7-S 914 297 116
Population 181 576 470
Word Length 1,000 .563 .638

Table 2: Results for the embedding subspace exploration
experiment. “N” represents the number of words in
each dataset for which an embedding is available after
filtering.

the other. Figure 1 shows, in fact, that the two al-
gorithms are strongly correlated with one another
in performance. The two outliers in this plot rep-
resent the INSEE-G and Gi12-S datasets. In both
cases, MaxCorr resulted in significant overfitting,
as illustrated in Figure 2.

5 Social Bias Mitigation

In this second experiment, we apply MaxCov and
MaxCorr to the task of removing social bias from
word embeddings. Our goal is to assess the suitabil-
ity of interpretable subspaces estimated using Max-
Cov and MaxCorr for this task, compared to exist-
ing methods. We do this by replicating a number
of different evaluations of bias from the literature
and observing the extent to which each subspace
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Figure 1: The relationship between MaxCov and Max-
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Figure 2: MaxCorr overfitting on Gil2-S. Plots compare
scores from the dataset with the projections of embed-
dings onto the interpretable subspace.

estimation method reduces the amount of bias mea-
sured. Our evaluations are implemented using the
WEEFE libary (Badilla et al., 2020).

5.1 Experimental Setup

In each of the following analyses, we compare the
pre-trained embeddings from the previous section
with embeddings that have been debiased accord-
ing to an interpretable subspace identified using
MaxCov, MaxCorr, or a baseline method. For all
subspace estimation methods, debiasing is accom-
plished using the strong debiasing technique pro-
posed by Prost et al. (2019). Let span(B) be an
interpretable subspace, where B is orthonormal.
The strongly debiased version of a word embed-
ding [w] with respect to B is given by

w = [w] — 3 projy([u]).

beb

where proj,([w]) is the projection of Jw] onto b.



5.2 Baselines

For comparison, we consider three baseline meth-
ods of estimating interpretable subspaces for bias
mitigation.

Tuples. The Tuples method of Bolukbasi et al.
(2016) uses a combination of several word pairs
such as she—he in order to estimate a subspace. We
use a generalization of this method by Manzini et al.
(2019), which allows for word tuples of arbitrary
length such as African—Caucasian—Asian in order
to compute subspaces for multivalent properties
such as race or religion. Given a set T C W™ of
n-tuples of words, a basis B for a k-dimensional
interpretable subspace is estimated by taking the
first k principal components of the set

n

U {mwd-penun} .

(w1,w2,...,wn)ET =1
normalized to unit length.

SVM. The SVM method of Ravfogel et al. (2020)
estimates an interpretable subspace g = a/||al| by
taking a to be the weight vector of a linear support
vector machine (SVM) that classifies word embed-
dings into one or more semantic categories. This
makes g orthogonal to the hyperplane that sepa-
rates the categories. When debiasing embeddings
with respect to gender, Ravfogel et al. (2020) con-
struct the training dataset for the SVM by taking
the word embeddings with the 7,500 highest and
7,500 lowest values in the [she] — [he] direction.

DensRay. Like our approach, the DensRay
method (Dufter and Schiitze, 2019) uses a set of
words W accompanied by scores s(w). The inter-
pretable subspace is estimated by minimizing

s(ys(w) [0 (1] ~ FD)||

u,WwEW

where for all w € W, s(w) is either 1 or —1. For
example, if g represents gender, then s(he) = 1
and s(she) = —1. Intuitively, DensRay attempts
to find the subspace that maximizes similarity be-
tween same-category words while minimizing sim-
ilarity between opposite-category words.

Appendix B describes implementational details
for MaxCov, MaxCorr, and the three baseline meth-
ods, including word lists and datasets used to esti-
mate each subspace.
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Figure 3: Target words from the English WEAT 6 test,
visualized according to their mean cosine similarity to
the two sets of attribute words. Arrows connect un-
debiased word embeddings to debiased ones.

5.3 Word Embedding Association Test

The Word Embedding Association Test (WEAT,
Caliskan et al., 2017) compares two sets of tar-
get words T, T in terms of their distance to two
sets of attribute words A1, As. For a target word
w € T U Ty, the quantity

S22 (1) = mean(cos([u], [al) —

mean cos([w], [b]))

measures the degree to which w is, on average,
closer to words in A; than A,. For example,
if Ay = {he,him,male} and Ay, = {she,her,
female}, then s, a,(science) > 0 means that the
word science is closer to “male” words than “fe-
male” words. From this individual bias metric, an
effect size is computed by aggregating bias mea-
sures across all target words:

meanq,eT, (SA1A2 (u)) — IMeallyeT, (SALAQ (U))
StdevaTlUTz (SAl A2 (w))

A positive effect size indicates that T has a greater
bias towards A; and against A, than Ty does. A
negative effect size is interpreted analogously. An
effect size of 0 indicates lack of bias.

Results. Table 3 shows effect sizes computed for
the six WEAT tests from Caliskan et al. (2017) that
measure bias in terms of binary race and binary gen-
der. We also run the French- and Chinese-language
WEAT tests from Kurpicz-Briki (2020) and Jiao
(2021), respectively. In almost all cases for En-
glish, strong debiasing with MaxCov is the most
effective method for debiasing, while MaxCorr is
more effective for French. Note in particular that
the baseline methods struggle when applied to race
or to French-language word embeddings, and that



Targets Attributes | None Tuples SVM DensRay | MaxCov MaxCorr
English (Caliskan et al., 2017)
3 White vs. Black  Pleasant vs. Unpleasant | 1.40 1.40 1.40 1.40 96 1.26
4 White vs. Black  Pleasant vs. Unpleasant | 1.51 1.52 1.47 1.52 .79 1.30
5 White vs. Black  Pleasant vs. Unpleasant | 1.37 1.37 1.35 1.37 25 1.19
6 Male vs. Female Career vs. Family 1.69 1.23 1.06 1.69 97 1.38
7 Math vs. Arts Male vs. Female 1.50 33 A1 1.53 .06 27
8 Science vs. Arts ~ Male vs. Female 1.05 —-136 —-.53 1.06 —-.52 —.22
French (Kurpicz-Briki, 2020)
6-frl  Male vs. Female  Career vs. Family 77 1.05 .90 .80 .84 43
6-fr2  Male vs. Female  Career vs. Family 1.07 1.25 1.18 1.07 1.11 .85
7-fr Math vs. Arts Male vs. Female .64 1.52 .61 .68 49 .53
8-fr Science vs. Arts  Male vs. Female -.33 .18 -.35 -.33 —.54 —.45
Chinese (Jiao, 2021)
7 Math vs. Arts Male vs. Female 1.49 .63 1.49 1.50 1.07 1.22
8 Science vs. Arts  Male vs. Female 1.04 .67 1.08 1.05 11 .09

Table 3: Effect sizes from the WEAT test (closer to 0 is better), calculated from embedding spaces debiased using
various methods. The leftmost column shows identifiers assigned to individual WEAT tests by Caliskan et al. (2017),

Kurpicz-Briki (2020), and Jiao (2021).

Female | Asian Hispanic
None 474 .098 .004
Tuples 315 .094 .006
SVM .385 .096 .020
DensRay 476 .103 .007
MaxCov 326 078 011
MaxCorr 283 112 .015

Table 4: R? values from the occupation statistics analy-
sis (lower is better).

the SVM-based method additionally struggles with
Chinese-language embeddings. In contrast, Max-
Cov and MaxCorr are able to reduce bias in almost
every case, regardless of language or semantic prop-
erty.

Figure 3 shows visually that debiasing has a
greater effect on “female” words than on “male”
words. As indicated by the angles of the arrows,
debiasing methods differ in terms of the extent to
which they make target words more similar to one
of the two attributes versus the other.

5.4 Relation to Occupation Statistics

Next, we apply an analysis due to Garg et al. (2018),
which relates gender and racial bias in word em-
beddings with occupational statistics. The analy-
sis tests the hypothesis that gender and racial bias
measured in word embeddings linearly predict the
demographics of various professions.

Let 1,2,...,n be a collection of demo-
graphic groups, represented by attribute word sets
Ay, Ao, ... A,. Assume that group n is desig-
nated as the “unmarked” group (males for gender

and Whites for race). Given a profession word p,
let p; be the percentage of workers in p belong-
ing to group i. The bias of the word embedding
[p] with respect to group ¢ is measured by relative
norm distance (RND), defined as

rd;(p) = mean ([[[p] —a;l) — [I[p] - @il

where @; = mean,ea, ([a]) for all i. RND is sim-
ilar to the quantity s4, a,(p) from Caliskan et al.
(2017), except that it uses Euclidean distance in-
stead of cosine similarity and compares a single
target word with several attribute word sets. The
occupational bias of group ¢ in profession p is mea-
sured by

occ-bias;.y (p) = bi = Pn

Pi + Pn .

Given a set of professions, we compute a linear re-
gression between occupation bias and RND score
for each non-majority group (i.e., not male or
White), and report the R? value of the regression. If
R? is close to 0, then RND and occupation bias are
not linearly related, indicating that bias measured
by RND does not reflect bias empirically measured
through demographics.

Setup. Following Garg et al. (2018), we conduct
two versions of the experiment. In the first run,
we use two groups: female and male; and in the
second run, we use three groups: Asian, Hispanic,
and White. Gender debiasing is implemented in
the same way as in the WEAT test. For race debias-
ing, we use a 3-dimensional embedding subspace



Gender Race
Original WEAT 6-8 | WEAT 3-5

None .898 .869 584
Tuples 1.000 988 .589
SVM 987 978 .567
DensRay .897 .869 581
MaxCov 945 940 825
MaxCorr 976 965 .627

Table 5: Spearman correlations from the ECT test
(higher is better).

representing all three racial categories.* We use oc-
cupation statistics from 2015, which are the most
recent data provided by Garg et al. (2018).

Results. The results are reported in Table 4. Prior
to debiasing, we measure a high R? value for fe-
male bias and lower R? values for racial bias, with
RND almost completely uncorrelated with occu-
pational bias for the Hispanic group. Among the
five debiasing methods, MaxCorr is most effec-
tive in removing female bias, while MaxCov is
most effective in removing Asian bias. For the
Hispanic group, most debiasing methods worsen
the R? value rather than improving it. This sug-
gests that debiasing methods may unintentionally
introduce bias if it is not already detected in the
embedding space.

5.5 Embedding Coherence Test

Finally, we subject our subspace estimation meth-
ods to the embedding coherence test (ECT, Dev
and Phillips, 2019). Whereas the WEAT test and
the occupation statistics analysis measure bias by
the distance of target words to attribute words, the
ECT test instead considers the ranking of target
words in terms of their distance to attribute words.
In the ECT test, we are given sets of attribute
words A; and As along with a set of profession
words P. Two rankings of the profession words
are computed, based on cos(mean,,ex, ([w]), [p])
for p € Pand ¢ € {1,2}. Bias is measured by the
Spearman correlation between the two rankings.

Setup. We replicate the original conditions of
Dev and Phillips (2019), which measures gender
bias using the list of profession words and the
gendered word pairs from Bolukbasi et al. (2016).
This setup gives an unfair advantage to the Tuples
method, however, because the gendered word pairs
are the same as the word pairs used in the Tuples

“Details are provided in Appendix B.

method, meaning that the Tuples method estimates
bias precisely with respect to the specific words
used in the test. To alleviate this, we run a sec-
ond ECT test for gender bias using the “male” and
“female” words from WEAT 6-8 as attributes. To
measure racial bias, we run a third ECT test using
the “European American” and “African American”
words from WEAT 3-5 as attributes.

Results. The results of the test are shown in Ta-
ble 5. This time, more gender bias is measured
before debiasing than racial bias. With the excep-
tion of DensRay, all subspace estimation methods
perform remarkably well in improving ECT results
for gender, with the Tuples method performing the
best. Unsurprisingly, the Tuples method performs
perfectly when its defining words are used as the
attribute sets. On race, none of the estimation meth-
ods substantially impact ECT results, except for
MaxCov and MaxCorr, with the former removing
most of the measured bias.

6 Conclusion

Most approaches to the estimation of interpretable
subspaces rely on the exploitation of lexical struc-
tures such as male—female word pairings. Unfor-
tunately, such symmetries are only available for a
small range of concepts: Black—White word pairs,
for example, are not readily available in most lan-
guages. However, by treating semantic properties
as continuous rather than binary, MaxCov and Max-
Corr instead exploit the structure of the real num-
bers. As our experiments show, numerical scores
can be obtained for a large number of reference
words at a low cost and with great flexibility. The
strength of our approach is especially impactful
in racial debiasing, where previous methods suffer
from a lack of lexical symmetries that encode race.

As Gonen and Goldberg (2019) point out, inter-
pretable subspaces are not the only way for em-
bedding spaces to encode semantic properties, and
projection-based debiasing does not fully solve the
problem of bias on its own. Nonetheless, our tech-
nique improves the quality of interpretable sub-
spaces and expands their applicability to a greater
range of properties. We plan to further explore
these applications in future work.
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A Derivation of MaxCov and MaxCorr

In this appendix we derive the algorithms for Max-
Cov and MaxCorr. We assume that we have access
to a set of reference words W, where each reference
word w € W is associated with a score s(w) € R.
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A.1 Covariance Maximization

The formula for MaxCov is straightforwardly de-
rived from the definition of covariance. We assume
a uniform distribution on W, so that expected val-
ues over W can be identified with means over W.

Theorem 1. Let W be a set of reference words,
and let s : W — R be a scoring function. Let

a= ) (s(w) = 3)([w] - ®),

weW
where
5= rqrﬂlg%vn(s(w)) and w = rirﬂlg%vn([[w]])
Then,
a T
Tal] = a‘r‘%ﬁrixgg%(v [w], s(w)).

Proof. By definition,

<oy (v [u], s(w))

= mean ((v" [u] —v"@)(s(w) ~5))
1 T
= (Z (s(w) — 5)([uw] —w)) v.
weW

For any vector u # 0, the unit vector v that maxi-
mizes u ' v is v = u/||u||. Thus, writing

u= W}w (Z (s(w) — 5)([w] —w)) ,
weW

we have

Tl = argmax cov (v [w], s(w)).

Jvll=1 weW
The theorem follows from the observation that uw =
a/|W|, thus u/||ul| = a/||a. O

A.2 Correlation Maximization

In MaxCorr, we fit a linear model
s(w) = a' [w] + b,

and take our interpreted direction to be g = a/||al.
Intuitively, corr,ew (v " [w], s(w)) measures the
extent to which a linear relationship exists between
v [w] and s(w). When fitting the above linear
regression, we are finding the vector a that maxi-
mizes the linear relationship between a ' [w] and
s(w). Thus, a gives us the direction of the sub-
space that maximizes correlation.
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Theorem 2. Let W be a set of reference words,
and let s : W — R be a scoring function. Let

a*,b* = argmin MSE(a " [w] + b, s(w)),
ab WEW

where MSE is the mean squared errorv, given by

MSE(6(z). ¥(a)) = 157 > (v(z) ~ 6(2))°

zeX
zeX

for a finite set X and functions 1,9 : X — R.
Then,

*

= argmax corr (v ' [w], s(w)).

la*l  joj=1 weW

Proof. Fix a unit vector v. Let a,, by, be the result
of fitting a linear regression model between v " [w]
and s(w):

dy, by = argmin MESVED(Q’UT[[U)]] + b, s(w)).
a,b w

‘We use the fact that
corr
w

orr (v ] s(w))

T
= b
g‘é%(avv [w] + by, s(w))

\/1 _ MSEyew(asv T[] + by, s(w)

varyew(s(w))
which follows from the invariance of correlation
under linear mappings and the partition of sums of
squares. Since

2

thSW%)(avUT [w] + by, s(w))

> MSE(a” " [w] + b, s(w))

by the definition of @* and b*, we have
T
b
corr(ayv  [w] + bo, s(w))
* 1 *
< b
< corr(a” " [w] + b7, s(w))

= corr(apev* T[] + bor, 5(w))

where v* = a*/||a*||. Thus,
* T
* b *
g%%g(av v [w] + by, s(w))

-
= max corr(a,v ' [w] + by, s(w
mas cors(ay [u] + by, 5(w))

)
= max CoIrr(v |wj,s(w
ma. cors (v [u], (1),

whence the theorem immediately follows. O
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B Implementation of Interpretable
Subspace Estimation Methods

This appendix provides implementational details
for MaxCov, MaxCorr, the Tuples method, the
SVM method, and DensRay, as they are used in
the social bias mitigation experiment of Section 5.
Across the three evaluation methods considered in
the experiment, a total of five interpretable sub-
spaces are estimated: 1-dimensional male—female
gender subspaces in English, French, and Chinese;
a 1-dimensional Black—White English race sub-
space used for WEAT 3-5 and the ECT test; and
a 3-dimensional White—Asian—Hispanic English
race subspace used in the occupation statistics
analysis. For the purposes of this appendix, the
terms “Black,” “White,” “Asian,” and “Hispanic”
are based on racial categories in the United States
(African Americans, European Americans, Asian
Americans, and Hispanic Americans, respectively).
In all cases except when the Tuples Method is
used, a basis for the 3-dimensional White—Asian—
Hispanic subspace is estimated by orthonormal-
izing bases for three separate 1-dimensional sub-
spaces.

B.1 MaxCov and MaxCorr

The four 1-dimensional subspaces are estimated
using the following datasets.

* English Gender: SKB19-G

* French Gender: Ga08-G

* Chinese Gender: Ba21-G

* Black—White Race: SD18-Ra

The White—Asian—Hispanic race subspace is con-
structed by combining subspaces estimated from
the “White,” “Asian,” and “Hispanic” columns of
the Census-Ra dataset.

B.2 Tuples Method

Table 6 shows all word tuples used for the Tu-
ples method. The English Gender word pairs are
from Bolukbasi et al. (2016), while the first three
columns of the Race words are from Manzini et al.
(2019). The French Gender and Chinese Gender
words were obtained by manually translating the
English Gender words. The three gender subspaces
are estimated using the pairs from the English Gen-
der, French Gender, and Chinese Gender sections



English Gender | French Gender | Chinese Gender | Race
she he elle il i ik black  caucasian asian  hispanic
her his sa son 1A fBf17 | african caucasian asian  latino
woman man femme homme B/UN BA black white asian  hispanic
mary john Marie Jean BT} EA africa america asia mexico
herself  himself la le ZJ)L JLF africa  america  china  mexico
daughter son fille fils B3 %3 africa europe asia mexico
mother  father mere pere iERE] FHEF
gal guy meuf mec b ik L
girl boy fille gargon L B
female male féminine  masculin T 5

Table 6: Words used to estimate gender and race subspaces via the Tuples method. The English Gender words are
from Bolukbasi et al. (2016); the first three columns of Race words are from Manzini et al. (2019).

of Table 6. The Black—White race subspace is esti-
mated using the procedure of Manzini et al. (2019):
the first three columns of the Race section are used,
and the subspace is given by the first principal com-
ponent of the difference vectors. The White—Asian—
Hispanic subspace is estimated using the last three
columns of the Race section and taking the first
three principal components of the difference vec-
tors.

B.3 SVM Method

As described in Subsection 5.2, for each 1-
dimensional subspace we train an SVM using word
embeddings with the 7,500 highest and lowest pro-
jections onto some subspace span(Jwi] — Jwz]),
where (w1, w2) is a pair of reference words repre-
senting the target semantic concept. We use the
following word pairs for the four 1-dimensional
spaces.

* English Gender: she—he

* French Gender: elle—il

+ Chinese Gender: Z— 5

» Black—White Race: blacks—whites

For the White—Asian—Hispanic subspace, we com-
bine three 1-dimensional subspaces obtained us-
ing the pairs whites—hispanics, whites—asians, and
asians—hispanics.

B.4 DensRay

Table 8 shows the word sets used for DensRay. Fol-
lowing Dufter and Schiitze (2019), we use the kin-
ship terms from Mikolov et al. (2013a) in order to
estimate the English gender subspace. These words
are shown in the English Male Kinship Terms
and English Female Kinship Terms sections of Ta-
ble 8. Likewise, the French and Chinese gender
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subspaces are also estimated using kinship terms.
The French kinship terms were translated by the
authors, while the Chinese kinship terms were ob-
tained from the Wikipedia page Chinese kinship.’
For Black—White race we use the given names from
Kiritchenko and Mohammad (2018), shown in the
African American Given Names and European
American Given Names sections of Table 8. The
remaining sections of the table consist of family
names from Garg et al. (2018). Using these sets of
names, we estimate the White—Asian—Hispanic sub-
space by combining a White—Asian subspace, an
Asian—Hispanic subspace, and a Hispanic—White
subspace.

C Dataset Permissions

Table 7 lists the permissions for the datasets used
to estimate interpretable subspaces with MaxCov
and MaxCorr. Table 1 contains a mixture of public-
domain government publications, open access aca-
demic publications, and closed access publications.
For each open access dataset, we provide a link to
its associated license.

Shttps://en.wikipedia.org/wiki/
Chinese_kinship


https://en.wikipedia.org/wiki/Chinese_kinship
https://en.wikipedia.org/wiki/Chinese_kinship

Data Source

Open Access? License

Kennison and Trofe (2003) No N/A

Gabiriel et al. (2008) No N/A

Gilet et al. (2012) No N/A

Pew Research Center (2012) Yes Pew Research Center Terms of Use
Yao et al. (2017) No N/A

Mohammad (2018) Yes CCBY 4.0

Stelter and Degner (2018) Yes CCBY 4.0

National Institute of Statistics and Economic Studies (2019) Yes License Ouverte/Open License 2.0
Scott et al. (2019) Yes CCBY 4.0

United States Social Security Administration (2019) Yes CC01.0

Bao (2021) Yes GPL-3

United States Census Bureau (2021) Yes Public Domain

World Bank Open Data (2022) Yes CCBY 4.0

Table 7: Permissions for the data sources listed in Table 1, including hyperlinks to licenses for open-access datasets.

English Male Kinship Terms
(Mikolov et al., 2013a)

boy, brother, brothers, dad, father, grandfather, grandpa, grandson, groom, he,
his, husband, king, man, nephew, policeman, prince, son, sons, stepbrother,
stepfather, stepson, uncle

English Female Kinship Terms
(Mikolov et al., 2013a)

aunt, bride, daughter, daughters, girl, granddaughter, grandma, grandmother,
her, mom, mother, niece, policewoman, princess, queen, she, sister, sisters,
stepdaughter, stepmother, stepsister, wife, woman

French Male Kinship Terms

beau-fils, beau-frere, beau-pere, fils, fils, frere, freres, garcon, grand-pere,
homme, il, mari, marié, neveu, oncle, papa, papi, petit-fils, policier, prince,
pere, roi, son

French Female Kinship Terms

belle-fille, belle-mere, belle-sceur, copine, elle, femme, fille, filles, fillette,
grand-mere, maman, mamie, mariée, mere, niece, petite-fille, policiere,
princesse, reine, sa, sceur, sceurs, tante

Chinese Male Kinship Terms

SLkR, RE, A, A1, AfE, B, EL, ELE E7 LT L L
B, An, WL, MR, B, RAC, AR, EE, HIL, B, SMDL,
SMNIEE, ShEhT, SNAC, SN, SMEAL, KA, KE, i, kK, o
R, R, Wik, W, wF, TR, B, B, 7L, INUEE, b T,
Ko, AN, /NB, RSL, EAL, 6, BRER, BER, AOK, §7, €8, £
;, B, B, K, BA, EF, B BE, R, &6, @i, &

Chinese Female Kinship Terms

SCEE, (AR, A8 E, EIRE, LR, A, Bk wEi, i, ®
18, Shphir, ShPMBIE, ShEE, SN L, SMEEE, KU KEE, K, K
K, ZoEE, LN, LI, &, ZFE, Ui, i, 0], 1351, Wi, o5,
IRUR, Fy, Wh, Whvh, WHIE, W5IS, WhAE, WG, AhE), MR, Wi
18, tevE, RIS, BRUR, GUMH, PREE, WRMNYr, LREE W, WEE, 4503,
8, W, fhi, FMEW, KE KU, DG, N, N R B,
%E/E ﬁ;; 2iF, W, 2% BE, B, KK Kb RE KE,
172z, PR

African American Given Names
(Kiritchenko and Mohammad, 2018)

alonzo, alphonse, darnell, ebony, jamel, jasmine, jerome, lakisha, lamar,
latisha, latoya, leroy, malik, nichelle, shaniqua, shereen, tanisha, terrence, tia,
torrance

European American Given Names
(Kiritchenko and Mohammad, 2018)

adam, alan, amanda, andrew, betsy, courtney, ellen, frank, harry, heather, jack,
josh, justin, katie, kristin, melanie, nancy, roger, ryan, stephanie

European American Family Names

(Garg et al., 2018)

adams, allen, anderson, clark, davis, harris, jackson, johnson, jones, lewis,
martin, moore, nelson, robinson, scott, taylor, thompson, williams, wilson,
wright

Asian American Family Names
(Garg et al., 2018)

chang, chen, cho, chu, chung, hong, huang, khan, kim, li, lin, liu, ng, shah,
singh, tang, wang, wong, wu, yang

Hispanic American Family Names
(Garg et al., 2018)

alvarez, castillo, castro, cruz, diaz, garcia, gomez, gonzalez, lopez, martinez,
medina, mendoza, perez, rivera, rodriguez, ruiz, sanchez, soto, torres, vargas

Table 8: Words used to estimate gender and race subspaces via DensRay.
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