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Abstract

Benchmarks play a crucial role in the development and analysis of reinforcement
learning (RL) algorithms, with environment availability strongly impacting re-
search. One particularly underexplored intersection is continual learning (CL) in
cooperative multi-agent settings. To remedy this, we introduce MEAL (Multi-agent
Environments for Adaptive Learning), the first benchmark tailored for continual
multi-agent reinforcement learning (CMARL). Existing CL benchmarks run envi-
ronments on the CPU, leading to computational bottlenecks and limiting the length
of task sequences. MEAL leverages JAX for GPU acceleration, enabling continual
learning across sequences of up to 100 tasks on a standard desktop PC within a few
hours. Evaluating popular CL and MARL methods reveals that naively combin-
ing them fails to preserve network plasticity or prevent catastrophic forgetting of
cooperative behaviors.

1 Introduction

Continual RL has recently attracted growing interest [12, 16} [7, [10], but remains largely unexplored
in multi-agent settings [31,132]]. Combining the two introduces unique challenges. In cooperative
environments, agents must establish implicit conventions or roles for effective coordination [26]. As
tasks or dynamics shift, these conventions can break down, making continual MARL significantly
harder than its single-agent counterpart. Forgetting past partners or roles can cause the entire team
to fail, amplifying the impact of catastrophic forgetting through inter-agent dependencies. Unlike
traditional MARL, CMARL involves non-stationarity not only due to the presence of other learning
agents, but also from a shifting task distribution [32]]. This dual pressure demands agents that can
generalize, adapt, and transfer knowledge more robustly than in standard single-agent continual
or static multi-agent settings. This setting is relevant for applications where agents must adapt to
evolving environments without forgetting prior coordination strategies. For instance, autonomous
vehicles must navigate unseen roads, adapt to new traffic regulations, and interact with unfamiliar
human drivers, while occasionally coordinating with other AVs. Similarly, warehouse robots deployed
in a new facility must quickly adapt to different layouts and workflows, while preserving established
collaborative behaviors.

To analyze how current methods handle the interplay between continual learning and multi-agent
coordination, and to drive progress in this domain, we introduce MEAL, the first benchmark for
CMARL. To the best of our knowledge, MEA is also the first continual RL library to leverage
JAX for end-to-end GPU acceleration. Traditional CPU-based benchmarks are limited to short
sequences (5—15 tasks) due to low environment throughput and task diversity [25} 21 28], making
them ill-suited for the computational demands of cooperative continual learning. MEAL’s end-to-end
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JAX pipeline removes this barrier, enabling training on up to 100 tasks within a few hours on a single
desktop GPU. This unlocks new research directions for scalable, cooperative continual learning in
resource-constrained settings.

MEAL is built on Overcooked [5]], where agents are known to exploit spurious correlations in
fixed layouts, leading to poor generalization even under minor changes [15]. As a result, a task
sequence with small layout variations is sufficient to pose a challenging continual learning problem.
Successfully learning across such a sequence requires agents to avoid layout-specific overfitting and
instead develop robust, transferable coordination strategies. Sequential Overcooked layouts thus offer
a controlled and reproducible way to introduce meaningful task diversity.

The contributions of our work are three-fold. (1) We introduce MEAL, the first CMARL benchmark,
consisting of handcrafted and procedurally generated Overcooked environments spanning three
difficulty levels. (2) We leverage JAX to build the first end-to-end GPU-accelerated task sequences
for continual RL, enabling efficient training on low-budget setups. (3) We implement six popular
CL methods in JAX and evaluate them in various MEALS, revealing key shortcomings in retaining
cooperative behaviors and adapting to shifting roles across tasks.

2 Related Work

Continual Reinforcement Learning (CRL) Continual reinforcement learning studies how agents
can learn sequentially from a stream of tasks without forgetting previous knowledge. A wide range of
methods have been proposed, including regularization-based approaches such as EWC [14], SI [33],
and MAS [2]; architectural strategies such as PackNet [18]]; and replay-based methods like RePR [3]].
More recent works focus on scalability [[12], memory efficiency [7]], and stability during training [6].
However, these methods are almost exclusively developed for single-agent settings, and their behavior
under multi-agent coordination remains largely unexplored.

Multi-Agent Reinforcement Learning (MARL) In MARL, multiple agents learn to act in a shared
environment, often with partial observability and either cooperative or competitive goals [13, 20]. A
major focus has been on cooperative settings, where agents share a reward function and must learn to
coordinate [17, [11]]. Popular algorithms include IPPO [8]], VDN [27], QMIX [22]], and MAPPO [30].
Many benchmarks assume a static environment and fixed task, making them unsuitable for studying
continual learning or transfer across environments.

Benchmarks Standard CRL benchmarks include Continual World [29]], COOM [28], and
CORA [21]]. While effective in single-agent settings, they either lack multi-agent capabilities or suffer
from slow CPU-bound environments. For MARL, environments like SMAC [24], MPE [19], and
Melting Pot [[1]] are widely used, but are not designed for continual evaluation. Overcooked [5] has
emerged as a useful domain for studying coordination, with recent implementations in JAX [23]]. Our
benchmark builds on Overcooked and introduces procedural variation to create long task sequences
for continual MARL.

Overcooked The Overcooked environment [3] is a cooperative multi-agent benchmark inspired by
the popular video game of the same name. Agents control chefs in a grid-based kitchen, coordinating
to prepare and deliver dishes through sequences of interactions with environment objects such as pots,
ingredient dispensers, plate stations, and delivery counters. The environment is designed to require
both motion and strategy coordination, making it a standard testbed for evaluating collaborative
behaviors.

Compared to the large state spaces and high agent counts in benchmarks like Melting Pot [1]] and
SMAC [24], Overcooked operates on small grid-based environments with only two agents. However,
its complexity arises not from scale but from credit assignment challenges due to shared rewards,
and the need for precise coordination, as agents must execute tightly coupled action sequences to
complete tasks successfully [13]. However, its fully observable and symmetric setup reduces the
need for explicit communication.
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Table 1: Comparison of existing Reinforcement Learning benchmarks with MEAL

Benchmark No. Difficulty GPU- Action Multi- Continual
Tasks Levels accelerated Space Agent Learning
CORA [21]] 31 X v Mixed X v
MPE [19] 7 X X Continuous v X
SMAC [24] 14 v X Discrete v X
Continual World [29] 10 X X Continuous X v
Melting Pot [1]] 49 X X Discrete v X
Google Football [16] 14 v v Discrete v X
JaxMARL [23]] 33 X v Mixed v X
COOM [28] 8 v X Discrete X v
MEAL 25 v v Discrete v v

3 Preliminaries

Cooperative Multi-Agent MDP We formulate the setting as a fully observable cooperative multi-
agent task, modeled as a Markov game defined by the tuple (N, S, A%;cn, P, R,7), where N is
the number of agents, S is the state space, A’ is the action space of agent 7 with joint action space
A=A x---x AN, P: S x Ax S —[0,1] is the transition function, R: S x A x S — Risa
shared reward function, and v € [0, 1) is the discount factor. In the fully observable setting, each
agent receives the full state s € S at every time step.

Continual MARL We consider a continual MARL setting in which a shared policy mp = ng en I8

learned over a sequence of tasks 7 = M, ..., Mp, where each M; = (N, Sy, A%i € N, P;, Ry, )
is a fully observable cooperative Markov game with consistent action and observation spaces. At
training phase ¢, agents interact exclusively with M, for a fixed number of iterations A, collecting
trajectories 7¢ 1, ..., T:,A to update their policy. Past tasks and data are inaccessible, and no joint
training or replay is allowed. The focus of this work is on the task-incremental setting, where the task
identity is known during training but hidden at evaluation. The objective is to maximize cumulative
performance across all tasks and mitigate forgetting.

4 MEAL

We introduce MEAL, the first benchmark for CMARL, built on the JaxMARL [23]] version of
Overcooked. JAX [4] provides just-in-time compilation, automatic differentiation, and vectorization
through XLLA, enabling high-performance and accelerator-agnostic computation. We incorporate the
original five layouts from Overcooked-Al [5] and design 20 additional handcrafted environments.

4.1 Environment Dynamics

Observations Each agent receives a fully observable grid-based observation of shape (H, W, 26),
where H and W are the height and width of the environment, and the 26 channels encode entity
types (e.g., walls, agents, onions, plates, pots, delivery stations) and object states (e.g., cooking
progress, held item). To ensure compatibility across environments in a continual learning setting, we
fix Hmax and Wi« to the largest layout size and pad smaller layouts with walls. Observations are
then standardized to shape (Hmax, Winax, 26).

Action Space At each timestep, both agents select one of six discrete actions from a shared action
space A = {up, down, left, right, stay, interact}. Movement actions translate the agent
forward if the target tile is free (i.e., not a wall or occupied), while stay maintains the current
position. The interact action is context-dependent and allows agents to pick up or place items, add
ingredients to pots, serve completed dishes, or deliver them at the goal location. Importantly, there is
no built-in communication action; all coordination emerges from environment interactions.
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(a) Easy layouts are solvable by a sin- (b) Medium layouts contain bottle- (c) Hard layouts split the map into
gle agent as long as key tiles remain necks that restrict movement and in- disjoint regions, forcing agents to
accessible. Minimal coordination is crease the likelihood of deadlocks. specialize. Solving the task requires
required, and navigation is straight- Agents must coordinate to avoid ob- deliberate cooperation and division
forward. structing each other. of labor.

Figure 1: MEAL environments are grouped by layout difficulty: easy (minimal coordination),
medium (bottlenecks and deadlocks), and hard (specialized cooperation due to partitioned access).

Rewards Agents receive a shared team reward. The primary sparse reward is +20 for successfully
delivering a completed soup. Optional shaped rewards can be added for partial task completion:

Tt = Tdeliver T 01 - ]lonionfinfpot +ag - ]lplatefpickup +as - ]lsoupfpickupa (D

where a1, as, az are reward shaping coefficients. All rewards are shared, encouraging cooperative
behavior.

Score Function Because MEAL environment layouts vary in size, the maximum achievable return
differs per task. To ensure consistent comparison across sequences, we normalize returns using
a reference performance: the average return of a converged IPPO agent trained from scratch on
each environment. This normalizes the baseline score to 1. Note that scores can exceed 1 if a
method generalizes or transfers better than the isolated baseline. We refer to this metric as the
IPPO-Normalized Score (INS).

4.2 Layout Difficulty

We categorize the handcrafted MEAL layouts into three levels of difficulty to better interpret agent
behavior and learning dynamics. Appendix [A]depicts all the available MEAL layouts in difficulty
groups. This grouping disentangles which coordination skills agents can acquire under varying
structural constraints. Figure[T]illustrates representative layouts for each tier. In easy layouts, a single
agent can often complete the task independently as long as key tiles remain unobstructed. Medium
layouts introduce structural bottlenecks and tighter spatial constraints. Agents must coordinate their
movement, such as implicit turn-taking in narrow passages, to sustain task throughput. Hard layouts
partition the map into disjoint regions, often limiting each agent’s access to only a subset of utilities
(e.g., one agent sees only plates and onions). This forces agents to specialize and rely on their partner
to complete the part of the recipe pipeline. Continual learning becomes especially challenging: agents
must infer their new role based on the layout, and adapt strategies without forgetting past roles.

4.3 Task Sequences

Rather than a continuous domain shift, MEAL sequences involves discrete task boundaries, where
agents transition between clearly distinct environments. This setup aligns with the task-incremental
learning paradigm. We include three task sequence strategies.

Ordered Tasks follow a fixed sequence. This setting enables controlled comparisons and rapid
iteration during development, as the order remains constant across runs. Since the fixed task order
reduces variance, fewer seeds are needed to draw reliable conclusions.
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Figure 2: Five randomly generated Overcooked layouts. Each kitchen is guaranteed to be solvable.

Random To evaluate robustness, we sample task sequences randomly without replacement from
the available pool. Since tasks differ substantially, the structure of the sequence has a strong impact
on learning dynamics and knowledge transfer. Random ordering highlights method sensitivity to
transferability between task pairs, and reflects the findings of Tomilin et al. [28] that performance
often hinges on the characteristics of the first task and its downstream transfer potential.

Generated To support long sequences and continuous benchmarking, we procedurally generate
new Overcooked layouts on the fly. Each layout is guaranteed to be solvable and varies in size,
structure, and item placement. Figure 2] shows examples of generated environments. This setting
offers a virtually infinite supply of tasks and evaluates true lifelong learning under continual exposure
to unseen configurations.

4.4 Evaluation Metrics

We evaluate methods on three core metrics: Average Performance, Forgetting, and Plasticity. Let
s;(7) denote the normalized score (see Section on task j after training on task ¢, and let the task
sequence consist of NV tasks.

Average Performance We define average performance as the mean normalized score across all
tasks at the end of training. This metric captures the balance between forward transfer and retention:

1 N
A= N;sw‘) 2)

Forgetting Forgetting quantifies the degradation in performance on past tasks due to interference
from training on later ones. For each task 7 < IV, we compute the difference between the performance
immediately after training and at the end of the sequence:

1 = .
Fm e 3 (si(0) — s (i) &)

i=1

Plasticity To evaluate continual training capacity over long task sequences, we measure the model’s
ability to fit new tasks under continual learning constraints. We compute the average training score
(i.e., final performance on the current task right after training) across the entire sequence:

1 N
P = N;si(i) @)

This isolates how quickly and effectively the method learns a new task under capacity constraints,
independently of retention. Unlike Average Performance, Plasticity does not require evaluation on
previously seen tasks.

W
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Figure 3: Average performance over the course of training on a 10-task sequence using the Random
sequence strategy. Shaded regions indicate 95% confidence intervals across 5 seeds. Performance is
measured as average normalized return across all tasks in the sequence.

S Experiments

5.1 Setup

The agent is trained on each task 7; for A = 107 environment steps on-policy. During training, we
evaluate the policy after every 100 updates by running 10 evaluation episodes on all previously seen
tasks. To ensure comparability across tasks with different layouts and reward scales, we normalize
raw returns using a per-task transformation f;(-), defined such that f;(score) = 0 corresponds to a
random agent and f;(score) = 1 corresponds to a reference policy trained directly on task 7; until
convergence (we use IPPO as the reference). This yields a unified measure of success across tasks.

We run each environment for 10 million environment steps using the random task selection strategy,
repeated over five seeds. We leverage JAX to reduce the wall-clock time for training on a single
environment to around 5 minutes. All experiments are conducted on a dedicated compute node with
a 72-core 3.2 GHz AMD EPYC 7F72 CPU and a single NVIDIA A100 GPU. We adopt many of
JAXMarl’s default settings for our network configuration, IPPO setup, and training processes. For
exact hyperparameters please refer to Appendix

5.2 Baselines

We evaluate several continual learning methods. Fine-tune (FT) is a naive baseline where the
policy is trained sequentially across tasks without any mechanism to prevent forgetting. L2-
Regularization [14] adds a penalty on parameter changes to encourage stability. EWC [14] is
a regularization method that penalizes changes to important parameters, with importance measured
using the Fisher Information Matrix. Online EWC is a variant that maintains a running estimate of
parameter importance, making it more suitable for longer sequences. MAS [2] computes importance
based on how parameters influence the policy’s output, rather than gradients. PackNet [[18] incre-
mentally allocates parts of the network to each task through pruning and freezing. Finally, Continual
Backpropagation (CBP) [9] introduces architectural plasticity by periodically replacing parts of the
network to preserve adaptability over many tasks. As the MARL baseline, we opt for IPPO [8]]. It is
a natural choice as it can be seamlessly integrated with all continual learning methods. It has been
shown to outperform other MARL approaches on both SMAC [8] and Overcooked [23]], making it a
strong candidate for evaluating continual multi-agent learning in a fully observable setting.

5.3 Baseline Comparison

Figure [3|compares the performance of several continual learning methods combined with IPPO over
a 10-task sequence. None of the methods fully retain prior knowledge, most tasks are completely
forgotten once access is lost. Regularization-based approaches like EWC and MAS reduce forgetting
to a degree, but their long-term performance gains are limited. PackNet, while somewhat preserving
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Figure 4: Comparison of final average performance  Table 2: Comparison of CMARL perfor-
using MLP vs. CNN encoders for EWC and MAS. mance across CL methods on a 10-task se-
quence with random order. Results are aver-
aged over 5 seeds. CMARL metrics: A (avg.

Architecture

0.25 —MLP performance), F (forgetting), P (plasticity).
CNN
§ 0.20 Method At FlL Pt
Zois FT 0.122 0.682 0.794
E Online EWC 0.118 0.739 0.870
5010 EWC 0.121 0.710 0.881
005 MAS 0.131 0.294 0.443
PackNet 0.040 0318 0.312
0.00 L2 0.064 0.695 0.735
EWC MAS
CL Method

earlier tasks, quickly exhausts its capacity and fails to learn anything. Table [2] reports summary
metrics over 5 seeds. MAS achieves the best average performance and lowest forgetting, though at the
cost of reduced plasticity. In contrast, methods like FT, EWC and Online EWC display high plasticity
but struggle with retention, highlighting the inherent stability—plasticity trade-off in CMARL. These
results show the difficulty of maintaining both adaptability and memory in cooperative continual
multi-agent environments.

5.4 Forgetting

Comparison of CMARL performance across continual learning methods on a 10-task sequence with
random order. Results are averaged over 5 seeds. A measures final average performance, F captures
forgetting, and P reflects plasticity. MAS achieves the best overall performance and retention, while
FT shows high plasticity but suffers from catastrophic forgetting

Figure [3illustrates the extent of forgetting across tasks for FT, EWC, and MAS. Fine-tune serves as a
clear example of catastrophic forgetting. After transitioning to a new task, performance on previous
tasks rapidly collapses. In contrast, EWC and MAS manage to retain some knowledge of earlier tasks,
particularly the first one, but fail to reach the same training returns on later tasks as FT, demonstrating
the trade-off between stability and plasticity.

5.5 Encoder Architecture

In our main experiments, we adopt an MLP encoder due to its simplicity and compatibility with
low-dimensional inputs. To explore the effect of encoder choice on CMARL, we evaluate EWC
and MAS with a CNN-based encoder. Figure @] shows the impact of architecture on performance.
EWC performs slightly better with an MLP encoder, suggesting that its regularization interacts more
favorably with simpler representations. In contrast, MAS exhibits a nearly 2x, when paired with a
CNN encoder, suggesting that its functional sensitivity estimation benefits from spatial structure and
richer features.

6 Conclusion

We introduced MEAL, the first benchmark for continual multi-agent reinforcement learning. By
leveraging JAX for efficient GPU-accelerated training and introducing a diverse set of handcrafted
and procedurally generated Overcooked environments, MEAL enables the study of long-horizon
continual learning in cooperative settings. Our evaluation of six continual learning methods combined
with the IPPO algorithm reveals that existing CL techniques struggle to retain cooperative behaviors
while maintaining adaptability to new tasks. Regularization-based methods mitigate forgetting but
sacrifice plasticity, while parameter-isolation methods fail to scale with longer task sequences. These
findings highlight the need for new approaches that can handle the dual challenges of cooperation and
non-stationarity in CMARL. We hope MEAL serves as a foundation for advancing this underexplored
but important research direction.
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28 7 Limitations

239 While MEAL provides a scalable and diverse testbed for continual multi-agent reinforcement learning,
240 several limitations remain. First, MEAL is restricted to fully observable, two-agent environments
241 with discrete action spaces, limiting its applicability to partially observable or competitive multi-agent
242 settings. Second, while layout diversity is high, the domain itself is narrow. Overcooked dynamics do
243 not capture the full complexity of real-world multi-agent interactions involving language, negotiation,
244 or long-horizon planning. Third, our benchmark only evaluates task-incremental learning. Future
245 work could extend MEAL to other continual learning protocols. Finally, we only consider continual
246 learning in settings where the environment layout changes across tasks, but not the partner agent.
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0 A Environment Layouts

351 A.1 Easy Layouts

(a) basic_kitchen_large  (b) basic_kitchen_small (c) shared_wall (d) square_arena

(e) cramped_room (f) smallest_kitchen (g) no_cooperation (h) big_kitchen

(i) vertical_corridors (j) horizontal_corridors (k) resource_sharing (1) easy_layout

(m) asymm_advantages

Figure 6: Easy MEAL layouts (coordination not required).



352 A.2 Medium Layouts

(a) efficiency_test (b) split_work (c) corridor_challenge (d) bottleneck_small
(e) bottleneck_large (f) c_kitchen (g) coord_ring (h) counter_circuit

Figure 7: Medium MEAL layouts (bottlenecks and deadlock risk).

353 A.3 Hard Layouts

(a) split_kitchen (b) basic_cooperative (c) forced_coord (d) forced_coord_2

Figure 8: Hard MEAL layouts (partitioned regions, specialization needed).

s« B Hyperparameters
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Table 3: Common hyper-parameters for all MEAL experiments. Values are fixed across methods and
experiments unless stated otherwise.

Parameter Value
IPPO / optimisation
Learning rate 7 3x 107"
Anneal LR No (linear schedule optional)
Total env. steps per task A 107
Num. envs (parallel) 16
Rollout length T 128
Update epochs 8
Minibatches per update 8
Batch size 16 x 128 = 2048
0% 0.99
GAE )\ 0.957
Clipping € 0.2
Entropy coef. cen 0.01
Value-loss coef. vt 0.5
Max grad-norm 0.5
Continual-learning specifics
Sequence length | 7| 10 tasks (random order)
CL method coefficients A 1 x 10% (EWC) / 1 x 10° (L2, MAS)
EWC mode / decay Online / 0.9
Importance episodes / steps 5 / 500
Regularise critic / heads No / Yes
Misc. settings
Reward shaping Yes, anneal to 0 after 2.5 x 10° steps
Evaluation interval every 100 updates (10 episodes)
Seeds {1,2,3,4,5}

355 NeurIPS Paper Checklist

356 1. Claims

357 Question: Do the main claims made in the abstract and introduction accurately reflect the
358 paper’s contributions and scope?

359 Answer: [Yes]

360 Justification: The abstract and introduction clearly state the main contributions: MEAL as
361 the first benchmark CMARL benchmark, its GPU-accelerated JAX implementation, and
362 empirical evaluation of six continual learning methods. These claims are supported by the
363 benchmark design and experimental results presented in the paper.

364 Guidelines:

365 * The answer NA means that the abstract and introduction do not include the claims
366 made in the paper.

367  The abstract and/or introduction should clearly state the claims made, including the
368 contributions made in the paper and important assumptions and limitations. A No or
369 NA answer to this question will not be perceived well by the reviewers.

370 * The claims made should match theoretical and experimental results, and reflect how
37 much the results can be expected to generalize to other settings.

372 * It is fine to include aspirational goals as motivation as long as it is clear that these goals
373 are not attained by the paper.

374 2. Limitations

375 Question: Does the paper discuss the limitations of the work performed by the authors?
376 Answer: [Yes]

377 Justification: Discussed in Section[7]
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Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

e The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not present any theoretical results or proofs
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All experimental settings, hardware, hyperparameters, and evaluation protocols
are described in the main text and appendix. The use of JAX ensures deterministic execution
and full reproducibility of results.

Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We included an anonymous GitHub link and will release the full codebase and
environment definitions upon publication, including setup instructions, training scripts, and
evaluation tools, to ensure faithful reproduction of all experimental results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All relevant training and evaluation details, including optimizer settings,
number of steps, number of environments, regularization parameters, encoder architectures,
and evaluation frequency, are provided in the main paper, with a full list of hyperparameters
summarized in Appendix

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report 95% confidence intervals across 5 random seeds in relevant plots
(Figure [3]and Figure [5).

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Explained in Section[5.1]

Guidelines:
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* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work adheres fully to the NeurIPS Code of Ethics. It involves no human
subjects, no sensitive data, and no foreseeable misuse or dual-use concerns. All used assets
are open-source and properly credited.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The authors cannot foresee notable societal impacts from releasing a reinforce-
ment learning benchmark.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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13.

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All reused assets, mainly including Overcooked-AI and JaxMARL, are prop-
erly cited in the paper with corresponding references.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The benchmark code, environment layouts, and evaluation scripts are new
assets. They are documented and will be released with accompanying instructions.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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16.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The benchmark development does not involve LLMs
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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