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Abstract

Benchmarks play a crucial role in the development and analysis of reinforcement1

learning (RL) algorithms, with environment availability strongly impacting re-2

search. One particularly underexplored intersection is continual learning (CL) in3

cooperative multi-agent settings. To remedy this, we introduce MEAL (Multi-agent4

Environments for Adaptive Learning), the first benchmark tailored for continual5

multi-agent reinforcement learning (CMARL). Existing CL benchmarks run envi-6

ronments on the CPU, leading to computational bottlenecks and limiting the length7

of task sequences. MEAL leverages JAX for GPU acceleration, enabling continual8

learning across sequences of up to 100 tasks on a standard desktop PC within a few9

hours. Evaluating popular CL and MARL methods reveals that naïvely combin-10

ing them fails to preserve network plasticity or prevent catastrophic forgetting of11

cooperative behaviors.12

1 Introduction13

Continual RL has recently attracted growing interest [12, 6, 7, 10], but remains largely unexplored14

in multi-agent settings [31, 32]. Combining the two introduces unique challenges. In cooperative15

environments, agents must establish implicit conventions or roles for effective coordination [26]. As16

tasks or dynamics shift, these conventions can break down, making continual MARL significantly17

harder than its single-agent counterpart. Forgetting past partners or roles can cause the entire team18

to fail, amplifying the impact of catastrophic forgetting through inter-agent dependencies. Unlike19

traditional MARL, CMARL involves non-stationarity not only due to the presence of other learning20

agents, but also from a shifting task distribution [32]. This dual pressure demands agents that can21

generalize, adapt, and transfer knowledge more robustly than in standard single-agent continual22

or static multi-agent settings. This setting is relevant for applications where agents must adapt to23

evolving environments without forgetting prior coordination strategies. For instance, autonomous24

vehicles must navigate unseen roads, adapt to new traffic regulations, and interact with unfamiliar25

human drivers, while occasionally coordinating with other AVs. Similarly, warehouse robots deployed26

in a new facility must quickly adapt to different layouts and workflows, while preserving established27

collaborative behaviors.28

To analyze how current methods handle the interplay between continual learning and multi-agent29

coordination, and to drive progress in this domain, we introduce MEAL, the first benchmark for30

CMARL. To the best of our knowledge, MEAL1 is also the first continual RL library to leverage31

JAX for end-to-end GPU acceleration. Traditional CPU-based benchmarks are limited to short32

sequences (5–15 tasks) due to low environment throughput and task diversity [25, 21, 28], making33

them ill-suited for the computational demands of cooperative continual learning. MEAL’s end-to-end34
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JAX pipeline removes this barrier, enabling training on up to 100 tasks within a few hours on a single35

desktop GPU. This unlocks new research directions for scalable, cooperative continual learning in36

resource-constrained settings.37

MEAL is built on Overcooked [5], where agents are known to exploit spurious correlations in38

fixed layouts, leading to poor generalization even under minor changes [15]. As a result, a task39

sequence with small layout variations is sufficient to pose a challenging continual learning problem.40

Successfully learning across such a sequence requires agents to avoid layout-specific overfitting and41

instead develop robust, transferable coordination strategies. Sequential Overcooked layouts thus offer42

a controlled and reproducible way to introduce meaningful task diversity.43

The contributions of our work are three-fold. (1) We introduce MEAL, the first CMARL benchmark,44

consisting of handcrafted and procedurally generated Overcooked environments spanning three45

difficulty levels. (2) We leverage JAX to build the first end-to-end GPU-accelerated task sequences46

for continual RL, enabling efficient training on low-budget setups. (3) We implement six popular47

CL methods in JAX and evaluate them in various MEALs, revealing key shortcomings in retaining48

cooperative behaviors and adapting to shifting roles across tasks.49

2 Related Work50

Continual Reinforcement Learning (CRL) Continual reinforcement learning studies how agents51

can learn sequentially from a stream of tasks without forgetting previous knowledge. A wide range of52

methods have been proposed, including regularization-based approaches such as EWC [14], SI [33],53

and MAS [2]; architectural strategies such as PackNet [18]; and replay-based methods like RePR [3].54

More recent works focus on scalability [12], memory efficiency [7], and stability during training [6].55

However, these methods are almost exclusively developed for single-agent settings, and their behavior56

under multi-agent coordination remains largely unexplored.57

Multi-Agent Reinforcement Learning (MARL) In MARL, multiple agents learn to act in a shared58

environment, often with partial observability and either cooperative or competitive goals [13, 20]. A59

major focus has been on cooperative settings, where agents share a reward function and must learn to60

coordinate [17, 11]. Popular algorithms include IPPO [8], VDN [27], QMIX [22], and MAPPO [30].61

Many benchmarks assume a static environment and fixed task, making them unsuitable for studying62

continual learning or transfer across environments.63

Benchmarks Standard CRL benchmarks include Continual World [29], COOM [28], and64

CORA [21]. While effective in single-agent settings, they either lack multi-agent capabilities or suffer65

from slow CPU-bound environments. For MARL, environments like SMAC [24], MPE [19], and66

Melting Pot [1] are widely used, but are not designed for continual evaluation. Overcooked [5] has67

emerged as a useful domain for studying coordination, with recent implementations in JAX [23]. Our68

benchmark builds on Overcooked and introduces procedural variation to create long task sequences69

for continual MARL.70

Overcooked The Overcooked environment [5] is a cooperative multi-agent benchmark inspired by71

the popular video game of the same name. Agents control chefs in a grid-based kitchen, coordinating72

to prepare and deliver dishes through sequences of interactions with environment objects such as pots,73

ingredient dispensers, plate stations, and delivery counters. The environment is designed to require74

both motion and strategy coordination, making it a standard testbed for evaluating collaborative75

behaviors.76

Compared to the large state spaces and high agent counts in benchmarks like Melting Pot [1] and77

SMAC [24], Overcooked operates on small grid-based environments with only two agents. However,78

its complexity arises not from scale but from credit assignment challenges due to shared rewards,79

and the need for precise coordination, as agents must execute tightly coupled action sequences to80

complete tasks successfully [13]. However, its fully observable and symmetric setup reduces the81

need for explicit communication.82
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Table 1: Comparison of existing Reinforcement Learning benchmarks with MEAL

Benchmark No.
Tasks

Difficulty
Levels

GPU-
accelerated

Action
Space

Multi-
Agent

Continual
Learning

CORA [21] 31 ✗ ✓ Mixed ✗ ✓
MPE [19] 7 ✗ ✗ Continuous ✓ ✗
SMAC [24] 14 ✓ ✗ Discrete ✓ ✗
Continual World [29] 10 ✗ ✗ Continuous ✗ ✓
Melting Pot [1] 49 ✗ ✗ Discrete ✓ ✗
Google Football [16] 14 ✓ ✓ Discrete ✓ ✗
JaxMARL [23] 33 ✗ ✓ Mixed ✓ ✗
COOM [28] 8 ✓ ✗ Discrete ✗ ✓

MEAL 25 ✓ ✓ Discrete ✓ ✓

3 Preliminaries83

Cooperative Multi-Agent MDP We formulate the setting as a fully observable cooperative multi-84

agent task, modeled as a Markov game defined by the tuple ⟨N,S,Ai
i∈N , P,R, γ⟩, where N is85

the number of agents, S is the state space, Ai is the action space of agent i with joint action space86

A = A1 × · · · × AN , P : S × A× S → [0, 1] is the transition function, R : S × A× S → R is a87

shared reward function, and γ ∈ [0, 1) is the discount factor. In the fully observable setting, each88

agent receives the full state s ∈ S at every time step.89

Continual MARL We consider a continual MARL setting in which a shared policy πθ = πi
θi∈N is90

learned over a sequence of tasks T = M1, . . . ,MT , where each Mt = ⟨N,St, A
ii ∈ N,Pt, Rt, γ⟩91

is a fully observable cooperative Markov game with consistent action and observation spaces. At92

training phase t, agents interact exclusively with Mt for a fixed number of iterations ∆, collecting93

trajectories τt,1, . . . , τt,∆ to update their policy. Past tasks and data are inaccessible, and no joint94

training or replay is allowed. The focus of this work is on the task-incremental setting, where the task95

identity is known during training but hidden at evaluation. The objective is to maximize cumulative96

performance across all tasks and mitigate forgetting.97

4 MEAL98

We introduce MEAL, the first benchmark for CMARL, built on the JaxMARL [23] version of99

Overcooked. JAX [4] provides just-in-time compilation, automatic differentiation, and vectorization100

through XLA, enabling high-performance and accelerator-agnostic computation. We incorporate the101

original five layouts from Overcooked-AI [5] and design 20 additional handcrafted environments.102

4.1 Environment Dynamics103

Observations Each agent receives a fully observable grid-based observation of shape (H,W, 26),104

where H and W are the height and width of the environment, and the 26 channels encode entity105

types (e.g., walls, agents, onions, plates, pots, delivery stations) and object states (e.g., cooking106

progress, held item). To ensure compatibility across environments in a continual learning setting, we107

fix Hmax and Wmax to the largest layout size and pad smaller layouts with walls. Observations are108

then standardized to shape (Hmax,Wmax, 26).109

Action Space At each timestep, both agents select one of six discrete actions from a shared action110

space A = {up, down, left, right, stay, interact}. Movement actions translate the agent111

forward if the target tile is free (i.e., not a wall or occupied), while stay maintains the current112

position. The interact action is context-dependent and allows agents to pick up or place items, add113

ingredients to pots, serve completed dishes, or deliver them at the goal location. Importantly, there is114

no built-in communication action; all coordination emerges from environment interactions.115
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(a) Easy layouts are solvable by a sin-
gle agent as long as key tiles remain
accessible. Minimal coordination is
required, and navigation is straight-
forward.

(b) Medium layouts contain bottle-
necks that restrict movement and in-
crease the likelihood of deadlocks.
Agents must coordinate to avoid ob-
structing each other.

(c) Hard layouts split the map into
disjoint regions, forcing agents to
specialize. Solving the task requires
deliberate cooperation and division
of labor.

Figure 1: MEAL environments are grouped by layout difficulty: easy (minimal coordination),
medium (bottlenecks and deadlocks), and hard (specialized cooperation due to partitioned access).

Rewards Agents receive a shared team reward. The primary sparse reward is +20 for successfully116

delivering a completed soup. Optional shaped rewards can be added for partial task completion:117

rt = rdeliver + α1 · 1onion_in_pot + α2 · 1plate_pickup + α3 · 1soup_pickup, (1)

where α1, α2, α3 are reward shaping coefficients. All rewards are shared, encouraging cooperative118

behavior.119

Score Function Because MEAL environment layouts vary in size, the maximum achievable return120

differs per task. To ensure consistent comparison across sequences, we normalize returns using121

a reference performance: the average return of a converged IPPO agent trained from scratch on122

each environment. This normalizes the baseline score to 1. Note that scores can exceed 1 if a123

method generalizes or transfers better than the isolated baseline. We refer to this metric as the124

IPPO-Normalized Score (INS).125

4.2 Layout Difficulty126

We categorize the handcrafted MEAL layouts into three levels of difficulty to better interpret agent127

behavior and learning dynamics. Appendix A depicts all the available MEAL layouts in difficulty128

groups. This grouping disentangles which coordination skills agents can acquire under varying129

structural constraints. Figure 1 illustrates representative layouts for each tier. In easy layouts, a single130

agent can often complete the task independently as long as key tiles remain unobstructed. Medium131

layouts introduce structural bottlenecks and tighter spatial constraints. Agents must coordinate their132

movement, such as implicit turn-taking in narrow passages, to sustain task throughput. Hard layouts133

partition the map into disjoint regions, often limiting each agent’s access to only a subset of utilities134

(e.g., one agent sees only plates and onions). This forces agents to specialize and rely on their partner135

to complete the part of the recipe pipeline. Continual learning becomes especially challenging: agents136

must infer their new role based on the layout, and adapt strategies without forgetting past roles.137

4.3 Task Sequences138

Rather than a continuous domain shift, MEAL sequences involves discrete task boundaries, where139

agents transition between clearly distinct environments. This setup aligns with the task-incremental140

learning paradigm. We include three task sequence strategies.141

Ordered Tasks follow a fixed sequence. This setting enables controlled comparisons and rapid142

iteration during development, as the order remains constant across runs. Since the fixed task order143

reduces variance, fewer seeds are needed to draw reliable conclusions.144
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Figure 2: Five randomly generated Overcooked layouts. Each kitchen is guaranteed to be solvable.

Random To evaluate robustness, we sample task sequences randomly without replacement from145

the available pool. Since tasks differ substantially, the structure of the sequence has a strong impact146

on learning dynamics and knowledge transfer. Random ordering highlights method sensitivity to147

transferability between task pairs, and reflects the findings of Tomilin et al. [28] that performance148

often hinges on the characteristics of the first task and its downstream transfer potential.149

Generated To support long sequences and continuous benchmarking, we procedurally generate150

new Overcooked layouts on the fly. Each layout is guaranteed to be solvable and varies in size,151

structure, and item placement. Figure 2 shows examples of generated environments. This setting152

offers a virtually infinite supply of tasks and evaluates true lifelong learning under continual exposure153

to unseen configurations.154

4.4 Evaluation Metrics155

We evaluate methods on three core metrics: Average Performance, Forgetting, and Plasticity. Let156

si(j) denote the normalized score (see Section 4.1) on task j after training on task i, and let the task157

sequence consist of N tasks.158

Average Performance We define average performance as the mean normalized score across all159

tasks at the end of training. This metric captures the balance between forward transfer and retention:160

A =
1

N

N∑
i=1

sN (i) (2)

Forgetting Forgetting quantifies the degradation in performance on past tasks due to interference161

from training on later ones. For each task i < N , we compute the difference between the performance162

immediately after training and at the end of the sequence:163

F =
1

N − 1

N−1∑
i=1

(si(i)− sN (i)) (3)

Plasticity To evaluate continual training capacity over long task sequences, we measure the model’s164

ability to fit new tasks under continual learning constraints. We compute the average training score165

(i.e., final performance on the current task right after training) across the entire sequence:166

P =
1

N

N∑
i=1

si(i) (4)

This isolates how quickly and effectively the method learns a new task under capacity constraints,167

independently of retention. Unlike Average Performance, Plasticity does not require evaluation on168

previously seen tasks.169
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Figure 3: Average performance over the course of training on a 10-task sequence using the Random
sequence strategy. Shaded regions indicate 95% confidence intervals across 5 seeds. Performance is
measured as average normalized return across all tasks in the sequence.

5 Experiments170

5.1 Setup171

The agent is trained on each task Ti for ∆ = 107 environment steps on-policy. During training, we172

evaluate the policy after every 100 updates by running 10 evaluation episodes on all previously seen173

tasks. To ensure comparability across tasks with different layouts and reward scales, we normalize174

raw returns using a per-task transformation fi(·), defined such that fi(score) = 0 corresponds to a175

random agent and fi(score) = 1 corresponds to a reference policy trained directly on task Ti until176

convergence (we use IPPO as the reference). This yields a unified measure of success across tasks.177

We run each environment for 10 million environment steps using the random task selection strategy,178

repeated over five seeds. We leverage JAX to reduce the wall-clock time for training on a single179

environment to around 5 minutes. All experiments are conducted on a dedicated compute node with180

a 72-core 3.2 GHz AMD EPYC 7F72 CPU and a single NVIDIA A100 GPU. We adopt many of181

JAXMarl’s default settings for our network configuration, IPPO setup, and training processes. For182

exact hyperparameters please refer to Appendix B.183

5.2 Baselines184

We evaluate several continual learning methods. Fine-tune (FT) is a naive baseline where the185

policy is trained sequentially across tasks without any mechanism to prevent forgetting. L2-186

Regularization [14] adds a penalty on parameter changes to encourage stability. EWC [14] is187

a regularization method that penalizes changes to important parameters, with importance measured188

using the Fisher Information Matrix. Online EWC is a variant that maintains a running estimate of189

parameter importance, making it more suitable for longer sequences. MAS [2] computes importance190

based on how parameters influence the policy’s output, rather than gradients. PackNet [18] incre-191

mentally allocates parts of the network to each task through pruning and freezing. Finally, Continual192

Backpropagation (CBP) [9] introduces architectural plasticity by periodically replacing parts of the193

network to preserve adaptability over many tasks. As the MARL baseline, we opt for IPPO [8]. It is194

a natural choice as it can be seamlessly integrated with all continual learning methods. It has been195

shown to outperform other MARL approaches on both SMAC [8] and Overcooked [23], making it a196

strong candidate for evaluating continual multi-agent learning in a fully observable setting.197

5.3 Baseline Comparison198

Figure 3 compares the performance of several continual learning methods combined with IPPO over199

a 10-task sequence. None of the methods fully retain prior knowledge, most tasks are completely200

forgotten once access is lost. Regularization-based approaches like EWC and MAS reduce forgetting201

to a degree, but their long-term performance gains are limited. PackNet, while somewhat preserving202
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Figure 4: Comparison of final average performance
using MLP vs. CNN encoders for EWC and MAS.
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Table 2: Comparison of CMARL perfor-
mance across CL methods on a 10-task se-
quence with random order. Results are aver-
aged over 5 seeds. CMARL metrics: A (avg.
performance), F (forgetting), P (plasticity).

Method A↑ F ↓ P ↑
FT 0.122 0.682 0.794
Online EWC 0.118 0.739 0.870
EWC 0.121 0.710 0.881
MAS 0.131 0.294 0.443
PackNet 0.040 0.318 0.312
L2 0.064 0.695 0.735

earlier tasks, quickly exhausts its capacity and fails to learn anything. Table 2 reports summary203

metrics over 5 seeds. MAS achieves the best average performance and lowest forgetting, though at the204

cost of reduced plasticity. In contrast, methods like FT, EWC and Online EWC display high plasticity205

but struggle with retention, highlighting the inherent stability–plasticity trade-off in CMARL. These206

results show the difficulty of maintaining both adaptability and memory in cooperative continual207

multi-agent environments.208

5.4 Forgetting209

Comparison of CMARL performance across continual learning methods on a 10-task sequence with210

random order. Results are averaged over 5 seeds. A measures final average performance, F captures211

forgetting, and P reflects plasticity. MAS achieves the best overall performance and retention, while212

FT shows high plasticity but suffers from catastrophic forgetting213

Figure 5 illustrates the extent of forgetting across tasks for FT, EWC, and MAS. Fine-tune serves as a214

clear example of catastrophic forgetting. After transitioning to a new task, performance on previous215

tasks rapidly collapses. In contrast, EWC and MAS manage to retain some knowledge of earlier tasks,216

particularly the first one, but fail to reach the same training returns on later tasks as FT, demonstrating217

the trade-off between stability and plasticity.218

5.5 Encoder Architecture219

In our main experiments, we adopt an MLP encoder due to its simplicity and compatibility with220

low-dimensional inputs. To explore the effect of encoder choice on CMARL, we evaluate EWC221

and MAS with a CNN-based encoder. Figure 4 shows the impact of architecture on performance.222

EWC performs slightly better with an MLP encoder, suggesting that its regularization interacts more223

favorably with simpler representations. In contrast, MAS exhibits a nearly 2×, when paired with a224

CNN encoder, suggesting that its functional sensitivity estimation benefits from spatial structure and225

richer features.226

6 Conclusion227

We introduced MEAL, the first benchmark for continual multi-agent reinforcement learning. By228

leveraging JAX for efficient GPU-accelerated training and introducing a diverse set of handcrafted229

and procedurally generated Overcooked environments, MEAL enables the study of long-horizon230

continual learning in cooperative settings. Our evaluation of six continual learning methods combined231

with the IPPO algorithm reveals that existing CL techniques struggle to retain cooperative behaviors232

while maintaining adaptability to new tasks. Regularization-based methods mitigate forgetting but233

sacrifice plasticity, while parameter-isolation methods fail to scale with longer task sequences. These234

findings highlight the need for new approaches that can handle the dual challenges of cooperation and235

non-stationarity in CMARL. We hope MEAL serves as a foundation for advancing this underexplored236

but important research direction.237
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Figure 5: Normalized evaluation score of each task in the 6-task sequence during training.

7 Limitations238

While MEAL provides a scalable and diverse testbed for continual multi-agent reinforcement learning,239

several limitations remain. First, MEAL is restricted to fully observable, two-agent environments240

with discrete action spaces, limiting its applicability to partially observable or competitive multi-agent241

settings. Second, while layout diversity is high, the domain itself is narrow. Overcooked dynamics do242

not capture the full complexity of real-world multi-agent interactions involving language, negotiation,243

or long-horizon planning. Third, our benchmark only evaluates task-incremental learning. Future244

work could extend MEAL to other continual learning protocols. Finally, we only consider continual245

learning in settings where the environment layout changes across tasks, but not the partner agent.246
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A Environment Layouts350

A.1 Easy Layouts351

(a) basic_kitchen_large (b) basic_kitchen_small (c) shared_wall (d) square_arena

(e) cramped_room (f) smallest_kitchen (g) no_cooperation (h) big_kitchen

(i) vertical_corridors (j) horizontal_corridors (k) resource_sharing (l) easy_layout

(m) asymm_advantages

Figure 6: Easy MEAL layouts (coordination not required).
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A.2 Medium Layouts352

(a) efficiency_test (b) split_work (c) corridor_challenge (d) bottleneck_small

(e) bottleneck_large (f) c_kitchen (g) coord_ring (h) counter_circuit

Figure 7: Medium MEAL layouts (bottlenecks and deadlock risk).

A.3 Hard Layouts353

(a) split_kitchen (b) basic_cooperative (c) forced_coord (d) forced_coord_2

Figure 8: Hard MEAL layouts (partitioned regions, specialization needed).

B Hyperparameters354
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Table 3: Common hyper-parameters for all MEAL experiments. Values are fixed across methods and
experiments unless stated otherwise.

Parameter Value

IPPO / optimisation

Learning rate η 3× 10−4

Anneal LR No (linear schedule optional)
Total env. steps per task ∆ 107

Num. envs (parallel) 16
Rollout length T 128
Update epochs 8
Minibatches per update 8
Batch size 16× 128 = 2048
γ 0.99
GAE λ 0.957
Clipping ϵ 0.2
Entropy coef. αent 0.01
Value-loss coef. αvf 0.5
Max grad-norm 0.5

Continual-learning specifics

Sequence length |T | 10 tasks (random order)
CL method coefficients λ 1× 106 (EWC) / 1× 105 (L2, MAS)
EWC mode / decay Online / 0.9
Importance episodes / steps 5 / 500
Regularise critic / heads No / Yes

Misc. settings

Reward shaping Yes, anneal to 0 after 2.5× 106 steps
Evaluation interval every 100 updates (10 episodes)
Seeds {1, 2, 3, 4, 5}

NeurIPS Paper Checklist355

1. Claims356

Question: Do the main claims made in the abstract and introduction accurately reflect the357

paper’s contributions and scope?358

Answer: [Yes]359

Justification: The abstract and introduction clearly state the main contributions: MEAL as360

the first benchmark CMARL benchmark, its GPU-accelerated JAX implementation, and361

empirical evaluation of six continual learning methods. These claims are supported by the362

benchmark design and experimental results presented in the paper.363

Guidelines:364

• The answer NA means that the abstract and introduction do not include the claims365

made in the paper.366

• The abstract and/or introduction should clearly state the claims made, including the367

contributions made in the paper and important assumptions and limitations. A No or368

NA answer to this question will not be perceived well by the reviewers.369

• The claims made should match theoretical and experimental results, and reflect how370

much the results can be expected to generalize to other settings.371

• It is fine to include aspirational goals as motivation as long as it is clear that these goals372

are not attained by the paper.373

2. Limitations374

Question: Does the paper discuss the limitations of the work performed by the authors?375

Answer: [Yes]376

Justification: Discussed in Section 7.377
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• The answer NA means that the paper has no limitation while the answer No means that379

the paper has limitations, but those are not discussed in the paper.380

• The authors are encouraged to create a separate "Limitations" section in their paper.381

• The paper should point out any strong assumptions and how robust the results are to382

violations of these assumptions (e.g., independence assumptions, noiseless settings,383

model well-specification, asymptotic approximations only holding locally). The authors384

should reflect on how these assumptions might be violated in practice and what the385

implications would be.386

• The authors should reflect on the scope of the claims made, e.g., if the approach was387

only tested on a few datasets or with a few runs. In general, empirical results often388

depend on implicit assumptions, which should be articulated.389

• The authors should reflect on the factors that influence the performance of the approach.390

For example, a facial recognition algorithm may perform poorly when image resolution391

is low or images are taken in low lighting. Or a speech-to-text system might not be392

used reliably to provide closed captions for online lectures because it fails to handle393
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and how they scale with dataset size.396

• If applicable, the authors should discuss possible limitations of their approach to397

address problems of privacy and fairness.398

• While the authors might fear that complete honesty about limitations might be used by399

reviewers as grounds for rejection, a worse outcome might be that reviewers discover400

limitations that aren’t acknowledged in the paper. The authors should use their best401

judgment and recognize that individual actions in favor of transparency play an impor-402

tant role in developing norms that preserve the integrity of the community. Reviewers403

will be specifically instructed to not penalize honesty concerning limitations.404

3. Theory assumptions and proofs405

Question: For each theoretical result, does the paper provide the full set of assumptions and406

a complete (and correct) proof?407

Answer: [NA]408

Justification: The paper does not present any theoretical results or proofs409

Guidelines:410

• The answer NA means that the paper does not include theoretical results.411

• All the theorems, formulas, and proofs in the paper should be numbered and cross-412

referenced.413

• All assumptions should be clearly stated or referenced in the statement of any theorems.414

• The proofs can either appear in the main paper or the supplemental material, but if415

they appear in the supplemental material, the authors are encouraged to provide a short416

proof sketch to provide intuition.417

• Inversely, any informal proof provided in the core of the paper should be complemented418

by formal proofs provided in appendix or supplemental material.419

• Theorems and Lemmas that the proof relies upon should be properly referenced.420

4. Experimental result reproducibility421

Question: Does the paper fully disclose all the information needed to reproduce the main ex-422

perimental results of the paper to the extent that it affects the main claims and/or conclusions423

of the paper (regardless of whether the code and data are provided or not)?424

Answer: [Yes]425

Justification: All experimental settings, hardware, hyperparameters, and evaluation protocols426

are described in the main text and appendix. The use of JAX ensures deterministic execution427

and full reproducibility of results.428

Guidelines:429

• The answer NA means that the paper does not include experiments.430
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• If the paper includes experiments, a No answer to this question will not be perceived431

well by the reviewers: Making the paper reproducible is important, regardless of432

whether the code and data are provided or not.433

• If the contribution is a dataset and/or model, the authors should describe the steps taken434

to make their results reproducible or verifiable.435

• Depending on the contribution, reproducibility can be accomplished in various ways.436

For example, if the contribution is a novel architecture, describing the architecture fully437

might suffice, or if the contribution is a specific model and empirical evaluation, it may438

be necessary to either make it possible for others to replicate the model with the same439

dataset, or provide access to the model. In general. releasing code and data is often440

one good way to accomplish this, but reproducibility can also be provided via detailed441

instructions for how to replicate the results, access to a hosted model (e.g., in the case442

of a large language model), releasing of a model checkpoint, or other means that are443

appropriate to the research performed.444

• While NeurIPS does not require releasing code, the conference does require all submis-445

sions to provide some reasonable avenue for reproducibility, which may depend on the446

nature of the contribution. For example447

(a) If the contribution is primarily a new algorithm, the paper should make it clear how448

to reproduce that algorithm.449

(b) If the contribution is primarily a new model architecture, the paper should describe450

the architecture clearly and fully.451

(c) If the contribution is a new model (e.g., a large language model), then there should452

either be a way to access this model for reproducing the results or a way to reproduce453

the model (e.g., with an open-source dataset or instructions for how to construct454

the dataset).455

(d) We recognize that reproducibility may be tricky in some cases, in which case456

authors are welcome to describe the particular way they provide for reproducibility.457

In the case of closed-source models, it may be that access to the model is limited in458

some way (e.g., to registered users), but it should be possible for other researchers459

to have some path to reproducing or verifying the results.460

5. Open access to data and code461

Question: Does the paper provide open access to the data and code, with sufficient instruc-462

tions to faithfully reproduce the main experimental results, as described in supplemental463

material?464

Answer: [Yes]465

Justification: We included an anonymous GitHub link and will release the full codebase and466

environment definitions upon publication, including setup instructions, training scripts, and467

evaluation tools, to ensure faithful reproduction of all experimental results.468

Guidelines:469

• The answer NA means that paper does not include experiments requiring code.470

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/471

public/guides/CodeSubmissionPolicy) for more details.472

• While we encourage the release of code and data, we understand that this might not be473

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not474

including code, unless this is central to the contribution (e.g., for a new open-source475

benchmark).476

• The instructions should contain the exact command and environment needed to run to477

reproduce the results. See the NeurIPS code and data submission guidelines (https:478

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.479

• The authors should provide instructions on data access and preparation, including how480

to access the raw data, preprocessed data, intermediate data, and generated data, etc.481

• The authors should provide scripts to reproduce all experimental results for the new482

proposed method and baselines. If only a subset of experiments are reproducible, they483

should state which ones are omitted from the script and why.484

• At submission time, to preserve anonymity, the authors should release anonymized485

versions (if applicable).486
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• Providing as much information as possible in supplemental material (appended to the487

paper) is recommended, but including URLs to data and code is permitted.488

6. Experimental setting/details489

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-490

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the491

results?492

Answer: [Yes]493

Justification: All relevant training and evaluation details, including optimizer settings,494

number of steps, number of environments, regularization parameters, encoder architectures,495

and evaluation frequency, are provided in the main paper, with a full list of hyperparameters496

summarized in Appendix B.497
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• The answer NA means that the paper does not include experiments.499

• The experimental setting should be presented in the core of the paper to a level of detail500

that is necessary to appreciate the results and make sense of them.501

• The full details can be provided either with the code, in appendix, or as supplemental502

material.503

7. Experiment statistical significance504

Question: Does the paper report error bars suitably and correctly defined or other appropriate505

information about the statistical significance of the experiments?506

Answer: [Yes]507

Justification: We report 95% confidence intervals across 5 random seeds in relevant plots508

(Figure 3 and Figure 5).509

Guidelines:510

• The answer NA means that the paper does not include experiments.511

• The authors should answer "Yes" if the results are accompanied by error bars, confi-512

dence intervals, or statistical significance tests, at least for the experiments that support513

the main claims of the paper.514

• The factors of variability that the error bars are capturing should be clearly stated (for515

example, train/test split, initialization, random drawing of some parameter, or overall516

run with given experimental conditions).517

• The method for calculating the error bars should be explained (closed form formula,518

call to a library function, bootstrap, etc.)519

• The assumptions made should be given (e.g., Normally distributed errors).520

• It should be clear whether the error bar is the standard deviation or the standard error521

of the mean.522

• It is OK to report 1-sigma error bars, but one should state it. The authors should523

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis524

of Normality of errors is not verified.525

• For asymmetric distributions, the authors should be careful not to show in tables or526

figures symmetric error bars that would yield results that are out of range (e.g. negative527

error rates).528

• If error bars are reported in tables or plots, The authors should explain in the text how529

they were calculated and reference the corresponding figures or tables in the text.530

8. Experiments compute resources531

Question: For each experiment, does the paper provide sufficient information on the com-532

puter resources (type of compute workers, memory, time of execution) needed to reproduce533

the experiments?534

Answer: [Yes]535

Justification: Explained in Section 5.1536

Guidelines:537
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• The answer NA means that the paper does not include experiments.538

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,539

or cloud provider, including relevant memory and storage.540

• The paper should provide the amount of compute required for each of the individual541

experimental runs as well as estimate the total compute.542

• The paper should disclose whether the full research project required more compute543

than the experiments reported in the paper (e.g., preliminary or failed experiments that544

didn’t make it into the paper).545

9. Code of ethics546

Question: Does the research conducted in the paper conform, in every respect, with the547

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?548

Answer: [Yes]549

Justification: The work adheres fully to the NeurIPS Code of Ethics. It involves no human550

subjects, no sensitive data, and no foreseeable misuse or dual-use concerns. All used assets551

are open-source and properly credited.552

Guidelines:553

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.554

• If the authors answer No, they should explain the special circumstances that require a555

deviation from the Code of Ethics.556

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-557

eration due to laws or regulations in their jurisdiction).558

10. Broader impacts559

Question: Does the paper discuss both potential positive societal impacts and negative560

societal impacts of the work performed?561

Answer: [NA]562

Justification: The authors cannot foresee notable societal impacts from releasing a reinforce-563

ment learning benchmark.564

Guidelines:565

• The answer NA means that there is no societal impact of the work performed.566

• If the authors answer NA or No, they should explain why their work has no societal567

impact or why the paper does not address societal impact.568

• Examples of negative societal impacts include potential malicious or unintended uses569

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations570

(e.g., deployment of technologies that could make decisions that unfairly impact specific571

groups), privacy considerations, and security considerations.572

• The conference expects that many papers will be foundational research and not tied573

to particular applications, let alone deployments. However, if there is a direct path to574

any negative applications, the authors should point it out. For example, it is legitimate575

to point out that an improvement in the quality of generative models could be used to576

generate deepfakes for disinformation. On the other hand, it is not needed to point out577

that a generic algorithm for optimizing neural networks could enable people to train578

models that generate Deepfakes faster.579

• The authors should consider possible harms that could arise when the technology is580

being used as intended and functioning correctly, harms that could arise when the581

technology is being used as intended but gives incorrect results, and harms following582

from (intentional or unintentional) misuse of the technology.583

• If there are negative societal impacts, the authors could also discuss possible mitigation584

strategies (e.g., gated release of models, providing defenses in addition to attacks,585

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from586

feedback over time, improving the efficiency and accessibility of ML).587

11. Safeguards588
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Question: Does the paper describe safeguards that have been put in place for responsible589

release of data or models that have a high risk for misuse (e.g., pretrained language models,590

image generators, or scraped datasets)?591

Answer: [NA]592

Justification: The paper poses no such risks.593

Guidelines:594

• The answer NA means that the paper poses no such risks.595

• Released models that have a high risk for misuse or dual-use should be released with596

necessary safeguards to allow for controlled use of the model, for example by requiring597

that users adhere to usage guidelines or restrictions to access the model or implementing598

safety filters.599

• Datasets that have been scraped from the Internet could pose safety risks. The authors600

should describe how they avoided releasing unsafe images.601

• We recognize that providing effective safeguards is challenging, and many papers do602

not require this, but we encourage authors to take this into account and make a best603

faith effort.604

12. Licenses for existing assets605

Question: Are the creators or original owners of assets (e.g., code, data, models), used in606

the paper, properly credited and are the license and terms of use explicitly mentioned and607

properly respected?608

Answer: [Yes]609

Justification: All reused assets, mainly including Overcooked-AI and JaxMARL, are prop-610

erly cited in the paper with corresponding references.611

Guidelines:612

• The answer NA means that the paper does not use existing assets.613

• The authors should cite the original paper that produced the code package or dataset.614

• The authors should state which version of the asset is used and, if possible, include a615

URL.616

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.617

• For scraped data from a particular source (e.g., website), the copyright and terms of618

service of that source should be provided.619

• If assets are released, the license, copyright information, and terms of use in the620

package should be provided. For popular datasets, paperswithcode.com/datasets621

has curated licenses for some datasets. Their licensing guide can help determine the622

license of a dataset.623

• For existing datasets that are re-packaged, both the original license and the license of624

the derived asset (if it has changed) should be provided.625

• If this information is not available online, the authors are encouraged to reach out to626

the asset’s creators.627

13. New assets628

Question: Are new assets introduced in the paper well documented and is the documentation629

provided alongside the assets?630

Answer: [Yes]631

Justification: The benchmark code, environment layouts, and evaluation scripts are new632

assets. They are documented and will be released with accompanying instructions.633
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• The answer NA means that the paper does not release new assets.635

• Researchers should communicate the details of the dataset/code/model as part of their636

submissions via structured templates. This includes details about training, license,637

limitations, etc.638

• The paper should discuss whether and how consent was obtained from people whose639

asset is used.640
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• At submission time, remember to anonymize your assets (if applicable). You can either641

create an anonymized URL or include an anonymized zip file.642

14. Crowdsourcing and research with human subjects643

Question: For crowdsourcing experiments and research with human subjects, does the paper644
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well as details about compensation (if any)?646

Answer: [NA]647

Justification: This paper does not involve crowdsourcing nor research with human subjects648

Guidelines:649

• The answer NA means that the paper does not involve crowdsourcing nor research with650

human subjects.651
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such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)661

approvals (or an equivalent approval/review based on the requirements of your country or662
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Answer: [NA]664

Justification: This paper does not involve crowdsourcing nor research with human subjects665

Guidelines:666

• The answer NA means that the paper does not involve crowdsourcing nor research with667

human subjects.668

• Depending on the country in which research is conducted, IRB approval (or equivalent)669

may be required for any human subjects research. If you obtained IRB approval, you670

should clearly state this in the paper.671

• We recognize that the procedures for this may vary significantly between institutions672

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the673

guidelines for their institution.674

• For initial submissions, do not include any information that would break anonymity (if675

applicable), such as the institution conducting the review.676

16. Declaration of LLM usage677
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only for writing, editing, or formatting purposes and does not impact the core methodology,680

scientific rigorousness, or originality of the research, declaration is not required.681

Answer: [NA]682
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