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Abstract
Large Language Models (LLMs) work sur-001
prisingly well for some complex reasoning002
problems via chain-of-thought (CoT) or tree-003
of-thought (ToT), but the underlying reasons004
remain unclear. We seek to understand the005
performance of these methods by conducting006
experimental case studies and linking the out-007
comes to sample and computational complexity008
in machine learning. We found that if problems009
can be decomposed into a sequence of reason-010
ing steps and learning to predict the next step011
has a low sample and computational complexity,012
explicitly outlining the reasoning chain with all013
necessary information for predicting the next014
step may improve performance. Conversely,015
for problems where predicting the next step is016
computationally hard, adopting ToT may yield017
better reasoning outcomes than attempting to018
formulate a short reasoning chain.019

1 Introduction020

Reasoning and planning tasks are often challeng-021

ing due to their inherently multi-step processes.022

Recently, large language models (LLMs) showed023

surprising results on reasoning problems when they024

were asked to explain their reasoning step-by-step025

through a chain of thought (CoT) (Wei et al., 2022)026

before providing their answers. This was followed027

by improvements through the use of search algo-028

rithms in the tree-of-thought (ToT) (Yao et al., 2023;029

Xie et al., 2023).030

Despite these advancements, the conditions for031

the effectiveness of chain-of-thought and tree-of-032

thought methods remain unclear. For example, CoT033

has been very successful in solving grade school034

math problems, but in the Game of 24, where four035

numbers need to be manipulated with arithmetic036

operations to obtain the number 24, CoT provides a037

solution with a short reasoning chain and fails badly,038

whereas ToT works reasonably well (Yao et al.,039

2023) (see Fig 1 for CoT and ToT representation of040

the Game of 24).041
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Figure 1: An illustration of LLM reasoning methods on the
Game of 24. Give four poker cards, the player combines the
cards using basic arithmetic operations, (+,−,×,÷), to reach
the target number of 24.

We investigate reasoning and planning problems 042

in the context of natural language processing. A 043

reasoning problem entails deducing the answer to 044

a question from provided evidence and applicable 045

reasoning rules. It often requires applying various 046

rules multiple times to connect different pieces of 047

evidence. Planning, a subset of reasoning, requires 048

an action sequence to achieve a desired goal state 049

from a current state. This involves considering 050

available actions and transition functions, which 051

estimate the resultant state from a current state 052

and action. Planning often requires reasoning over 053

a long time horizon, making it computationally 054

harder to solve. 055

In this paper, we investigate when and why CoT 056

and ToT are effective in reasoning and planning 057

problems from the viewpoint of sample complexity, 058

computational complexity of learning, and com- 059

putational complexity of reasoning. Sample com- 060

plexity measures how much data is required for 061

learning. If a learning problem is less complex, as 062

measured by the number of parameters or descrip- 063

tion length, it correspondingly requires less training 064

data (Shalev-Shwartz and Ben-David, 2014). This 065
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motivates us to analyse the sample complexity of066

decomposing a problem into multiple steps. Fur-067

thermore, learning may become computationally068

intractable if the values of hidden variables are069

not observed during learning (Aloise et al., 2009;070

Blum and Rivest, 1988), motivating us to consider071

the presence of hidden variables during learning072

of chain-of-thought. Finally, for reasoning and073

planning problems that are computationally hard to074

solve, e.g. NP-hard problems, it is unlikely that a075

small predictor producing a short chain of thought076

that can solve the problem that exists in the worst077

case. This motivates the use of more complex078

thought structures, e.g., a search tree.079

We empirically study these issues through four080

case studies on grade school mathematics (Cobbe081

et al., 2021), a simple dynamic programming prob-082

lem (Dziri et al., 2023), air travel planning (Zhao083

et al., 2023), and Game of 24 (Yao et al., 2023).084

Common grade school maths problems and the085

dynamic programming problem we consider have086

computationally efficient reasoning components.087

Air travel planning has two different efficient so-088

lutions that we compare. Finally, the Game of 24089

appears to be computationally difficult.090

We study the problems under different settings,091

including using pre-trained models, fine-tuning,092

and in-context learning. Our main findings are093

consistent over the different settings and can be094

summarized as follows:095

• CoT and ToT can enhance LLM reasoning by096

lowering the sample complexity through decom-097

posing a problem. In all four cases, decomposi-098

tion by a chain or tree structure reduces sample099

complexity and improves performance. In air100

travel planning, the decomposition with smaller101

sample complexity performs better.102

• Explicitly annotating all necessary information103

in predicting the next step can improve CoT104

performance. In the dynamic programming105

problem, we show that explicitly demonstrating106

the relevant variables helps to improve chain-107

of-thought reasoning further.108

• When finding a short chain solution is compu-109

tationally hard, a tree structure may be helpful.110

For tasks like Game of 24, finding a short-chain111

solution is likely computationally hard, and the112

tree of thought works substantially better.113

These findings suggest a few guiding principles114

for using LLM to solve reasoning and planning115

tasks in practice: 1) if simple decomposed problem116

representations can be found, consider using CoT or117

ToT, 2) explicitly annotate information required for 118

next-step prediction in the prompts, and 3) use the 119

chain of thought to solve problems in which finding 120

a short chain solution is computationally efficient, 121

otherwise, consider using the tree of thought. 122

2 Related Works 123

LLMs have shown significant progress in tackling 124

reasoning and planning problems. Initial studies 125

(Wei et al., 2022; Wang et al., 2022; Kojima et al., 126

2022; Chen et al., 2022; Gao et al., 2023) unveiled 127

various prompting techniques that enable LLMs 128

to demonstrate reasoning processes step by step, 129

thereby substantially boosting their reasoning abil- 130

ities. This approach has been swiftly adapted to 131

address everyday planning issues (Huang et al., 132

2022a,b; Ahn et al., 2022; Song et al., 2023; Wang 133

et al., 2023; Singh et al., 2023). Subsequent re- 134

search has integrated LLMs with diverse search 135

algorithms, further enhancing their capability to 136

solve complex reasoning and planning challenges 137

(Zhang et al., 2023; Yao et al., 2023; Zhao et al., 138

2023; Xie et al., 2023; Ding et al., 2023; Feng 139

et al., 2023; Hao et al., 2023; Liu et al., 2023). 140

Nonetheless, a systematic exploration of the con- 141

ditions under which these methodologies excel or 142

falter is lacking. Our work delves into the empirical 143

principles guiding LLM behaviour across different 144

reasoning frameworks, offering insights into select- 145

ing appropriate reasoning strategies for varied task 146

types. While similar efforts (Zhao et al., 2023) have 147

discussed different methods’ sample complexity for 148

solving planning problems, they overlook computa- 149

tional implications. One recent study (Dziri et al., 150

2023) discussed the Chain-of-thought’s limitation 151

of compositional reasoning, but they lack a system- 152

atic discussion on how to decide the right structure 153

for assembling the reasoning steps. Our research 154

systematically discusses LLM’s capability from the 155

sample complexity and the computational complex- 156

ity of learning and reasoning. 157

3 Preliminaries 158

3.1 Sample and Computational Complexity 159

We are interested in learning predictors, which take 160

an input, e.g., a sequence of words, and produce a 161

prediction, e.g. a label that may be used directly or 162

as a component of a larger reasoning process. The 163

predictors often have parameters that need to be 164

learned, and for simplicity, we assume that the pa- 165

rameters are discretized with a finite discretization. 166
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Instead of the number of parameters, we use a more167

general notion of description length as a measure of168

the complexity of a predictor, where the description169

length is the number of bits required to describe170

the learnable part of the predictor. Predictors with171

a small description length can be shown to require172

less training data, i.e. a small sample complexity173

(Shalev-Shwartz and Ben-David, 2014), in order to174

achieve low generalization error.175

Computational complexity is relevant in two176

ways in this paper: 1) in the amount of computa-177

tion required for learning, e.g. finding the correct178

parameters in the predictor given the training data,179

and 2) in the amount of computation required for180

reasoning, e.g. finding the solution given a problem181

after learning.182

3.2 LLM reasoning methods183

Many LLM reasoning methods have been proposed184

for performing reasoning using LLMs; we mainly185

study three representatives and their variants in this186

paper, namely Direct, Chain-of-thought (CoT), and187

Tree-of-thought (ToT).188

Direct The Direct approach utilizes LLMs to solve189

reasoning tasks by prompting the model to provide190

immediate answers. This method may have a low191

sample complexity if the neural network architec-192

ture closely aligns with the reasoning algorithm (Xu193

et al., 2020), meaning a small predictor can effec-194

tively represent the algorithm. However, challenges195

arise when unobserved variables make learning196

computationally intractable (Aloise et al., 2009;197

Blum and Rivest, 1988), though overparameteri-198

zation might ease learning difficulties (Allen-Zhu199

et al., 2019). Analyzing the alignment between the200

predictor and algorithm is complex, so we explore201

a tabular representation for simplicity. In problems202

with 𝑁 variables, each taking 𝐾 values, direct an-203

swers require learning a table of size 𝐾𝑁 , which204

exponentially increases with more variables. Em-205

pirical observations in case studies assess whether206

the transformer architecture can learn the problem207

or if it resembles table-filling behaviour.208

CoT The Chain-of-thought (Wei et al., 2022)209

method engages LLMs in generating reasoning210

steps before reaching a conclusion, either by demon-211

strating these steps in the prompt or by prompting212

the model “Let’s think step by step” (Kojima et al.,213

2022) at the end of the prompt. CoT often outper-214

forms the Direct approach in reasoning tasks by215

decomposing problems into actionable components.216

The LLM extracts or generates actions based on217

language descriptions or world knowledge, applies 218

these actions through a prediction function (i.e., 219

transition function in planning) to get the next ob- 220

servations, and grounds variable values as needed. 221

With 𝐴 possible actions, each depending on 𝑎𝑖 222

variables, the description length for these actions 223

is proportional to
∑𝐴

𝑖=1 𝐾
𝑎𝑖 . We also need a pol- 224

icy function predicting action to select based on 225

observations with its description length of 𝐾𝑀 if 226

it depends on 𝑀 variables. If the policy depends 227

only on whether the variables have been observed 228

rather than their values, then a binary table of size 229

2𝑀 is sufficient. We use the description length of 230

transition functions and policies as indicators of the 231

sample complexity for decomposed problems. 232

ToT A tree-of-thought method combines LLMs 233

with a search algorithm, structuring reasoning steps 234

into a tree and selecting promising next steps by 235

self-evaluation. It shows significant improvement 236

in hard problems (Yao et al., 2023). Unlike CoT, 237

ToT may not use a policy but relies on an evaluation 238

function for decision-making and a goal recognizer 239

for termination. The complexity of transition func- 240

tions and the evaluation process in ToT is analyzed 241

similarly to CoT. The computational complexity of 242

solving (versus learning) a reasoning or planning 243

problem becomes a key factor in choosing between 244

CoT and ToT, especially since some problems, e.g. 245

NP-complete problems, have verifiable solutions 246

in polynomial time but are unlikely to have an effi- 247

cient policy to find solutions. ToT, with its search 248

algorithm, presents a viable solution approach for 249

such hard problems. 250

We seek to understand the complexity of the prob- 251

lems in the case studies using simple representa- 252

tions. However, LLM learning uses the transformer 253

architecture and is difficult to analyse. Furthermore, 254

the effects of pre-training, which we do not control, 255

are present throughout. Instead, we empirically 256

observe whether the analysis reflects the practical 257

behaviour of the LLMs and whether the insights 258

from analysis are useful in practice, i.e. when anal- 259

ysis suggests that a particular method is preferred, 260

whether it is indeed preferred empirically. 261

4 Case Studies1 262

4.1 Grade School Maths 263

GSM8K (Cobbe et al., 2021) consists of grade 264

school math problems described in natural language. 265

It is a real-world problem that LLMs solve very well 266

1See Appendix A and E for experimental details and com-
plete prompts.
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with CoT (Achiam et al., 2023). We investigated267

a subset of 50 randomly selected problems and268

discovered that 49 of them can be solved with269

a chain-style algorithm where, at each step, an270

equation can be selected such that the values of271

all variables except one in the equation be known,272

allowing the value of the remaining variable to be273

inferred. The remaining problem that cannot be274

solved this way can be solved using simultaneous275

equations with two variables, but we ignore this276

type of problem in the remainder of this study.277

4.1.1 Analysis278

Direct Consider a problem with 𝑁 variables each279

can take 𝐾 values. A tabular representation would280

require a table of size 𝐾𝑁 and description length281

of 𝑂 (𝐾𝑁 log𝐾) for each question type, assuming282

each answer also takes 𝐾 possible values. In the283

GSM8K dataset, the variable values are usually284

limited to no more than 6 digits and the average285

number of variables per question is 3.93. Fig. 2a286

shows that both GPT-3.5 and GPT-4 do not achieve287

very high accuracy using Direct.288

CoT For chain-of-thought (CoT), assuming 𝐴 dif-289

ferent actions whose transition functions require 𝑎𝑖290

variables, the total description length of these oper-291

ations would be 𝑂 (∑𝐴
𝑖=1 𝐾

𝑎𝑖 log𝐾). In the dataset,292

the average number of variables in a reasoning step293

is 2.19, so each step is relatively simple. From our294

analysis, the number of equations that need to be295

learned as world knowledge appears to be relatively296

small (see Appendix B.1), and the average number297

of reasoning steps in the dataset is 3.17. To decide298

the next equation, we can select an equation where299

the values of all except one variable are known.300

There exists a linear time forward chaining algo-301

rithm, which we describe in the Appendix B.2, to302

do that; this translates to a relatively small policy303

that needs to be learned. These components of304

the decomposed problems look relatively simple305

and suggest that decomposition with CoT may be306

reasonable for this problem. However, the LLM307

still needs to learn to extract the equations from the308

question, to learn those that do not appear in the309

question as world knowledge, and to ground the val-310

ues of the variables from the previous observations.311

The LLMs, particularly GPT-4, do remarkably well312

on GSM8K (see Fig. 2a), indicating that extraction313

and grounding may not be major hurdles for LLMs,314

which have been trained on large amounts of data.315

Some errors are still present and are discussed in316

the Appendix B.3.317
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Figure 2: (a) Results of GPT-3.5 and GPT-4 on GSM8K Test
set; (b) Fine-tuning results on Llama2-7b

ToT We run a beam search ToT, branching after 318

each sentence on the choice of the next sentences 319

suggested by the LLM. We prompt the same LLM to 320

self-evaluate the quality of each proposed reasoning 321

step. As discussed for CoT, there is a simple policy 322

for deciding the next equation to solve, hence search 323

may give limited improvement; this agrees with our 324

experiments as shown in Fig. 2a. 325

4.1.2 Fine-tuning Experiments 326

The GPT experiments suggest that LLMs have 327

difficulties learning to solve GSM type questions 328

directly. To check that, we do fine-tuning experi- 329

ments with a simplified math word problem. We 330

construct one template word problem with seven 331

variables: 332

In a zoo, there are 𝑣1 giraffes. The number of 333

penguins is 𝑣2 times the number of giraffes, and 334

there are 𝑣3 times as many monkeys as giraffes. The 335

zoo also has zebras, which are 1/𝑣4, the number of 336

penguins, and lions, which are 1/𝑣5, the number of 337

monkeys. If penguins, monkeys, lions, and zebras 338

together make up 𝑣6% of the zoo’s total animal 339

population, and elephants constitute 𝑣7% of the 340

total, find out how many elephants are there in the 341

zoo. 342

Colored font indicates a variable, the problem 343

is essentially solving one equation: elephant = 344

(𝑣1𝑣2 + 𝑣1𝑣3 + 𝑣1𝑣3/𝑣5 + 𝑣1𝑣2/𝑣4)𝑣7/𝑣6. 345

We randomly generate 10k configurations of the 346

variables and perform supervised fine-tuning with 347

Direct and CoT with varying amounts of data from 348

1k to 10k. The results are shown in Fig. 2b. Note 349

that each CoT example provides substantially more 350

information than each Direct example, but CoT is 351

substantially better even when Direct is provided 352

with 10 times more training examples (Direct at 10k 353

vs CoT at 1k). This suggests that the transformer in 354

the LLM is behaving more like a tabular predictor 355

and is not able to learn to decompose the problem 356

internally without being trained explicitly to do so. 357
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4.2 Dynamic Programming358

We study another problem, the Maximum Weighted359

Independent Set problem (MWIS) (Kleinberg and360

Tardos, 2005): Given a sequence of integers, find361

a subsequence with maximum sum such that no362

two elements in the subsequence are adjacent in363

the original sequence. The problem can be solved364

in linear time using dynamic programming (see365

Appendix C.1). MWIS was studied in (Dziri et al.,366

2023), showing that LLMs trained on short se-367

quences generalize poorly to longer sequences. In368

this paper, we focus on the amount of annotation pro-369

vided in learning where only the answer is provided370

in Direct, whereas different levels of explicitness371

in annotation can be provided in CoT.372

4.2.1 Analysis373

Direct Consider a sequence with 𝑁 integers; each374

may take 𝐾 values. A tabular representation would375

have 𝐾𝑁 entries, where each entry needs 𝑁 bits to376

indicate the presence of the 𝑁 number in the subse-377

quence, giving a description length of 𝑂 (𝑁𝐾𝑁 ).378

CoT Using CoT (see Appendix E.2 for examples),379

we can see each reasoning step as applying a func-380

tion to known variables and derive some intermedi-381

ate results. The function may take up to 3 variables382

with a constant number of unique functions. We383

also need a table of size 𝑂 (𝑁) to indicate which384

function to use in the next step. The description385

length of CoT would be 𝑂 (𝐾3 log𝐾 + 𝑁) which386

appears manageable.387

4.2.2 In-context Learning388

In this section, we will compare prompting LLMs to389

answer the MWIS problem directly with prompting390

them to answer using CoT. We will also study two391

versions of CoT demonstrations and demonstrate392

that a more explicit demonstration can improve393

performance substantially.394

Consider the following line from the CoT demon-395

stration (see E.3 for the entire demonstration):396

Implicit prompt (from (Dziri et al., 2023)): ... Since397

dp[0] != input[0] + dp[2] (6 != -4 + 5)398

We can make it more explicit as follows:399

Explicit prompt: ... Since dp[0]=6, input[0]=-4,400

dp[2]=5, input[0] + dp[2] = 1 != 6 = dp[0]401

Both prompts demonstrate steps to use DP to402

solve the MWIS problem, but in the Implicit403

prompt, when autoregressively generating the to-404

ken "!=", the values of dp[0], input[0], dp[2], and405

input[0]+dp[2] are not explicitly stated in the im-406

mediate context and need to be inferred from all407

previous observations. 408
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Figure 3: In-context learning results on MWIS. 3-shot prompts
have one example each for sizes 4, 5, and 6, while 6-shot
prompts have two examples for these sizes. "In-domain" refers
to test examples of sizes 4, 5, and 6, and "Out-of-Domain"
refers to test examples ranging from size 6 to 10.

As shown in Fig. 3, making the demonstrations 409

explicit provides more than 20% improvement in 410

many cases compared to the implicit demonstrations 411

from (Dziri et al., 2023). This is consistent with 412

the learning problem becoming computationally 413

easier if the relevant variables are made explicit dur- 414

ing learning. The sample complexity may also be 415

smaller: the explicit demonstrations is decompos- 416

ing the single reasoning steps into multiple simpler 417

steps, effectively creating a small chain-of-thought. 418

In contrast to the making the single step a small 419

CoT, we can view deciding between "!=" and "==" 420

in the implicit demonstration as a function of all 421

the previously observed variables. The tabular rep- 422

resentation of such a function would have a large 423

description length which suggests that it would 424

require a larger sample complexity to learn. 425

We observe that prompting LLM to directly give 426

an answer yields performance comparable to the 427

implicit CoT method in Fig. 3. This suggests that 428

while we prompt the LLM to "directly" give an 429

answer, the underlying transformer model is not 430

necessarily learning it by populating a table of 431

size 𝐾𝑁 as it is unlikely to encounter a very large 432

number of examples of the MWIS problem during 433

pre-training. This suggest that the transformer used 434

in the LLM may align well with the reasoning 435

algorithm used here. We explore this further in 436

fine-tuning experiments. 437

4.2.3 Fine-tuning Experiments 438

We perform fine-tuning experiments to study both 439

in- and out-of-domain performance. 440

To examine the generalizability of the fine-tuned 441

model to OOD examples, we define two types of 442

Domain: 1) Problem size: Fine-tune with problems 443

of sizes 4, 5, and 6. Test with problems of size 444

ranging from 4 to 10. All numbers in the input 445

array are uniformly sampled from [−100, 100] 2) 446

Number range: Fine-tune and test with problems 447
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of sizes 4, 5, and 6. For fine-tuning data, num-448

bers in the input array are uniformly sampled from449

[−100, 100], while for OOD test examples, num-450

bers are uniformly sampled from [−1000, 1000].451
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Figure 4: Results of fine-tuning Llama2-7B-chat on MWIS
problem.

Results For in-domain test examples, we observe452

that CoT Explicit performs better with the same453

number of training examples compared with CoT454

Implicit and Direct. Interestingly, with more fine-455

tuning data, Direct can achieve performance similar456

to CoT Explicit. This differs from the math word457

problem in 4.1.2 where Direct is not comparable458

with CoT even with ten times more fine-tuning data.459

Training the transformer to directly approximate460

the result of this dynamic programming algorithm461

seems easier than training it to compute the result462

of a multivariate equation in 4.1.2. But it is unclear463

whether the difficulty in word math problem is due464

to computational complexity in learning or poor465

alignment of transformer with solving that equation;466

we discuss more about this in Appendix D.467

As shown in (Dziri et al., 2023), CoT is terrible at468

generalizing to reasoning length longer than train-469

ing data, worse than Direct, possibly because LLMs470

learn by doing pattern matching rather than in a com-471

positional manner (Dziri et al., 2023; Kharitonov472

and Chaabouni, 2020). However, all methods ex-473

hibit fairly good generalization to different ranges474

of numbers. In this case, pattern matching may475

be less of an issue as the structure of the solution476

remains the same.477

4.3 Air Travel Planning478

Consider the problem of planning for an air trip:479

given the starting city and destination, provide480

the flight route using the direct flights out of each481

city. For example, if the problem is: What is the482

flight route from Singapore to New Orleans? One483

valid answer might be: Singapore-San Francisco-484

Houston-New Orleans. It is a typical graph search485

problem: there is an implicit graph where nodes are486

cities on the earth, and edges are direct flights out487

of each city. Given a pair of nodes, we aim to find488

a valid path connecting two graph nodes. To solve489

this problem, we can either use LLM to predict the 490

flight route directly or use the LLM’s knowledge of 491

the flight graph between cities to conduct a graph 492

search. This problem has been studied in (Zhao 493

et al., 2023) using prompting. In this paper, we 494

go further and linearize the graph search algorithm 495

into a CoT, allowing us to study fine-tuning and 496

learning of the graph search algorithm. 497

4.3.1 Analysis 498

Assume there are 𝑁 cities in the domain, and we 499

randomly select two cities as the current and target 500

cities. We first repeat the description length anal- 501

ysis from (Zhao et al., 2023), then extend it to a 502

linearized ToT. 503

Direct & CoT Generating the path directly is 504

essentially the same as CoT as we generate the 505

next city on the path autoregressively. A concise 506

representation of this approach is a table: the row 507

and column of this table are the current city and 508

goal city, and the table entry records the next city to 509

fly to in order to get to the goal. This table has 𝑁2 510

entries in total, and each entry takes log 𝑁 bits to 511

describe. Thus, the description length of this table 512

is 𝑂 (𝑁2 log 𝑁) bits. 513

ToT Another method is to use ToT reasoning, in 514

which the LLM acts as the graph, i.e., predicts the 515

direct flight from the current city, together with a 516

hand-coded breadth-first search (BFS) algorithm to 517

find the valid route. Assuming that the total num- 518

ber of edges grows proportionally to the number of 519

cities, describing a sparse graph with 𝑁 nodes takes 520

approximately 𝑂 (𝑁 log 𝑁) bits, with log 𝑁 bits to 521

describe each city in the adjacency list. The graph 522

describes the transition functions; thus, ToT can be 523

described using 𝑂 (𝑁 log 𝑁) bits if the other com- 524

ponents are hand-coded. We can linearize the BFS 525

algorithm into a CoT which is entirely generated by 526

the LLM. Other than providing the adjacent cities 527

to each city, the components include being main- 528

taining a first-in-first-out queue, checking whether 529

a city has been visited and recognizing the goal 530

city. For a sparse graph as described, the runtime 531

of BFS is 𝑂 (𝑁), which translates to the existence 532

of relatively small predictors for all the functions. 533

4.3.2 Experiments 534

Since Direct and CoT are essentially the same, we 535

compare CoT with ToT experimentally. For ToT, 536

the LLM is used only in the expansion step of BFS, 537

when it is queried to generate the neighbour of a 538

city. In addition, we linearize the ToT process into 539

6



a CoT by generating all the intermediate steps in540

the BFS computation in ToT-linear.541

We use the Kaggle World Cities2 database data542

and sample 212 cities with more than 1 million543

populations. We divide the cities into a large city544

group (with a population of more than 5 million) and545

a mid-sized city group (with a population between 1546

million and 5 million). We sampled 58 large cities547

and 154 mid-sized cities. We use the Virtual Radar548

Server3 to get the real-time (Jan 13, 2024) flight549

data as the ground truth. We evaluate the settings of550

travelling between large cities and mid-sized cities.551
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Figure 5: Results of GPT-3.5 and GPT-4 in air travel planning.

In-context learning The result for in-context learn-552

ing is shown in Fig. 5. For GPT-3.5, ToT outper-553

forms CoT slightly in large cities and substantially554

in mid-sized cities. This is consistent with the555

analysis where the description length of CoT and556

ToT are 𝑂 (𝑁2 log 𝑁) and 𝑂 (𝑁 log 𝑁) respectively:557

the gap between CoT and ToT would be larger when558

𝑁 is larger. Surprisingly, ToT-linear is comparable559

to ToT, even for zero-shot, where the steps in the560

BFS algorithm are briefly described in the prompt561

without any examples of its execution, indicating562

that there is some pre-training of the BFS algo-563

rithm in GPT-3.5. GPT-4 generally does better than564

GPT-3.5 for ToT and CoT, possibly because it has565

been trained with more data. Interestingly, GPT-4566

does not do so well for ToT-linear, particularly for567

zero-shot, indicating that its pre-training for the568

BFS algorithm is possibly poorer than GPT-3.5.569

Fine-tuning Experiments In-context learning de-570

pends substantially on the pre-training, which we do571

not control. Fine-tuning allows us to better control572

the amount of training data used in the experiments.573

The results of our fine-tuning experiments are in574

Fig. 6. Each ToT-linear example is longer than a575

CoT example; hence, we plot the results based on576

the number of edges observed in training. The577

2https://www.kaggle.com/datasets/max-mind/world
-cities-database

3https://github.com/vradarserver/standing-data
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Figure 6: Results of fine-tuning Llama2-7b using different
dataset sizes. The CoT no FT and ToT no FT means using the
pre-trained Llama2-7b with CoT and ToT.

results are consistent with the complexity analysis, 578

with ToT-linear performing better than CoT. 579

4.4 Game of 24 580

Unlike the above-mentioned problems that can be 581

solved in polynomial time, many puzzle tasks are 582

much harder and unlikely to be efficiently solvable. 583

We use the Game of 24 shown in the introduction: 584

given four numbers, the player must use basic arith- 585

metic operations (+,−,×,÷) and all four numbers 586

to reach 24. These types of puzzle games are of- 587

ten designed to be hard to solve (Kendall et al., 588

2008), although we are not aware of results on 589

the computational complexity of the Game of 244. 590

The results in (Yao et al., 2023), obtained with 591

in-context learning, show that CoT fails while ToT 592

does substantially better. We extend the results by 593

showing that CoT fails in fine-tuning as well, sug- 594

gesting that the failure is likely due to the mismatch 595

between the computational structure of CoT and 596

the problem. We also consider the decomposition 597

of the actions for in-context learning and show that 598

the decomposition of complex actions into a se- 599

quence of simpler actions within a ToT can lead to 600

substantial improvement in performance. 601

4.4.1 Analysis 602

We provide a general form of Game of 24 for 603

analysis. Assume 𝑁 numbers are given, and each 604

number can take 𝐾 different values. The goal is 605

to use those numbers with arithmetic operations 606

(+,−,×,÷) to reach 𝑇 . For the standard Game of 607

24, 𝑁 = 4, 𝑇 = 24. 608

Direct Represented as a table, there are 𝐾𝑁 in- 609

puts. A solution is an expression consisting of 610

the 𝑁 numbers together with 𝑁 − 1 operations and 611

corresponding parentheses. Assuming log𝐾 bits 612

to represent numbers, this can be represented us- 613

ing 𝑂 (𝑁 log𝐾) bits, giving a total table size of 614

4A modified version with 𝑁 rather than four numbers,
arbitrary target number instead of 24, and only addition and
multiplication with zero allowed is the same as subset-sum, an
NP-complete problem. This suggests that similar puzzles are
computationally difficult to solve.
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𝑂 (𝑁𝐾𝑁 log𝐾) bits.615

CoT For CoT, the 𝑁 − 1 operations are produced616

in a step-by-step manner. For each step, there are617

𝑁 (𝑁 − 1)/2 ways to select two numbers and 6 dis-618

tinct operations (both ordering for − and ÷, while +619

and ∗ are symmetric), giving possible 3𝑁 (𝑁 − 1)620

actions. Each operation can be represented with621

a table with 𝐾2 entries using 𝑂 (𝐾2 log𝐾) bits,622

although pretraining likely has learned these oper-623

ations for small 𝐾. This gives a total description624

length of 𝑂 (𝑁2𝐾2 log𝐾) if each action is learned625

using its own table. If we decompose the selec-626

tion of two numbers and the arithmetic operation627

into two steps, then the total description length is628

𝑂 (𝑁2+𝐾2 log𝐾), and we consider this decomposi-629

tion in our experiments. Like other computationally630

difficult problems, there is no simple known policy631

for selecting the next action. A simple tabular pol-632

icy would have 𝑂 (𝐾𝑁 ) entries, and each described633

using 𝑂 (log 𝑁) bits.634

ToT ToT uses the same actions as CoT but does not635

need a policy. Instead, we have a goal recognizer636

and an evaluation function that decides which nodes637

to expand. Verifying whether a solution is correct638

can be done in 𝑂 (𝑁) time, hence a goal recognizer639

with a small representation exists. Difficult com-640

putational problems typically do not have a simple641

evaluation function; a tabular evaluation function642

would have 𝑂 (𝐾𝑁 ) entries. However, a ToT may643

use a larger computation budget to search a larger644

part of the search tree when the evaluation function645

is weaker, compared to CoT, where the next action646

is selected with a fixed learned policy.647

4.4.2 Experiments648

As in (Yao et al., 2023), we use the hard games649

indexed 901-1000 from 4nums.com for testing. In650

our experiments, we consider the output as correct651

if the expression evaluates to 24 and uses all the652

input numbers once. To show that it is unlikely that653

a small chain solution can be easily learned, we fine-654

tuned Llama-7b-chat with 1200 solution trajectories655

of Game of 24. Both CoT and Direct failed in all656

test cases, showing that moderate amounts of data657

are unlikely sufficient for learning in these settings.658

For in-context learning, the success rate of the 100659

games is reported in Fig. 7.660

For ToT, we use a beam search with a beam661

width of 5 and the same action and self-evaluation662

prompts as (Yao et al., 2023). We also constructed663

a more decomposed version of ToT, ToT-Decomp,664

where we decompose the action into two steps: the665

GPT-4 GPT-3.5
0

20

40

60

80

100

Su
cc

es
s R

at
e 

(%
)

Results - Game of 24
TOT (5s)
TOT-Decomp (5s)
TOT-Decomp (3s)
TOT-Decomp (1s)
CoT (5s)
Direct (5s)

TOT-GPT4-5s
TOT-GPT4

Decomp-5s

TOT-GPT3.5-5s

TOT-GPT3.5

Decomp-5s

0

10

20

30

40

50

60

70

Er
ro

r R
at

e 
(%

)

Errors - Game of 24

Transition error
Proposal error
Missing action
Answer error

Figure 7: Results of Game of 24. 5s, 3s and 1s means 5, 3,
and 1 examples in the prompt for few-shot in-context learning.

selection of two numbers and the arithmetic op- 666

eration (see Appendix E.5.1 for examples). Also, 667

ToT-Decomp uses a small CoT that provides the 668

steps for constructing the final equation from the se- 669

quence of actions and states in the solution, whereas 670

ToT directly generates the final equation from the 671

action-state sequence. 672

The results are consistent with those from (Yao 673

et al., 2023), with ToT clearly outperforming CoT 674

and Direct. We also find that ToT-Decomp substan- 675

tially outperforms ToT, demonstrating the advan- 676

tages of decomposition even within the components 677

of ToT. We perform error analysis as shown in Fig. 7, 678

where we categorize the errors into four types: 1) 679

transition error, where the next state (remaining 680

numbers) is generated incorrectly; 2) proposal er- 681

ror, where the LLM does not generate the correct 682

numbers in the action expression; 3) missing ac- 683

tions, where there are valid actions but not proposed 684

by the LLM; and 4) answer error, where the search 685

is correct but the final expression is incorrect. The 686

results show a substantial reduction in each type of 687

error in ToT-Decomp compared to ToT. 688

5 Conclusion 689

This paper introduces a detailed empirical study 690

to understand the effectiveness of chain-of-thought 691

(CoT) and tree-of-thought (ToT) reasoning in plan- 692

ning and reasoning tasks from sample and compu- 693

tational complexity in machine learning. We view 694

the CoT and the ToT as decomposition methods for 695

the underlying problem and study the complexity of 696

the component predictors in the decomposed prob- 697

lems. Our study finds that when the solution can 698

be decomposed as a chain of reasoning steps where 699

predicting the next step is not difficult, explicitly 700

demonstrating the reasoning chain during learning 701

can be helpful. Leaving out important variables for 702

deciding the next reasoning step instead of making 703

all relevant variables explicit in the demonstrations 704

can also make learning more difficult. Finally, when 705

algorithmic analysis indicates that predicting the 706

next reasoning step in a CoT is computationally 707

hard, a ToT structure can be helpful. 708
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Limitations The suggested methodology from709

this paper is to analyse the chain-of-thought as710

a decomposition of the problem and to analyse711

the complexity of its components. If learning the712

components has low sample complexity and the713

computational complexity of predicting the next714

reasoning step is low, then learning to solve the715

problem using a chain-of-thought would be rea-716

sonable. On the other hand, if the computational717

complexity of predicting the next reasoning step is718

high, it may be reasonable to consider learning the719

components and using a tree-of-thought to solve720

the problem. This oversimplifies various aspects721

of the problem. Even though the components have722

low sample complexity, it may be difficult to learn723

them in practice as the computational complexity of724

learning may be high, although this may be allevi-725

ated by overparameterization of the predictors used726

to learn the components. Another issue is out-of-727

domain generalization. As shown in the MWIS case728

study, generalization in-domain does not mean that729

the method will generalize out-of-domain, which730

may be further exacerbated by overparameteriza-731

tion. Further limitations may apply when doing732

in-context learning where very few examples are733

used. Performance may depend heavily on the pre-734

trained LLM used in this setting. Nonetheless, our735

case studies suggest that the proposed methodology736

may still be useful in the in-context learning setting.737

We would suggest using the guidelines proposed in738

this paper in a similar way that the Occam Razor739

principle in the philosophy of science is used. Oc-740

cam’s Razor suggests that simple explanations for741

a scientific phenomenon be preferred until shown742

otherwise by observations. The suggestions we743

proposed may not work all the time but should744

similarly be preferred until empirical observations745

suggest otherwise.746

Ethics Statement This paper studies reasoning747

and planning in LLMs from a general perspective.748

While we do not focus on ethics issues, reasoning749

and planning techniques can potentially be useful750

in ensuring that AI agents behave ethically through751

the use of appropriate reward or goal functions752

that may possibly be learned from data. They may753

also be used in harmful ways in planning more754

sophisticated attacks against others. Research on755

both the use of reasoning and planning for ensuring756

ethical AI agent behaviour and in mitigating the use757

of reasoning and planning in performing harmful758

attacks should be encouraged.759

References 760

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama 761
Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo 762
Almeida, Janko Altenschmidt, Sam Altman, Shyamal 763
Anadkat, et al. 2023. Gpt-4 technical report. arXiv 764
preprint arXiv:2303.08774. 765

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen 766
Chebotar, Omar Cortes, Byron David, Chelsea Finn, 767
Keerthana Gopalakrishnan, Karol Hausman, Alex 768
Herzog, et al. 2022. Do as i can, not as i say: Ground- 769
ing language in robotic affordances. arXiv preprint 770
arXiv:2204.01691. 771

Zeyuan Allen-Zhu, Yuanzhi Li, and Yingyu Liang. 2019. 772
Learning and generalization in overparameterized 773
neural networks, going beyond two layers. Advances 774
in neural information processing systems, 32. 775

Daniel Aloise, Amit Deshpande, Pierre Hansen, and 776
Preyas Popat. 2009. Np-hardness of euclidean sum-of- 777
squares clustering. Machine learning, 75:245–248. 778

Avrim Blum and Ronald Rivest. 1988. Training a 3-node 779
neural network is np-complete. Advances in neural 780
information processing systems, 1. 781

Wenhu Chen, Xueguang Ma, Xinyi Wang, and 782
William W Cohen. 2022. Program of thoughts 783
prompting: Disentangling computation from rea- 784
soning for numerical reasoning tasks. arXiv preprint 785
arXiv:2211.12588. 786

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 787
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 788
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 789
Nakano, et al. 2021. Training verifiers to solve math 790
word problems. arXiv preprint arXiv:2110.14168. 791

Ruomeng Ding, Chaoyun Zhang, Lu Wang, Yong Xu, 792
Minghua Ma, Wei Zhang, Si Qin, Saravan Raj- 793
mohan, Qingwei Lin, and Dongmei Zhang. 2023. 794
Everything of thoughts: Defying the law of pen- 795
rose triangle for thought generation. arXiv preprint 796
arXiv:2311.04254. 797

William F Dowling and Jean H Gallier. 1984. Linear- 798
time algorithms for testing the satisfiability of propo- 799
sitional horn formulae. The Journal of Logic Pro- 800
gramming, 1(3):267–284. 801

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine 802
Li, Liwei Jian, Bill Yuchen Lin, Peter West, Chandra 803
Bhagavatula, Ronan Le Bras, Jena D Hwang, et al. 804
2023. Faith and fate: Limits of transformers on 805
compositionality. arXiv preprint arXiv:2305.18654. 806

Xidong Feng, Ziyu Wan, Muning Wen, Ying Wen, 807
Weinan Zhang, and Jun Wang. 2023. Alphazero-like 808
tree-search can guide large language model decoding 809
and training. arXiv preprint arXiv:2309.17179. 810

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, 811
Pengfei Liu, Yiming Yang, Jamie Callan, and Graham 812
Neubig. 2023. Pal: Program-aided language models. 813
In International Conference on Machine Learning, 814
pages 10764–10799. PMLR. 815

9



Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong,816
Zhen Wang, Daisy Zhe Wang, and Zhiting Hu. 2023.817
Reasoning with language model is planning with818
world model. arXiv preprint arXiv:2305.14992.819

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-820
Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu821
Chen. 2021. Lora: Low-rank adaptation of large822
language models. arXiv preprint arXiv:2106.09685.823

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and824
Igor Mordatch. 2022a. Language models as zero-825
shot planners: Extracting actionable knowledge for826
embodied agents. In International Conference on827
Machine Learning, pages 9118–9147. PMLR.828

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky829
Liang, Pete Florence, Andy Zeng, Jonathan Tomp-830
son, Igor Mordatch, Yevgen Chebotar, et al. 2022b.831
Inner monologue: Embodied reasoning through832
planning with language models. arXiv preprint833
arXiv:2207.05608.834

Graham Kendall, Andrew Parkes, and Kristian Spoerer.835
2008. A survey of np-complete puzzles. ICGA836
Journal, 31(1):13–34.837

Eugene Kharitonov and Rahma Chaabouni. 2020. What838
they do when in doubt: a study of inductive biases839
in seq2seq learners. In International Conference on840
Learning Representations.841

Jon Kleinberg and Eva Tardos. 2005. Algorithm Design.842
Addison-Wesley Longman Publishing Co., Inc., USA.843

Takeshi Kojima, Shixiang Shane Gu, Machel Reid,844
Yutaka Matsuo, and Yusuke Iwasawa. 2022. Large845
language models are zero-shot reasoners. Advances846
in neural information processing systems, 35:22199–847
22213.848

Jiacheng Liu, Andrew Cohen, Ramakanth Pasunuru,849
Yejin Choi, Hannaneh Hajishirzi, and Asli Celikyil-850
maz. 2023. Making ppo even better: Value-guided851
monte-carlo tree search decoding. arXiv preprint852
arXiv:2309.15028.853

Shai Shalev-Shwartz and Shai Ben-David. 2014. Un-854
derstanding machine learning: From theory to algo-855
rithms. Cambridge university press.856

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit857
Goyal, Danfei Xu, Jonathan Tremblay, Dieter Fox,858
Jesse Thomason, and Animesh Garg. 2023. Prog-859
prompt: Generating situated robot task plans using860
large language models. In 2023 IEEE International861
Conference on Robotics and Automation (ICRA),862
pages 11523–11530. IEEE.863

Chan Hee Song, Jiaman Wu, Clayton Washington,864
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.865
Llm-planner: Few-shot grounded planning for em-866
bodied agents with large language models. In Pro-867
ceedings of the IEEE/CVF International Conference868
on Computer Vision, pages 2998–3009.869

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, 870
Amjad Almahairi, Yasmine Babaei, Nikolay Bash- 871
lykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhos- 872
ale, et al. 2023. Llama 2: Open foundation and fine- 873
tuned chat models. arXiv preprint arXiv:2307.09288. 874

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Man- 875
dlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and 876
Anima Anandkumar. 2023. Voyager: An open-ended 877
embodied agent with large language models. arXiv 878
preprint arXiv:2305.16291. 879

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, 880
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and 881
Denny Zhou. 2022. Self-consistency improves chain 882
of thought reasoning in language models. arXiv 883
preprint arXiv:2203.11171. 884

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 885
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 886
et al. 2022. Chain-of-thought prompting elicits rea- 887
soning in large language models. Advances in Neural 888
Information Processing Systems, 35:24824–24837. 889

Gail Weiss, Yoav Goldberg, and Eran Yahav. 2021. 890
Thinking like transformers. In International Con- 891
ference on Machine Learning, pages 11080–11090. 892
PMLR. 893

Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, Xu Zhao, 894
Min-Yen Kan, Junxian He, and Qizhe Xie. 2023. 895
Self-evaluation guided beam search for reasoning. 896
In Thirty-seventh Conference on Neural Information 897
Processing Systems. 898

Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S Du, Ken- 899
ichi Kawarabayashi, and Stefanie Jegelka. 2020. What 900
can neural networks reason about? In International 901
Conference on Learning Representations. 902

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 903
Thomas L Griffiths, Yuan Cao, and Karthik 904
Narasimhan. 2023. Tree of thoughts: Deliberate 905
problem solving with large language models. arXiv 906
preprint arXiv:2305.10601. 907

Shun Zhang, Zhenfang Chen, Yikang Shen, Mingyu 908
Ding, Joshua B Tenenbaum, and Chuang Gan. 2023. 909
Planning with large language models for code gener- 910
ation. arXiv preprint arXiv:2303.05510. 911

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023. 912
Large language models as commonsense knowl- 913
edge for large-scale task planning. arXiv preprint 914
arXiv:2305.14078. 915

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, 916
Omid Saremi, Joshua M. Susskind, Samy Bengio, 917
and Preetum Nakkiran. 2024. Understanding length 918
generalization by thinking like transformers. In The 919
Twelfth International Conference on Learning Repre- 920
sentations. 921

10

https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX


A Experimental Details922

All prompting experiments are done with gpt-3.5-923

turbo-1106 and gpt-4-1106-preview. All fine-924

tuning experiments are done with Llama2-7B-chat925

(Touvron et al., 2023) with LoRA 𝑟 = 64, 𝛼 = 16926

(Hu et al., 2021) applied to query and value matrices,927

and uses 𝑏𝑎𝑡𝑐ℎ_𝑠𝑖𝑧𝑒 = 1 and gradient accumula-928

tion steps= 32. The template word problem is929

fine-tuned for 10 epochs with a learning rate of930

1𝑒 − 3. MWIS and Game of 24 are fine-tuned for931

5 epochs with a learning rate of 3𝑒 − 4. Travel932

planning is fine-tuned for 300 gradient optimization933

steps with a learning rate of 3𝑒 − 4. The fine-934

tuning data is wrapped in the template "<s> [INST]935

{{prompt}} [/INST] {{completion}} </s>" and the936

loss is calculated on completion tokens.937

B GSM8K938

B.1 Common Rules in GSM8K939

We analyzed 50 problems from the GSM8K training940

set and identified a set of rules. The first five941

are general rules that can be inferred from the942

questions and are applicable to multiple problems.943

The last four are question-specific rules, involving944

commonsense knowledge that are not mentioned in945

the questions.946

1. Amount A = Amount B * multiplier947

2. Amount A = Amount B + difference948

3. Total = N_unit * Amount per unit949

4. Total = Sum of components950

5. Current Amount = Initial Amount - Amount951

Given + Amount Received952

6. Question-specific (implicit): One hour = 60953

Minutes954

7. Question-specific (implicit): one sandwich955

has two slices of bread956

8. Question-specific (implicit): face has two eyes957

9. Question-specific (implicit): 1 quarter = 25958

cent; 1 dime = 10 cent; 1 nickel = 5 cent959

B.2 An Efficient Algorithm for GSM8K960

Based on our analysis of the GSM8K problems961

in 4.1.1, we give a formulation of the GSM8K962

problems, and show that there exists an algorithm963

that has runtime linear to the total input length.964

Problem Formulation 965

Input: A set of 𝑁 variables {𝑉1, ..., 𝑉𝑁 }, where 966

the values of some variables are known (from nat- 967

ural language input), while some are unknown (to 968

be inferred); A set of 𝑀 equations {𝑅1, ..., 𝑅𝑀 }, 969

where all equations have exactly one variable on 970

LHS; A target variable 𝑉𝑡 whose value we want to 971

know. 972

Output: The value of 𝑉𝑡 . 973

The solvability of the problem ensures that for 974

all variables, if the value is not given in the natural 975

language question, will appear on the LHS of some 976

equation. 977

An Efficient Algorithm : 978

Inspired by (Dowling and Gallier, 1984), we 979

design an algorithm whose runtime is linear to the 980

size of the problem (total length of all equations). 981

We maintain a list numvars[𝑀] which stores 982

the number of unsolved variables on RHS for 983

each equation; a list lhslist[𝑀] which stores 984

which variable is on LHS of an equation; a list 985

equationlist[𝑁] which stores the index of the 986

equations where the corresponding variable appears 987

on RHS. We say an equation 𝑅𝑖 is ready to be pro- 988

cessed if numvars[𝑖] = 0. We maintain a queue 989

that will contain the equations that are ready to 990

be processed, and it is initialized to contain the 991

equations that are ready to process given the known 992

variables from natural language input. 993

Then we loop over the queue. Let 994

equation1 be the current head of the queue 995

and let nextvar=lhslist[equation1] be the 996

variable on the LHS of of equation1. Pop 997

the head of the queue, and iterate over 998

equationlist[nextvar], for every equation2 999

in it, reduce numvars[equation2] by 1, and if 1000

numvars[equation2] becomes 0, add equation2 1001

to the queue. 1002

Loop until the queue is empty, we would have 1003

solved the values of all 𝑁 variables. Refer to 1004

Algorithm 1 for a more concise representation of 1005

the algorithm. 1006

Complexity of the Algorithm numvars and 1007

lhslist can be initialized in 𝑂 (𝐿), where 𝐿 is 1008

the total length of all equations. When processing 1009

an equation, the decrement of numvars corresponds 1010

to the "deletion" of occurrences of the variable in 1011

an equation, each variable in the equation is looked 1012

only once, thus processing all equations also runs 1013

in 𝑂 (𝐿). Overall, the runtime of the algorithm is 1014

𝑂 (𝐿), i.e. linear to the total length of the equations. 1015

If we assume each variable appears only once on the 1016
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Algorithm 1 Forward Chaining Algorithm for
GSM8K Problems
Require:

𝑁 variables {𝑉1, . . . , 𝑉𝑁 }, with known and
unknown values.
𝑀 equations {𝑅1, . . . , 𝑅𝑀 }, each with one vari-
able on LHS.
Target variable 𝑉𝑡 to find the value of.

Ensure:
Value of 𝑉𝑡 .

1: numvars[1 . . . 𝑀] ← Number of unsolved
variables on RHS of each 𝑅𝑖 .

2: lhslist[1 . . . 𝑀] ←Variable on LHS of each
𝑅𝑖 .

3: equationlist[1 . . . 𝑁] ← Indices of 𝑅𝑖
where 𝑉 𝑗 appears on RHS.

4: Initialize queue readyQueue with indices of
𝑅𝑖 where numvars[𝑖] = 0.

5: while readyQueue is not empty do
6: 𝑖 ← Dequeue from readyQueue.
7: 𝑉 𝑗 ← lhslist[𝑖].
8: for each 𝑘 in equationlist[ 𝑗] do
9: numvars[𝑘] ← numvars[𝑘] − 1.

10: if numvars[𝑘] = 0 then
11: Enqueue 𝑘 into readyQueue.
12: end if
13: end for
14: end while
15: return Value of 𝑉𝑡 .

LHS of equations, and each equation has a number 1017

of variables up to a constant 𝐶 (as we have seen 1018

in 4.1.1, this is often true for GSM8K problems), 1019

the runtime of the algorithm would be 𝑂 (𝑁), i.e. 1020

linear to the number of variables in the problem. 1021

B.3 GSM8K Errors 1022

We observe three types of errors from GPT, namely 1023

grounding error, calculation error, and missing rule. 1024

We provide an example for each type. 1025

Listing 1: Grounding Error
Question: 1026
Annie was given a pack of crayons. The pack contained 21 1027
crayons. She already had a box of 36 crayons in her locker. 1028
Her friend Bobby gave her half the amount she already had in 1029
her locker. She decided to give her sister Mary 1/3 of her 1030
total amount of crayons. How many crayons does she give to 1031
Mary? 1032

1033
GPT-3.5 response: 1034
"Annie originally had 21 crayons in the pack and 36 crayons in 1035
her locker. 1036

So she had a total of 21 + 36 = 57 crayons. 1037
Bobby gave her half the amount she already had, so he gave her 1038
57 / 2 = 28.5 crayons, but since you can’t have half a crayon, 1039
let’s round down to 28. 1040

So she now has 57 + 28 = 85 crayons. 1041
So 1/3 of her total amount of crayons is 85 / 3 = 28.33 1042
crayons, but since you can’t have a fraction of a crayon, let’ 1043
s round down to 28 crayons. 1044
So she gives Mary 28 crayons. 1045
So the answer is 28." 1046

In Listing 1, the problem involves using the rule 1047

"Amount A = Amount B * multiplier", which should 1048

be grounded as "Amount from Bobby = Amount in 1049

Locker * 1/2", not "Amount from Bobby = Amount 1050

Annie have in total * 1/2". 1051

Listing 2: Calculation Error
Question: 1052
To get free delivery, Alice needs to spend a minimum of $35.00 1053
online at her favorite grocery store. In her cart she has 1054

1.5 pounds of chicken at $6.00 per pound, 1 pack of lettuce 1055
for $3.00, cherry tomatoes for $2.50, 4 sweet potatoes at $0 1056
.75 each, 2 heads of broccoli for $2.00 each and a pound of 1057
Brussel sprouts for $2.50. How much more does she need to 1058
spend in order to get free delivery? 1059

1060
GPT-3.5 response: 1061
"Alice’s total so far is: 1062
(1.5 * 6) + 3 + 2.50 + (4 * 0.75) + (2 * 2) + 2.50 1063
= 9 + 3 + 2.50 + 3 + 4 + 2 + 2.50 1064
= 26.00 1065

1066
To get free delivery, she needs to spend at least $35.00. 1067
So she needs to spend 35 - 26 1068
= 9.00 more to get free delivery. 1069

1070
So the answer is 9.00." 1071

In Listing 2, the calculation is wrong. 1072

Listing 3: Missing Rule
Question: 1073
A Ferris wheel can accommodate 70 people in 20 minutes. If 1074
the Ferris wheel is open from 1:00 pm until 7:00 pm, how many 1075
people will get to ride? 1076

1077
GPT-3.5 response: 1078
"The Ferris wheel can accommodate 70 people in 20 minutes. 1079
There are 6 periods of 20 minutes from 1:00 pm to 7:00 pm. 1080
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So in total, the Ferris wheel can accommodate 70 * 6 = 4201081
people.1082
So 420 people will get to ride the Ferris wheel from 1:00 pm1083
until 7:00 pm.1084
So the answer is 420."1085

In Listing 3, one commonsense knowledge (one1086

hour has 60 minutes) not mentioned in the question1087

is not properly used in the solution.1088

C Dynamic Programming1089

C.1 Algorithm for MWIS1090

An algorithm that solves the Maximum Weighted1091

Independent Set problem and runs in time 𝑂 (𝑁)1092

where 𝑁 is the number of numbers in the input is1093

shown in Algorithm 2.1094

D Inductive bias of Transformers1095

From the math word problem and dynamic pro-1096

gramming fine-tuning experiments, we see that1097

for some tasks (maximum weighted independent1098

set), the transformer can learn to directly answer1099

the problem efficiently, while for some other tasks1100

(word problem), the direct answer is hard to learn.1101

We conduct two more experiments to study what1102

might affect the performance of learning to direct1103

answer other than sample complexity: 1) learn the1104

max function, where the input is a list of integers,1105

and the expected output is the maximum value in1106

the input list. This requires only looping over the1107

sequence once, and storing one intermediate value;1108

2) another dynamic programming problem called1109

rain water5 that requires looping over the array1110

three times and storing two one-dimensional arrays1111

for memorization. These two problems are similar1112

to MWIS as they all require looping over the input1113

sequence and maintaining some internal variables1114

during the iteration. We use them to study whether1115

the difference between learning to directly answer1116

the template word problem and MWIS is related1117

to the inductive bias of transformers. To eliminate1118

the confounding part, the difficulty of language in1119

the template word problem described in 4.1.2, we1120

perform a modified version of the problem, where1121

we remove all natural language in the prompt. The1122

input would look like "1, 6, 4, 3, 2, 14, 8", and the1123

expected output for this example would be "8".1124

From the results in Table 1, we see that the1125

modified word problem has a similar performance1126

as the original version described in 4.1.2 and Fig. 2b,1127

which suggests that natural language is not the1128

5https://leetcode.com/problems/trapping-rain-
water/

Algorithm 2 Dynamic Programming Algorithm for
the Maximum Weighted Independent Set problem
Require: An array 𝑎𝑟𝑟 of integers
Ensure: A sequence of decisions maximizing a

certain criterion based on 𝑎𝑟𝑟
1: 𝑁 ← length of 𝑎𝑟𝑟
2: Initialize 𝑑𝑝 [0 . . . 𝑁 − 1] with zeros
3: 𝑑𝑝 [𝑁 − 1] ← max(𝑎𝑟𝑟 [𝑁 − 1], 0)
4: 𝑑𝑝 [𝑁−2] ← max(𝑎𝑟𝑟 [𝑁−1], 𝑎𝑟𝑟 [𝑁−2], 0)
5: for 𝑖 ← 𝑁 − 3 downto 0 do
6: 𝑑𝑝 [𝑖] ← max(𝑑𝑝 [𝑖 + 1], 𝑎𝑟𝑟 [𝑖] + 𝑑𝑝 [𝑖 +

2], 0)
7: end for
8: Initialize 𝑟𝑒𝑠𝑢𝑙𝑡 as an empty list
9: 𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 ← true

10: for 𝑖 ← 0 to 𝑁 − 3 do
11: if 𝑑𝑝 [𝑖] = 𝑎𝑟𝑟 [𝑖] + 𝑑𝑝 [𝑖 + 2] and

𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 then
12: Append 1 to 𝑟𝑒𝑠𝑢𝑙𝑡
13: 𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 ← false
14: else
15: Append 2 to 𝑟𝑒𝑠𝑢𝑙𝑡
16: 𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 ← true
17: end if
18: end for
19: if 𝑑𝑝 [𝑁 − 2] = 𝑎𝑟𝑟 [𝑁 − 2] and

𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 then
20: Append 1 to 𝑟𝑒𝑠𝑢𝑙𝑡
21: else
22: Append 2 to 𝑟𝑒𝑠𝑢𝑙𝑡
23: end if
24: if 𝑑𝑝 [𝑁 − 1] = 𝑎𝑟𝑟 [𝑁 − 1] and

𝑐𝑎𝑛_𝑎𝑐𝑐𝑒𝑠𝑠_𝑛𝑒𝑥𝑡_𝑖𝑡𝑒𝑚 then
25: Append 1 to 𝑟𝑒𝑠𝑢𝑙𝑡
26: else
27: Append 2 to 𝑟𝑒𝑠𝑢𝑙𝑡
28: end if
29: return 𝑟𝑒𝑠𝑢𝑙𝑡

Task Accuracy (%)
MWP 58.00
MWIS (𝑛 ∈ [4, 5, 6]) 98.89
MWIS (𝑛 = 200) 0.01
max (𝑛 = 30) 99.50
rain water (𝑛 = 10) 89.00

Table 1: Fine-tuning results of different problems. MWP
stands for the modified word problem where the input
contains only 7 numbers. All tasks are fine-tuned with
10k direct answer examples and evaluated on in-domain
examples.
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bottleneck of the template word problem. From1129

the table, we also see that MWIS, max, and rain1130

water perform significantly better than MWP. This1131

suggests that it might be easy for transformers to1132

learn this loop type of problem when the problem1133

size is small. However, when the problem size1134

of MWIS is large (𝑛 = 200), the model fails to1135

generalize to unseen test examples. This aligns1136

with previous findings (Weiss et al., 2021; Zhou1137

et al., 2024) that suggest that it would consume one1138

transformer layer to approximate one iteration in1139

an algorithm. And with a problem size of 200, it1140

can be hard for transformers to approximate the1141

algorithm in a generalizable way, thus some other1142

patterns in the training set may be exploited, leading1143

to poor generalization.1144
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Figure 8: Results of fine-tuning word problem.

From Fig. 8 we can see that for the template1145

word problem, the transformer can fit the training1146

set reasonably well, while the test set performance1147

peaks at 58.0%. This suggests that by learning1148

to answer directly, the transformer is behaving1149

similarly to learning by filling a table, instead of1150

learning the underlying rational function, which1151

supports our description length analysis.1152

E Prompts1153

E.1 GSM8K Prompts1154

Listing 4: GSM8K Direct prompt
direct_8s = """Please answer a math word problem given the1155
following exapmles. Respond only the answer, in the format "1156
The answer is ###."1157
Example:1158
Question: There are 15 trees in the grove. Grove workers will1159
plant trees in the grove today. After they are done, there1160
will be 21 trees. How many trees did the grove workers plant1161
today?1162
The answer is 6.1163

1164
Question: If there are 3 cars in the parking lot and 2 more1165
cars arrive, how many cars are in the parking lot?1166
The answer is 5.1167

1168
Question: Leah had 32 chocolates and her sister had 10 more1169
chocolates than her. If they ate 35, how many pieces do they1170
have left in total?1171

The answer is 39. 1172
1173

Question: Jason had 20 lollipops. He gave Denny some lollipops. 1174
Now Jason has 12 lollipops. How many lollipops did Jason give 1175
to Denny? 1176

The answer is 8. 1177
1178

Question: Shawn has five toys. For Christmas, he got two toys 1179
each from his mom and dad. How many toys does he have now? 1180
The answer is 9. 1181

1182
Question: There were nine computers in the server room. Five 1183
more computers were installed each day, from monday to 1184
thursday. How many computers are now in the server room? 1185
The answer is 29. 1186

1187
Question: Michael had 58 golf balls. On tuesday, he lost 23 1188
golf balls. On wednesday, he lost 2 more. How many golf balls 1189
did he have at the end of wednesday? 1190
The answer is 33. 1191

1192
Question: Olivia has $23. She bought five bagels for $3 each. 1193
How much money does she have left? 1194
The answer is 8. 1195

1196
Question: {question} 1197
The answer is 1198
""" 1199

Listing 5: GSM8K CoT and ToT prompt
cot_8s = """Please answer a math word problem given the 1200
following example. Respond with reasoning steps, and end with 1201
the answer, in the format "So the answer is ###." 1202
Example: 1203
Let’s think step by step. 1204
Question: There are 15 trees in the grove. Grove workers will 1205
plant trees in the grove today. After they are done, there 1206
will be 21 trees. How many trees did the grove workers plant 1207
today? 1208
Solution: There are 15 trees originally. 1209
And there were 21 trees after some more were planted. 1210
So 21 - 15 = 6 trees were planted. 1211
So the answer is 6. 1212

1213
Let’s think step by step. 1214
Question: If there are 3 cars in the parking lot and 2 more 1215
cars arrive, how many cars are in the parking lot? 1216
Solution: There are originally 3 cars. 1217
And 2 more cars arrive. 1218
So there are 3 + 2 = 5 cars now. 1219
So the answer is 5. 1220

1221
Let’s think step by step. 1222
Question: Leah had 32 chocolates and her sister had 10 more 1223
chocolates than her. If they ate 35, how many pieces do they 1224
have left in total? 1225
Solution: Originally, Leah had 32 chocolates. 1226
And her sister had 10 more chocolates than her. 1227
So her sister had 42 chocolates. 1228
So in total they had 32 + 42 = 74 chocolates. 1229
Then they ate 35 chocolates. 1230
Therefore they had 74 - 35 = 39 chocolates left. 1231
So the answer is 39. 1232

1233
Let’s think step by step. 1234
Question: Jason had 20 lollipops. He gave Denny some lollipops. 1235
Now Jason has 12 lollipops. How many lollipops did Jason give 1236
to Denny? 1237

Solution: Jason started with 20 lollipops. 1238
Then he had 12 after giving some to Denny. 1239
So he gave Denny 20 - 12 = 8 lollipops. 1240
So the answer is 8. 1241

1242
Let’s think step by step. 1243
Question: Shawn has five toys. For Christmas, he got two toys 1244
each from his mom and dad. How many toys does he have now? 1245
Solution: Shawn started with 5 toys. 1246
And he got 2 toys each from his mom and dad. 1247
So he got 2 + 2 = 4 toys. 1248
Therefore, he has 5 + 4 = 9 toys now. 1249
So the answer is 9. 1250

1251
Let’s think step by step. 1252
Question: There were nine computers in the server room. Five 1253
more computers were installed each day, from monday to 1254
thursday. How many computers are now in the server room? 1255
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Solution: There were originally 9 computers.1256
And 5 more computers were added from onday to thursday.1257
There are 4 days between monday and thursday.1258
So 5 * 4 = 20 computers were added in total.1259
So there are 9 + 20 = 29 computers now.1260
So the answer is 29.1261

1262
Let’s think step by step.1263
Question: Michael had 58 golf balls. On tuesday, he lost 231264
golf balls. On wednesday, he lost 2 more. How many golf balls1265
did he have at the end of wednesday?1266
Solution: Michael started with 58 golf balls.1267
And he lost 23 golf balls on tuesday.1268
So after losing 23 on tuesday, he had 58 -23 = 35.1269
And then he lost 2 more golf balls on wednesday.1270
So after losing 2 more on wednesday, he had 35 - 2 = 33 golf1271
balls.1272
So the answer is 33.1273

1274
Let’s think step by step.1275
Question: Olivia has $23. She bought five bagels for $3 each.1276
How much money does she have left?1277
Solution: Olivia had 23 dollars.1278
And she bought 5 bagels.1279
And each bagel costs 3 dollars.1280
So she spent 5 * 3 = 15 dollars.1281
So she has 23 - 15 = 8 dollars left.1282
So the answer is 8.1283

1284
Let’s think step by step.1285
Question: {question}1286
Solution:1287
"""1288

Listing 6: GSM8K ToT self-evaluation prompts
evaluate_prompt = ’’’1289
Q: Julie climbed 15 steps up the giant slide. She climbed down1290
6 steps to talk to her friend, Maria. Then she climbed up 81291

steps to get to the top. How many steps does the slide have?1292
1293

A:1294
Julie climbed 15 steps up.1295
# Is the above step of reasoning:1296
# (A) Correct1297
# (B) Incorrect1298
# The above step of reasoning is (A)1299
Then she climbed down 6 steps.1300
# Is the above step of reasoning:1301
# (A) Correct1302
# (B) Incorrect1303
# The above step of reasoning is (A)1304
Then she climbed up 8 steps.1305
# Is the above step of reasoning:1306
# (A) Correct1307
# (B) Incorrect1308
# The above step of reasoning is (A)1309
So she climbed 15 + 8 = 23 steps.1310
# Is the above step of reasoning:1311
# (A) Correct1312
# (B) Incorrect1313
# The above step of reasoning is (B), because she also climbed1314
down 6 steps, so she climbed 23 - 6 = 17 steps.1315

So the slide has 23 steps.1316
# Is the above step of reasoning:1317
# (A) Correct1318
# (B) Incorrect1319
# The above step of reasoning is (A), but the value of steps1320
of slides is incorrect.1321
So the answer is 23.1322
# Is the above step of reasoning:1323
# (A) Correct1324
# (B) Incorrect1325
# The above step of reasoning is (A), but the value of steps1326
of slides is incorrect.1327

1328
1329
1330
1331
1332

Q: Suzanne read the first 15 pages of her book on Monday. She1333
read 16 more pages than that on Tuesday. Then there were 181334
pages left. How many pages are in Suzanne’s book altogether?1335

1336
A:1337
Suzanne read 15 pages on Monday.1338

# Is the above step of reasoning: 1339
# (A) Correct 1340
# (B) Incorrect 1341
# The above step of reasoning is (A) 1342
Then she read 16 more pages on Tuesday. 1343
# Is the above step of reasoning: 1344
# (A) Correct 1345
# (B) Incorrect 1346
# The above step of reasoning is (A) 1347
So she read 15 + 16 = 31 pages in total. 1348
# Is the above step of reasoning: 1349
# (A) Correct 1350
# (B) Incorrect 1351
# The above step of reasoning is (B), because she read 16 more 1352
pages than that on Tuesday, so she read 15 + 16 = 31 pages on 1353
tuesday. So she read 15 + 31 = 46 pages in total. 1354

Then there were 18 pages left. 1355
# Is the above step of reasoning: 1356
# (A) Correct 1357
# (B) Incorrect 1358
# The above step of reasoning is (A), but the value of total 1359
read pages of monday and tuesday is incorrect. 1360
So the book had 31 + 18 = 49 pages. 1361
# Is the above step of reasoning: 1362
# (A) Correct 1363
# (B) Incorrect 1364
# The above step of reasoning is (A), but the value of total 1365
read pages of monday and tuesday is incorrect. So the book had 1366
46 + 18 = 64 pages. 1367

So the answer is 49. 1368
# Is the above step of reasoning: 1369
# (A) Correct 1370
# (B) Incorrect 1371
# The above step of reasoning is (A), but the value of total 1372
read pages of monday and tuesday is incorrect. 1373

1374
1375
1376
1377
1378

Q: Allison brought some CDs online. Each CD cost $7. There was 1379
an additional charge of $4 per order for shipping costs. The 1380

total bill came to $60. How many CDs did Allison buy? 1381
1382

A: 1383
Each CD cost 7 dollars. 1384
# Is the above step of reasoning: 1385
# (A) Correct 1386
# (B) Incorrect 1387
# The above step of reasoning is (A) 1388
And there was an additional charge of 4 dollars. 1389
# Is the above step of reasoning: 1390
# (A) Correct 1391
# (B) Incorrect 1392
# The above step of reasoning is (A) 1393
So the total cost of each CD is 7 + 4 = 11 dollars. 1394
# Is the above step of reasoning: 1395
# (A) Correct 1396
# (B) Incorrect 1397
# The above step of reasoning is (B), because each CD cose 7 1398
dollars. 1399
So 60 / 11 = 5.45. 1400
# Is the above step of reasoning: 1401
# (A) Correct 1402
# (B) Incorrect 1403
# The above step of reasoning is (B), because it cost 4 1404
dollars for shipping costs. So the cost of CDs is 60 - 4 = 56 1405
dollars. So Allison bought 56 / 7 = 8 CDs. 1406
So the answer is 5. 1407
# Is the above step of reasoning: 1408
# (A) Correct 1409
# (B) Incorrect 1410
# The above step of reasoning is (A), but the value of number 1411
of CDs is incorrect. 1412

1413
1414
1415
1416
1417

Q: Luis and Cameron shared some stickers is the ratio 5:2. 1418
Luis received 15 more stickers than Cameron. How many stickers 1419
were there altogether? 1420

1421
A: 1422
Let’s say there were x stickers. 1423
# Is the above step of reasoning: 1424
# (A) Correct 1425
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# (B) Incorrect1426
# The above step of reasoning is (A)1427
Then Luis got 5x/7 and Cameron got 2x/7.1428
# Is the above step of reasoning:1429
# (A) Correct1430
# (B) Incorrect1431
# The above step of reasoning is (A)1432
Luis got 15 more than Cameron, so 5x/7 - 2x/7 = 15.1433
# Is the above step of reasoning:1434
# (A) Correct1435
# (B) Incorrect1436
# The above step of reasoning is (A)1437
So 3x/7 = 15.1438
# Is the above step of reasoning:1439
# (A) Correct1440
# (B) Incorrect1441
# The above step of reasoning is (A)1442
So x = 105.1443
# Is the above step of reasoning:1444
# (A) Correct1445
# (B) Incorrect1446
# The above step of reasoning is (B), because 3x/7 = 15. So x1447
= 15 * 7 / 3 = 35. So there were 35 stickers.1448
So the answer is 105.1449
# Is the above step of reasoning:1450
# (A) Correct1451
# (B) Incorrect1452
# The above step of reasoning is (A), but the value of number1453
of stickers is incorrect.1454

1455
1456
1457
1458
1459

Q: Alexa has 92 cents in her pocket. She wants to buy 31460
pencils at the school supply store. Each pencil costs 8 cents.1461
How much money will Alexa have left?1462

1463
A:1464
Alexa has 92 cents.1465
# Is the above step of reasoning:1466
# (A) Correct1467
# (B) Incorrect1468
# The above step of reasoning is (A)1469
And 3 pencils for 8 cents each will be 3 * 8 = 24 cents.1470
# Is the above step of reasoning:1471
# (A) Correct1472
# (B) Incorrect1473
# The above step of reasoning is (A)1474
So she has 92 - 24 = 68 cents left.1475
# Is the above step of reasoning:1476
# (A) Correct1477
# (B) Incorrect1478
# The above step of reasoning is (A)1479
So the answer is 68.1480
# Is the above step of reasoning:1481
# (A) Correct1482
# (B) Incorrect1483
# The above step of reasoning is (A)1484

1485
1486
1487
1488
1489
1490

Q: {input}1491
1492

A: {output}1493
# Is the above step of reasoning:1494
# (A) Correct1495
# (B) Incorrect1496
# The above step of reasoning is ’’’1497

E.2 MWIS Prompts1498

Listing 7: Direct prompts
direct_0s = """Given a sequence of integers, find a1499
subsequence with the highest sum, such that no two numbers in1500
the subsequence are adjacent in the original sequence.1501

1502
To indicate the selected numbers, print an array with "1" for1503
chosen numbers and "2" for unchosen ones. For instance, [1, 2,1504
2, 2, 2] implies selecting only the first number. If multiple1505
solutions exist, select the lexicographically smallest.1506

1507
1508

{prompt} 1509
""" 1510

1511
direct_3s = """Given a sequence of integers, find a 1512
subsequence with the highest sum, such that no two numbers in 1513
the subsequence are adjacent in the original sequence. 1514

1515
To indicate the selected numbers, print an array with "1" for 1516
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 1517
2, 2, 2] implies selecting only the first number. If multiple 1518
solutions exist, select the lexicographically smallest. 1519

1520
1521

Let\’s solve input = [1, 1, -5, -1]. 1522
Answer: [1, 2, 2, 2] 1523

1524
1525

Let\’s solve input = [3, 2, 1, -1, 2]. 1526
Answer: [1, 2, 1, 2, 1] 1527

1528
1529

Let\’s solve input = [0, 4, -2, 3, -3, -1]. 1530
Answer: [2, 1, 2, 1, 2, 2] 1531

1532
1533

{prompt} 1534
""" 1535

1536
direct_6s = """Given a sequence of integers, find a 1537
subsequence with the highest sum, such that no two numbers in 1538
the subsequence are adjacent in the original sequence. 1539

1540
To indicate the selected numbers, print an array with "1" for 1541
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 1542
2, 2, 2] implies selecting only the first number. If multiple 1543
solutions exist, select the lexicographically smallest. 1544

1545
1546

Let\’s solve input = [1, 1, -5, -1]. 1547
Answer: [1, 2, 2, 2] 1548

1549
1550

Let\’s solve input = [3, 2, 1, -1, 2]. 1551
Answer: [1, 2, 1, 2, 1] 1552

1553
1554

Let\’s solve input = [0, 4, -2, 3, -3, -1]. 1555
Answer: [2, 1, 2, 1, 2, 2] 1556

1557
1558

Let\’s solve input = [-3, -4, 4, -1] 1559
Answer: [2, 2, 1, 2] 1560

1561
1562

Let\’s solve input = [3, 4, -3, -1, -4] 1563
Answer: [2, 1, 2, 2, 2] 1564

1565
1566

Let\’s solve input = [-4, 5, 0, 2, 3, -4] 1567
Answer: [2, 1, 2, 2, 1, 2] 1568

1569
1570

{prompt} 1571
""" 1572

Listing 8: CoT Implicit prompts
cot_implicit_3s = """Given a sequence of integers, find a 1573
subsequence with the highest sum, such that no two numbers in 1574
the subsequence are adjacent in the original sequence. 1575

1576
To indicate the selected numbers, print an array with "1" for 1577
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 1578
2, 2, 2] implies selecting only the first number. If multiple 1579
solutions exist, select the lexicographically smallest. 1580

1581
1582

We will solve any task instance by using dynamic programming. 1583
We define dp[i] as the maximum sum of a subsequence that does 1584
not include adjacent elements, when considering only the 1585
elements of the input from the i-th position onwards. 1586

1587
1588

Let\’s solve input = [1, 1, -5, -1]. 1589
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1590
dp[3] = max(input[3], 0) = max(-1, 0) = 01591
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 01592
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 11593
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 11594

1595
Finally, we reconstruct the lexicographically smallest1596
subsequence that fulfills the task objective by selecting1597
numbers as follows. We store the result on a list named "1598
output".1599

1600
Let can_use_next_item = True.1601
Since dp[0] == input[0] + dp[2] (1 == 1 + 0) and1602
can_use_next_item == True, we store output[0] = 1. We update1603
can_use_next_item = False.1604
Since dp[1] != input[1] + dp[3] (1 != 1 + 0) or1605
can_use_next_item == False, we store output[1] = 2. We update1606
can_use_next_item = True.1607
Since dp[2] != input[2] (0 != -5) or can_use_next_item ==1608
False, we store output[2] = 2. We update can_use_next_item =1609
True.1610
Since dp[3] != input[3] (0 != -1) or can_use_next_item ==1611
False, we store output[3] = 2.1612

1613
Reconstructing all together, output=[1, 2, 2, 2].1614

1615
1616

Let\’s solve input = [3, 2, 1, -1, 2].1617
1618

dp[4] = max(input[4], 0) = max(2, 0) = 21619
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 21620
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) = 31621
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) = 41622
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) = 61623

1624
Finally, we reconstruct the lexicographically smallest1625
subsequence that fulfills the task objective by selecting1626
numbers as follows. We store the result on a list named "1627
output".1628

1629
Let can_use_next_item = True.1630
Since dp[0] == input[0] + dp[2] (6 == 3 + 3) and1631
can_use_next_item == True, we store output[0] = 1. We update1632
can_use_next_item = False.1633
Since dp[1] != input[1] + dp[3] (4 != 2 + 2) or1634
can_use_next_item == False, we store output[1] = 2. We update1635
can_use_next_item = True.1636
Since dp[2] == input[2] + dp[4] (3 == 1 + 2) and1637
can_use_next_item == True, we store output[2] = 1. We update1638
can_use_next_item = False.1639
Since dp[3] != input[3] (2 != -1) or can_use_next_item ==1640
False, we store output[3] = 2. We update can_use_next_item =1641
True.1642
Since dp[4] == input[4] (2 == 2) and can_use_next_item == True,1643
we store output[4] = 1.1644

1645
Reconstructing all together, output=[1, 2, 1, 2, 1].1646

1647
1648

Let\’s solve input = [0, 4, -2, 3, -3, -1].1649
1650

dp[5] = max(input[5], 0) = max(-1, 0) = 01651
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 01652
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) = 31653
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =1654
31655
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) = 71656
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) = 71657

1658
Finally, we reconstruct the lexicographically smallest1659
subsequence that fulfills the task objective by selecting1660
numbers as follows. We store the result on a list named "1661
output".1662

1663
Let can_use_next_item = True.1664
Since dp[0] != input[0] + dp[2] (7 != 0 + 3) or1665
can_use_next_item == False, we store output[0] = 2. We update1666
can_use_next_item = True.1667
Since dp[1] == input[1] + dp[3] (7 == 4 + 3) and1668
can_use_next_item == True, we store output[1] = 1. We update1669
can_use_next_item = False.1670
Since dp[2] != input[2] + dp[4] (3 != -2 + 0) or1671
can_use_next_item == False, we store output[2] = 2. We update1672
can_use_next_item = True.1673
Since dp[3] == input[3] + dp[5] (3 == 3 + 0) and1674
can_use_next_item == True, we store output[3] = 1. We update1675
can_use_next_item = False.1676

Since dp[4] != input[4] (0 != -3) or can_use_next_item == 1677
False, we store output[4] = 2. We update can_use_next_item = 1678
True. 1679
Since dp[5] != input[5] (0 != -1) or can_use_next_item == 1680
False, we store output[5] = 2. 1681

1682
Reconstructing all together, output=[2, 1, 2, 1, 2, 2]. 1683

1684
1685

{prompt} 1686
""" 1687

1688
cot_implicit_6s = """Given a sequence of integers, find a 1689
subsequence with the highest sum, such that no two numbers in 1690
the subsequence are adjacent in the original sequence. 1691

1692
To indicate the selected numbers, print an array with "1" for 1693
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 1694
2, 2, 2] implies selecting only the first number. If multiple 1695
solutions exist, select the lexicographically smallest. 1696

1697
1698

We will solve any task instance by using dynamic programming. 1699
We define dp[i] as the maximum sum of a subsequence that does 1700
not include adjacent elements, when considering only the 1701
elements of the input from the i-th position onwards. 1702

1703
1704

Let\’s solve input = [1, 1, -5, -1]. 1705
1706

dp[3] = max(input[3], 0) = max(-1, 0) = 0 1707
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0 1708
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 1 1709
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 1 1710

1711
Finally, we reconstruct the lexicographically smallest 1712
subsequence that fulfills the task objective by selecting 1713
numbers as follows. We store the result on a list named " 1714
output". 1715

1716
Let can_use_next_item = True. 1717
Since dp[0] == input[0] + dp[2] (1 == 1 + 0) and 1718
can_use_next_item == True, we store output[0] = 1. We update 1719
can_use_next_item = False. 1720
Since dp[1] != input[1] + dp[3] (1 != 1 + 0) or 1721
can_use_next_item == False, we store output[1] = 2. We update 1722
can_use_next_item = True. 1723
Since dp[2] != input[2] (0 != -5) or can_use_next_item == 1724
False, we store output[2] = 2. We update can_use_next_item = 1725
True. 1726
Since dp[3] != input[3] (0 != -1) or can_use_next_item == 1727
False, we store output[3] = 2. 1728

1729
Reconstructing all together, output=[1, 2, 2, 2]. 1730

1731
1732

Let\’s solve input = [3, 2, 1, -1, 2]. 1733
1734

dp[4] = max(input[4], 0) = max(2, 0) = 2 1735
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 2 1736
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) = 3 1737
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) = 4 1738
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) = 6 1739

1740
Finally, we reconstruct the lexicographically smallest 1741
subsequence that fulfills the task objective by selecting 1742
numbers as follows. We store the result on a list named " 1743
output". 1744

1745
Let can_use_next_item = True. 1746
Since dp[0] == input[0] + dp[2] (6 == 3 + 3) and 1747
can_use_next_item == True, we store output[0] = 1. We update 1748
can_use_next_item = False. 1749
Since dp[1] != input[1] + dp[3] (4 != 2 + 2) or 1750
can_use_next_item == False, we store output[1] = 2. We update 1751
can_use_next_item = True. 1752
Since dp[2] == input[2] + dp[4] (3 == 1 + 2) and 1753
can_use_next_item == True, we store output[2] = 1. We update 1754
can_use_next_item = False. 1755
Since dp[3] != input[3] (2 != -1) or can_use_next_item == 1756
False, we store output[3] = 2. We update can_use_next_item = 1757
True. 1758
Since dp[4] == input[4] (2 == 2) and can_use_next_item == True, 1759
we store output[4] = 1. 1760

1761
Reconstructing all together, output=[1, 2, 1, 2, 1]. 1762

1763
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1764
Let\’s solve input = [0, 4, -2, 3, -3, -1].1765

1766
dp[5] = max(input[5], 0) = max(-1, 0) = 01767
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 01768
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) = 31769
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =1770
31771
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) = 71772
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) = 71773

1774
Finally, we reconstruct the lexicographically smallest1775
subsequence that fulfills the task objective by selecting1776
numbers as follows. We store the result on a list named "1777
output".1778

1779
Let can_use_next_item = True.1780
Since dp[0] != input[0] + dp[2] (7 != 0 + 3) or1781
can_use_next_item == False, we store output[0] = 2. We update1782
can_use_next_item = True.1783
Since dp[1] == input[1] + dp[3] (7 == 4 + 3) and1784
can_use_next_item == True, we store output[1] = 1. We update1785
can_use_next_item = False.1786
Since dp[2] != input[2] + dp[4] (3 != -2 + 0) or1787
can_use_next_item == False, we store output[2] = 2. We update1788
can_use_next_item = True.1789
Since dp[3] == input[3] + dp[5] (3 == 3 + 0) and1790
can_use_next_item == True, we store output[3] = 1. We update1791
can_use_next_item = False.1792
Since dp[4] != input[4] (0 != -3) or can_use_next_item ==1793
False, we store output[4] = 2. We update can_use_next_item =1794
True.1795
Since dp[5] != input[5] (0 != -1) or can_use_next_item ==1796
False, we store output[5] = 2.1797

1798
Reconstructing all together, output=[2, 1, 2, 1, 2, 2].1799

1800
1801

Let\’s solve input = [-3, -4, 4, -1].1802
1803

dp[3] = max(input[3], 0) = max(-1, 0) = 01804
dp[2] = max(input[2], input[3], 0) = max(4, -1, 0) = 41805
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(4, -4 + 0, 0) =1806
41807
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, -3 + 4, 0) =1808
41809

1810
Finally, we reconstruct the lexicographically smallest1811
subsequence that fulfills the task objective by selecting1812
numbers as follows. We store the result on a list named "1813
output".1814

1815
Let can_use_next_item = True.1816
Since dp[0] != input[0] + dp[2] (4 != -3 + 4) or1817
can_use_next_item == False, we store output[0] = 2. We update1818
can_use_next_item = True.1819
Since dp[1] != input[1] + dp[3] (4 != -4 + 0) or1820
can_use_next_item == False, we store output[1] = 2. We update1821
can_use_next_item = True.1822
Since dp[2] == input[2] (4 == 4) and can_use_next_item == True,1823
we store output[2] = 1. We update can_use_next_item = False.1824

Since dp[3] != input[3] (0 != -1) or can_use_next_item ==1825
False, we store output[3] = 2.1826

1827
Reconstructing all together, output=[2, 2, 1, 2].1828

1829
1830

Let\’s solve input = [3, 4, -3, -1, -4].1831
1832

dp[4] = max(input[4], 0) = max(-4, 0) = 01833
dp[3] = max(input[3], input[4], 0) = max(-1, -4, 0) = 01834
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(0, -3 + 0, 0) =1835
01836
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 4 + 0, 0) = 41837
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 0, 0) = 41838

1839
Finally, we reconstruct the lexicographically smallest1840
subsequence that fulfills the task objective by selecting1841
numbers as follows. We store the result on a list named "1842
output".1843

1844
Let can_use_next_item = True.1845
Since dp[0] != input[0] + dp[2] (4 != 3 + 0) or1846
can_use_next_item == False, we store output[0] = 2. We update1847
can_use_next_item = True.1848
Since dp[1] == input[1] + dp[3] (4 == 4 + 0) and1849
can_use_next_item == True, we store output[1] = 1. We update1850

can_use_next_item = False. 1851
Since dp[2] != input[2] + dp[4] (0 != -3 + 0) or 1852
can_use_next_item == False, we store output[2] = 2. We update 1853
can_use_next_item = True. 1854
Since dp[3] != input[3] (0 != -1) or can_use_next_item == 1855
False, we store output[3] = 2. We update can_use_next_item = 1856
True. 1857
Since dp[4] != input[4] (0 != -4) or can_use_next_item == 1858
False, we store output[4] = 2. 1859

1860
Reconstructing all together, output=[2, 1, 2, 2, 2]. 1861

1862
1863

Let\’s solve input = [-4, 5, 0, 2, 3, -4]. 1864
1865

dp[5] = max(input[5], 0) = max(-4, 0) = 0 1866
dp[4] = max(input[4], input[5], 0) = max(3, -4, 0) = 3 1867
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(3, 2 + 0, 0) = 3 1868
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, 0 + 3, 0) = 3 1869
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 5 + 3, 0) = 8 1870
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(8, -4 + 3, 0) = 1871
8 1872

1873
Finally, we reconstruct the lexicographically smallest 1874
subsequence that fulfills the task objective by selecting 1875
numbers as follows. We store the result on a list named " 1876
output". 1877

1878
Let can_use_next_item = True. 1879
Since dp[0] != input[0] + dp[2] (8 != -4 + 3) or 1880
can_use_next_item == False, we store output[0] = 2. We update 1881
can_use_next_item = True. 1882
Since dp[1] == input[1] + dp[3] (8 == 5 + 3) and 1883
can_use_next_item == True, we store output[1] = 1. We update 1884
can_use_next_item = False. 1885
Since dp[2] != input[2] + dp[4] (3 != 0 + 3) or 1886
can_use_next_item == False, we store output[2] = 2. We update 1887
can_use_next_item = True. 1888
Since dp[3] != input[3] + dp[5] (3 != 2 + 0) or 1889
can_use_next_item == False, we store output[3] = 2. We update 1890
can_use_next_item = True. 1891
Since dp[4] == input[4] (3 == 3) and can_use_next_item == True, 1892
we store output[4] = 1. We update can_use_next_item = False. 1893

Since dp[5] != input[5] (0 != -4) or can_use_next_item == 1894
False, we store output[5] = 2. 1895

1896
Reconstructing all together, output=[2, 1, 2, 2, 1, 2]. 1897

1898
1899

{prompt} 1900
""" 1901

Listing 9: CoT Explicit prompts
cot_explicit_3s = """Given a sequence of integers, find a 1902
subsequence with the highest sum, such that no two numbers in 1903
the subsequence are adjacent in the original sequence. 1904

1905
To indicate the selected numbers, print an array with "1" for 1906
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 1907
2, 2, 2] implies selecting only the first number. If multiple 1908
solutions exist, select the lexicographically smallest. 1909

1910
1911

We will solve any task instance by using dynamic programming. 1912
We define dp[i] as the maximum sum of a subsequence that does 1913
not include adjacent elements, when considering only the 1914
elements of the input from the i-th position onwards. 1915

1916
1917

Let\’s solve input = [1, 1, -5, -1]. 1918
1919

There are 4 numbers in the input sequence, so we will use a 1920
list of size 4 to store the dynamic programming values. We 1921
initialize all values to 0. 1922
dp[3] = max(input[3], 0) = max(-1, 0) = 0 1923
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0 1924
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 1925
max(0, 1, 0) = 1 1926
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 1927
max(1, 1, 0) = 1 1928

1929
Finally, we reconstruct the lexicographically smallest 1930
subsequence that fulfills the task objective by selecting 1931
numbers as follows. We store the result on a list named " 1932
output". 1933
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1934
Let can_use_next_item = True.1935
Since dp[0]=1, input[0]=1, dp[2]=0, input[0] + dp[2] = 1 == 11936
= dp[0] and can_use_next_item == True, we store output[0] = 1.1937
We update can_use_next_item = False.1938

Since can_use_next_item == False, we store output[1] = 2. We1939
update can_use_next_item = True.1940
Since dp[2] = 0, input[2] = -5, dp[2] != input[2], we store1941
output[2] = 2. We update can_use_next_item = True.1942
Since dp[3] = 0, input[3] = -1, dp[3] != input[3], we store1943
output[3] = 2.1944

1945
Reconstructing all together, output=[1, 2, 2, 2].1946

1947
1948
1949

Let\’s solve input = [3, 2, 1, -1, 2].1950
1951

There are 5 numbers in the input sequence, so we will use a1952
list of size 5 to store the dynamic programming values. We1953
initialize all values to 0.1954
dp[4] = max(input[4], 0) = max(2, 0) = 21955
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 21956
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) =1957
max(2, 3, 0) = 31958
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) =1959
max(3, 4, 0) = 41960
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) =1961
max(4, 6, 0) = 61962

1963
Finally, we reconstruct the lexicographically smallest1964
subsequence that fulfills the task objective by selecting1965
numbers as follows. We store the result on a list named "1966
output".1967

1968
Let can_use_next_item = True.1969
Since dp[0]=6, input[0]=3, dp[2]=3, input[0] + dp[2] = 6 == 61970
= dp[0] and can_use_next_item == True, we store output[0] = 1.1971
We update can_use_next_item = False.1972

Since can_use_next_item == False, we store output[1] = 2. We1973
update can_use_next_item = True.1974
Since dp[2]=3, input[2]=1, dp[4]=2, input[2] + dp[4] = 3 == 31975
= dp[2] and can_use_next_item == True, we store output[2] = 1.1976
We update can_use_next_item = False.1977

Since can_use_next_item == False, we store output[3] = 2. We1978
update can_use_next_item = True.1979
Since dp[4] = 2, input[4] = 2, dp[4] == input[4] and1980
can_use_next_item == True, we store output[4] = 1.1981

1982
Reconstructing all together, output=[1, 2, 1, 2, 1].1983

1984
1985
1986

Let\’s solve input = [0, 4, -2, 3, -3, -1].1987
1988

There are 6 numbers in the input sequence, so we will use a1989
list of size 6 to store the dynamic programming values. We1990
initialize all values to 0.1991
dp[5] = max(input[5], 0) = max(-1, 0) = 01992
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 01993
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) =1994
max(0, 3, 0) = 31995
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =1996
max(3, -2, 0) = 31997
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) =1998
max(3, 7, 0) = 71999
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) =2000
max(7, 3, 0) = 72001

2002
Finally, we reconstruct the lexicographically smallest2003
subsequence that fulfills the task objective by selecting2004
numbers as follows. We store the result on a list named "2005
output".2006

2007
Let can_use_next_item = True.2008
Since dp[0]=7, input[0]=0, dp[2]=3, input[0] + dp[2] = 3 != 72009
= dp[0], we store output[0] = 2. We update can_use_next_item =2010
True.2011

Since dp[1]=7, input[1]=4, dp[3]=3, input[1] + dp[3] = 7 == 72012
= dp[1] and can_use_next_item == True, we store output[1] = 1.2013
We update can_use_next_item = False.2014

Since can_use_next_item == False, we store output[2] = 2. We2015
update can_use_next_item = True.2016
Since dp[3]=3, input[3]=3, dp[5]=0, input[3] + dp[5] = 3 == 32017
= dp[3] and can_use_next_item == True, we store output[3] = 1.2018
We update can_use_next_item = False.2019

Since can_use_next_item == False, we store output[4] = 2. We2020

update can_use_next_item = True. 2021
Since dp[5] = 0, input[5] = -1, dp[5] != input[5], we store 2022
output[5] = 2. 2023

2024
Reconstructing all together, output=[2, 1, 2, 1, 2, 2]. 2025

2026
2027

{prompt} 2028
""" 2029
cot_explicit_6s = """Given a sequence of integers, find a 2030
subsequence with the highest sum, such that no two numbers in 2031
the subsequence are adjacent in the original sequence. 2032

2033
To indicate the selected numbers, print an array with "1" for 2034
chosen numbers and "2" for unchosen ones. For instance, [1, 2, 2035
2, 2, 2] implies selecting only the first number. If multiple 2036
solutions exist, select the lexicographically smallest. 2037

2038
2039

We will solve any task instance by using dynamic programming. 2040
We define dp[i] as the maximum sum of a subsequence that does 2041
not include adjacent elements, when considering only the 2042
elements of the input from the i-th position onwards. 2043

2044
2045

Let\’s solve input = [1, 1, -5, -1]. 2046
2047

There are 4 numbers in the input sequence, so we will use a 2048
list of size 4 to store the dynamic programming values. We 2049
initialize all values to 0. 2050
dp[3] = max(input[3], 0) = max(-1, 0) = 0 2051
dp[2] = max(input[2], input[3], 0) = max(-5, -1, 0) = 0 2052
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 1 + 0, 0) = 2053
max(0, 1, 0) = 1 2054
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(1, 1 + 0, 0) = 2055
max(1, 1, 0) = 1 2056

2057
Finally, we reconstruct the lexicographically smallest 2058
subsequence that fulfills the task objective by selecting 2059
numbers as follows. We store the result on a list named " 2060
output". 2061

2062
Let can_use_next_item = True. 2063
Since dp[0]=1, input[0]=1, dp[2]=0, input[0] + dp[2] = 1 == 1 2064
= dp[0] and can_use_next_item == True, we store output[0] = 1. 2065
We update can_use_next_item = False. 2066

Since can_use_next_item == False, we store output[1] = 2. We 2067
update can_use_next_item = True. 2068
Since dp[2] = 0, input[2] = -5, dp[2] != input[2], we store 2069
output[2] = 2. We update can_use_next_item = True. 2070
Since dp[3] = 0, input[3] = -1, dp[3] != input[3], we store 2071
output[3] = 2. 2072

2073
Reconstructing all together, output=[1, 2, 2, 2]. 2074

2075
2076
2077

Let\’s solve input = [3, 2, 1, -1, 2]. 2078
2079

There are 5 numbers in the input sequence, so we will use a 2080
list of size 5 to store the dynamic programming values. We 2081
initialize all values to 0. 2082
dp[4] = max(input[4], 0) = max(2, 0) = 2 2083
dp[3] = max(input[3], input[4], 0) = max(-1, 2, 0) = 2 2084
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(2, 1 + 2, 0) = 2085
max(2, 3, 0) = 3 2086
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 2 + 2, 0) = 2087
max(3, 4, 0) = 4 2088
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 3, 0) = 2089
max(4, 6, 0) = 6 2090

2091
Finally, we reconstruct the lexicographically smallest 2092
subsequence that fulfills the task objective by selecting 2093
numbers as follows. We store the result on a list named " 2094
output". 2095

2096
Let can_use_next_item = True. 2097
Since dp[0]=6, input[0]=3, dp[2]=3, input[0] + dp[2] = 6 == 6 2098
= dp[0] and can_use_next_item == True, we store output[0] = 1. 2099
We update can_use_next_item = False. 2100

Since can_use_next_item == False, we store output[1] = 2. We 2101
update can_use_next_item = True. 2102
Since dp[2]=3, input[2]=1, dp[4]=2, input[2] + dp[4] = 3 == 3 2103
= dp[2] and can_use_next_item == True, we store output[2] = 1. 2104
We update can_use_next_item = False. 2105

Since can_use_next_item == False, we store output[3] = 2. We 2106
update can_use_next_item = True. 2107
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Since dp[4] = 2, input[4] = 2, dp[4] == input[4] and2108
can_use_next_item == True, we store output[4] = 1.2109

2110
Reconstructing all together, output=[1, 2, 1, 2, 1].2111

2112
2113
2114

Let\’s solve input = [0, 4, -2, 3, -3, -1].2115
2116

There are 6 numbers in the input sequence, so we will use a2117
list of size 6 to store the dynamic programming values. We2118
initialize all values to 0.2119
dp[5] = max(input[5], 0) = max(-1, 0) = 02120
dp[4] = max(input[4], input[5], 0) = max(-3, -1, 0) = 02121
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(0, 3 + 0, 0) =2122
max(0, 3, 0) = 32123
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, -2 + 0, 0) =2124
max(3, -2, 0) = 32125
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 4 + 3, 0) =2126
max(3, 7, 0) = 72127
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(7, 0 + 3, 0) =2128
max(7, 3, 0) = 72129

2130
Finally, we reconstruct the lexicographically smallest2131
subsequence that fulfills the task objective by selecting2132
numbers as follows. We store the result on a list named "2133
output".2134

2135
Let can_use_next_item = True.2136
Since dp[0]=7, input[0]=0, dp[2]=3, input[0] + dp[2] = 3 != 72137
= dp[0], we store output[0] = 2. We update can_use_next_item =2138
True.2139

Since dp[1]=7, input[1]=4, dp[3]=3, input[1] + dp[3] = 7 == 72140
= dp[1] and can_use_next_item == True, we store output[1] = 1.2141
We update can_use_next_item = False.2142

Since can_use_next_item == False, we store output[2] = 2. We2143
update can_use_next_item = True.2144
Since dp[3]=3, input[3]=3, dp[5]=0, input[3] + dp[5] = 3 == 32145
= dp[3] and can_use_next_item == True, we store output[3] = 1.2146
We update can_use_next_item = False.2147

Since can_use_next_item == False, we store output[4] = 2. We2148
update can_use_next_item = True.2149
Since dp[5] = 0, input[5] = -1, dp[5] != input[5], we store2150
output[5] = 2.2151

2152
Reconstructing all together, output=[2, 1, 2, 1, 2, 2].2153

2154
2155
2156

Let\’s solve input = [-3, -4, 4, -1].2157
2158

There are 4 numbers in the input sequence, so we will use a2159
list of size 4 to store the dynamic programming values. We2160
initialize all values to 0.2161
dp[3] = max(input[3], 0) = max(-1, 0) = 02162
dp[2] = max(input[2], input[3], 0) = max(4, -1, 0) = 42163
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(4, -4 + 0, 0) =2164
max(4, -4, 0) = 42165
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, -3 + 4, 0) =2166
max(4, 1, 0) = 42167

2168
Finally, we reconstruct the lexicographically smallest2169
subsequence that fulfills the task objective by selecting2170
numbers as follows. We store the result on a list named "2171
output".2172

2173
Let can_use_next_item = True.2174
Since dp[0]=4, input[0]=-3, dp[2]=4, input[0] + dp[2] = 1 != 42175
= dp[0], we store output[0] = 2. We update can_use_next_item2176

= True.2177
Since dp[1]=4, input[1]=-4, dp[3]=0, input[1] + dp[3] = -4 !=2178
4 = dp[1], we store output[1] = 2. We update can_use_next_item2179
= True.2180

Since dp[2] = 4, input[2] = 4, dp[2] == input[2] and2181
can_use_next_item == True, we store output[2] = 1. We update2182
can_use_next_item = False.2183
Since can_use_next_item == False, we store output[3] = 2.2184

2185
Reconstructing all together, output=[2, 2, 1, 2].2186

2187
2188
2189

Let\’s solve input = [3, 4, -3, -1, -4].2190
2191

There are 5 numbers in the input sequence, so we will use a2192
list of size 5 to store the dynamic programming values. We2193
initialize all values to 0.2194

dp[4] = max(input[4], 0) = max(-4, 0) = 0 2195
dp[3] = max(input[3], input[4], 0) = max(-1, -4, 0) = 0 2196
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(0, -3 + 0, 0) = 2197
max(0, -3, 0) = 0 2198
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(0, 4 + 0, 0) = 2199
max(0, 4, 0) = 4 2200
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(4, 3 + 0, 0) = 2201
max(4, 3, 0) = 4 2202

2203
Finally, we reconstruct the lexicographically smallest 2204
subsequence that fulfills the task objective by selecting 2205
numbers as follows. We store the result on a list named " 2206
output". 2207

2208
Let can_use_next_item = True. 2209
Since dp[0]=4, input[0]=3, dp[2]=0, input[0] + dp[2] = 3 != 4 2210
= dp[0], we store output[0] = 2. We update can_use_next_item = 2211
True. 2212

Since dp[1]=4, input[1]=4, dp[3]=0, input[1] + dp[3] = 4 == 4 2213
= dp[1] and can_use_next_item == True, we store output[1] = 1. 2214
We update can_use_next_item = False. 2215

Since can_use_next_item == False, we store output[2] = 2. We 2216
update can_use_next_item = True. 2217
Since dp[3] = 0, input[3] = -1, dp[3] != input[3], we store 2218
output[3] = 2. We update can_use_next_item = True. 2219
Since dp[4] = 0, input[4] = -4, dp[4] != input[4], we store 2220
output[4] = 2. 2221

2222
Reconstructing all together, output=[2, 1, 2, 2, 2]. 2223

2224
2225
2226

Let\’s solve input = [-4, 5, 0, 2, 3, -4]. 2227
2228

There are 6 numbers in the input sequence, so we will use a 2229
list of size 6 to store the dynamic programming values. We 2230
initialize all values to 0. 2231
dp[5] = max(input[5], 0) = max(-4, 0) = 0 2232
dp[4] = max(input[4], input[5], 0) = max(3, -4, 0) = 3 2233
dp[3] = max(dp[4], input[3] + dp[5], 0) = max(3, 2 + 0, 0) = 2234
max(3, 2, 0) = 3 2235
dp[2] = max(dp[3], input[2] + dp[4], 0) = max(3, 0 + 3, 0) = 2236
max(3, 3, 0) = 3 2237
dp[1] = max(dp[2], input[1] + dp[3], 0) = max(3, 5 + 3, 0) = 2238
max(3, 8, 0) = 8 2239
dp[0] = max(dp[1], input[0] + dp[2], 0) = max(8, -4 + 3, 0) = 2240
max(8, -1, 0) = 8 2241

2242
Finally, we reconstruct the lexicographically smallest 2243
subsequence that fulfills the task objective by selecting 2244
numbers as follows. We store the result on a list named " 2245
output". 2246

2247
Let can_use_next_item = True. 2248
Since dp[0]=8, input[0]=-4, dp[2]=3, input[0] + dp[2] = -1 != 2249
8 = dp[0], we store output[0] = 2. We update can_use_next_item 2250
= True. 2251

Since dp[1]=8, input[1]=5, dp[3]=3, input[1] + dp[3] = 8 == 8 2252
= dp[1] and can_use_next_item == True, we store output[1] = 1. 2253
We update can_use_next_item = False. 2254

Since can_use_next_item == False, we store output[2] = 2. We 2255
update can_use_next_item = True. 2256
Since dp[3]=3, input[3]=2, dp[5]=0, input[3] + dp[5] = 2 != 3 2257
= dp[3], we store output[3] = 2. We update can_use_next_item = 2258
True. 2259

Since dp[4] = 3, input[4] = 3, dp[4] == input[4] and 2260
can_use_next_item == True, we store output[4] = 1. We update 2261
can_use_next_item = False. 2262
Since can_use_next_item == False, we store output[5] = 2. 2263

2264
Reconstructing all together, output=[2, 1, 2, 2, 1, 2]. 2265

2266
2267

{prompt} 2268
""" 2269

E.3 Comparison between CoT Implicit and 2270

CoT Explicit 2271

Listing 10: Compare CoT Implicit with CoT Explicit
Given a sequence of integers, find a subsequence with the 2272
highest sum, such that no two numbers in the subsequence are 2273
adjacent in the original sequence. 2274
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2275
To indicate the selected numbers, print an array with "1" for2276
chosen numbers and "2" for unchosen ones. For instance, [1, 2,2277
2, 2, 2] implies selecting only the first number. If multiple2278
solutions exist, select the lexicographically smallest.2279

2280
2281

We will solve any task instance by using dynamic programming.2282
We define dp[i] as the maximum sum of a subsequence that does2283
not include adjacent elements, when considering only the2284
elements of the input from the i-th position onwards.2285

2286
Let’s solve input = [-45, 40, 77, -93, 25, -73].2287

2288
###2289
Explicit: There are 6 numbers in the input sequence, so we2290
will use a list of size 6 to store the dynamic programming2291
values. We initialize all values to 0.2292
dp[5] = max(input[5], 0) = max(-73, 0) = 02293
dp[4] = max(input[4], input[5], 0) = max(25, -73, 0) = 252294
Implicit: dp[3] = max(dp[4], input[3] + dp[5], 0) = max(25,2295
-93 + 0, 0) = 252296
Explicit: dp[3] = max(dp[4], input[3] + dp[5], 0) = max(25,2297
-93 + 0, 0) = max(25, -93, 0) = 252298
Implicit: dp[2] = max(dp[3], input[2] + dp[4], 0) = max(25, 772299
+ 25, 0) = 1022300

Explicit: dp[2] = max(dp[3], input[2] + dp[4], 0) = max(25, 772301
+ 25, 0) = max(25, 102, 0) = 1022302

Implicit: dp[1] = max(dp[2], input[1] + dp[3], 0) = max(102,2303
40 + 25, 0) = 1022304
Explicit: dp[1] = max(dp[2], input[1] + dp[3], 0) = max(102,2305
40 + 25, 0) = max(102, 65, 0) = 1022306
Implicit: dp[0] = max(dp[1], input[0] + dp[2], 0) = max(102,2307
-45 + 102, 0) = 1022308
Explicit: dp[0] = max(dp[1], input[0] + dp[2], 0) = max(102,2309
-45 + 102, 0) = max(102, 57, 0) = 1022310

2311
Finally, we reconstruct the lexicographically smallest2312
subsequence that fulfills the task objective by selecting2313
numbers as follows. We store the result on a list named "2314
output".2315

2316
Let can_use_next_item = True.2317
Implicit: Since dp[0] != input[0] + dp[2] (102 != -45 + 102)2318
or can_use_next_item == False, we store output[0] = 2. We2319
update can_use_next_item = True.2320
Explicit: Since dp[0]=102, input[0]=-45, dp[2]=102, input[0] +2321
dp[2] = 57 != 102 = dp[0], we store output[0] = 2. We update2322

can_use_next_item = True.2323
Implicit: Since dp[1] != input[1] + dp[3] (102 != 40 + 25) or2324
can_use_next_item == False, we store output[1] = 2. We update2325
can_use_next_item = True.2326
Explicit: Since dp[1]=102, input[1]=40, dp[3]=25, input[1] +2327
dp[3] = 65 != 102 = dp[1], we store output[1] = 2. We update2328
can_use_next_item = True.2329
Implicit: Since dp[2] == input[2] + dp[4] (102 == 77 + 25) and2330
can_use_next_item == True, we store output[2] = 1. We update2331

can_use_next_item = False.2332
Explicit: Since dp[2]=102, input[2]=77, dp[4]=25, input[2] +2333
dp[4] = 102 == 102 = dp[2] and can_use_next_item == True, we2334
store output[2] = 1. We update can_use_next_item = False.2335
Implicit: Since dp[3] != input[3] + dp[5] (25 != -93 + 0) or2336
can_use_next_item == False, we store output[3] = 2. We update2337
can_use_next_item = True.2338
Explicit: Since can_use_next_item == False, we store output[3]2339
= 2. We update can_use_next_item = True.2340

Implicit: Since dp[4] == input[4] (25 == 25) and2341
can_use_next_item == True, we store output[4] = 1. We update2342
can_use_next_item = False.2343
Explicit: Since dp[4] = 25, input[4] = 25, dp[4] == input[4]2344
and can_use_next_item == True, we store output[4] = 1. We2345
update can_use_next_item = False.2346
Implicit: Since dp[5] != input[5] (0 != -73) or2347
can_use_next_item == False, we store output[5] = 2.2348
Explicit: Since can_use_next_item == False, we store output[5]2349
= 2.2350

2351
Reconstructing all together, output=[2, 2, 1, 2, 1, 2].2352

E.4 Travel planning prompts2353

Listing 11: CoT prompts
prompt_cot_zero_shot = """2354

The user will ask for a flight route between two cities. You 2355
need to generate a response with the route. Your response 2356
should be in the format "[city 1]-[city 2]-[city 3]-...-[city 2357
n]". If there is no solution, reply "Answer: None. " 2358
Question: {input} 2359
Answer: """ 2360

2361
prompt_cot_1s = """ 2362
The user will ask for a flight route between two cities. You 2363
need to generate a response with the route. Your response 2364
should be in the format "Answer: [city 1]-[city 2]-[city 2365
3]-...-[city n]". If there is no solution, reply "Answer: None. 2366
" 2367

Question: What is the flight route from Dublin to Sydney? 2368
Answer: Dublin-London-Sydney. 2369
Question: {input} 2370
Answer: """ 2371

2372
prompt_cot_3s = """ 2373
The user will ask for a flight route between two cities. You 2374
need to generate a response with the route. Your response 2375
should be in the format "[city 1]-[city 2]-[city 3]-...-[city 2376
n]". If there is no solution, reply "Answer: None. " 2377
Question: What is the flight route from Dublin to Sydney? 2378
Answer: Dublin-London-Sydney. 2379
Question: What is the flight route from New York to Amsterdam? 2380
Answer: New York-London-Amsterdam. 2381
Question: What is the flight route from Toronto to Sydney? 2382
Answer: Toronto-San Francisco-Sydney. 2383
Question: {input} 2384
Answer: """ 2385

2386
prompt_cot_8s = """ 2387
The user will ask for a flight route between two cities. You 2388
need to generate a response with the route. Your response 2389
should be in the format "[city 1]-[city 2]-[city 3]-...-[city 2390
n]". If there is no solution, reply "Answer: None. " 2391
Question: What is the flight route from Dublin to Sydney? 2392
Answer: Dublin-London-Sydney. 2393
Question: What is the flight route from New York to Amsterdam? 2394
Answer: New York-London-Amsterdam. 2395
Question: What is the flight route from Toronto to Sydney? 2396
Answer: Toronto-San Francisco-Sydney. 2397
Question: What is the flight route from Astana to Rome? 2398
Answer: Astana-Moscow-Rome. 2399
Question: What is the flight route from Visakhapatnam to 2400
Odense? 2401
Answer: Visakhapatnam-Hyderabad-Copenhagen-Odense. 2402
Question: What is the flight route from Shanghai to Nanjing? 2403
Answer: Shanghai-Nanjing. 2404
Question: What is the flight route from Singapore to Taipei? 2405
Answer: Singapore-Taipei. 2406
Question: What is the flight route from Sydney to Istanbul? 2407
Answer: Sydney-Singapore-Istanbul. 2408
Question: {input} 2409
Answer: """ 2410

Listing 12: ToT prompts
prompt_tot_propose_zero_shot = ’’’List a few possible cities 2411
to fly to from the current city via one direct flight. If the 2412
goal city can be reached via one direct flight from the 2413
current city, just answer the goal city. Format of your 2414
response is "Answer: [city 1], [city 2], [city 3], ... [city n 2415
]." 2416
Question: {input} 2417
’’’ 2418

2419
prompt_tot_propose_1s = ’’’List the a few possible cities to 2420
fly to from the current city via one direct flight. If the 2421
goal city can be reached via one direct flight from the 2422
current city, just answer the goal city. Format of your 2423
response is "Answer: [city 1], [city 2], [city 3], ... [city n 2424
]." 2425
Question: You want to go to Sydney and you are at Dublin. 2426
Propose a few possible cities with direct flights to go to for 2427
the next step. 2428

Answer: London, Paris, Frankfurt, Amsterdam, Zurich. 2429
Question: {input} 2430
’’’ 2431

2432
prompt_tot_propose_3s = ’’’List the a few possible cities to 2433
fly to from the current city via one direct flight. If the 2434
goal city can be reached via one direct flight from the 2435
current city, just answer the goal city. Format of your 2436
response is "Answer: [city 1], [city 2], [city 3], ... [city n 2437
]." 2438

21



Question: You want to go to Sydney and you are at Dublin.2439
Propose a few possible cities with direct flights to go to for2440
the next step.2441

Answer: London, Paris, Mombai.2442
Question: You want to go to Nanjing and you are at Shanghai.2443
Propose a few possible cities with direct flights to go to for2444
the next step.2445

Answer: Nanjing.2446
Question: You want to go to Amsterdam and you are at New York.2447
Propose a few possible cities with direct flights to go to2448

for the next step.2449
Answer: London, Paris, Frankfurt, Amsterdam.2450
Question: {input}2451
’’’2452

2453
prompt_tot_propose_8s = ’’’List the a few possible cities to2454
fly to from the current city via one direct flight. If the2455
goal city can be reached via one direct flight from the2456
current city, just answer the goal city. Format of your2457
response is "Answer: [city 1], [city 2], [city 3], ... [city n2458
]."2459
Question: You want to go to Sydney and you are at Dublin.2460
Propose a few possible cities with direct flights to go to for2461
the next step.2462

Answer: London, Paris, Mombai.2463
Question: You want to go to Amsterdam and you are at New York.2464
Propose a few possible cities with direct flights to go to2465

for the next step.2466
Answer: London, Paris, Frankfurt.2467
Question: You want to go to Sydney and you are at Toronto.2468
Propose a few possible cities with direct flights to go to for2469
the next step.2470

Answer: San Francisco, Los Angeles, Vancouver.2471
Question: You want to go to Nanjing and you are at Shanghai.2472
Propose a few possible cities with direct flights to go to for2473
the next step.2474

Answer: Nanjing.2475
Question: You want to go to Rome and you are at Astana.2476
Propose a few possible cities with direct flights to go to for2477
the next step.2478

Answer: Moscow, Rome, Istanbul.2479
Question: You want to go to Odense and you are at2480
Visakhapatnam. Propose a few possible cities with direct2481
flights to go to for the next step.2482
Answer: Hyderabad, Copenhagen, Odense.2483
Question: You want to go to Taipei and you are at Singapore.2484
Propose a few possible cities with direct flights to go to for2485
the next step.2486

Answer: Taipei.2487
Question: You want to go to Istanbul and you are at Sydney.2488
Propose a few possible cities with direct flights to go to for2489
the next step.2490

Answer: Singapore, Dubai, Abu Dhabi.2491
Question: {input}2492
’’’2493

Listing 13: ToT Linear prompts
prompt_tot_linear_zero_shot = """The user will ask for a2494
flight route between two cities. You need to generate a2495
response with the route.2496
You are simulating bfs process to find the route between two2497
cities. In the beginning, you have a queue [’start city’] and2498
an empty explored list []. You need to proceed with the2499
following steps:2500
1. Take the first city in the queue as the current city. If2501
the city is in the explored list, skip it. Otherwise, put the2502
city into the explored list.2503
2. Propose the possible cities with direct flights to go to2504
for the next step. Do not propose the explored cities and2505
cities in the queue.2506
3. Put the cities into the queue.2507
Repeat steps 1-3 until the goal city is included in the queue.2508
Respond with reasoning steps, and end with the answer, in the2509
format "Answer: [city 1]-[city 2]-[city 3]-...-[city n]"2510
Question: {input}2511
Let’s think step by step.2512
"""2513

2514
2515

prompt_tot_linear_cot_1s = """The user will ask for a flight2516
route between two cities. You need to generate a response with2517
the route.2518

You are simulating bfs process to find the route between two2519
cities. In the beginning, you have a queue [’start city’], and2520
you need to proceed the following steps:2521

1. Take the first city in the queue as the current city. 2522
2. Propose the possible cities with direct flights to go to 2523
for the next step. Do not propose the explored cities and 2524
cities in the queue. 2525
3. Put the cities into the queue. 2526
Repeat steps 1-3 until the goal city is included in the queue. 2527
Respond with reasoning steps, and end with the answer, in the 2528
format "Answer: [city 1]-[city 2]-[city 3]-...-[city n]" 2529
Question: What is the flight route from Guatemala City to 2530
Guangzhou? 2531
The queue is [Guatemala City]. Take the first path, Guatemala 2532
City, from the queue. 2533
The current city is Guatemala City, which is not in the 2534
explored list. Thus, put the current city into the explored 2535
list. The explored list is [Guatemala City] 2536
The current city is Guatemala City and the goal is Guangzhou. 2537
For the next step, the promising cities to go to are [New York, 2538
Los Angeles, Mexico City]. 2539

Puting those cities into the queue. The queue is [Guatemala 2540
City-New York, Guatemala City-Los Angeles, Guatemala City- 2541
Mexico City]. 2542
Take the first path, Guatemala City-New York, from the queue. 2543
The current city is New York, which is not in the explored 2544
list. Thus, put the current city into the explored list. The 2545
explored list is [Guatemala City, New York] 2546
The current city is New York and the goal is Guangzhou. For 2547
the next step, the promising cities to go to are [Helsinki, 2548
Guangzhou, Lahore]. 2549
The goal city is Guangzhou. Since Guangzhou is in the found, 2550
and the current selected path is Guatemala City-New York, the 2551
route is Guatemala City-New York-Guangzhou. 2552
Answer: Guatemala City-New York-Guangzhou 2553
Question: {input} 2554
Let’s think step by step. 2555
""" 2556

2557
prompt_tot_linear_cot_2s = """The user will ask for a flight 2558
route between two cities. You need to generate a response with 2559
the route. 2560

You are simulating bfs process to find the route between two 2561
cities. In the beginning, you have a queue [’start city’], and 2562
you need to proceed the following steps: 2563

1. Take the first city in the queue as the current city. 2564
2. Propose the possible cities with direct flights to go to 2565
for the next step. Do not propose the explored cities and 2566
cities in the queue. 2567
3. Put the cities into the queue. 2568
Repeat steps 1-3 until the goal city is included in the queue. 2569
Respond with reasoning steps, and end with the answer, in the 2570
format "Answer: [city 1]-[city 2]-[city 3]-...-[city n]" 2571
Question: What is the flight route from Guatemala City to 2572
Guangzhou? 2573
The queue is [Guatemala City]. Take the first path, Guatemala 2574
City, from the queue. 2575
The current city is Guatemala City, which is not in the 2576
explored list. Thus, put the current city into the explored 2577
list. The explored list is [Guatemala City] 2578
The current city is Guatemala City and the goal is Guangzhou. 2579
For the next step, the promising cities to go to are [New York, 2580
Los Angeles, Mexico City]. 2581

Puting those cities into the queue. The queue is [Guatemala 2582
City-New York, Guatemala City-Los Angeles, Guatemala City- 2583
Mexico City]. 2584
Take the first path, Guatemala City-New York, from the queue. 2585
The current city is New York, which is not in the explored 2586
list. Thus, put the current city into the explored list. The 2587
explored list is [Guatemala City, New York] 2588
The current city is New York and the goal is Guangzhou. For 2589
the next step, the promising cities to go to are [Helsinki, 2590
Guangzhou, Lahore]. 2591
The goal city is Guangzhou. Since Guangzhou is in the found, 2592
and the current selected path is Guatemala City-New York, the 2593
route is Guatemala City-New York-Guangzhou. 2594
Answer: Guatemala City-New York-Guangzhou 2595
Question: What is the flight route from Tegucigalpa to 2596
Helsinki? 2597
The queue is [Tegucigalpa]. Take the first path, Tegucigalpa, 2598
from the queue. 2599
The current city is Tegucigalpa, which is not in the explored 2600
list. Thus, put the current city into the explored list. The 2601
explored list is [Tegucigalpa] 2602
The current city is Tegucigalpa and the goal is Helsinki. For 2603
the next step, the promising cities to go to are [Guatemala 2604
City, Miami]. 2605
Puting those cities into the queue. The queue is [Tegucigalpa- 2606
Guatemala City, Tegucigalpa-Miami]. 2607
Take the first path, Tegucigalpa-Guatemala City, from the 2608
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queue.2609
The current city is Guatemala City, which is not in the2610
explored list. Thus, put the current city into the explored2611
list. The explored list is [Tegucigalpa, Guatemala City]2612
The current city is Guatemala City and the goal is Helsinki.2613
For the next step, the promising cities to go to are [New York,2614
Los Angeles, Mexico City].2615

Puting those cities into the queue. The queue is [Tegucigalpa-2616
Miami, Tegucigalpa-Guatemala City-New York, Tegucigalpa-2617
Guatemala City-Los Angeles, Tegucigalpa-Guatemala City-Mexico2618
City].2619
Take the first path, Tegucigalpa-Miami, from the queue.2620
The current city is Miami, which is not in the explored list.2621
Thus, put the current city into the explored list. The2622
explored list is [Tegucigalpa, Guatemala City, Miami]2623
The current city is Miami and the goal is Helsinki. For the2624
next step, the promising cities to go to are [Sao Paulo,2625
Buenos Aires, Chicago].2626
Puting those cities into the queue. The queue is [Tegucigalpa-2627
Guatemala City-New York, Tegucigalpa-Guatemala City-Los2628
Angeles, Tegucigalpa-Guatemala City-Mexico City, Tegucigalpa-2629
Miami-Sao Paulo, Tegucigalpa-Miami-Buenos Aires, Tegucigalpa-2630
Miami-Chicago].2631
Take the first path, Tegucigalpa-Guatemala City-New York, from2632
the queue.2633

The current city is New York, which is not in the explored2634
list. Thus, put the current city into the explored list. The2635
explored list is [Tegucigalpa, Guatemala City, Miami, New York2636
]2637
The current city is New York and the goal is Helsinki. For the2638
next step, the promising cities to go to are [Helsinki,2639

Guangzhou, Lahore].2640
The goal city is Helsinki. Since Helsinki is in the found, and2641
the current selected path is Tegucigalpa-Guatemala City-New2642

York, the route is Tegucigalpa-Guatemala City-New York-2643
Helsinki.2644
Answer: Tegucigalpa-Guatemala City-New York-Helsinki2645
Question: {input}2646
Let’s think step by step.2647
"""2648

E.5 Game of 24 prompts2649

Listing 14: CoT prompts
cot_prompt_1s = ’’’Use numbers and basic arithmetic operations2650
(+ - * /) to obtain 24. Each step, you are only allowed to2651

choose two of the remaining numbers to obtain a new number.2652
Please strictly follow the format of the example. Do not2653
include unnecessary information in your output. Do not include2654
serial numbers that are not in the example.2655

Input: 4 4 6 82656
Steps:2657
4 + 8 = 12 (left: 4 6 12)2658
6 - 4 = 2 (left: 2 12)2659
2 * 12 = 24 (left: 24)2660
Answer: (6 - 4) * (4 + 8) = 242661
Input: {input}2662
’’’2663

2664
cot_prompt_3s = ’’’Use numbers and basic arithmetic operations2665
(+ - * /) to obtain 24. Each step, you are only allowed to2666

choose two of the remaining numbers to obtain a new number.2667
Please strictly follow the format of the example. Do not2668
include unnecessary information in your output. Do not include2669
serial numbers that are not in the example.2670

Input: 4 4 6 82671
Steps:2672
4 + 8 = 12 (left: 4 6 12)2673
6 - 4 = 2 (left: 2 12)2674
2 * 12 = 24 (left: 24)2675
Answer: (6 - 4) * (4 + 8) = 242676
Input: 2 9 10 122677
Steps:2678
12 * 2 = 24 (left: 9 10 24)2679
10 - 9 = 1 (left: 1 24)2680
24 * 1 = 24 (left: 24)2681
Answer: (12 * 2) * (10 - 9) = 242682
Input: 4 9 10 132683
Steps:2684
13 - 10 = 3 (left: 3 4 9)2685
9 - 3 = 6 (left: 4 6)2686
4 * 6 = 24 (left: 24)2687
Answer: 4 * (9 - (13 - 10)) = 242688
Input: {input}2689

’’’ 2690
2691

cot_prompt_5s = ’’’Use numbers and basic arithmetic operations 2692
(+ - * /) to obtain 24. Each step, you are only allowed to 2693

choose two of the remaining numbers to obtain a new number. 2694
Please strictly follow the format of the example. Do not 2695
include unnecessary information in your output. Do not include 2696
serial numbers that are not in the example. 2697

Input: 4 4 6 8 2698
Steps: 2699
4 + 8 = 12 (left: 4 6 12) 2700
6 - 4 = 2 (left: 2 12) 2701
2 * 12 = 24 (left: 24) 2702
Answer: (6 - 4) * (4 + 8) = 24 2703
Input: 2 9 10 12 2704
Steps: 2705
12 * 2 = 24 (left: 9 10 24) 2706
10 - 9 = 1 (left: 1 24) 2707
24 * 1 = 24 (left: 24) 2708
Answer: (12 * 2) * (10 - 9) = 24 2709
Input: 4 9 10 13 2710
Steps: 2711
13 - 10 = 3 (left: 3 4 9) 2712
9 - 3 = 6 (left: 4 6) 2713
4 * 6 = 24 (left: 24) 2714
Answer: 4 * (9 - (13 - 10)) = 24 2715
Input: 1 4 8 8 2716
Steps: 2717
8 / 4 = 2 (left: 1 2 8) 2718
1 + 2 = 3 (left: 3 8) 2719
3 * 8 = 24 (left: 24) 2720
Answer: (1 + 8 / 4) * 8 = 24 2721
Input: 5 5 5 9 2722
Steps: 2723
5 + 5 = 10 (left: 5 9 10) 2724
10 + 5 = 15 (left: 9 15) 2725
15 + 9 = 24 (left: 24) 2726
Answer: ((5 + 5) + 5) + 9 = 24 2727
Input: {input} 2728
’’’ 2729

Listing 15: ToT prompts
propose_prompt_1s = ’’’Use numbers and basic arithmetic 2730
operations (+ - * /) to propose possible next steps of 2731
operation. Each step, you are only allowed to choose two of 2732
the input numbers to obtain a new number. 2733
Do not include serial numbers that are not in the example. Do 2734
not include unnecessary information in your output. 2735
Input: 2 8 8 14 2736
Possible next steps: 2737
2 + 8 = 10 (left: 8 10 14) 2738
8 / 2 = 4 (left: 4 8 14) 2739
14 + 2 = 16 (left: 8 8 16) 2740
2 * 8 = 16 (left: 8 14 16) 2741
8 - 2 = 6 (left: 6 8 14) 2742
14 - 8 = 6 (left: 2 6 8) 2743
14 / 2 = 7 (left: 7 8 8) 2744
14 - 2 = 12 (left: 8 8 12) 2745
Input: {input} 2746
Possible next steps: 2747
’’’ 2748

2749
propose_prompt_3s = ’’’Use numbers and basic arithmetic 2750
operations (+ - * /) to propose possible next steps of 2751
operation. Each step, you are only allowed to choose two of 2752
the input numbers to obtain a new number. 2753
Do not include serial numbers that are not in the example. Do 2754
not include unnecessary information in your output. 2755
Input: 2 8 8 14 2756
Possible next steps: 2757
2 + 8 = 10 (left: 8 10 14) 2758
8 / 2 = 4 (left: 4 8 14) 2759
14 + 2 = 16 (left: 8 8 16) 2760
2 * 8 = 16 (left: 8 14 16) 2761
8 - 2 = 6 (left: 6 8 14) 2762
14 - 8 = 6 (left: 2 6 8) 2763
14 / 2 = 7 (left: 7 8 8) 2764
14 - 2 = 12 (left: 8 8 12) 2765
Input: 1 2 7 10 2766
Possible next steps: 2767
1 + 2 = 3 (left: 3 7 10) 2768
2 + 7 = 9 (left: 1 9 10) 2769
7 + 10 = 17 (left: 1 2 17) 2770
1 * 2 = 2 (left: 2 7 10) 2771
2 * 7 = 14 (left: 1 14 10) 2772
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7 * 10 = 70 (left: 1 2 70)2773
1 - 2 = -1 (left: -1 7 10)2774
2 - 7 = -5 (left: 1 -5 10)2775
7 - 10 = -3 (left: 1 2 -3)2776
1 / 2 = 0.5 (left: 0.5 7 10)2777
2 / 7 = 0.29 (left: 1 0.29 10)2778
7 / 10 = 0.7 (left: 1 2 0.7)2779
Input: 4 4 6 82780
Possible next steps:2781
4 + 4 = 8 (left: 6 8 8)2782
4 + 6 = 10 (left: 8 10 8)2783
6 + 8 = 14 (left: 4 14 8)2784
4 * 4 = 16 (left: 6 8 16)2785
4 * 6 = 24 (left: 8 24 8)2786
6 * 8 = 48 (left: 4 48 8)2787
4 - 4 = 0 (left: 0 6 8)2788
4 - 6 = -2 (left: -2 8 8)2789
6 - 8 = -2 (left: 4 -2 8)2790
4 / 4 = 1 (left: 1 6 8)2791
4 / 6 = 0.67 (left: 8 0.67 8)2792
6 / 8 = 0.75 (left: 4 0.75 8)2793
Input: {input}2794
Possible next steps:2795
’’’2796

2797
propose_prompt_5s = ’’’Use numbers and basic arithmetic2798
operations (+ - * /) to propose possible next steps of2799
operation. Each step, you are only allowed to choose two of2800
the input numbers to obtain a new number.2801
Do not include serial numbers that are not in the example. Do2802
not include unnecessary information in your output.2803
Input: 2 8 8 142804
Possible next steps:2805
2 + 8 = 10 (left: 8 10 14)2806
8 / 2 = 4 (left: 4 8 14)2807
14 + 2 = 16 (left: 8 8 16)2808
2 * 8 = 16 (left: 8 14 16)2809
8 - 2 = 6 (left: 6 8 14)2810
14 - 8 = 6 (left: 2 6 8)2811
14 / 2 = 7 (left: 7 8 8)2812
14 - 2 = 12 (left: 8 8 12)2813
Input: 1 2 7 102814
Possible next steps:2815
1 + 2 = 3 (left: 3 7 10)2816
2 + 7 = 9 (left: 1 9 10)2817
7 + 10 = 17 (left: 1 2 17)2818
1 * 2 = 2 (left: 2 7 10)2819
2 * 7 = 14 (left: 1 14 10)2820
7 * 10 = 70 (left: 1 2 70)2821
1 - 2 = -1 (left: -1 7 10)2822
2 - 7 = -5 (left: 1 -5 10)2823
7 - 10 = -3 (left: 1 2 -3)2824
1 / 2 = 0.5 (left: 0.5 7 10)2825
2 / 7 = 0.29 (left: 1 0.29 10)2826
7 / 10 = 0.7 (left: 1 2 0.7)2827
Input: 4 4 6 82828
Possible next steps:2829
4 + 4 = 8 (left: 6 8 8)2830
4 + 6 = 10 (left: 8 10 8)2831
6 + 8 = 14 (left: 4 14 8)2832
4 * 4 = 16 (left: 6 8 16)2833
4 * 6 = 24 (left: 8 24 8)2834
6 * 8 = 48 (left: 4 48 8)2835
4 - 4 = 0 (left: 0 6 8)2836
4 - 6 = -2 (left: -2 8 8)2837
6 - 8 = -2 (left: 4 -2 8)2838
4 / 4 = 1 (left: 1 6 8)2839
4 / 6 = 0.67 (left: 8 0.67 8)2840
6 / 8 = 0.75 (left: 4 0.75 8)2841
Input: 3 4 5 62842
Possible next steps:2843
3 + 4 = 7 (left: 5 6 7)2844
4 + 5 = 9 (left: 6 9 7)2845
4 + 6 = 10 (left: 5 10 7)2846
5 + 6 = 11 (left: 4 11 7)2847
3 * 4 = 12 (left: 5 6 12)2848
4 * 5 = 20 (left: 6 20 7)2849
4 * 6 = 24 (left: 5 24 7)2850
5 * 6 = 30 (left: 4 30 7)2851
3 - 4 = -1 (left: -1 5 6)2852
4 - 5 = -1 (left: 6 -1 7)2853
4 - 6 = -2 (left: 5 -2 7)2854
5 - 6 = -1 (left: 4 -1 7)2855
3 / 4 = 0.75 (left: 0.75 5 6)2856
4 / 5 = 0.8 (left: 6 0.8 7)2857
4 / 6 = 0.67 (left: 5 0.67 7)2858
5 / 6 = 0.83 (left: 4 0.83 7)2859

Input: 2 4 6 2860
Possible next steps: 2861
2 + 4 = 6 (left: 6 6) 2862
4 + 6 = 10 (left: 6 10) 2863
2 * 4 = 8 (left: 6 8) 2864
4 * 6 = 24 (left: 6 24) 2865
2 - 4 = -2 (left: -2 6) 2866
4 - 6 = -2 (left: 8 -2) 2867
2 / 4 = 0.5 (left: 0.5 6) 2868
4 / 6 = 0.67 (left: 8 0.67) 2869
Input: {input} 2870
Possible next steps: 2871
’’’ 2872

E.5.1 ToT Decomp prompts 2873

Listing 16: ToT Decomp prompts
select_prompt_1s = ’’’Select two numbers using the bracket. 2874
For example, (2) 8 8 (14) means select 2 and 14. Follow the 2875
format of the example. 2876
Do not include serial numbers that are not in the example. Do 2877
not include unnecessary information in your output. 2878
Input: 1 2 7 10 2879
Select all combinations of two numbers using bracket. 2880
Output: 2881
(1) (2) 7 10 2882
1 (2) (7) 10 2883
1 2 (7) (10) 2884
(1) 2 (7) 10 2885
(1) 2 7 (10) 2886
1 (2) 7 (10) 2887
Input: {input} 2888
Select all combinations of two numbers using bracket. 2889
Output: 2890
’’’ 2891

2892
2893

select_prompt_3s = ’’’Select two numbers using the bracket. 2894
For example, (2) 8 8 (14) means select 2 and 14. Follow the 2895
format of the example. 2896
Do not include serial numbers that are not in the example. Do 2897
not include unnecessary information in your output. 2898
Input: 7 8 9 2899
Select all combinations of two numbers using bracket. 2900
Output: 2901
(7) (8) 9 2902
7 (8) (9) 2903
(7) 8 (9) 2904
Input: 2.33 6 2905
Output: 2906
(2.33) (6) 2907
Input: 1 2 7 10 2908
Select all combinations of two numbers using bracket. 2909
Output: 2910
(1) (2) 7 10 2911
1 (2) (7) 10 2912
1 2 (7) (10) 2913
(1) 2 (7) 10 2914
(1) 2 7 (10) 2915
1 (2) 7 (10) 2916
Input: {input} 2917
Select all combinations of two numbers using bracket. 2918
Output: 2919
’’’ 2920

2921
2922

select_prompt_5s = ’’’Select two numbers using the bracket. 2923
For example, (2) 8 8 (14) means select 2 and 14. Follow the 2924
format of the example. 2925
Do not include serial numbers that are not in the example. Do 2926
not include unnecessary information in your output. 2927
Input: 7 8 9 2928
Select all combinations of two numbers using bracket. 2929
Output: 2930
(7) (8) 9 2931
7 (8) (9) 2932
(7) 8 (9) 2933
Input: 2.33 6 2934
Output: 2935
(2.33) (6) 2936
Input: 1 2 7 10 2937
Select all combinations of two numbers using bracket. 2938
Output: 2939
(1) (2) 7 10 2940
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1 (2) (7) 102941
1 2 (7) (10)2942
(1) 2 (7) 102943
(1) 2 7 (10)2944
1 (2) 7 (10)2945
Input: 0.66 8 92946
Select all combinations of two numbers using bracket.2947
Output:2948
(0.66) (8) 92949
0.66 (8) (9)2950
(0.66) 8 (9)2951
Input: 2 8 8 142952
Select all combinations of two numbers using bracket.2953
Output:2954
(2) (8) 8 142955
2 (8) (8) 142956
2 8 (8) (14)2957
(2) 8 (8) 142958
(2) 8 8 (14)2959
2 (8) 8 (14)2960
Input: {input}2961
Select all combinations of two numbers using bracket.2962
Output:2963
’’’2964

2965
propose_prompt_1s = ’’’Use the two numbers in the bracket and2966
basic arithmetic operations to propose possible next steps.2967
Then, remove the selected numbers by the new number. Use the2968
format ’(left: ...)’ to present the remaining numbers.2969
Do not include serial numbers that are not in the example. Do2970
not include unnecessary information in your output.2971
Input: (2) 8 8 (14)2972
2 + 14 = 16, replace 2 14 by 16 (left: 8 8 16)2973
2 * 14 = 28, replace 2 14 by 28 (left: 8 8 28)2974
2 / 14 = 0.14, replace 2 14 by 0.14 (left: 8 8 0.14)2975
14 / 2 = 7, replace 2 14 by 7 (left: 8 8 7)2976
14 - 2 = 12, replace 2 14 by 12 (left: 8 8 12)2977
2 - 14 = -12, replace 2 14 by -12 (left: 8 8 -12)2978
Input: {input}2979
’’’2980

2981
propose_prompt_3s = ’’’Use the two numbers in the bracket and2982
basic arithmetic operations to propose possible next steps.2983
Then, remove the selected numbers by the new number. Use the2984
format ’(left: ...)’ to present the remaining numbers.2985
Do not include serial numbers that are not in the example. Do2986
not include unnecessary information in your output.2987
Input: (2) 8 8 (14)2988
2 + 14 = 16, replace 2 14 by 16 (left: 8 8 16)2989
2 * 14 = 28, replace 2 14 by 28 (left: 8 8 28)2990
2 / 14 = 0.14, replace 2 14 by 0.14 (left: 8 8 0.14)2991
14 / 2 = 7, replace 2 14 by 7 (left: 8 8 7)2992
14 - 2 = 12, replace 2 14 by 12 (left: 8 8 12)2993
2 - 14 = -12, replace 2 14 by -12 (left: 8 8 -12)2994
Input: 1 (2) 7 (10)2995
2 + 7 = 9, replace 2 7 by 9 (left: 1 9 10)2996
2 * 7 = 14, replace 2 7 by 14 (left: 1 14 10)2997
2 / 7 = 0.29, replace 2 7 by 0.29 (left: 1 0.29 10)2998
7 / 2 = 3.5, replace 2 7 by 3.5 (left: 1 3.5 10)2999
7 - 2 = 5, replace 2 7 by 5 (left: 1 5 10)3000
2 - 7 = -5, replace 2 7 by -5 (left: 1 -5 10)3001
Input: (7) (8) 93002
7 + 8 = 15, replace 7 8 by 15 (left: 15 9)3003
7 * 8 = 56, replace 7 8 by 56 (left: 56 9)3004
7 / 8 = 0.88, replace 7 8 by 0.88 (left: 0.88 9)3005
8 / 7 = 1.14, replace 7 8 by 1.14 (left: 1.14 9)3006
8 - 7 = 1, replace 7 8 by 1 (left: 1 9)3007
7 - 8 = -1, replace 7 8 by -1 (left: -1 9)3008
Input: {input}3009
’’’3010

3011
propose_prompt_5s = ’’’Use the two numbers in the bracket and3012
basic arithmetic operations to propose possible next steps.3013
Then, remove the selected numbers by the new number. Use the3014
format ’(left: ...)’ to present the remaining numbers.3015
Do not include serial numbers that are not in the example. Do3016
not include unnecessary information in your output.3017
Input: (2) 8 8 (14)3018
2 + 14 = 16, replace 2 14 by 16 (left: 8 8 16)3019
2 * 14 = 28, replace 2 14 by 28 (left: 8 8 28)3020
2 / 14 = 0.14, replace 2 14 by 0.14 (left: 8 8 0.14)3021
14 / 2 = 7, replace 2 14 by 7 (left: 8 8 7)3022
14 - 2 = 12, replace 2 14 by 12 (left: 8 8 12)3023
2 - 14 = -12, replace 2 14 by -12 (left: 8 8 -12)3024
Input: 1 (2) 7 (10)3025
2 + 7 = 9, replace 2 7 by 9 (left: 1 9 10)3026
2 * 7 = 14, replace 2 7 by 14 (left: 1 14 10)3027

2 / 7 = 0.29, replace 2 7 by 0.29 (left: 1 0.29 10) 3028
7 / 2 = 3.5, replace 2 7 by 3.5 (left: 1 3.5 10) 3029
7 - 2 = 5, replace 2 7 by 5 (left: 1 5 10) 3030
2 - 7 = -5, replace 2 7 by -5 (left: 1 -5 10) 3031
Input: (7) (8) 9 3032
7 + 8 = 15, replace 7 8 by 15 (left: 15 9) 3033
7 * 8 = 56, replace 7 8 by 56 (left: 56 9) 3034
7 / 8 = 0.88, replace 7 8 by 0.88 (left: 0.88 9) 3035
8 / 7 = 1.14, replace 7 8 by 1.14 (left: 1.14 9) 3036
8 - 7 = 1, replace 7 8 by 1 (left: 1 9) 3037
7 - 8 = -1, replace 7 8 by -1 (left: -1 9) 3038
Input: (2.33) (6) 3039
2.33 + 6 = 8.33, replace 2.33 6 by 8.33 (left: 8.33) 3040
2.33 * 6 = 14, replace 2.33 6 by 14 (left: 14) 3041
2.33 / 6 = 0.39, replace 2.33 6 by 0.39 (left: 0.39) 3042
6 / 2.33 = 2.57, replace 2.33 6 by 2.57 (left: 2.57) 3043
6 - 2.33 = 3.67, replace 2.33 6 by 3.67 (left: 3.67) 3044
2.33 - 6 = -3.67, replace 2.33 6 by -3.67 (left: -3.67) 3045
Input: 0.66 (8) (9) 3046
8 + 9 = 17, replace 8 9 by 17 (left: 0.66 17) 3047
8 * 9 = 72, replace 8 9 by 72 (left: 0.66 72) 3048
8 / 9 = 0.89, replace 8 9 by 0.89 (left: 0.66 0.89) 3049
9 / 8 = 1.12, replace 8 9 by 1.12 (left: 0.66 1.12) 3050
9 - 8 = 1, replace 8 9 by 1 (left: 0.66 1) 3051
8 - 9 = -1, replace 8 9 by -1 (left: 0.66 -1) 3052
Input: {input} 3053
’’’ 3054

3055
assembly_prompt_1s = ’’’Use the previous steps of equations to 3056
form a final equation that obtains 24. Use ’Answer: ’ to 3057

present your final answer. 3058
Input: 4 4 6 8 3059
Steps: 3060
4 + 8 = 12 (left: 4 6 12) 3061
6 - 4 = 2 (left: 2 12) 3062
2 * 12 = 24 (left: 24) 3063
Let’s do it step by step: 3064
f1 = 4 + 8 = 12. In this step, 4 and 8 are from the input. 3065
f2 = 6 - 4 = 2. In this step, 6 and 4 are from the input. 3066
f3 = 2 * 12 = 24. In this step, 2 is from f2, and 12 is from 3067
f1. 3068
Thus, we replace 2 by f2: f3 = 2 * 12 = f2 * 12 = 24 3069
Thus, we replace 12 by f1: f3 = 2 * 12 = f2 * f1 = 24 3070
Since f1 = 4 + 8, we replace f1 by 4 + 8: f3 = 2 * 12 = f2 * 3071
(4 + 8) = 24 3072
Since f2 = 6 - 4, we replace f2 by 6 - 4: f3 = 2 * 12 = (6 - 3073
4) * (4 + 8) = 24 3074
Answer: (6 - 4) * (4 + 8) = 24 3075
Input: {input}Let’s do it step by step: 3076
f1 = ’’’ 3077

3078
assembly_prompt_3s = ’’’Use the previous steps of equations to 3079
form a final equation that obtains 24. Use ’Answer: ’ to 3080

present your final answer. 3081
Input: 4 4 6 8 3082
Steps: 3083
4 + 8 = 12 (left: 4 6 12) 3084
6 - 4 = 2 (left: 2 12) 3085
2 * 12 = 24 (left: 24) 3086
Let’s do it step by step: 3087
f1 = 4 + 8 = 12. In this step, 4 and 8 are from the input. 3088
f2 = 6 - 4 = 2. In this step, 6 and 4 are from the input. 3089
f3 = 2 * 12 = 24. In this step, 2 is from f2, and 12 is from 3090
f1. 3091
Thus, we replace 2 by f2: f3 = 2 * 12 = f2 * 12 = 24 3092
Thus, we replace 12 by f1: f3 = 2 * 12 = f2 * f1 = 24 3093
Since f1 = 4 + 8, we replace f1 by 4 + 8: f3 = 2 * 12 = f2 * 3094
(4 + 8) = 24 3095
Since f2 = 6 - 4, we replace f2 by 6 - 4: f3 = 2 * 12 = (6 - 3096
4) * (4 + 8) = 24 3097
Answer: (6 - 4) * (4 + 8) = 24 3098
Input: 2 9 10 12 3099
Steps: 3100
12 * 2 = 24 (left: 9 10 24) 3101
10 - 9 = 1 (left: 1 24) 3102
24 * 1 = 24 (left: 24) 3103
Let’s do it step by step: 3104
f1 = 12 * 2 = 24. In this step, 12 and 2 are from the input. 3105
f2 = 10 - 9 = 1. In this step, 10 and 9 are from the input. 3106
f3 = 24 * 1 = 24. In this step, 24 is from f1, and 1 is from 3107
f2. 3108
Thus, we replace 24 by f1: f3 = 24 * 1 = f1 * 1 = 24 3109
Thus, we replace 1 by f2: f3 = 24 * 1 = f1 * f2 = 24 3110
Since f1 = 12 * 2, we replace f1 by 12 * 2: f3 = 24 * 1 = (12 3111
* 2) * f2 = 24 3112
Since f2 = 10 - 9, we replace f2 by 10 - 9: f3 = 24 * 1 = (12 3113
* 2) * (10 - 9) = 24 3114

25



Answer: (12 * 2) * (10 - 9) = 243115
Input: 4 9 10 133116
Steps:3117
13 - 10 = 3 (left: 3 4 9)3118
9 - 3 = 6 (left: 4 6)3119
4 * 6 = 24 (left: 24)3120
Let’s do it step by step:3121
f1 = 13 - 10 = 3. In this step, 13 and 10 are from the input.3122
f2 = 9 - 3 = 6. In this step, 9 is from the input, and 3 is3123
from f1.3124
Thus, we replace 3 by f1: f2 = 9 - 3 = 9 - f1 = 63125
f3 = 4 * 6 = 24. In this step, 4 is from the input, and 6 is3126
from f2.3127
Thus, we replace 6 by f2: f3 = 4 * 6 = 4 * f2 = 243128
Since f2 = 9 - f1, we replace f2 by 9 - f1: f3 = 4 * 6 = 4 *3129
(9 - f1) = 243130
Since f1 = 13 - 10, we replace f1 by 13 - 10: f3 = 4 * 6 = 4 *3131
(9 - (13 - 10)) = 243132

Answer: 4 * (9 - (13 - 10)) = 243133
Input: {input}Let’s do it step by step:3134
f1 = ’’’3135

3136
assembly_prompt_5s = ’’’Use the previous steps of equations to3137
form a final equation that obtains 24. Use ’Answer: ’ to3138

present your final answer.3139
Input: 4 4 6 83140
Steps:3141
4 + 8 = 12 (left: 4 6 12)3142
6 - 4 = 2 (left: 2 12)3143
2 * 12 = 24 (left: 24)3144
Let’s do it step by step:3145
f1 = 4 + 8 = 12. In this step, 4 and 8 are from the input.3146
f2 = 6 - 4 = 2. In this step, 6 and 4 are from the input.3147
f3 = 2 * 12 = 24. In this step, 2 is from f2, and 12 is from3148
f1.3149
Thus, we replace 2 by f2: f3 = 2 * 12 = f2 * 12 = 243150
Thus, we replace 12 by f1: f3 = 2 * 12 = f2 * f1 = 243151
Since f1 = 4 + 8, we replace f1 by 4 + 8: f3 = 2 * 12 = f2 *3152
(4 + 8) = 243153
Since f2 = 6 - 4, we replace f2 by 6 - 4: f3 = 2 * 12 = (6 -3154
4) * (4 + 8) = 243155
Answer: (6 - 4) * (4 + 8) = 243156
Input: 2 9 10 123157
Steps:3158
12 * 2 = 24 (left: 9 10 24)3159
10 - 9 = 1 (left: 1 24)3160
24 * 1 = 24 (left: 24)3161
Let’s do it step by step:3162
f1 = 12 * 2 = 24. In this step, 12 and 2 are from the input.3163
f2 = 10 - 9 = 1. In this step, 10 and 9 are from the input.3164
f3 = 24 * 1 = 24. In this step, 24 is from f1, and 1 is from3165
f2.3166
Thus, we replace 24 by f1: f3 = 24 * 1 = f1 * 1 = 243167
Thus, we replace 1 by f2: f3 = 24 * 1 = f1 * f2 = 243168
Since f1 = 12 * 2, we replace f1 by 12 * 2: f3 = 24 * 1 = (123169
* 2) * f2 = 243170
Since f2 = 10 - 9, we replace f2 by 10 - 9: f3 = 24 * 1 = (123171
* 2) * (10 - 9) = 243172
Answer: (12 * 2) * (10 - 9) = 243173
Input: 4 9 10 133174
Steps:3175
13 - 10 = 3 (left: 3 4 9)3176
9 - 3 = 6 (left: 4 6)3177
4 * 6 = 24 (left: 24)3178
Let’s do it step by step:3179
f1 = 13 - 10 = 3. In this step, 13 and 10 are from the input.3180
f2 = 9 - 3 = 6. In this step, 9 is from the input, and 3 is3181
from f1.3182
Thus, we replace 3 by f1: f2 = 9 - 3 = 9 - f1 = 63183
f3 = 4 * 6 = 24. In this step, 4 is from the input, and 6 is3184
from f2.3185
Thus, we replace 6 by f2: f3 = 4 * 6 = 4 * f2 = 243186
Since f2 = 9 - f1, we replace f2 by 9 - f1: f3 = 4 * 6 = 4 *3187
(9 - f1) = 243188
Since f1 = 13 - 10, we replace f1 by 13 - 10: f3 = 4 * 6 = 4 *3189
(9 - (13 - 10)) = 243190

Answer: 4 * (9 - (13 - 10)) = 243191
Input: 1 4 8 83192
Steps:3193
8 / 4 = 2 (left: 1 2 8)3194
1 + 2 = 3 (left: 3 8)3195
3 * 8 = 24 (left: 24)3196
Let’s do it step by step:3197
f1 = 8 / 4 = 2. In this step, 8 and 4 are from the input.3198
f2 = 1 + 2 = 3. In this step, 2 is from f1, and 1 is from the3199
input.3200
Thus, we replace 2 by f1: f2 = 1 + 2 = 1 + f1 = (1 + (8 / 4))3201

= 3 3202
f3 = 3 * 8 = 24. In this step, 3 is from f2, and 8 is from the 3203
input. 3204

Thus, we replace 3 by f2: f3 = 3 * 8 = f2 * 8 = 24 3205
Since f2 = 1 + f1, we replace f2 by 1 + f1: f3 = 3 * 8 = (1 + 3206
f1) * 8 = 24 3207
Since f1 = 8 / 4, we replace f1 by 8 / 4: (1 + f1) * 8 = (1 + 3208
(8 / 4)) * 8 = 24 3209
Answer: (1 + (8 / 4)) * 8 = 24 3210
Input: 5 5 5 9 3211
Steps: 3212
5 + 5 = 10 (left: 5 9 10) 3213
10 + 5 = 15 (left: 9 15) 3214
15 + 9 = 24 (left: 24) 3215
Let’s do it step by step: 3216
f1 = 5 + 5 = 10. In this step, 5 and 5 are from the input. 3217
f2 = 10 + 5 = 15. In this step, 10 is from f1, and 5 is from 3218
the input. 3219
Thus, we replace 10 by f1: f2 = 10 + 5 = f1 + 5 = 15 3220
f3 = 15 + 9 = 24. In this step, 15 is from f2, and 9 is from 3221
the input. 3222
Thus, we replace 15 by f2: f3 = 15 + 9 = f2 + 9 = 24 3223
Since f2 = f1 + 5, we replace f2 by f1 + 5: f3 = 15 + 9 = (f1 3224
+ 5) + 9 = 24 3225
Since f1 = 5 + 5, we replace f1 by 5 + 5: f3 = 15 + 9 = ((5 + 3226
5) + 5) + 9 = 24 3227
Answer: ((5 + 5) + 5) + 9 = 24 3228
Input: {input}Let’s do it step by step: 3229
f1 = ’’’ 3230

F Tables 3231

Method GPT-3.5 GPT-4
Direct 28.51 47.16
CoT 79.53 94.09
ToT 81.88 96.00

Table 2: Figure 2a

Dataset size Direct CoT
1000 18.50 88.00
2000 22.50 88.00
3000 30.50 92.50
4000 35.00 93.50
5000 37.50 95.00
6000 46.50 95.00
7000 46.50 96.00
8000 48.50 96.50
9000 48.50 97.50
10000 58.00 96.50

Table 3: Figure 2b
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Method InD OoD Total
Direct 0s 38.67 8.75 21.57
Direct 3s 68.67 35.25 49.57
Direct 6s 57.67 30.25 42.00
CoT 0s 59.33 35.25 45.57
CoT Implicit 3s 67.00 41.50 52.43
CoT Implicit 6s 65.00 36.25 48.57
CoT Explicit 3s 85.67 65.00 73.86
CoT Explicit 6s 86.67 66.50 75.14

Table 4: Figure 3 GPT-4

Method InD OoD Total
Direct 0s 26.00 13.50 18.86
Direct 3s 32.33 10.50 19.86
Direct 6s 39.33 20.25 28.43
CoT 0s 24.33 8.75 15.43
CoT Implicit 3s 18.00 6.75 11.57
CoT Implicit 6s 20.33 5.00 11.57
CoT Explicit 3s 56.67 16.00 33.43
CoT Explicit 6s 63.33 28.75 43.57

Table 5: Figure 3 GPT-3.5

Method Large cities Mid-sized cities
CoT 0s 70.76 50.00
CoT 3s 73.10 51.64
CoT 8s 72.51 53.27
ToT-linear 0s 75.43 69.67
ToT-linear 3s 81.29 77.05
ToT-linear 8s 78.36 72.95
ToT 0s 78.36 72.13
ToT 3s 80.70 75.41
ToT 8s 81.29 75.41

Table 6: Figure 5 GPT-3.5 (Accuracy, %)

Method Large cities Mid-sized cities
CoT 0s 71.35 64.75
CoT 3s 76.02 68.03
CoT 8s 85.38 70.49
ToT-linear 0s 54.24 47.54
ToT-linear 3s 87.13 69.67
ToT-linear 8s 84.80 68.85
ToT 0s 76.02 70.49
ToT 3s 88.30 78.69
ToT 8s 88.89 79.51

Table 7: Figure 5 GPT-4 (Accuracy, %)

Num of edges Large cities Mid-sized cities
1069 90.64±2.21 80.32±3.21
2138 93.30±2.02 85.87±3.92
4277 97.07±0.94 90.16±1.45
6415 97.90±1.20 93.79±1.13

Table 8: Figure 6 ToT-linear (Accuracy % ± standard
error)

Num of edges Large cities Mid-sized cities
744 65.50±5.22 58.10±4.91
1489 78.94±3.90 68.85±4.56
2979 80.19±4.12 74.59±4.11
4468 81.52±5.23 77.97±5.10
5958 83.04±3.54 81.98±3.41

Table 9: Figure 6 CoT (Accuracy % ± standard error)

Method GPT-4 GPT-3.5
ToT 5s 58 20
ToT-Decomp 5s 86 47
ToT-Decomp 3s 23 20
ToT-Decomp 1s 19 15
CoT 5s 6 2
Direct 5s 10 4

Table 10: Figure 7, main results (Accuracy, %).

Method Transition error Proposal error
TOT-GPT4-5s 7.12 2.04
TOT-GPT4-Decomp-5s 2.80 1.44
TOT-GPT3.5-5s 16.62 3.15
TOT-GPT3.5-Decomp-5s 3.06 0.30
Method Missing action Answer error
TOT-GPT4-5s 12.44 10.04
TOT-GPT4-Decomp-5s 6.63 1.56
TOT-GPT3.5-5s 23.63 19.03
TOT-GPT3.5-Decomp-5s 16.60 2.28

Table 11: Figure 7, main results (Error rate, %).
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