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ABSTRACT

Neural ordinary differential equations (neural ODEs) introduced an approach to
approximate a neural network as a system of ODEs after considering its layer as
a continuous variable and discretizing its hidden dimension. While having several
good characteristics, neural ODEs are known to be numerically unstable and slow
in solving their integral problems, resulting in errors and/or much computation
of the forward-pass inference. In this work, we present a novel partial differen-
tial equation (PDE)-based approach that removes the necessity of solving integral
problems and considers both the layer and the hidden dimension as continuous
variables. Owing to the recent advancement of learning PDEs, the presented novel
concept, called PR-Net, can be implemented. Our method shows comparable (or
better) accuracy and robustness in much shorter forward-pass inference time for
various datasets and tasks in comparison with neural ODEs and Isometric Mo-
bileNet V3. For the efficient nature of PR-Net, it is suitable to be deployed in
resource-scarce environments, e.g., deploying instead of MobileNet.

1 INTRODUCTION

It had been discovered that interpreting neural networks as differential equations is possible by sev-
eral independent research groups (Weinan, 2017; Ruthotto & Haber, 2019; Lu et al., 2018; Ciccone
et al., 2018; Chen et al., 2018; Gholami et al., 2019). Among them, the seminal neural ordinary
differential equation (neural ODE) research work, which considers the general architecture in Fig-
ure 1 (a), is to learn a neural network approximating ∂h(t)

∂t , where h(t) is a hidden vector at layer
(or time) t (Chen et al., 2018). As such, a neural network is described by a system of ODEs, each
ODE of which describes a dynamics of a hidden element. While neural ODEs have many good
characteristics, they also have limitations, which are listed as follows:

Pros. Neural ODEs can interpret t as a continuous variable and we can have hidden vectors at
any layer (or time) l by h(l) = h(0) +

∫ l
0
o(h(t), t;θo) dt, where o(h(t), t;θo) =

∂h(t)
∂t is

a neural network parameterized by θo.
Pros. Neural ODEs sometimes have smaller numbers of parameters than those of other conven-

tional neural network designs, e.g., (Pinckaers & Litjens, 2019).
Cons. Neural ODEs, which use an adaptive step-size ODE solver, sometimes show numerical

instability (i.e., the underflow error of the step-size) or their forward-pass inference can take
a long time (i.e., too many steps) in solving integral problems, e.g, a forward-pass time of
37.6 seconds of ODE-Net vs. 9.8 seconds of PR-Net in Table 2. Several countermeasures
have been proposed but it is unavoidable to solve integral problems (Zhuang et al., 2020;
Finlay et al., 2020; Daulbaev et al., 2020).

To tackle the limitation, we propose the concept of partial differential equation-regularized neural
network (PR-Net) to directly learn a hidden element, denoted h(d, t) at layer (or time) t ∈ [0, T ] and
dimension d ∈ Rm. Under general contexts, a PDE consists of i) an initial condition at t = 0, ii) a
boundary condition at a boundary location of the spatial domain Rm, and iii) a governing equation
describing ∂h(d,t)

∂t . As such, learning a PDE from data can be reduced to a regression-like problem
to predict h(d, t) that meets its initial/boundary conditions and governing equation.

In training our proposed PR-Net, h(0) is provided by an earlier feature extraction layer, which is
the same as neural ODEs. However, an appropriate governing equation is unknown for downstream
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Figure 1: The proposed PR-Net avoids solving integral problems by learning a regression model
that conforms with a learned governing equation.

machine learning tasks. Therefore, we propose to train a regression model for predicting h(d, t)
and its governing equation simultaneously (see Figure 1 (b)). In other words, neural ODEs directly
learn a governing equation (i.e., ∂h(t)∂t ), whereas PR-Net learns a governing equation in conjunction
with a regression model that conforms with the learned governing equation. The key advantage in
our approach is that we can eliminate the necessity of solving integral problems — in neural ODEs,
where we learn a governing equation only, solving integral problems is mandatory.

Such forward and inverse problems (i.e., solving PDEs for h(d, t) and identifying governing equa-
tions, respectively) arise in many important computational science problems and there have been
many efforts applying machine learning/deep learning techniques to those problems (e.g., in earth
science (Reichstein et al., 2019; Bergen et al., 2019) and climate science (Rolnick et al., 2019)). Re-
cently, physics-informed or physics-aware approaches (Battaglia et al., 2016; Chang et al., 2017;
de Bezenac et al., 2018; Raissi et al., 2019; Sanchez-Gonzalez et al., 2018; Long et al., 2018)
have demonstrated that designing neural networks to incorporate prior scientific knowledge (e.g.,
by enforcing physical laws described in governing equations (Raissi et al., 2019)) greatly helps
avoiding over-fitting and improving generalizability of the neural networks. There also exist several
approaches to incorporate various ideas of classical mechanics in designing neural-ODE-type net-
works (Greydanus et al., 2019; Chen et al., 2020; Cranmer et al., 2020; Zhong et al., 2020; Lee &
Parish, 2020). However, all these works are interested in solving either forward or inverse problems
whereas we solve the two different problem types at the same time for downstream tasks. The most
similar existing work to our work is in (Long et al., 2018). However, this work studied scientific
PDEs and do not consider t as a continuous variable but use a set of discretized points of t.

Compared to previous approaches, the proposed method has a distinct feature that forward and
inverse problems are solved simultaneously with a continuous variable t. Due to this unique feature,
the method can be applied to general machine learning downstream tasks, where we do not have a
priori knowledge on governing equations, such as image classification. Our proposed PR-Net had
the following characteristics:

Pros. PR-Net trains a regression model that outputs a scalar element h(d, t) (without solving any
integral problems), and we can consider both d and t as continuous variables. Therefore, it
is possible to construct flexible hidden dimension vectors.

Pros. PR-Net does not require solving integral problems. As such, there is no numerical instabil-
ity and their forward-pass time is much shorter than that of neural ODEs.

Pros. By learning a governing equation, we can regularize the overall behavior of PR-Net.
Cons. PR-Net sometimes requires a larger number of parameters than that of neural ODEs or

conventional neural networks.

2 PARTIAL DIFFERENTIAL EQUATIONS

The key difference between ODEs and PDEs is that PDEs can have derivatives of multiple variables
whereas ODEs should have only one such variable’s derivative. Therefore, our PDE-based method
interprets both the layer of neural network and the dimension of hidden vector as continuous vari-
ables, which cannot be done in neural ODEs. In our context, h(d, t) means a hidden scalar element at
layer t ∈ R and dimension d ∈ Rm, e.g., m = 1 if h(t) is a vector, m = 3 if h(t) is a convolutional
feature map, and so on.
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Figure 2: A neural network predicts solution
values at d, t given initial conditions, denoted
h(d, 0) for various d, and a governing equation.

Table 1: Two types of PDE problems related to
our work

Type Data What to infer

Forward Problem - Initial condition
- Governing equation Solution h(d, t)

Inverse Problem - Solution h(d, t)
- Initial condition Governing equation

In this section, we first introduce the forward and inverse problems of PDEs in general contexts (see
Table 1). Then, we extend them to design our proposed method in deep-learning contexts.

2.1 FORWARD PROBLEM OF PDES IN GENERAL CONTEXTS

The forward PDE problem in general contexts is to find a solution h(d, t), where d is in a spatial
domain Rm and t is in a time domain [0, T ], given i) an initial condition h(d, 0), ii) a boundary
condition h(dbc, t), where dbc is a boundary location of the spatial domain Rm, and iii) a gov-
erning equation g (Raissi et al., 2019) We note that the boundary condition can be missing in some
cases (Kim, 2018). The governing equation is typically in the following form with particular choices
of αi,j (Raissi, 2018; Peng et al., 2020):

g(d, t;h)
def
= ht −

(
α0,0 + α1,0h+ α2,0h

2 + α3,0h
3

+ α0,1hd + α1,1hhd + α2,1h
2hd + α3,1h

3hd

+ α0,2hdd + α1,2hhdd + α2,2h
2hdd + α3,2h

3hdd

+ α0,3hddd + α1,3hhddd + α2,3h
2hddd + α3,3h

3hddd
)
,

(1)

where ht = ∂h(d,t)
∂t , hd = ∂h(d,t)

∂d , hdd = ∂2h(d,t)
∂d2 , and hddd = ∂3h(d,t)

∂d3 . We also note that g is
always zero in all PDEs, i.e., g(d, t;h) = 0.

In many cases, it is hard to solve the forward problem and hence general purpose PDE solvers do
not exist. Nevertheless, one can use the following optimization to train a neural network f(d, t;θ)
to approximate the solution function h(d, t) as shown in Figure 2 (Raissi et al., 2019):

argmin
θ

LI + LB + LG, (2)

LI
def
=

1

NI

∑
d

(
f(d, 0;θ)− h(d, 0)

)2
, (3)

LB
def
=

1

NB

∑
(dbc,t)

(
f(dbc, t;θ)− h(dbc, t)

)2
, (4)

LG
def
=

1

NG

∑
(d,t)

g(d, t; f,θ)2, (5)

where NI , NB , NG are the numbers of training samples, LI is to train θ for the initial condition,
LB is for the boundary condition, and LG is for the governing equation. Because the governing
equation is always zero, we simply minimize its squared term. Note that i) ft, fd, fdd, fddd can be
easily constructed using the automatic differentiation implemented in TensorFlow or PyTorch, and
ii) we only need h(d, 0), h(dbc, t), which are known a priori, to train the parameters θ.

2.2 INVERSE PROBLEM OF PDES IN GENERAL CONTEXTS

The inverse problem is to find a governing equation given i) an initial condition h(d, 0) and ii) a
solution function h(d, t) (Raissi, 2018). It learns αi,j in Eq. 1 with the following loss (if possible,
they use reference solutions as well):

argmin
αi,j

1

NG

∑
(d,t)

g(d, t;h)2.
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Given a solution function h and its partial derivative terms, we train αi,j by minimizing the objective
loss. Note that we know h in this case. Therefore, the objective loss is defined with h rather than
with f , unlike Eq. 5.

The optimal solution of αi,j is not unique sometimes. However, we note that no trivial solutions,
e.g., αi,j = 0 for all i, j, exist for the inverse problem.

3 PDE-REGULARIZED NEURAL NETWORKS

Our goal in this work is to replace a system of ODEs (cf. Figure 1 (a)) with a PDE. Assuming that
a target task-specific PDE is known a priori, given an initial condition h(0) extracted by the feature
extractor from a sample x, a forward problem can be solved via the method described in Section
2.1. However, a target task-specific PDE is not known a priori in general, and thus, the governing
equation should be learned from data via solving the inverse problem. Unfortunately, the solution
function h(d, t)) is not also known a priori in our setting. Therefore, we make an assumption on the
governing equation that it consists of the most common partial derivative terms (cf. Eq. 1) and then
we propose to solve the forward and the inverse problems alternately: to train θ, we fix its governing
equation g (more precisely, αi,j for all i, j), and to train αi,j for all i, j, we fix θ.

How to Solve Forward Problem. We customize the method presented in Section 2.1 by i) adding
a task-specific loss, e.g., cross-entropy loss for image classification, ii) parameterizing the neural net-
work f by the initial condition h(0), and iii) dropping the boundary condition. Let f(h(0), d, t;θ)
be our neural network to approximate h(d, t) given the varying initial condition h(0)1. The defi-
nition of the governing equation is also extended to g(d, t; f,h(0),θ). We use the following loss
definition to train θ:

argmin
θ

LT + L̂I + L̂G, (6)

L̂I
def
=

1

NX

∑
x∈X

( 1

dim(h)

∑
d

(
f(h(0), d, 0;θ)− h(d, 0)

)2)
, (7)

L̂G
def
=

1

NX

∑
x∈X

( 1

NH

∑
(d,t)∈H

g(d, t; f,h(0),θ)2
)
, (8)

where LT is a task-specific loss,X is a training set, andH is a set of (d, t) pairs, where d ∈ R≥0, t ∈
R≥0, with which we construct the hidden vector that will be used for downstream tasks, denoted by
htask (See Figure 3).

We query f(h(0), d, t;θ) with the (d, t) pairs in H to construct htask. One more important point
to note is that in order to better construct htask, we can train even the pairs in H as follows:
argmin(d,t)∈H LT (line 7 in Alg. 1). Thus, the elements of htask can be collected from different
dimensions and layers. A similar approach to optimize the end time of integral was attempted for
neural ODEs in (Massaroli et al., 2020).

How to Solve Inverse Problem. After fixing θ, we train αi,j for all i, j by using the following L1

regularized loss with a coefficient w:

argmin
αi,j

L̂G +RG, (9)

RG
def
= w

∑
i,j

|αi,j |. (10)

We minimize the sum of |αi,j | to induce a sparse governing equation according to Occam’s razor and
since in many PDEs, their governing equations are sparse. This optimization allows us to choose a
sparse solution among many possible governing equations. In many cases, therefore, our regularized
inverse problem can be uniquely solved.

1Therefore, one can consider that our neural network f approximates a general solution rather than a partic-
ular solution. A general solution means a solution of PDE with no specified initial conditions and a particular
solution means a solution of PDE given an initial condition. Both neural ODEs and PR-Net approximate general
solutions because initial conditions are varied.
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Algorithm 1 How to train PR-Net
Input: training data X , validating data V , max iteration

number max iter
Output: θ, (d, t) ∈ H , and αi,j for all i, j

1 Initialize θ, (d, t) ∈ H , and αi,j for all i, j;
2 k ← 0;
3 Lsum ←∞;
4 while Lsum is not converged and k < max iter do
5 Train θ, Feature Extractor, and Classifier with LT ;
6 Train θ with LT + L̂I + L̂G ;
7 Train (d, t) ∈ H with LT ;
8 Train αi,j for all i, j with L̂G +RG;
9 Validate with V and update the best model;

10 Lsum ← LT + L̂I + L̂G +RG;
11 k ← k + 1;
12 return θ, (d, t) ∈ H , and αi,j for all i, j;

Figure 3: The general architecture and the training algorithm of PR-Net

Training Algorithm. Our overall training algorithm is in Alg. 1. We alternately train θ, (d, t) ∈
H , and αi,j for all i, j. The forward problem to train θ becomes a well-posed problem (i.e., its
solution always exists and is unique) if the neural network f is analytical or equivalently, uniformly
Lipschitz continuous (Chen et al., 2018). Many neural network operators are analytical, such as
softplus, fully-connected, and exponential. Under the mild condition of analytical neural networks,
therefore, the well-posedness can be fulfilled. The inverse problem can also be uniquely solved in
many cases due to the sparseness requirement. As a result, our proposed training algorithm can
converge to a cooperative equilibrium. Note that θ, (d, t) ∈ H , and αi,j for all i, j cooperate
to minimize LT + L̂I + L̂G + RG. Therefore, the proposed training method can be seen as a
cooperative game (Mas-Colell, 1989). After finishing the training process, αi,j , for all i, j, are not
needed any more (because θ already conforms with the learned governing equation at this point)
and can be discarded during testing.

For complicated downstream tasks, training for LT should be done earlier than others (line 5). Then,
we carefully update the PDE parameters (line 6) and other training procedures follow. The proposed
sequence in Alg. 1 produces the best outcomes in our experiments. However, this sequence can be
varied for other datasets or downstream tasks.

Complexity Analyses. The adjoint sensitivity method of neural ODEs enables the space complex-
ity of O(1) while calculating gradients. However, its forward-pass inference time is O( 1s ), where s
is the (average) step-size of an underlying ODE solver. Because s can sometimes be very small, its
inference via forward-pass can take a long time.

Our PR-Net uses the standard backpropagation method to train and its gradient computation com-
plexity is the same as that in conventional neural networks. In addition, the forward-pass inference
time is O(1), given a fixed network f , because we do not solve integral problems.

4 EXPERIMENTS

In this section, we introduce our experimental evaluations with various datasets and tasks. All
experiments were conducted in the following software and hardware environments: UBUNTU 18.04
LTS, PYTHON 3.6.6, NUMPY 1.18.5, SCIPY 1.5, MATPLOTLIB 3.3.1, PYTORCH 1.2.0, CUDA
10.0, and NVIDIA Driver 417.22, i9 CPU, and NVIDIA RTX TITAN. In Section J of Appendix,
we summarize detailed dataset information and additional experiments.
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Table 2: Image classification in MNIST and SVHN. The inference time is the time in seconds to
classify a batch of 1,000 images. In general, PR-Net shows the best efficiency.

Name # Params MNIST SVHN
Test Accuracy Inference Time Test Accuracy Inference Time

ResNet 0.60M 0.9966 7.6447 0.9660 8.6721
RK-Net 0.22M 0.9970 7.4774 0.9652 13.5139

ODE-Net 0.22M 0.9964 24.8355 0.9599 37.6776
PR-Net 0.21M 0.9972 6.5023 0.9615 9.8263

4.1 IMAGE CLASSIFICATION WITH MNIST AND SVHN

We reuse the convolutional neural network, called ODE-Net, in the work by Chen et al. (2018) to
classify MNIST and SVHN and replace its ODE part with our proposed PDE, denoted PR-Net in
Table 2. See Appendix for the architecture and the hyperparameters of the network f in PR-Net for
this experiment. We reuse their codes and strictly follow their experimental environments.

Its detailed results are summarized in Table 2. We compare with ResNet, RK-Net and ODE-Net.
In ResNet, we have a downsampling layer followed by 6 standard residual blocks (He et al., 2016).
For RK-Net and ODE-Net, we replace the residual blocks with an ODE but they differ at the choice
of ODE solvers. RK-Net uses the fourth-order Runge–Kutta method and ODE-Net uses the adap-
tive Dormand–Prince method for their forward-pass inference — both of them are trained with the
adjoint sensitivity method which is a standard backward-pass gradient computation method. Our
PR-Net, which does not require solving integral problems, shows the best performance in all as-
pects for MNIST. In particular, PR-Net shows much better efficiency than ResNet, considering their
numbers of parameters, i.e., 0.60M of ResNet and 0.21M of PR-Net. Comparing ODE-Net and
PR-Net for the inference time, our method shows much faster performance, i.e., 24.8355 seconds
of ODE-Net vs. 6.5023 seconds of PR-Net to classify a batch of 1,000 images. Considering its
short inference time, in SVHN we can say that its efficiency is still better than that of ODE-Net.
One interesting point is that using the fourth-order Runge–Kutta method in RK-Net produces better
accuracy and inferente time than ODE-Net in our experiments, which is slightly different from the
original neural ODE paper (Chen et al., 2018). We tested more hyperparameters for them.

4.2 IMAGE CLASSIFICATION WITH TINY IMAGENET

We use one more convolutional neural network to test with Tiny ImageNet. Tiny ImageNet is the
modified subset of ImageNet with downscaled image resolution 64× 64. It consists of 200 different
classes with 100,000 training images and 10,000 validation images. Our baseline model is Isometric
MobileNet V3 (Sandler et al., 2019). For the efficient nature of ODE-Net and PR-Net, we consider
that the resource-scarce environments, for which MobileNet was designed, are one of their best ap-
plication areas. The isometric architecture of Isometric MobileNet V3 maintains constant resolution
throughout all layers. Therefore, pooling layers are not needed and computation efficiency is high,
according to their experiments. In addition, neural ODEs require an isometric architecture, i.e., the
dimensionality of h(t), t ≥ 0, cannot be varied. In our PR-Net, we do not have such restrictions.
For fair comparison, however, we have decided to use Isometric MobileNet V3. We replace some
of its MobileNet V3 blocks with ODEs or PDEs, denoted ODE-Net and PR-Net in Table 3, respec-
tively. We train our models from scratch without using any pretrained network, with a synchronous
training setup.

Table 3 summarizes their results. We report both of the top-1 and the top-5 accuracy, which is a
common practice for (Tiny) ImageNet. In general, our PR-Net shows the best accuracy. PR-Net
achieves an top-1 accuracy of 0.6157 with 4.56M parameters. The full Isometric MobileNet V3
marks an top-1 accuracy of 0.6578 with 20M parameters and the reduced Isometric MobileNet V3
with 4.30M parameters shows an top-1 accuracy of 0.6076. Considering the large difference on the
number of parameters, PR-Net’s efficiency is high. In particular, it outperforms others in the top-5
accuracy by non-trivial margins, e.g., 0.7911 of ODE-Net vs. 0.8115 of Isometric MobileNet V3
vs. 0.8357 of PR-Net. In addition, PR-Net shows faster forward-pass inference time in comparison
with ODE-Net. The inference time is to classify a batch of 1,000 images.
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Table 3: Image classification in Tiny ImageNet. PR-Net shows better efficiency than ODE-Net.

Name M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Width Multiplier 1 1 1 2 2 2
Mobile Blocks 4 3 3 4 3 3
ODE Blocks N/A 1 N/A N/A 1 N/A
PDE Blocks N/A N/A 1 N/A N/A 1

Accuracy (top-1) 0.5809 0.5547 0.5972 0.6076 0.5672 0.6157
Accuracy (top-5) 0.8049 0.7946 0.8166 0.8115 0.7911 0.8357

# Params 1.21M 1.36M 1.36M 4.30M 4.90M 4.56M
Inference Time 4.14 5.26 5.23 5.21 8.3 6.25

Out-of-distribution Robustness (top-1 accuracy)
Gaussian Noise 0.4495 0.4165 0.4685 0.4757 0.4474 0.4878

Random Crop & Resize 0.4636 0.4305 0.4841 0.4814 0.4419 0.4965
Random Rotation 0.3961 0.3667 0.4267 0.4256 0.3901 0.4381

Color Jittering 0.4206 0.3812 0.4429 0.4555 0.4108 0.4693
Out-of-distribution Robustness (top-5 accuracy)

Gaussian Noise 0.68 0.6619 0.7064 0.7025 0.6757 0.7205
Random Crop & Resize 0.7106 0.6935 0.7357 0.7215 0.6936 0.7442

Random Rotation 0.6372 0.6216 0.6627 0.6546 0.6319 0.6778
Color Jittering 0.6742 0.6396 0.6878 0.6874 0.6506 0.713

4.3 EXPERIMENTS ON ROBUSTNESS WITH TINY IMAGENET

To check the efficacy of learning a governing equation, we conduct three more additional experi-
ments with Tiny ImageNet: i) out-of-distribution image classification, ii) adversarial attacks, and
iii) transfer learning to other image datasets. In the first and second experiments, we apply many
augmentation/perturbation techniques to generate out-of-distribution/adversarial images and check
how each model responses to them. Being inspired by the observations that robust models are better
transferred to other datasets (Engstrom et al., 2019a; Allen-Zhu & Li, 2020; Salman et al., 2020), in
the third experiment, we check the transfer learning accuracy to other image datasets. According to
our hypothesis, PR-Net which knows the governing equation for classifying Tiny ImageNet should
show better robustness than others (as seen in Figure 4 for a scientific PDE problem in Appendix).

Neural networks are typically vulnerable to out-of-distribution and adversarial samples (Shen et al.,
2016; Azulay & Weiss, 2019; Engstrom et al., 2019b). As being more fitted to training data, they
typically show lower robustness to out-of-distribution and adversarial samples. However, PR-Net’s
processing them should follow its learned governing equation. Therefore, one way to understand
learning a governing equation is a sort of regularization which prevents overfitting and implanting
knowledge governing the classification process.

Out-of-Distribution Image classification. We use four image augmentation methods: i) adding
a Gaussian noise of N (0, 0.1), ii) cropping a ceter area by size 56× 56 and resizing to the original
size, iii) rotating into a random direction for 30 degree, and iv) perturbing colors through randomly
jittering the brightness, contrast, saturation, and hue with a strength coefficient of 0.2. All these
are popular out-of-distribution augmentation methods (Shen et al., 2016; Azulay & Weiss, 2019;
Engstrom et al., 2019b).

Our PR-Net shows the best accuracy (i.e., robustness) in all cases. In comparison with ODE-Net, it
shows much better robustness, e.g., 0.3812 of ODE-Net vs. 0.4429 of PR-Net for the color jitter-
ing augmentation. One interesting point is that all methods are commonly more vulnerable to the
random rotation and the color jittering augmentations than the other two augmentations.

Adversarial Attack Robustness. It is well-known that neural networks are vulnerable to adver-
sarial attacks. Because the governing equation regularizes PR-Net’s behaviors, it can be robust to
unknown adversarial samples. We use FGSM (Goodfellow et al., 2015) and PGD (Madry et al.,
2018) to find adversarial samples and the robustness to them is reported in Table 4. With various
settings for the key parameter ε that controls the degree of adversarial perturbations, we generate
adversarial samples. The configuration of doubling the number of channels used in each layer,
denoted as “Width Multiplier 2”, showed better performance in Table 3 and we use only the con-
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Table 4: Adversarial attacks in Tiny ImageNet. PR-Net shows better robustness than ODE-Net.

Attack Method M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Top-1 accuracy Top-5 accuracy

FGSM(ε = 0.5/255) 0.3860 0.3656 0.4041 0.6492 0.6398 0.6911
FGSM(ε = 1/255) 0.2304 0.2287 0.2499 0.4751 0.4928 0.5374
FGSM(ε = 3/255) 0.0452 0.0464 0.0369 0.1232 0.1562 0.1596
PGD (ε = 0.5/255) 0.3733 0.3525 0.3910 0.6508 0.6409 0.6936
PGD (ε = 1/255) 0.1902 0.1908 0.2133 0.4579 0.4810 0.5281
PGD (ε = 3/255) 0.0218 0.0235 0.017 0.0792 0.1093 0.1144

Table 5: Transfer learning in Tiny ImageNet. PR-Net shows better transferability than ODE-Net.

Dataset M.Net V3 ODE-Net PR-Net M.Net V3 ODE-Net PR-Net
Top-1 accuracy Top-5 accuracy

CIFAR100 0.7676 0.7460 0.7750 0.9320 0.9270 0.9480
CIFAR10 0.9403 0.9280 0.9418 0.9963 0.9928 0.9962
Aircraft 0.6233 0.6027 0.6612 0.8509 0.8300 0.8561

Food-101 0.7317 0.7128 0.7366 0.9108 0.9036 0.9174
DTD 0.4819 0.4973 0.5113 0.7660 0.7465 0.7957
Cars 0.6313 0.5576 0.6283 0.8380 0.7998 0.8319

figuration for this adversarial attack and next transfer learning experiments. For all attacks except
FGSM(ε = 3/255) and PGD (ε = 3/255), PR-Net shows the best robustness as shown in Table 4.
The gap between PR-Net and other baselines are significant for the most cases of PGD.

Transfer Learning. As reported in (Engstrom et al., 2019a; Allen-Zhu & Li, 2020; Salman et al.,
2020), robust models tend to produce feature maps suitable for transfer learning than regular models.
In this regard, we checked the transferability of the pretrained PR-Net for Tiny ImageNet to other
datasets: CIFFAR100 (Krizhevsky, 2009), CIFAR10 (Krizhevsky, 2009), FGVC Aircraft (Maji
et al., 2013), Food-101 (Bossard et al., 2014), DTD (Cimpoi et al., 2014), and Cars (Yang et al.,
2015). As shown in Table 5, PR-Net shows the best transfer learning accuracy in all cases except
Cars. The improvements over M.Net V3 and ODE-Net are significant for Aircraft and DTD.

5 DISCUSSIONS & CONCLUSIONS

It recently became popular to design neural networks based on differential equations. In most cases,
ODEs are used to approximate neural networks. In this work, on the other hand, we presented a
PDE-based approach to design neural networks. Our method simultaneously learns a regression
model and a governing equation that conform with each other. Therefore, the internal processing
mechanism of the learned regression model should follow the learned governing equation. One can
consider that this mechanism is a sort of implanting domain knowledge into the regression model.
The main challenge in our problem definition is that we need to discover a governing equation from
data while training a regression model. Therefore, we adopt a joint training method of the regression
model and the governing equation.

To show the efficacy, we conducted five experiments: i) MNIST/SVHN classification, ii) Tiny Ima-
geNet classification, iii) classification with out-of-distribution samples, iv) adversarial attack robust-
ness, and v) transfer learning. Our method shows the best accuracy and robsutness (or close to the
best) only except SVHN. In particular, the challenging robustness experiments empirically prove
why learning an appropriate governing equation is important.

One limitation on this method is that it is sometimes hard to achieve a good trade-off between all
different loss and regularization terms. Our method intrinsically involves various terms and we
found that it is important to tune hyperparameters (especially for various coefficients and learning
rates) in order to achieve reliable performance. In particular, αi,j , for all i, j, are important to learn
reliable governing equations. Because the trained network f is greatly influenced by the governing
equation, hyperparameters should be tuned to learn meaningful equations. We also plan to study the
proposed concept for many other classification/regression tasks.
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