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Abstract

We present a new layer in which dynamic (i.e.,
input-dependent) Infinite Impulse Response
(IIR) filters of order two are used to process
the input sequence prior to applying conven-
tional attention. The input is split into chunks,
and the coefficients of these filters are deter-
mined based on previous chunks to maintain
causality. Despite their relatively low order, the
causal adaptive filters are shown to focus atten-
tion on the relevant sequence elements. The
new layer is grounded in control theory, and is
shown to generalize diagonal state-space layers.
The layer performs on-par with state-of-the-art
networks, with a fraction of their parameters
and with time complexity that is sub-quadratic
with input size. The obtained layer is favorable
to layers such as Heyna, GPT2, and Mega, both
with respect to the number of parameters and
the obtained level of performance on multiple
long-range sequence problems.

1 Introduction

Designing sequence models that capture short- and
long-term dependencies is a central goal of se-
quence modeling. Besides performance, compu-
tational complexity also plays a part when deal-
ing with long sequences. Although transform-
ers (Vaswani et al., 2017) excel at tasks that involve
short-range dependencies, their performance on
data with long-range dependencies can be poor. For
example, regardless of the high time complexity,
on the Long Range Arena benchmark (LRA) (Tay
et al., 2020) transformers perform poorly compared
to other sequence models.

Another approach that has emerged to address
long-range data processing is the utilization of reg-
ularized implicit global (long) convolutions. In this
technique, convolutions are employed along the
sequence dimension, enabling convolutions with
a global receptive field. Initially, this approach
was implemented through state-space layers (Gu
et al., 2021b,a), which introduced a recurrent layer

that could be efficiently computed via a global con-
volution. Recent research has explored alterna-
tive variations of global convolutions, including
implicit (Poli et al., 2023) and regularized parame-
terization (Fu et al., 2023a; Li et al., 2022). These
methods have demonstrated improved performance
on tasks involving long-range dependencies and
with sub-quantitative complexity. They have also
shown effectiveness in enhancing long-range trans-
former capabilities (Ma et al., 2022; Zuo et al.,
2022; Saon et al., 2023). However, it remains un-
certain whether these models can scale up or func-
tion similarly to transformers across a diverse range
of tasks (Vardasbi et al., 2023).

This work strives to efficiently integrate
convolution-based sequence models and transform-
ers, to provide a model that is capable of handling
both short and long dependencies. The attempt
to combine these components was first presented
by Ma et al. (2022), who used a simple global
convolution before each transformer block. This
convolution is parameterized by the Exponential
Moving Average (EMA) recurrent rule and can be
seen as an IIR filter. In this work, instead of using
first-order IIR filters, we introduce learnable adap-
tive IIR filters, which allow us to propose Focus,
a layer that combines local attention and a novel
type of regularized global convolution grounded on
a hypernetwork that produces adaptive IIR filters.

Our main contribution is the focus layer, which
has several unique properties: (i) We are the first
to use data-dependent global filters, which are im-
plemented by a global hyper-network mechanism
that focuses local attention. (ii) In contrast to other
works in the domain that employ FIR filters, it re-
lies on IIR filters. (iii). We present an efficient
and stable computation of those IIR filters. (iv)
Theoretically, our layer is grounded in the theory
of control systems, similar to state-space layers,
which are built on the state-space model (SSM) of
control theory. Furthermore, in Sec. 4 we show



that IIR filters are a generalization of SSMs and
diagonal-linear RNNs, which have recently been
recognized as remarkable long-range learning ar-
chitectures (Gupta et al., 2022a; Gu et al., 2022;
Orvieto et al., 2023; Gupta et al., 2022b; Saon et al.,
2023; David et al., 2023). By drawing upon the
extensive research conducted on IIR filters, our
findings can provide additional insights into the
effectiveness, stability, expressiveness, and initial-
ization of those layers.

2 Background and related work

IIR filters, known as infinite impulse response fil-
ters, are digital filters that utilize feedback to gen-
erate an output signal. Their primary applications
involve signal smoothing, filtering, and signal mod-
ification. These filters are extensively employed
in various fields, such as audio processing, speech
processing, and image processing. One notable
advantage of IIR filters is their ability to achieve a
significantly sharper roll-off in the transition region
compared to an FIR filter of the same order. This
is made possible by the presence of complex poles
in the IIR filters, which enable them to attenuate
frequencies more rapidly.

The state-space representation of an IIR filter is
a convenient way to represent the filter’s dynamics
and to implement it in software. It consists of
three parts: the state vector, the state transition
matrix, and the output matrix. The state vector
contains the filter’s internal state variables, the state
transition matrix describes how the state vector
changes over time, and the output matrix describes
how the output signal is computed from the state
vector. Such representation are described in (Zhang
et al., 2023)
Learnable IIR Filters Since IIR filters are com-
putationally efficient, yet expressive, it is natural to
design IIR filters with Deep Learning. (Kuznetsov
et al., 2020) proposes an approach to using tra-
ditional digital IIR filter structures inside deep-
learning networks trained using backpropagation.
The authors establish the link between such struc-
tures and recurrent neural networks and present
three different differentiable IIR filter topologies.
They compare the proposed topologies against each
other and an established baseline and show that
the proposed topologies can achieve better perfor-
mance in some cases. Additionally, the authors
present a simple Wiener-Hammerstein model, us-
ing differentiable IIRs as its filtering component,

and train it on a guitar signal.

Global Convolutions The global convolution,
also known as a long convolution, is a layer that
applies scalar convolutions along the sequence di-
mension, enabling the handling of unrestricted 1-D
sequences. Empirically, these layers have shown
strong performance in tasks involving long-range
dependencies, particularly in domains such as
NLP (Dao et al., 2022b; Mehta et al., 2022; Wang
et al., 2022), audio (Goel et al., 2022), speech (Saon
et al., 2023), video (Islam et al., 2022; Wang et al.,
2023), time-series analysis (Zhang et al., 2023) and
more. Moreover, they exhibit computational effi-
ciency as their cost is sub-quadratic. However, to
achieve SOTA results, appropriate regularization is
necessary. The approach of (Gu et al., 2021b,a; Ma
et al., 2022; Li et al., 2022) incorporates a param-
eterization that inherently regularizes the kernel
and decoupling sequence length from parameter
count. (Romero et al., 2021; Poli et al., 2023) uti-
lizes an implicit parameterization learned by FFNs
operating on positional encodings, while (Fu et al.,
2023a) explicitly regularizes the convolution ker-
nels using squash or smooth operators.

Long Range Transformers Transform-
ers (Vaswani et al., 2017) have emerged as highly
effective models for various tasks, but their
widespread adoption has been limited by the
quadratic cost of the self-attention mechanism and
poor performance on long-range tasks. Researchers
have pursued diverse approaches to overcome this
challenge and to create efficient transformer archi-
tectures (Fournier et al., 2021; Tay et al., 2022).
From the perspective of efficiency, techniques such
as sparse attention (Child et al., 2019), low-rank
attention (Wang et al., 2020; Winata et al., 2020),
kernel-based attention (Choromanski et al., 2020),
recurrent mechanisms (Hutchins et al., 2022; Dai
et al., 2019), and efficient IO-awareness-based
implementation (Dao et al., 2022a) proved efficient.
From the perspective of effectiveness, (Yu et al.,
2023; Ivgi et al., 2023) combines local and
global attention models hierarchically, enhancing
the model’s ability to handle extensive context
Other techniques employ global memory-based
Attention (Gupta and Berant, 2020; Al Adel, 2022;
Al Adel and Burtsev, 2021), and (Zhou et al.,
2022) applies attention in the frequency domain to
expand long-range capabilities.

Hyper Networks A hypernetwork (Ha et al.,
2016) is a function that maps a set of inputs to



a set of weights, which are used as the parame-
ters of a “primary network”. Hypernetworks have
been shown to be effective for a variety of tasks,
including, for example, image classification (Lutati
and Wolf, 2023), natural language processing (He
et al., 2022), and speech recognition (Szatkowski
et al., 2022). They have also been shown to be
able to improve the performance of neural net-
works on meta-learning tasks, such as few-shot
learning (Bertinetto et al., 2016), continual learn-
ing (Von Oswald et al., 2019), and neural architec-
ture search (Zhang et al., 2019).
Adaptive Filtering Adaptive filtering is a tech-
nique used to improve the quality of a signal by
removing noise or interference. Adaptive filters
are able to adapt to changes in the signal or the
environment, making them well-suited for a variety
of applications.

One common technique used in adaptive filter-
ing is the short-time Fourier transform (STFT),
which provides a time-frequency representation of
a signal. It enables the analysis of time-varying
properties of a signal by dividing it into short-time
windows and applying the Fourier transform to
each window. The STFT reveals the distribution
of frequency content over time, which allows the
adaptive filter to track the frequency content of the
signal and adapt its coefficients accordingly. How-
ever, STFT introduce non-causal implementation
due to overlapping time-bins. To mitigate it, we
introduce chunked-FFT, a degenerate form of the
STFT.

Recent research in AI has focused on using deep
learning to improve the performance of adaptive
filters. For example, deep learning has been used
to improve the performance of adaptive filters for
noise cancellation (Zhang and Wang, 2021), echo
cancellation (Haubner and Kellermann, 2022), and
equalization (Zhou et al., 2020). Deep learning
has also been used to develop new adaptive filter
architectures that are more robust to noise and inter-
ference (Alwan and Hussain, 2022). Revach et al.
(2022) demonstrate how deep learning can be used
to improve the performance of Kalman filtering
(Kalman, 1960), a classical control algorithm.

3 Method

3.1 Overview

We start by discussing the main design choices of
our architecture.
Chunking and the combination of local and

global models Given the quadratic complexity
of transformers, chunking is a common practice for
computing short-range attention efficiently. How-
ever, despite excelling in short-range tasks, full-
length transformers often struggle to handle long-
range dependencies and often perform comparably
to local-attention-based transformers (Xiong et al.,
2021). Recent studies have demonstrated that a
combination of local and global transformers can
achieve state-of-the-art performance on long-range
tasks (Ivgi et al., 2023; Yu et al., 2023; Hutchins
et al., 2022). Inspired by these findings, we intro-
duce local attention as the local model, which is
combined with a novel type of global convolution
as the global model. Furthermore, in contrast to
(Hutchins et al., 2022; Bulatov et al., 2023), our
global model does not use recurrent computations,
since it severely restricts parallelization.
Adaptive IIR Filters In MEGA (Ma et al.,
2022), it was demonstrated that incorporating an
EMA at the beginning of each transformer block
improves transformer performance in long-range
tasks. EMA can be viewed as a convolution opera-
tion using simple first-order IIR filters. Motivated
by this finding, we adopt a more versatile and ex-
pressive convolution approach that utilizes adaptive
filters generated by a hypernetwork. Since the hy-
pernetwork is an integral part of our global model,
it employs global convolutions. Specifically, the
regularized global convolution of (Fu et al., 2023a)
is used, as the most straightforward option. A com-
mon challenge with hypernetworks is ensuring rela-
tively small output sizes. In this regard, leveraging
IIR filters, which have only a few parameters, is a
reasonable choice.

3.2 The Focus Layer

In this section, we describe the focus attention
head, our primary contribution. This head is in-
tegrated into the MEGA backbone, as visualized in
Fig 1. Let x be the input for the focus layer, where
x ∈ RL×D, L is the sequence length, and D is
the input’s dimension. Our method, termed Focus,
utilizes the foundations of adaptive filtering theory
to cope with very long stochastic sequences. Given
the seasonality of the sequence, the resolution of
the FFT is determined by its size in each time-bin.
Denote the size of the FFT in a single time-bin as
NFFT .

The first component of the Focus layer is the
hypernetwork, H . The output of H is Θ, which



Figure 1: Focus Architecture: (a) The architecture of a single head. (b) The obtained layer. (c) The entire model.
The architecture of the model and layer are defined similarly to MEGA (Ma et al., 2022). Blocks in blue are not
learned, while blocks in red are learned parameters. S2P (serial to parallel) and P2S (parallel to serial) are the
chunking and the de-chunking operations, respectively.

is the set of IIR kernels used for the forward pro-
cessing of the sequence. Θ has a dimension of
Nbins × D × F × 2, denoting F kernels, each
with a kernel size of two for D feature channels.
The kernel is unique per time-bin, Nbins, which
makes the filter adaptive to changes over time.

Θ = H(x) . (1)

H has two main components. The first is a shallow
global convolution (Fu et al., 2023b) based sub-
model that is followed by adaptive max pooling
(over each feature channel) (Pytorch, 2023) with a
size of O ×Nbins, where O is the oversampling
factor.

e = MaxPool(GlobalConv(x)) (2)

where e is the embedding from processing x us-
ing the global convolution layer. This computation
can be shared across multiple Focus layers and can
be split into local (Hlocal) and global (Hglobal) sub-
components, as in most of our experiments, thus
reducing substantially the computational cost. Fur-
thermore, the embedding is permuted such that the
feature space has the size O while Nbins is added
to the batch dimension for parallel computing.

The second component of H is a 2-layer MLP
with sigmoid activations that maps the embedding
e to a tensor with size Nbins×D × F × 2. With
mapping of latent dimension O to 2 · F

Θ =MLP (e) , (3)

where Θ is the IIR kernel, with size Nbins×D ×
F × 2. MLP is the forward MLP mapping, as
described above. Since H is a hypernetwork, the
initialization of the last layer of the MLPs follows
(Chang et al., 2020). The rest of the layers follow
the Xavier initialization (Glorot and Bengio, 2010).
The input x is split into non-overlapping time bins,
where each time bin is passed through the FFT of
the size NFFT . Denote the input in the r-th time
bin as xr.

X[ω, r] = FFT (xr) , (4)

where ω is the normalized frequency variable, sam-
pled evenly on 2π range, and r is the index over
the different time bins.
A note about causality To maintain a fully
causal model that is applicable to auto-regressive
tasks, each time bin is processed on its own and is
not overlapped with other time bins. In addition,
Θ is shifted right by one time bin, such that the



sequence at time bin i is processed by the kernel
computed from time bin i− 1.

For each time-bin index, the corresponding IIR
filter is applied. The IIR filter of order 2 has the
following frequency response, denote it as IIRimp

IIRimp(f) =
1

1 + Θ[0] · e−j·2πf +Θ[1] · e−j·4πf ,

(5)
Since a Sigmoid activation is used for the last

layer of H , it is guaranteed that Θ’s elements are
positive real numbers smaller than 1. Further anal-
ysis and reasoning behind the specific selections
made are presented in Sec. 4.

Recall that in the frequency domain, the equiva-
lent of filtering is multiplying with the conjugated
impulse response,

Xf = X ◦ IIR∗
imp , (6)

where the conjugation is denoted by a star and ◦ is
the elementwise (Hadamard) multiplication. The
hyper-dimension F defined earlier as the filter-bank
size is collapsed via regular sum operation, denote
the collapsed tensor as Xc

Xc = 1 ·Xf , (7)

where 1 is an all-ones vector with size 1× F . The
collapsed tensor is the short-time Fourier represen-
tation of the original sequence filtered with adap-
tive filter kernels. The frequency representation
goes through the inverse chunked Fourier trans-
form (IFFT), to obtain the time-domain sequence.

xf = IFFT (Xc) (8)

The time-domain sequence has the same dimen-
sions as the original sequence, yet, by applying an
adaptive filter to it, we furnish it with an induction
bias that helps smaller context attention head to
cope with complicated tasks.

The sequence is split into C separate non-
overlapping chunks. Denote the chunk length as
M , such that L = MC. We denote the chunk of
signal with uppercase i, and use square brackets
for indexing, starting with index 0, as follows

xi = (x[iM ], x[iM+1], . . . , x[(i+1)M−1]) (9)

All chunks are processed in parallel with the
same small attention head,

yi = Atten(Qxi,Kxif , V x
i
f ) , (10)

Figure 2: Filter responses for three random filters with
the specific denominator structure of Eq. 16.

where Q, K, V are the query, key, and value matri-
ces that map each chunk to their latent correspond-
ing space. Note that the attention head is causal,
as it uses lower triangle masking. The chunks,
yi, are rearranged to form a complete signal, with
sequence length L, denote it as y. Following (Ma
et al., 2022), the output of the Focus layer, y, passes
through reset gate γ, the update gate ψ. Specifi-
cally,

γ = SiLU(xfWγ + bγ) (11)

ϕ = sigmoid(xfWϕ + bϕ) (12)

z = SiLU(xfWh + (γ ◦ y)Uh + bh) , (13)

where Wγ , Wϕ and Wh are learned matrices with
size D ×D. bγ , bϕ, and bh are learned biases with
size D. SiLU stands for the sigmoid linear unit
(Elfwing et al., 2018).

The final output is the gated summation of the
gated attention and the input sequence,

o = ϕ ◦ z + (1− ϕ) ◦ x (14)

4 Analysis

IIR and FIR Filters IIR (Infinite Impulse Re-
sponse) and FIR (Finite Impulse Response) filters
are two commonly used types of digital filters with
distinct characteristics. The main difference be-
tween them lies in their impulse response and fil-
tering properties. FIR filters have a finite impulse
response, meaning that the filter output is based
solely on a finite number of past input samples.
In contrast, IIR filters have an infinite impulse re-
sponse, allowing the filter output to depend on both
past and future input samples.

One advantage of IIR filters is their ability to
achieve a desired frequency response with fewer
coefficients compared to FIR filters. This makes
IIR filters more computationally efficient, requiring
fewer calculations and lower memory requirements.



Consequently, in control feedback systems where
real-time operation and computational efficiency
are crucial, IIR filters are often preferred.

Additionally, IIR filters can exhibit higher selec-
tivity and sharper roll-off in the frequency domain
compared to FIR filters. This characteristic can be
advantageous in control feedback systems, where
precise control over specific frequency components
is necessary.
Stability IIR filters can be more sensitive to quan-
tization errors and can be prone to instability if
not properly designed. The presence of feedback
loops in control systems can further impact stability
considerations. Therefore, careful attention must
be given to stability analysis and appropriate filter
design techniques to ensure reliable performance.

The filter can be described in the frequency do-
main as a rational polynomial function of the com-
plex exponent e−j2πf . Denote the complex expo-
nent as S.

S = e−j2πf (15)

A second-order system can be described as follows,

IIR(S) =
1

aS2 + bS + 1
(16)

Specifically solving for general b, a gives,

IIR(t) = αet(−
b
2a

−
√

b2−4a)
2a

)+βet(−
b
2a

+

√
b2−4a)
2a

) ,
(17)

where α and β are normalizing factors. Denote the
term under the square root as discriminant, ∆. For
any b ≥ 0 and a ≥ 0 the following holds:

∆ ≤ b2 ∀{a, b} ≥ 0 . (18)

In order to guarantee stability, both exponents
should decay, which leads to the requirement that
the real part must be negative.

Re{− b

2a
±

√
∆)

2a
)} ≤ 0 . (19)

This can be achieved if b is positive. In the sce-
nario where ∆ ≤ 0, the exponents have an imagi-
nary part, causing it to oscillate. This is called an
under-damped response. This response is stable,
yet more expressive than Exponential Moving Av-
erage (EMA) filters, as found in MEGA (Ma et al.,
2022). The frequency of the sine, ω, in this case is

ω =

√
∆

2a
, (20)

and the time domain impulse response reads,

IIR(t) = γe−t b
2a sin(ωt+ ϕ) , (21)

where γ is the normalizing factor, and ϕ is the
phase from aggregating both sine and cosine func-
tions with the same frequency. Note that for orders
above 2, there is no simple condition that guar-
antees that the real part will be negative and the
response stable.

To demonstrate the oscillating behavior of the
generated IIR filters, the time-domain impulse re-
sponses of some random kernels are drawn in Fig. 2.
In this plot, the purple kernel acts as EMA, while
other kernels have a more complicated response.
However, all filters decay as time increases, which
leads to a stable response and has been identified
by Li et al. (2022) as an essential property for cap-
turing long-range dependencies.
Time Complexity The global conv time complex-
ity is

GlobalConv ≈ O(Llog(L) ·D) (22)

This is due to the FFT and IFFT that the signal
is passed through. This computation is done only
once and is shared through multiple layers of Focus.
The MLP is mapping between D and F .

MLP ≈ O(DF ) (23)

The chunked-FFT complexity depends on the size
of the FFT used (NFFT ). Denote the size of a
single time bin as R,

R =
L

Nbins
(24)

The time complexity of a single time bin is
O(Rlog(R)). The total time complexity of the
chunked FFT reads,

FFTchunked ≈ O(Llog(R)) (25)

Next, the time complexity of the attention head
depends on the size of the context length M ,

Atten ≈ O(CM2D + CMD2) (26)

The total time complexity of the Focus layer is,
therefore,

Focus ≈ O(Llog(L) ·D + CM2D) (27)

where we neglected smaller terms when the se-
quence length is large (greater than dimensions).



Figure 3: Time Complexity of the Focus layer and of
Attention, increasing sequence length

Recalling that L = MC, and rearranging terms,
we have,

Focus ≈ O(DL · (log(L) +M)) (28)

obtaining sub-quadratic time complexity with re-
spect to input sequence length. A visual compari-
son of overall complexity versus the standard atten-
tion head is depicted in Fig. 3.
Expressiveness An emerging class of diagonal
linear RNNs (Orvieto et al., 2023; Gupta et al.,
2022b) recently achieved near SOTA results in sev-
eral long-range tasks. They include complex and
real variants, as well as diagonal state-space lay-
ers (Gupta et al., 2022a; Gu et al., 2022). The
following recurrent rule describes each channel of
those layers:

s[t] = As[t− 1] +Bx[t], y[t] = Cs[t] +Dx[t]
(29)

where s[t] is the recurrent state at time t. By isolat-
ing s[t− 1], we can rewrite Eq. 29 as follows:

s[t− 1] =
1

C
y[t− 1]− D

C
x[t− 1] (30)

y[t] = CAs[t− 1] + (CB +D)x[t] = (31)

Ay[t− 1] + (CB +D)x[t] +ADx[t− 1]

Recall that the differential equation of an IIR
filter of order 2 can be represented as follows:

y[t] = b0x[t] + b1x[t− 1] + b2x[t− 2]− (32)

a1y[t− 1]− a2y[t− 2]

By substituting the values of b0 = CB+D, b1 =
AD, a1 = −A, b2 = a2 = 0, it becomes evident

that the IIR filter can be constrained to a linear
SSM. In machine learning, D is often omitted in
SSMs or diagonal RNNs, since it can be seen as a
parameter-based skip-connection. In this case, the
SSM can be represented by an IIR filter of order 1.

As mentioned earlier, higher-order filters can
introduce stability issues. Therefore, our decision
to utilize IIR filters of order 2 is justified, as we opt
for the most expressive IIR filters that still maintain
stability during training.

5 Experiments

Below we present experimental results for the pro-
posed Focus layer. In addition to our full method,
we introduce an ablation to evaluate the importance
of adaptive filtering, in which instead of the hyper-
network H , the IIR filters are conventional learned
parameters. This ablation is denoted by “Focus-H”.

5.1 In-context learning

In order to evaluate our method relative to other
state-of-the-art long-range architectures, such as
(Poli et al., 2023), (Dai et al., 2019), the associative
recall synthetic task is evaluated. The associative
recall task was first introduced in (Elhage et al.,
2021) and is part of a number of simple yet infor-
mative tasks that test the capabilities of the model
in processing long-range sequences.

In the associative recall task, each string is
formed by concatenating key-value pairs sampled
randomly from a dictionary. The model should
output the correct value given a singular key, re-
gardless of whether the key is in the long sequence.

Similarly to Poli et al. (2023), we employ the as-
sociative recall task in order to explore the memory
capabilities of our model.

In all synthetic data experiments the same shared
hyperparameters are used, with the exception of
the sequence length. The hyperparameters are de-
picted in in Appendix A. The AdamW optimizer
(Loshchilov and Hutter, 2018) is used.

As can be seen in Tab. 1, our model is able to ob-
tain an accuracy of 100% for all sequence lengths,
without overfitting, despite the low number of ex-
amples (2000), and with no memory explosion
thanks to linear scaling with input size. These
results show that the Focus mechanism is able to
improve the performance of regular transformers
to be on par with Heyna (Poli et al., 2023), with
smaller footprint. In addition, the ablation exper-
iment shows the importance of adaptive filtering,



Table 1: Test accuracy (%) for associative recall on long sequences of length L and a vocabulary size of 30. NF -
not feasible to test. NR = not reported.

L Focus Focus-H Hyena FlashTransformer Transformer

30 100.0 100.0 100.0 100.0 100.0
1K 100.0 98.0 100.0 95.0 100.0
8K 100.0 85.3 100.0 NR NF
32K 100.0 34.6 100.0 32.4 NF
64K 100.0 28.0 100.0 26.7 NF

Figure 4: Frequency Response of IIR kernels, for 1K
sequence split into 18 time bins. The important key is
found in the 12th time bin.

i.e. estimating the filter kernels online to focus the
attention mechanism on important sub-sequences
where the results degrade in the ablation due to the
greater sequence length.

The associative recall task is used not only for
benchmarking, but also to gain insights into the
adaptive filtering mechanism. As can be seen in
Fig. 4, the frequency response of the adaptive filter-
ing is plotted for this task. In this specific run, the
important key is found in the 12th time bin. The
frequency response of the IIR filters is almost 5
orders of magnitude higher than for nearby time
bins. This effect demonstrates the “Focus” mecha-
nism. Note that using only 2 parameters for the IIR
kernel, the filters are able to differentiate between
important and unimportant time bins with 5 orders
of magnitude. This supports our design choice of
IIR filter, seeing that with a kernel size as low as 2
the filter is still sharp enough.

5.2 Language Modeling

The enwiki8 dataset is a byte-level dataset consist-
ing of the first 100 million bytes of a Wikipedia
XML dump. It is a commonly used dataset for
benchmarking character-level language models.

The Text8 dataset is a corpus of text used for
training and evaluating language models. It is a
subset of the Wikipedia dump from March 2006
and consists of 90 million characters. The text
is tokenized and lowercased, and each token is
assigned a unique id.

The metric used to evaluate language models
on enwiki8 and Text8 is bits per character (BPC).
The lower the BPC, the better the language model.
To compute the BPC the average cross-entropy is
computed in the log2 basis

BPC =
1

L
Log2CrossEntropy(P, P̂ ) , (33)

where P is the target distribution, and P̂ is the
output distribution. L is the sequence length. To
maintain the same capabilities such as Mega (Ma
et al., 2022), we used 8 layers of the Focus layer,
with a hidden dimension of 1024 and an input di-
mension of 512.

The enwiki8 results are reported in Tab. 2. Ev-
idently, Focus outperforms both Mega (Ma et al.,
2022) and Transformer XL (Dai et al., 2019), de-
spite a much lower number of parameters, perform-
ing on-par with GPT2(Radford et al., 2019) (zero-
shot) but with a fraction of its parameters and sub-
stantially less FLOPS. The same occurs for the
Text8 dataset, reported in Tab. 3. While the abla-
tion is inferior to Transformer-XL, with the full
method Focus is on par with GPT2.

5.3 1-D image classification

We evaluated our model on the sequential MNIST
task, a challenging problem that requires models



Table 2: BPC for enwiki8 dataset.

Model #params BPC

Transformer XL (Dai et al., 2019) 277M 0.99
Mega (Ma et al., 2022) 39M 1.02
GPT2 (Radford et al., 2019) 1542M 0.94
Focus-H (ablation) 21M 1.06
Focus 22M 0.94

Table 3: BPC for text8 dataset.

Model #params BPC

Transformer XL (Dai et al., 2019) 277M 1.08
GPT2 (Radford et al., 2019) 1542M 0.98
Focus-H (ablation) 21M 1.10
Focus 22M 0.98

Table 4: Accuracy for sMNIST, pMNIST

Model sMNIST pMNIST

Transformer 98.9 97.9
S4 (Gu et al., 2021a) 99.6 98.7
Focus-H (ablation) 98.9 98.0
Focus 99.7 98.8

to capture long-range dependencies. Permuted
MNIST is a variant of MNIST where the order
of pixels in each image is scrambled, making the
task more challenging. Following S4, we use a
hidden dimension of 512 but to save resources, we
use 6 layers and not more. The results are listed in
Tab. 4. Focus has an accuracy of 99.7% (98.8%)
on unpermuted (permuted) MNIST, outperforming
the transformer and S4.

5.4 Efficiency Comparison

To assess the efficiency of the Focus layer, we
measure peak memory usage and inference speed.
We compare several related models on the associ-
ation recall task. This task involves processing a
sequence of 1K tokens, which represents the maxi-
mal fit in memory for transformers. The results are
presented in Tab. 5. As can be seen, Focus exhibits
the lowest peak memory consumption, using only
38% of the memory consumed by the Transformer
model. However, its inference speed is slightly
slower than the other methods.

Model Inference time Memory

Transformer x1 x1
S4 x1.58 x0.43
MEGA x1.49 x0.57
Focus x1.75 x0.38

Table 5: Comparison of inference speed and peak mem-
ory consumption for related models.

6 Conclusions

Attention models are extremely powerful for mod-
eling sequences, as demonstrated by the seminal
work of Vaswani et al. (2017). Indeed, transform-
ers have revolutionized the way deep learning is
practiced, leading to unprecedented performance
across almost all studied AI domains.

However, transformers have quadratic complex-
ity in the sequence length, which can impact their
efficiency, and often struggle to perform optimally
in tasks that involve long-range dependencies (Tay
et al., 2020). In this work, we present a dynamic
filtering approach that enables us to subsequently
employ attention within much shallower architec-
tures. As our ablation shows, the dynamic nature
of these filters is crucial to the success of the layer.
Similarly crucial is the use of IIR filters, and we
analyze the regime in which these are stable.

7 Limitations

While this paper presents promising results, there
are a few limitations to consider. Firstly, although
we are the first to utilize IIR filters for long-range
tasks, we have not examined sequence models
solely based on IIR filters. Additionally, we have
not investigated the impact of different types of
hyper-global convolution on performance. Further-
more, IIR filters can be computed using recurrent
rules or convolution. While the convolutional view
is more natural for training, the recurrent view pre-
sented in Eq. 32, can be leveraged for efficient
auto-regressive generation. This can lead to a sig-
nificant reduction in the time and space complexity
of the layer during inference, which is beneficial
for real-time applications.
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A Hyperparameters

The hyperparameters for the associative recall task
are provided in Tab. 6. Hyperparameters that differ
in other experiments are reported in the respective
sections. For example, in Sec. 5.2, eight layers of
the Focus layer are used, with a hidden dimension
of 1024 and an input dimension of 512, in order to
compare with Mega on similar terms.

Table 6: Hyperparameter settings for the synthetic asso-
ciative recall task

Optimizer AdamW
Optimizer momentum β1, β2 = 0.9, 0.98
Vocabulary Size 30
NFFT L/4
F 1
C 32
Learning Rate 1E-4
Batch Size 32
Num Samples 2000
Warmup epochs 10
Number of Layers 2
Width 64
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