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Abstract

Deep generative models are becoming increasingly powerful, now generating diverse, high
fidelity, photo-realistic samples given text prompts. Nevertheless, samples from such models
have not been shown to significantly improve model training for challenging and well-studied
discriminative tasks like ImageNet classification. In this paper we show that augmenting
the ImageNet training set with samples from a generative diffusion model can yield sub-
stantial improvements in ImageNet classification accuracy over strong ResNet and Vision
Transformer baselines. To this end we explore the fine-tuning of large-scale text-to-image
diffusion models, yielding class-conditional ImageNet models with state-of-the-art FID score
(1.76 at 256256 resolution) and Inception Score (239 at 256 x 256). The model also yields
a new state-of-the-art in Classification Accuracy Scores, i.e., ImageNet test accuracy for a
ResNet-50 architecture trained solely on synthetic data (64.96 top-1 accuracy for 256 x 256
samples, improving to 69.24 for 1024 x 1024 samples). Adding up to three times as many
synthetic samples as real training samples consistently improves ImageNet classification
accuracy across multiple architectures.

1 Introduction

Deep generative models are becoming increasingly mature to the point that they can generate high fidelity
photo-realistic samples (Dhariwal & Nichol, 2021; Ho et al., 2020; Sohl-Dickstein et al., 2015). Most recently,
denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020; Sohl-Dickstein et al., 2015) have emerged
as a new category of generative techniques that are capable of generating images comparable in quality
to generative adversarial networks (GANs) while introducing greater stability during training (Dhariwal
& Nichol, 2021; Ho et al., 2022b). This has been shown both for class-conditional generative models on
classification datasets, and for open vocabulary text-to-image generation (Nichol et al., 2021; Ramesh et al.,
2022; Rombach et al., 2022; Saharia et al., 2022b).

It is therefore natural to ask whether current models are powerful enough to generate natural image data that
are effective for challenging discriminative tasks; i.e., generative data augmentation. Specifically, are diffusion
models capable of producing image samples of sufficient quality and diversity to improve performance on
well-studied benchmark tasks like ImageNet classification? ImageNet classification sets an exceptionally
high standard due to the extensive tuning of existing architectures, augmentation strategies, and training
recipes. A closely related question is, to what extent large-scale text-to-image models can serve as good
representation learners or foundation models for downstream tasks? We explore this issue in the context
of generative data augmentation, showing that these models can be fine-tuned to produce state-of-the-art
class-conditional generative models on ImageNet.

To this end, we demonstrate three key findings. We show that the Imagen text-to-image model, when fine-
tuned on the ImageNet training set produces state-of-the-art class-conditional ImageNet models at multiple
resolutions, according to their Fréchet Inception Distance (FID) (Heusel et al., 2017) and Inception Score

*Work done at Google DeepMind.
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Figure 1: Left: Augmenting real training data with generated 1024 x 1024 images from our ImageNet model
boosts classification accuracy for ResNet and Transformer models. Right: Classification Accuracy Scores
(Ravuri & Vinyals, 2019) show models trained on generated data approaching those trained on real data.

(IS) (Salimans et al., 2016); e.g,, we obtain an FID of 1.76 and IS of 239 on 256 x 256 image samples.
These models outperform existing state-of-the-art models, with or without the use of guidance to improve
model sampling. We further establish that data from such fine-tuned class-conditional models also provide
new state-of-the-art Classification Accuracy Scores (CAS) (Ravuri & Vinyals, 2019), computed by training
ResNet-50 models on synthetic images and then evaluating them on the real ImageNet validation set (Fig. 1
- right). Finally, we show that performance of models trained on generative data further improves by
combining synthetic data with real data, with large amounts of synthetic data, and with longer training
times. These results hold across a host of convolutional and Transformer-based architectures (Fig. 1 - left).

2 Related Work

Synthetic Data. The use of synthetic data has been widely explored for generating large amounts of
labeled data for vision tasks that require extensive annotation. Examples include tasks like semantic image
segmentation (Baranchuk et al., 2021; Chen et al., 2019; Li et al., 2022b; 2021; Sankaranarayanan et al.,
2018; Tritrong et al., 2021), optical flow estimation (Dosovitskiy et al., 2015; Kim, 2022; Sun et al., 2021),
human motion understanding (Guo et al., 2022; Izadi et al., 2011; Ma et al., 2022; Varol et al., 2017), and
other dense prediction tasks (Baranchuk et al., 2021; Xu et al., 2021). Previous work has also explored
3D-rendered datasets (Greff et al., 2022; Zheng et al., 2020) and simulation environments with physically
realistic dynamics engines (de Melo et al., 2021; Dosovitskiy et al., 2017; Gan et al., 2021).

Unlike methods that use model-based rendering, here we focus on the use of data-driven generative models
of natural images, for which GANs have remained the predominant approach to date (Brock et al., 2019;
Gowal et al., 2021; Li et al., 2022b). Nevertheless, models trained on data from BigGAN-deep (Brock et al.,
2019) underperform cascaded diffusion models (Ho et al., 2022b) in classification accuracy score. In terms
of image quality, BigDatasetGAN (Li et al., 2022a) FID scores underperform diffusion models, and neither
Dataset GAN nor BigDatasetGAN report improved classifier performance with generated data on ImageNet
over models trained solely on real data.

Distillation and Transfer. In our work, we use a diffusion model that has been pretrained on a large
multimodal dataset and fine-tuned on ImageNet to provide synthetic data for a classification model. This
setup has connections to previous work that has directly trained classification models on large-scale datasets
and then fine-tuned them on ImageNet (Kolesnikov et al., 2020; Mahajan et al., 2018; Radford et al., 2021;
Sun et al., 2017; Zhai et al., 2022). It is also related to knowledge distillation (Bucilud et al., 2006; Hinton
et al., 2015) in that we transfer knowledge from the diffusion model to the classifier; although it differs
from the traditional distillation setup in that we transfer this knowledge through generated data rather than
labels. Our goal in this work is to show the viability of this kind of generative knowledge transfer with
modern diffusion models.
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Diffusion Model Applications. Diffusion models have been successfully applied to image generation (Ho
et al., 2020; 2022b; Ho & Salimans, 2022), speech generation (Chen et al., 2020; Kong et al., 2020), and video
generation (Ho et al., 2022a; Singer et al., 2022; Villegas et al., 2022), and have found applications in various
image processing areas, including image colorization, super-resolution, inpainting, and semantic editing
(Saharia et al., 2022a;c; Song et al., 2020; Wang et al., 2022). One notable application of diffusion models
is large-scale text-to-image generation. Several text-to-image models including Stable Diffusion (Rombach
et al., 2022), DALL-E 2 (Ramesh et al., 2022), Imagen (Saharia et al., 2022b), eDiff (Balaji et al., 2022), and
GLIDE (Nichol et al., 2021) have produced evocative high-resolution images. However, the use of large-scale
diffusion models to support downstream tasks is still in its infancy.

Very recently, large-scale text-to-image models have been used to augment training data. He et al. (2022)
show that synthetic data generated with GLIDE (Nichol et al., 2021) improves zero-shot and few-shot im-
age classification performance. They further pretrain a classifier on millions of examples generated using
CIFAR-100 class names as prompts, and then fine-tune the classifier on the CIFAR-100 training set. The
resulting classifier performs better than one trained from scratch on CIFAR-100. However, CIFAR-100 is
simpler and much smaller than ImageNet, and many techniques that improve accuracy on CIFAR-100 fail to
do so on ImageNet (e.g., Shake-Shake regularization (Gastaldi, 2017) and Cutout (DeVries & Taylor, 2017)).
Trabucco et al. (2023) explore strategies to augment individual images using a pretrained diffusion model,
demonstrating improvements in few-shot settings. StableRep (Tian et al., 2023) uses Stable Diffusion (Rom-
bach et al., 2022) to demonstrate that if a generative model is configured with the correct classifier-free
guidance scale, training self-supervised methods for contrastive representation learning on synthetic images
can be as good or better than training them on real images.

Most closely related to our work, two recent papers train ImageNet classifiers on images generated by diffusion
models, although they explore only the pretrained Stable Diffusion model and do not fine-tune it (Bansal &
Grover, 2023; Sariyildiz et al., 2022). Bansal & Grover (2023) find that a model trained on a combination of
the ImageNet training set and synthetic data generated by base or fine-tuned text-to-image diffusion models
yields similar or worse accuracy on the ImageNet validation accuracy than a model trained solely on the
ImageNet training set. We instead find that, with an appropriate choice of fine-tuning hyper-parameters,
one can achieve significant performance gains by adding synthetic data from a fine-tuned model. Sariyildiz
et al. (2022) train an ImageNet classifier with samples from a text-to-image diffusion model, reporting 42.9%
Top-1 accuracy. In contrast, with samples from our fine-tuned model we obtain SOTA Top-1 test accuracy,
between 69% to 75%, on standard benchmark architectures and training procedures.

3 Background

Diffusion. Diffusion models work by gradually destroying the data through the successive addition of
Gaussian noise, and then learning to recover the data by reversing this noising process (Ho et al., 2020;
Sohl-Dickstein et al., 2015). In broad terms, in a forward process random noise is slowly added to the data
as time t increases from 0 to 7. A learned reverse process inverts the forward process, gradually refining
a sample of noise into an image. To this end, samples at the current time step, z;_1, are drawn from a
learned Gaussian distribution, N (x;—1; pe(z,t), B (2¢,t)), where the mean of the distribution ug(zy,t), is
conditioned on the sample at the previous time step. The variance ¥g(xz,t) follows a fixed schedule. In
conditional diffusion models, the reverse process is associated with a conditioning signal, such as a class label
in class-conditional models (Ho et al., 2022b).

Diffusion models have been the subject of many recent papers including important innovations in architec-
tures and training (e.g., (Balaji et al., 2022; Ho et al., 2022b; Nichol & Dhariwal, 2021; Saharia et al., 2022b)).
Important below, Ho et al. (2022b) propose cascades of diffusion models at increasing image resolutions for
high resolution images. Other work has explored the importance of the generative sampling process, intro-
ducing new noise schedules, guidance mechanisms to trade-off diversity with image quality, distillation for
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efficiency, and different parameterizations of the denoising objective (e.g., (Hoogeboom et al., 2023; Karras
et al., 2022; Saharia et al., 2022b; Salimans & Ho, 2022)).

Classification Accuracy Score. It is a standard practice to use FID (Heusel et al., 2017) and Inception
Score (Salimans et al., 2016) to evaluate the visual quality of generative models. Due to their relatively
low computation cost, these metrics are widely used as proxies for generative model training and tuning.
However, both methods tend to penalize non-GAN models harshly, and Inception Score produces overly
optimistic scores in methods with sampling modifications (Ho & Salimans, 2022; Ravuri & Vinyals, 2019).
Ravuri & Vinyals (2019) also argued that these metrics do not show a consistent correlation with metrics
that assess performance on downstream tasks like classification accuracy.

An alternative way to evaluate the quality of samples from generative models is to examine the performance
of a classifier that is trained on generated data and evaluated on real data (Santurkar et al., 2018; Yang et al.,
2017). To this end, Ravuri & Vinyals (2019) propose classification accuracy score (CAS), which measures
classification performance on the ImageNet validation set for ResNet-50 models (He et al., 2016) trained on
generated data. It is an intriguing proxy, as it requires generative models to produce high fidelity images
across a broad range of categories, competing directly with models trained on real data.

To date, CAS performance has not been particularly compelling. Models trained exclusively on generated
samples underperform those trained on real data. Also, performance drops when even relatively small
amounts of synthetic data are added to real data during training (Ravuri & Vinyals, 2019). This performance
drop may arise from issues with the quality of generated samples, their diversity (e.g., due to mode collapse
in GAN models), or both. Cascaded diffusion models (Ho et al., 2022b) were recently shown to outperform
BigGAN-deep (Brock et al., 2019) and VQ-VAE-2 (Razavi et al., 2019) on CAS. That said, there remains
a sizeable gap in ImageNet test performance between models trained on real data and those trained on
synthetic data (Ho et al., 2022b). Here, we explore the use of diffusion models in greater depth, with much
stronger results, demonstrating the advantage of large-scale models and fine-tuning.

4 Generative Model Training and Sampling

In what follows we address two main questions: whether large-scale text-to-image models can be fine-
tuned as class-conditional ImageNet models, and to what extent these models are useful for generative data
augmentation. For this purpose, we undertake a series of experiments to construct and evaluate such models,
focused primarily on data sampling for use in training ImageNet classifiers. The ImageNet ILSVRC 2012
dataset (ImageNet-1K) comprises 1.28 million labeled training images and 50K validation images spanning
1000 categories (Russakovsky et al., 2015). We adopt ImageNet-1K as our benchmark to assess the efficacy
of the generated data, as this is one of the most widely and thoroughly studied benchmarks for which
there is an extensive literature on architectures and training procedures, making it challenging to improve
performance. Since the images of ImageNet-1K dataset vary in dimensions and resolution with the average
image resolution of 469x387 (Russakovsky et al., 2015), we examine synthetic data generation at different
resolutions, including 64x64, 256256, and 1024 x1024.

In contrast to previous work that trains diffusion models directly on ImageNet data (e.g., (Dhariwal & Nichol,
2021; Ho et al., 2022b; Hoogeboom et al., 2023)), here we leverage a large-scale text-to-image diffusion model
(Saharia et al., 2022b) as a foundation, in part to explore the potential benefits of pre-training on a larger,
generic corpus. A key challenge in doing so concerns the alignment of the text-to-image model with ImageNet
classes. If, for example, one naively uses short text descriptors like those produced for CLIP by Radford
et al. (2021) as text prompts for each ImageNet class, the data generated by the Imagen model (Saharia
et al., 2022b) is easily shown to produce a poor ImageNet classifier. One problem is that a text label may
be associated with multiple visual concepts in the wild, or visual concepts that differ systematically from
ImageNet (see Fig. 2). This poor performance may also be a consequence of the high guidance weights
used by Imagen, thereby sacrificing generative diversity for sample quality. While there are several ways in
which one might re-purpose a text-to-image model as a class-conditional model, e.g., optimizing prompts to
minimize distribution shifts, here we fix the prompts to be the associated CLIP class names (Radford et al.,
2021), and fine-tune the weights and sampling parameters of the diffusion-based generative model.



Published in Transactions on Machine Learning Research (10/2023)

bittern bird

Leonberger harvestman

Schipperke

brussels griffon

Figure 2: Example 1024 x 1024 images from the fine-tuned Imagen (left) model vs. vanilla ITmagen (right).
Fine-tuning and careful choice of guidance weights and other sampling parameters help to improve the
alignment of images with class labels and sample diversity. More samples are provide in the Appendix.

4.1 Imagen Fine-tuning

We leverage the large-scale Imagen text-to-image model (Saharia et al., 2022b) as the backbone text-to-image
generator that we fine-tune using the ImageNet training set. It includes a pretrained text encoder that maps
text to contextualized embeddings, and a cascade of conditional diffusion models that map these embeddings
to images of increasing resolution. Imagen uses a frozen T5-XXL encoder as a semantic text encoder to
capture the complexity and compositionality of text inputs. The cascade begins with a 2B parameter 64 x 64
text-to-image base model. Its outputs are then fed to a 600M parameter super-resolution model to upsample
from 64x64 to 256x256, followed by a 400M parameter model to upsample from 256x256 to 1024 x1024.
The base 64x64 model is conditioned on text embeddings via a pooled embedding vector added to the
diffusion time-step embedding, like previous class-conditional diffusion models (Ho et al., 2022b). All three
stages of the diffusion cascade include text cross-attention layers (Saharia et al., 2022b).

Given the relative paucity of high resolution images in ImageNet, we fine-tune only the 64x64 base model
and 64x64—256x256 super-resolution model on the ImageNet-1K train split, keeping the final super-
resolution module and text-encoder unchanged. The 64x64 base model is fine-tuned for 210K steps and
the 64x64—256x256 super-resolution model is fine-tuned for 490K steps, on 256 TPU-v4 chips with a batch
size of 2048. As suggested in the original Imagen training process, Adafactor (Shazeer & Stern, 2018) is used
to fine-tune the base 64x64 model because it had a smaller memory footprint compared to Adam (Kingma
& Ba, 2014). For the 256x256 super-resolution model, we used Adam for better sample quality. Throughout
fine-tuning experiments, we select models based on FID score calculated over 10K samples from the default
Imagen sampler and the ImageNet-1K validation set.
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Figure 3: Sampling refinement for 64 x 64 base model. Left: Validation set FID vs. guidance weights for
different values of log-variance. Center: Pareto frontiers for training set FID and IS at different values
of the guidance weight. Right: Dependence of Classification Accuracy Score evaluated on the ImageNet
training set (denoted CAS@1.2M) on guidance weight.

4.2 Sampling Parameters

The quality, diversity, and speed of text-conditioned diffusion model sampling are strongly affected by mul-
tiple factors including the number of diffusion steps, noise condition augmentation (Saharia et al., 2022b),
guidance weights for classifier-free guidance (Ho & Salimans, 2022; Nichol et al., 2021), and the log-variance
mixing coefficient used for prediction (Eq. 15 in (Nichol & Dhariwal, 2021)), described in further detail in
Appendix A.1. We conduct a thorough analysis of the dependence of FID, IS and classification accuracy
scores (CAS) in order to select good sampling parameters for the downstream classification task.

The sampling parameters for the 64 x 64 based model establish the overall quality and diversity of image
samples. We first sweep over guidance weight, log-variance, and number of sampling steps, to identify good
hyperparameters based on FID-50K (vs. the ImageNet validation set). Using the DDPM sampler (Ho et al.,
2020) for the base model, we sweep over guidance values of [1.0,1.25,1.5,1.75,2.0,5.0] and log-variance of
[0.0,0.2,0.3,0.4,1.0], and denoise for 128, 500, or 1000 steps. The results of this sweep, summarized in
Figure 3, suggest that optimal FID is obtained with a log-variance of 0 and 1000 denoising steps. Given
these parameter choices we then complete a more compute intensive sweep, sampling 1.2M images from the
fine-tuned base model for different values of the guidance weights. We measure FID on 50K samples from
the validation set, and IS and CAS using the 1.2M ImageNet training set (denoted CAS@1.2M), to select
the guidance weight for the base model sampler. Figure 3 shows the Pareto frontiers for FID vs. IS across
different guidance weights, as well as the dependence of CAS on guidance weight, suggesting that optimal
FID and CAS are obtained at a guidance weight of 1.25.

Given 64 x 64 samples obtained with the optimal hyperparameters, we then analyze the impact of guidance
weight, noise augmentation, and log-variance to select sampling parameters for the super-resolution models.
The noise augmentation value specifies the level of noise augmentation applied to the input to super-resolution
stages in the Imagen cascade to regulate sample diversity (and improve robustness during model training).
Here, we sweep over guidance values of [1.0,2.0,5.0,10.0,30.0], noise conditioning augmentation values of
[0.0,0.1,0.2,0.3,0.4], and log-variance mixing coefficients of [0.1,0.3], and denoise for 128, 500, or 1000 steps.
Figure 4 shows Pareto curves of FID Train vs. CAS@1.2M (i.e., for classification evaluated on the real training
data) for the 64 x64 — 256 x 256 super-resolution module across different noise conditioning augmentation
values using a guidance weight of 1.0. These curves demonstrate the combined impact of the log-variance
mixing coefficient and condition noise augmentation in achieving an optimal balance between FID and CAS.

Overall, the results suggest that FID and CAS are highly correlated, with smaller guidance weights leading
to better CAS but negatively affecting Inception Score. We observe that using noise augmentation of 0 yields
the lowest FID score for all values of guidance weights for super-resolution models. Nevertheless, it is worth
noting that while larger amounts of noise augmentation tend to increase FID, they also produce more diverse
samples, as also observed by Saharia et al. (2022b). Results of these studies are available in the Appendix.

Based on these sweeps, taking FID and CAS into account, we selected guidance of 1.25 when sampling from
the base model, and 1.0 for other resolutions. We use DDPM sampler (Ho et al., 2020) log-variance mixing
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Figure 4: Training set FID vs. classification top-1 and top-5 accuracy Pareto curves under varying noise con-
ditions when the guidance weight is set to 1.0 for resolution 256x256. These curves depict the joint influence
of the log-variance mixing coefficient (Nichol & Dhariwal, 2021) and noise conditioning augmentation (Ho
et al., 2022b) on FID Train and and CAS@1.2M.

coeflicients of 0.0 for 64 x 64 samples, and 0.1 for 256 x 256 samples, with 1000 denoising steps. At resolution
1024 x 1024 we use a DDIM sampler (Song et al., 2021) with 32 steps, as in (Saharia et al., 2022b). We do
not use noise conditioning augmentation for sampling.

4.3 Generation Protocol

We use the fine-tuned Imagen model with the optimized sampling hyper-parameters to generate synthetic
data resembling the training split of ImageNet dataset. This means that we aim to produce the same quantity
of images for each class as found in the real ImageNet dataset while keeping the same class balance as the
original dataset. We then constructed large-scale training datasets with ranging from 1.2M to 12M images,
i.e., between 1x to 10x the size of the original ImageNet training set.!

5 Results

5.1 Sample Quality: FID and IS

Despite the shortcomings described in Sec. 3, FID (Heusel et al., 2017) and Inception Score (Salimans et al.,
2016) remain standard metrics for evaluating generative models. Table 1 reports FID and IS for our approach
and existing class-conditional and guidance-based approaches.? Our fine-tuned model outperforms all the
existing methods, including state-of-the-art methods that use U-Nets (Ho et al., 2022b) and larger U-ViT
models trained solely on ImageNet data (Hoogeboom et al., 2023). This suggests that large-scale pretraining
followed by fine-tuning on domain-specific target data is an effective strategy to achieve better visual quality
with diffusion models, as measured by FID and IS. Figure 2 shows imaage samples from the fine-tuned model
(see the Appendix for more samples). Note that our state-of-the-art FID and IS on ImageNet are obtained
without any design changes, i.e., by simply adapting an off-the-shelf, diffusion-based text-to-image model
to new data through fine-tuning. This is a promising result indicating that in a resource-limited setting,
one can improve the performance of diffusion models by fine-tuning model weights and adjusting sampling
parameters.

5.2 Classification Accuracy Score

As noted above, classification accuracy score (CAS) (Ravuri & Vinyals, 2019) is a better proxy than FID
and IS for performance of downstream training on generated data. CAS measures ImageNet classification
accuracy on the real test data for models trained solely on synthetic samples. In keeping with the CAS

Tmagen was trained on a mixture of datasets, 30% of which comprised Laion-400M (Schuhmann et al., 2021). We note
that approximately 1.02% of ImageNet can be found in Laion-400M, which is relevant when interpreting classification accuracy
(Cherti et al., 2023). In line with previous work, Cherti et al. (2023) also conclude that duplication in test sets does not
significantly alter downstream results of ImageNet models.

?Because the ImageNet validation set was used for sampling hyper-parameter selection, our FID validation quantities may
not be directly comparable to other models, but we report it here for completeness.
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Table 1: Comparison of sample quality of synthetic ImageNet datasets measured by FID and Inception Score
(IS) between our fine-tuned Imagen model and generative models in the literature. We achieve SOTA FID
and IS on ImageNet generation among other existing models, including class-conditional and guidance-based
sampling without any design changes.

Model FID train FID validation IS
64x64 resolution

BigGAN-deep (Dhariwal & Nichol, 2021) 4.06 - -
Improved DDPM (Nichol & Dhariwal, 2021) 2.92 - -
ADM (Dhariwal & Nichol, 2021) 2.07 - -
CDM (Ho et al, 2022) 1.48 2.48 67.95 + 1.97
RIN (Jabri et al., 2022) 1.23 - 66.5
RIN + noise schedule (Chen, 2023) 2.04 - 55.8
Ours (Fine-tuned Imagen) 1.21 2.51 85.77 + 0.06
256x256 resolution

BigGAN-deep (Brock et al., 2019) 6.9 - 171.4 + 2.00
VQ-VAE-2 (Razavi et al., 2019) 31.11 - :

SR3 (Saharia et al., 2021) 11.30 - -
LDM-4 (Rombach et al., 2022) 10.56 - 103.49
DiT-XL/2 (Peebles & Xie, 2022) 9.62 - 121.5
ADM (Dhariwal & Nichol, 2021) 10.94 - 100.98
ADM-+upsampling (Dhariwal & Nichol, 2021) 7.49 - 127.49
CDM (Ho et al, 2022) 4.88 3.76 158.71 + 2.26
RIN (Jabri et al., 2022) 451 - 161.0
RIN + noise schedule (Chen, 2023) 3.52 - 186.2
Simple Diffusion (U-Net) (Hoogeboom et al., 2023) 3.76 2.88 171.6 £ 3.07
Simple Diffusion (U-ViT L) (Hoogeboom et al., 2023) 2.77 3.23 211.8 +£2.93
Ours (Fine-tuned Imagen) 1.76 2.81 239.18 £ 1.14

Table 2: Classification Accuracy Scores (CAS) for 256x256 and 1024x1024 generated samples. CAS for real
data and other models are obtained from (Ravuri & Vinyals, 2019) and (Ho et al., 2022b). Results indicate
that the fine-tuned generative diffusion model outperforms previous methods by a substantial margin.

Model Top-1 Accuracy (%) Top-5 Accuracy(%)
Real 73.09 91.47
BigGAN-deep (Brock et al., 2019) (Brock et al., 2019) 42.65 65.92
VQ-VAE-2 (Razavi et al, 2019) (Razavi et al., 2019) 54.83 77.59
CDM (Ho et al, 2022) (Ho et al., 2022b) 63.02 84.06
Ours (256x256 resolution) 64.96 85.66
Ours (1024 %1024 resolution) 69.24 88.10

protocol (Ravuri & Vinyals, 2019), we train a standard ResNet-50 architecture on a single crop from each
training image. Models are trained for 90 epochs with a batch size of 1024 using SGD with momentum
(see Appendix A.4 for details). Regardless of the resolution of the generated data, for CAS training and
evaluation, we resize images to 256x256 (or, for real images, to 256 pixels on the shorter side) and then take
a 224 x 224 pixel center crop.

Table 2 reports CAS for samples from our fine-tuned models at resolutions 256x256 and 1024x1024. CAS for
real data and for other models are taken from (Ravuri & Vinyals, 2019) and (Ho et al., 2022b). The results
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Figure 5: Class-wise classification accuracy comparison accuracy of models trained on real data (blue) and
generated data (red). Left: The 256 x 256 CDM model (Ho et al., 2022b). Middle and right: Our
fine-tuned class-conditional diffusion model at 256 x 256 and 1024 x 1024.

indicate that our fine-tuned class-conditional models outperform the previous methods in the literature at
256 x 256 resolution by a good margin, for both Top-1 and Top-5 accuracy. Interestingly, results are markedly
better for 1024 x 1024 samples, even though these samples are down-sampled to 256 x 256 during classifier
training. As reported in Table 2, we achieve the SOTA Top-1 classification accuracy score of 69.24% at
resolution 1024 x 1024. This greatly narrows the gap with the ResNet-50 model trained on real data.

Figure 5 shows the accuracy of models trained on generative data (red) compared to a model trained on
real data (blue) for each of the 1000 ImageNet classes (cf. Fig. 2 in (Ravuri & Vinyals, 2019)). From Figure
5 (left) one can see that the ResNet-50 trained on CDM samples is weaker than the model trained on real
data, as most red points fall below the blue points. For our fine-tuned Imagen models (Figure 5 middle and
right), however, there are more classes for which the models trained on generated data outperform the model
trained on real data. This is particularly clear at 1024 x 1024.

5.3 Classification Accuracy with Different Models

To further evaluate the discriminative power of the synthetic data, compared to the real ImageNet-1K
data, we analyze the classification accuracy of models with different architectures, input resolutions, and
model capacities. We consider multiple ResNet-based and Vision Transformers (ViT)-based (Dosovitskiy
et al., 2020) classifiers including ResNet-50 (He et al., 2016), ResNet-RS-50, ResNet-RS-152x2, ResNet-RS-
350x2 (Bello et al., 2021), ViT-S/16 (Beyer et al., 2022), and DeiT-B (Touvron et al., 2021). The models
trained on real, synthetic, and the combination of real and synthetic data, are all trained in the same way,
consistent with the training recipes specified by authors of these models on ImageNet-1K. We verified that
these methods trained on real data agree with the published results. The Appendix has more details on
model training.

Table 3 reports the Top-1 validation accuracy of multiple ConvNet and Transformer models when trained with
the 1.2M real ImageNet training images, with 1.2M generated 1024 x 1024 images, and when the generative
samples are used to augment the real data. As one might expect, models trained solely on generated samples
perform worse than models trained on real data. Nevertheless, augmenting real data with synthetic images
from the diffusion model yields a substantial boost in performance across all classifiers tested; using a paired
t-test, the results are statistically significant with p = 1075.

In addition, there is no obvious trend in the performance improvement of ConvNets versus Transformers as
performance gains vary with several factors, including the number of model parameters and the resolution
of the input image.

5.4 Merging Real and Synthetic Data at Scale

We next consider how performance of a ResNet-50 classifier depends on the amount of generated data that
is used to augment the real data. Here we follow the conventional training recipe, training with random
crops for 130 epochs, which yields higher ResNet-50 accuracy here than in the CAS results in Table 2 that
used center crop and only 90 epochs. The Appendix provides training details.
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Figure 6: Top-1 and Top-5 classification accuracy of a ResNet-50 architecture, trained with the union of
the real ImageNet Train data and increasing numbers of synthetic images at 64x64 (left), 256x256 (middle),
and 1024 x 1024 (right) resolutions. We plot the mean accuracy and the standard deviation (depicted by
shaded area) over 10 independently trained models. The leftmost point on all curves shows the accuracy
of a model trained solely on the real ImageNet Train set, with other points showing increasing numbers of
synthetic data, from 1x to 10x the size of the ImageNet Train set. (See Table A.3 for accuracy numbers.)

Ravuri & Vinyals (2019) (their Fig. 5) found that for almost all models tested, mixing generated samples
with real data degrades Top-5 classifier accuracy. For Big-GAN-deep (Brock et al., 2019) with low trunca-
tion values (sacrificing diversity for sample quality), accuracy increases marginally with small amounts of
generated data, but then quickly drops below models trained solely on real data when the amount of gener-
ated data approaches the size of the real train set. By comparison, Figure 6 shows that, for 64 x 64 images,
performance continues to improve as the amount of generated data increases up to nine times the amount of
real data, to a total dataset size of 12M images. Performance with samples from the two higher resolution
models increases with up to 1.2M synthetic samples and then slowly decreases. Nevertheless, performance
remains above the baseline model trained solely on real data for up to approximately 4M synthetic samples,
i.e., with three times more synthetic data than real data. (Table A.3 in the Appendix provides these results
in tabular form.)

6 Discussion and Future Work

This paper asks to what extent generative data augmentation is effective with current diffusion models. We
do so in the context of ImageNet classification, a challenging task that has been studied extensively with
well honed architectures and training recipes. Here we show that large-scale text-to-image diffusion models
can be fine-tuned to produce class-conditional models with SOTA FID (1.76 at 256 x 256 resolution) and
Inception Score (239 at 256 x 256). The resulting generative model also yields a new SOTA in Classification
Accuracy Scores (64.96 at 256 x 256, improving to 69.24 for 1024 x 1024 samples). We also showed that
improvements to ImageNet classification accuracy extend to large amounts of generated data, across a range
of ResNet and Transformer-based models. Our work demonstrates the power of modern diffusion models for
data generation and augmentation. However, several questions remain unanswered.

Although ImageNet classification is one of the most extensively studied benchmarks in vision and represen-
tation learning, many important tasks differ substantially from ImageNet, and the efficacy of generative data
augmentation for such tasks remains unclear. Previous work has shown that accuracy on ImageNet is a good
proxy for out-of-distribution accuracy (Taori et al., 2020) and transfer to other natural image tasks (Korn-
blith et al., 2019), but not for performance of architectures trained from scratch on small datasets (Tuggener
et al., 2022) or for transfer to non-natural image tasks (Abnar et al., 2021; Fang et al., 2023). It thus
remains crucial to validate our approach across various datasets and dataset sizes to establish the limits of
its effectiveness.
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Table 3: Comparison of classifier Top-1 Accuracy (%) performance when 1.2M generated images are used
for generative data augmentation. Models trained solely on generated samples perform worse than models
trained on real data. Nevertheless, augmenting the real data with data generated from the fine-tuned
diffusion model provides a substantial boost in performance across many different classifiers.

Model ‘Input Size‘Params (M) ‘Real Only Generated Only Real + Generated Performance A
ConvNets
ResNet-50 224x224 36 76.39 69.24 78.17 +1.78
ResNet-101 224x224 45 78.15 71.31 79.74 +1.59
ResNet-152 224x224 64 78.59 72.38 80.15 +1.56
ResNet-RS-50 | 160x160 36 79.10 70.72 79.97 +0.87
ResNet-RS-101| 160x160 64 80.11 72.73 80.89 +0.78
ResNet-RS-101| 190x190 64 81.29 73.63 81.80 +0.51
ResNet-RS-152| 224x224 87 82.81 74.46 83.10 +0.29
Transformers
ViT-S/16 224 %224 22 79.89 71.88 81.00 +1.11
DeiT-S 224x224 22 78.97 72.26 80.49 +1.52
DeiT-B 224x224 87 81.79 74.55 82.84 +1.04
DeiT-B 384x384 87 83.16 75.45 83.75 +0.59
DeiT-L 224x224 307 82.22 74.60 83.05 +0.83

The diffusion model we use was pretrained on a dataset much larger than ImageNet. It is natural to ask
whether a sufficiently powerful diffusion model trained solely on ImageNet will still provide improvements
when used for generative data augmentation. There are also other ways to leverage large datasets to improve
performance on downstream tasks, such as transfer learning or non-generative data augmentation approaches.
Further research is required to gain a comprehensive understanding of how different methods can complement
each other and work in synergy to improve overall training performance.

Finally, our experiments uncover a couple of unexpected phenomena worthy of further study. One concerns
the boost in CAS at resolution 1024 x 1024, suggesting that the larger images capture more useful image
structure than those at 256x256, even though the 1024x1024 images are downsampled to 256x256 before being
center-cropped to 224 x 224 for input to ResNet-50. Another concerns the sustained gains in classification
accuracy with large amounts of synthetic data at 64x64, while at higher resolutions gains are not monotonic
(Figure 6 and Table A.3). It may be that there is less information at low resolutions for training, and
hence a greater opportunity at low resolutions for augmentation with synthetic images. Performance at high
resolutions increases up to 1M synthetic images and then slowly declines; this may indicate greater bias
in the model at high resolutions, or the need for more sophisticated training methods with synthetic data.
These issues remain topics of on-going research.

Broader Impact Statement

The research on generative data augmentation have the potential to positively impact variety of fields by
fostering the development of more robust and privacy-preserving models. However, it is important to be
aware of the potential challenges and drawbacks associated with synthetic data generation and generative
models. Transparency and clear guidelines regarding the use of synthetic data in safety critical applications
are essential to ensure ethical and responsible adoption. Like the original Imagen model, our fine-tuned
variant is not publicly available, in part to protect against the generation of harmful content.

Acknowledgments

We thank Jason Baldridge and Ting Chen for their valuable feedback. We also extend thanks to William
Chan, Saurabh Saxena, and Lala Li for helpful discussions, feedback, and support with the Imagen code.

11



Published in Transactions on Machine Learning Research (10/2023)

References

Samira Abnar, Mostafa Dehghani, Behnam Neyshabur, and Hanie Sedghi. Exploring the limits of large scale
pre-training. arXiv preprint arXiv:2110.02095, 2021.

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Karsten Kreis, Miika Aittala, Timo
Aila, Samuli Laine, Bryan Catanzaro, Tero Karras, and Ming-Yu Liu. ediff-i: Text-to-image diffusion
models with an ensemble of expert denoisers. preprint arxiv.2211.01324,, 2022.

Hritik Bansal and Aditya Grover. Leaving reality to imagination: Robust classification via generated datasets.
arXiv:2302.02503, 2023.

Dmitry Baranchuk, Ivan Rubachev, Andrey Voynov, Valentin Khrulkov, and Artem Babenko. Label-efficient
semantic segmentation with diffusion models. arXiv preprint arXiv:2112.03126, 2021.

Trwan Bello, William Fedus, Xianzhi Du, Ekin Dogus Cubuk, Aravind Srinivas, Tsung-Yi Lin, Jonathon
Shlens, and Barret Zoph. Revisiting resnets: Improved training and scaling strategies. Advances in Neural
Information Processing Systems, 34:22614-22627, 2021.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k. arXiv
preprint arXiv:2205.01580, 2022.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity natural image
synthesis. International Conference on Learning Representations, 2019.

Cristian Bucilud, Rich Caruana, and Alexandru Niculescu-Mizil. Model compression. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 535-541, 2006.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wavegrad:
Estimating gradients for waveform generation. arXiv preprint arXiv:2009.00713, 2020.

Yuhua Chen, Wen Li, Xiaoran Chen, and Luc Van Gool. Learning semantic segmentation from synthetic data:
A geometrically guided input-output adaptation approach. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 1841-1850, 2019.

Mehdi Cherti, Romain Beaumont, Ross Wightman, Mitchell Wortsman, Gabriel IlTharco, Cade Gordon,
Christoph Schuhmann, Ludwig Schmidt, and Jenia Jitsev. Reproducible scaling laws for contrastive
language-image learning. 2023.

Celso M de Melo, Antonio Torralba, Leonidas Guibas, James DiCarlo, Rama Chellappa, and Jessica Hodgins.
Next-generation deep learning based on simulators and synthetic data. Trends in cognitive sciences, 2021.

Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv:1708.04552, 2017.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. NeurIPS, 34:
8780-8794, 2021.

Alexey Dosovitskiy, Philipp Fischer, Eddy Ilg, Philip Hausser, Caner Hazirbas, Vladimir Golkov, Patrick
Van Der Smagt, Daniel Cremers, and Thomas Brox. Flownet: Learning optical flow with convolutional
networks. In Proceedings of the IEEE international conference on computer vision, pp. 2758-2766, 2015.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An open
urban driving simulator. In Conference on robot learning, pp. 1-16. PMLR, 2017.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Alex Fang, Simon Kornblith, and Ludwig Schmidt. Does progress on imagenet transfer to real-world datasets?
arXiv preprint arXiv:2301.04644, 2023.

12



Published in Transactions on Machine Learning Research (10/2023)

C Gan, J Schwartz, S Alter, M Schrimpf, J Traer, J De Freitas, J Kubilius, A Bhandwaldar, N Haber,
M Sano, et al. Threedworld: A platform for interactive multi-modal physical simulation. Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Xavier Gastaldi. Shake-shake regularization. arXiv:1705.07485, 2017.

Sven Gowal, Sylvestre-Alvise Rebuffi, Olivia Wiles, Florian Stimberg, Dan Andrei Calian, and Timothy A
Mann. Improving robustness using generated data. Advances in Neural Information Processing Systems,
34:4218-4233, 2021.

Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch, Yilun Du, Daniel Duckworth, David J Fleet,
Dan Gnanapragasam, Florian Golemo, Charles Herrmann, Thomas Kipf, Abhijit Kundu, Dmitry Lagun,
Issam Laradji, Hsueh-Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek Nowrouzezahrai, Cengiz Oztireli,
Etienne Pot, Noha Radwan, Daniel Rebain, Sara Sabour, Mehdi S. M. Sajjadi, Matan Sela, Vincent
Sitzmann, Austin Stone, Deqing Sun, Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi, Fangcheng
Zhong, and Andrea Tagliasacchi. Kubric: A scalable dataset generator. 2022.

Xi Guo, Wei Wu, Dongliang Wang, Jing Su, Haisheng Su, Weihao Gan, Jian Huang, and Qin Yang. Learning
video representations of human motion from synthetic data. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 20197-20207, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778, 2016.

Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai, and Xiaojuan Qi. Is
synthetic data from generative models ready for image recognition? arXiv:2210.07574, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598, 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in Neural
Information Processing Systems, 33:6840-6851, 2020.

Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang, Ruiqi Gao, Alexey Gritsenko, Diederik P
Kingma, Ben Poole, Mohammad Norouzi, David J Fleet, et al. Imagen video: High definition video
generation with diffusion models. arXiv preprint arXiv:2210.02303, 2022a.

Jonathan Ho, Chitwan Saharia, William Chan, David J Fleet, Mohammad Norouzi, and Tim Salimans.
Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res., 23(47):1-33, 2022b.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for high
resolution images. arXiv preprint arXiv:2301.11093, 2023.

Shahram Izadi, David Kim, Otmar Hilliges, David Molyneaux, Richard Newcombe, Pushmeet Kohli, Jamie
Shotton, Steve Hodges, Dustin Freeman, Andrew Davison, et al. Kinectfusion: real-time 3d reconstruction
and interaction using a moving depth camera. In Proceedings of the 24th annual ACM symposium on
User interface software and technology, pp. 559-568, 2011.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-based
generative models. NeurIPS, 2022.

Yo-whan Kim. How Transferable are Video Representations Based on Synthetic Data? PhD thesis, Mas-
sachusetts Institute of Technology, 2022.

13



Published in Transactions on Machine Learning Research (10/2023)

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arxiv:1412.6980, 2014.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big transfer (bit): General visual representation learning. In Computer Vision-ECCV 2020: 16th
European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part V 16, pp. 491-507. Springer,
2020.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile diffusion
model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Simon Kornblith, Jonathon Shlens, and Quoc V Le. Do better imagenet models transfer better? In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 2661-2671,
2019.

Daiqing Li, Junlin Yang, Karsten Kreis, Antonio Torralba, and Sanja Fidler. Semantic segmentation with
generative models: Semi-supervised learning and strong out-of-domain generalization. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8300-8311, 2021.

Daiqing Li, Huan Ling, Seung Wook Kim, Karsten Kreis, Adela Barriuso, Sanja Fidler, and Antonio Torralba.
Bigdatasetgan: Synthesizing imagenet with pixel-wise annotations. arXiv:2201.04684, 2022a.

Daiqing Li, Huan Ling, Seung Wook Kim, Karsten Kreis, Sanja Fidler, and Antonio Torralba. Bigdatasetgan:
Synthesizing imagenet with pixel-wise annotations. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 21330-21340, 2022b.

Jianxin Ma, Shuai Bai, and Chang Zhou. Pretrained diffusion models for unified human motion synthesis.
arXiv preprint arXiv:2212.02837, 2022.

Dhruv Mahajan, Ross Girshick, Vignesh Ramanathan, Kaiming He, Manohar Paluri, Yixuan Li, Ashwin
Bharambe, and Laurens Van Der Maaten. Exploring the limits of weakly supervised pretraining. In
Proceedings of the European conference on computer vision (ECCV), pp. 181-196, 2018.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew, Ilya
Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with text-guided
diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models. In
International Conference on Machine Learning, pp. 8162-8171. PMLR, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from
natural language supervision. In International conference on machine learning, pp. 8748-8763. PMLR,
2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Suman Ravuri and Oriol Vinyals. Classification accuracy score for conditional generative models. Advances
in neural information processing systems, 32, 2019.

Ali Razavi, Aaron Van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
NeurIPS, 32, 2019.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-resolution
image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10684-10695, 2022.

14



Published in Transactions on Machine Learning Research (10/2023)

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition challenge.
International journal of computer vision, 115:211-252, 2015.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and
Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH 2022 Conference
Proceedings, pp. 1-10, 2022a.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-
image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad Norouzi.
Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2022c.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv preprint
arXiv:2202.00512, 2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. Advances in neural information processing systems, 29, 2016.

Swami Sankaranarayanan, Yogesh Balaji, Arpit Jain, Ser Nam Lim, and Rama Chellappa. Learning from
synthetic data: Addressing domain shift for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 3752-3761, 2018.

Shibani Santurkar, Ludwig Schmidt, and Aleksander Madry. A classification-based study of covariate shift
in gan distributions. In International Conference on Machine Learning, pp. 4480-4489. PMLR, 2018.

Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, and Yannis Kalantidis. Fake it till you make it:
Learning (s) from a synthetic imagenet clone. arXiv:2212.08420, 2022.

Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis, Aarush
Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m: Open dataset of clip-filtered
400 million image-text pairs. arXiv preprint arXiv:2111.02114, 2021.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost. arXiv
preprint, arxiv:1804.04235, 2018.

Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry Yang,
Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video data. arXiv
preprint arXiv:2209.14792, 2022.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning
using nonequilibrium thermodynamics. In International Conference on Machine Learning, pp. 2256—2265.
PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. International
Confernece on Learning Representations, 2021.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole.  Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Chen Sun, Abhinav Shrivastava, Saurabh Singh, and Abhinav Gupta. Revisiting unreasonable effectiveness
of data in deep learning era. In Proceedings of the IEEE international conference on computer vision, pp.
843-852, 2017.

15



Published in Transactions on Machine Learning Research (10/2023)

Deqing Sun, Daniel Vlasic, Charles Herrmann, Varun Jampani, Michael Krainin, Huiwen Chang, Ramin
Zabih, William T Freeman, and Ce Liu. Autoflow: Learning a better training set for optical flow. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10093
10102, 2021.

Rohan Taori, Achal Dave, Vaishaal Shankar, Nicholas Carlini, Benjamin Recht, and Ludwig Schmidt. Mea-
suring robustness to natural distribution shifts in image classification. Advances in Neural Information
Processing Systems, 33:18583-18599, 2020.

Yonglong Tian, Lijie Fan, Phillip Isola, Huiwen Chang, and Dilip Krishnan. Stablerep: Synthetic images
from text-to-image models make strong visual representation learners. arXiv preprint arXiv:2306.00984,
2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. In International conference on
machine learning, pp. 10347-10357. PMLR, 2021.

Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective data augmentation
with diffusion models. arXiv preprint arXiv:2302.07944, 2023.

Nontawat Tritrong, Pitchaporn Rewatbowornwong, and Supasorn Suwajanakorn. Repurposing gans for one-
shot semantic part segmentation. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 4475-4485, 2021.

Lukas Tuggener, Jiirgen Schmidhuber, and Thilo Stadelmann. Is it enough to optimize cnn architectures on
imagenet? Frontiers in Computer Science, 4:1041703, 2022.

Gul Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J Black, Ivan Laptev, and Cordelia
Schmid. Learning from synthetic humans. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 109-117, 2017.

Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang, Moham-
mad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable length video
generation from open domain textual description. arXiv preprint arXiv:2210.02399, 2022.

Su Wang, Chitwan Saharia, Ceslee Montgomery, Jordi Pont-Tuset, Shai Noy, Stefano Pellegrini, Yasumasa
Onoe, Sarah Laszlo, David J Fleet, Radu Soricut, et al. Imagen editor and editbench: Advancing and
evaluating text-guided image inpainting. arXiv preprint arXiv:2212.06909, 2022.

Yinghao Xu, Yujun Shen, Jiapeng Zhu, Ceyuan Yang, and Bolei Zhou. Generative hierarchical features
from synthesizing images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4432-4442, 2021.

Jianwei Yang, Anitha Kannan, Dhruv Batra, and Devi Parikh. LR-GAN: Layered recursive generative
adversarial networks for image generation. In International Conference on Learning Representations,
2017. URL https://openreview.net/forum?id=HJ1kmvIxx.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12104
12113, 2022.

Jia Zheng, Junfei Zhang, Jing Li, Rui Tang, Shenghua Gao, and Zihan Zhou. Structured3d: A large photo-
realistic dataset for structured 3d modeling. In Computer Vision-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part IX 16, pp. 519-535. Springer, 2020.

16



