
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

DyGMamba: Efficiently Modeling Long-Term Temporal
Dependency on Continuous-Time Dynamic Graphs with State

Space Models
Anonymous Author(s)

Abstract
Learning useful representations for continuous-time dynamic graphs
(CTDGs) is challenging, due to the concurrent need to span long
node interaction histories and grasp nuanced temporal details. In
particular, two problems emerge: (1) Encoding longer histories re-
quires more computational resources, making it crucial for CTDG
models to maintain low computational complexity to ensure effi-
ciency; (2) Meanwhile, more powerful models are needed to identify
and select the most critical temporal information within the ex-
tended context provided by longer histories. To address these prob-
lems, we propose a CTDG representation learning model named
DyGMamba, originating from the popularMamba state spacemodel
(SSM). DyGMamba first leverages a node-level SSM to encode the
sequence of historical node interactions. Another time-level SSM
is then employed to exploit the temporal patterns hidden in the
historical graph, where its output is used to dynamically select
the critical information from the interaction history. We validate
DyGMamba experimentally on the dynamic link prediction task.
The results show that our model achieves state-of-the-art in most
cases. DyGMamba also maintains high efficiency in terms of com-
putational resources, making it possible to capture long temporal
dependencies with a limited computation budget.

CCS Concepts
• Do Not Use This Code → Generate the Correct Terms for
Your Paper; Generate the Correct Terms for Your Paper ; Generate
the Correct Terms for Your Paper; Generate the Correct Terms for
Your Paper; • Computing methodologies→Machine learning;
• Information systems;

Keywords
temporal graph learning, data mining

ACM Reference Format:
Anonymous Author(s). 2025. DyGMamba: Efficiently Modeling Long-Term
Temporal Dependency on Continuous-Time Dynamic Graphs with State
SpaceModels. In Proceedings of Temporal Graph LearningWorkshop, SIGKDD
International Conference on Knowledge Discovery and Data Mining 2025
(TGL Workshop, KDD 2025). ACM, New York, NY, USA, 20 pages. https:
//doi.org/XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
TGL Workshop, KDD 2025, Toronto, Canada
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-XXXX-X/2018/06
https://doi.org/XXXXXXX.XXXXXXX

1 Introduction
Dynamic graphs store node interactions in the form of links labeled
with timestamps [11]. In recent years, learning dynamic graphs has
gained increasing interest since it can be used to facilitate various
real-world applications. Dynamic graphs can be classified into two
types, i.e., discrete-time dynamic graph (DTDG) and continuous-
time dynamic graph (CTDG). A DTDG is represented as a sequence
of graph snapshots that are observed at regular time intervals,
where all the edges in a snapshot are taken as existing simultane-
ously, while a CTDG consists of a stream of events where each of
them is observed individually with its own timestamp. Previous
works [11, 23] have indicated that CTDGs have an advantage over
DTDGs in preserving temporal details, and therefore, more atten-
tion is paid to developing novel CTDG modeling approaches for
dynamic graph representation learning.

Recent effort in CTDG modeling has resulted in a wide range
of models. However, most of them are unable to model long-term
temporal dependencies of nodes, despite the existence of abundant
historical information. To solve this problem, Yu et al. [35] propose
a CTDG model DyGFormer that can handle long-term node inter-
action histories based on Transformer [28]. Despite its ability in
modeling longer histories, employing a Transformer naturally in-
troduces excessive usage of computational resources due to its qua-
dratic complexity. Another recent work CTAN [5] tries to capture
long-term temporal dependencies by propagating graph informa-
tion in a non-dissipative way over time with a graph convolution-
based model. Despite the model’s high efficiency, Gravina et al.
[5] show that CTAN cannot capture very long histories and is sur-
passed by DyGFormer on the CTDGs where learning from very far
away temporal information is critical. Based on these observations,
we summarize the first challenge in CTDG modeling: How to de-
velop a model that is scalable in modeling very long-term
historical interactions? Another point worth noting is that as
longer histories introduce more temporal information, more power-
ful models are needed to identify and select the most critical parts.
This reveals another challenge:How to effectively select critical
temporal information with long node interaction histories?

To address the first challenge, we propose to leverage a popular
state space model (SSM), i.e., Mamba SSM [6] to encode the long
sequence of historical node interactions. Since Mamba is proven
effective and efficient in long sequence modeling [6], it maintains
low computational complexity and is scalable in modeling long-
term temporal dependencies. For the second challenge, we address it
by learning temporal patterns of node interactions and dynamically
selecting the critical temporal information based on them. The
motivation can be explained by the following example. Consider
a CTDG with nodes as people or songs and edges representing a
person playing a song at a specific time. If a person 𝑢 frequently

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

plays a hit song 𝑣 initially but decreases the frequency later on,
the time intervals between plays increase. Ignoring this pattern
can lead models to incorrectly predict that 𝑢 will still play 𝑣 at
future timestamps due to their high appearances in each other’s
historical interactions. If a CTDG model recognizes this pattern, it
can prioritize other temporal information, such as 𝑢 increasingly
listening to a new song 𝑣 ′ before 𝑡 , instead of focusing on 𝑢, 𝑣
interactions. Since each pattern corresponds to a specific edge, e.g.,
(𝑢, 𝑣, 𝑡), we name these patterns as edge-specific temporal patterns.

To this end, we propose a new CTDG model named DyGMamba.
DyGMamba first leverages a node-level Mamba SSM to encode his-
torical node interactions. Another time-level Mamba SSM is then
employed to exploit the edge-specific temporal patterns, where its
output is used to dynamically select the critical information from
the interaction history. To summarize: (1) We present DyGMamba,
the first model using SSMs for CTDG representation learning; (2)
DyGMamba demonstrates high efficiency and strong effectiveness
in modeling long-term temporal dependencies in CTDGs; (3) Exper-
imental results show that DyGMamba achieves new state-of-the-art
on dynamic link prediction over most common CTDG datasets.

2 Related Work and Preliminaries
2.1 Related Work

Dynamic Graph Representation Learning. Dynamic graph rep-
resentation learning methods can be categorized into two groups,
i.e., DTDG and CTDG methods. DTDG methods [4, 13, 17, 22, 34]
can only model DTDGs where each of them is represented as a
sequence of graph snapshots. Modeling a dynamic graph as graph
snapshots requires time discretization and will inevitably cause in-
formation loss [11]. To overcome this problem, recent works focus
more on developing CTDG methods that treat a dynamic graph as
a stream of events, where each event has its own unique timestamp.
Some works [1, 27] model CTDGs by using temporal point process.
Another line of works [5, 16, 31, 33] designs advanced temporal
graph neural networks for CTDGs. Besides, some other methods are
developed based on memory networks [14, 21], temporal random
walk [10, 32] and temporal sequence modeling [2, 25, 35]. Since
some real-world CTDGs heavily rely on long-term temporal infor-
mation for effective learning, a number of works start to develop
CTDG models that can do long range propagation of information
over time [5, 35].

State Space Models. Transformer [28] is a de facto backbone ar-
chitecture in modern deep learning. However, its self-attention
mechanism results in large space and time complexity, making it
unsuitable for extremely long sequence modeling [3]. To address
this, many works focus on building structured state space models
that scale linearly or near-linearly with input sequence length [6–
9, 15, 19, 24]. Most structured SSMs exhibit linear time invariance
(LTI), meaning their parameters are not input-dependent and fixed
for all time-steps. Gu and Dao [6] demonstrate that LTI prevents
SSMs from effectively selecting relevant information from the input
context, which is problematic for tasks requiring context-aware
reasoning. To solve this issue, Gu and Dao [6] proposes S6, also
known as Mamba, which uses a selection mechanism to dynami-
cally choose important information from input sequence elements.

Selection mechanism involves learning functions that map input
data to SSM’s parameters, making Mamba both efficient and effec-
tive in modeling language, DNA sequences, and audio.

2.2 Preliminaries
CTDG and Task Formulation. We define CTDG and dynamic link

prediction as follows.

Definition 1 (Continuous-Time Dynamic Graph). LetN and
T denote a set of nodes and timestamps, respectively. A CTDG is
a sequence of |G| chronological interactions G = {(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖)} | G |

𝑖=1
with 0 ≤ 𝑡1 ≤ 𝑡2 ≤ ... ≤ 𝑡 | G | , where 𝑢𝑖 , 𝑣𝑖 ∈ N are the source
and destination node of the 𝑖-th interaction happening at 𝑡𝑖 ∈ T ,
respectively. Each node 𝑢 ∈ N can be equipped with a node feature
x𝑢 ∈ R𝑑𝑁 , and each interaction (𝑢, 𝑣, 𝑡) can be associated with a link
(edge) feature e𝑡𝑢,𝑣 ∈ R𝑑𝐸 . If G is not attributed, we set node and link
features to zero vectors.

Definition 2 (Dynamic Link Prediction). Given a CTDG G,
a source node 𝑢 ∈ N , a destination node 𝑣 ∈ N , a timestamp 𝑡 ∈ T ,
and all the interactions before 𝑡 , i.e., {(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) |𝑡𝑖 < 𝑡, (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) ∈
G}, dynamic link prediction aims to predict whether the interaction
(𝑢, 𝑣, 𝑡) exists.

S4 and Mamba SSM.. S4 and Mamba [6, 8] are inspired by a con-
tinuous systemwhich can be described as z(𝜏)′ = Az(𝜏)+B𝑞(𝜏) and
𝑟 (𝜏) = Cz(𝜏). 𝑞(𝜏) ∈ R and 𝑟 (𝜏) ∈ R are the 1-dimensional input
and output over time 𝜏1, respectively. A ∈ R𝑑1×𝑑1 ,B ∈ R𝑑1×1,C ∈
R1×𝑑1 are three parameters deciding the system. Based on it, both
S4 and Mamba include a time-scale parameter Δ ∈ R and discretize
all the parameters to adapt to a discretized system

z𝜏 = Āz𝜏−1 + B̄𝑝𝜏 , 𝑞𝜏 = Cz𝜏 ; Ā = exp(ΔA),
B̄ = (ΔA)−1 (exp(ΔA) − I)ΔB.

(1)

Here, 𝜏 is also discretized to denote the position of a sequence
element. Given Eq. 1 , sequence processing with S4 and Mamba can
be written as computing an output sequence with convolution

q = p ∗ K̄SSM, where K̄SSM = [CB̄,CĀB̄, ...,CĀ |p |−1B̄] ∈ R |p |−1 . (2)

p ∈ R |p | and q ∈ R |p | are input and output sequences, where |p| is
the sequence length of p. ∗ denotes the element-wise multiplication.
When the dimension size of each element 𝑝𝜏 in p becomes higher
(i.e., 𝑝𝜏 ∈ R𝑑2 is a vector and 𝑑2 > 1), both S4 and Mamba are
in a Single-Input Single-Output (SISO) fashion, processing each
input dimension in parallel with the same set of parameters. We
follow Gu and Dao [6] and denote the computation in Eq. 2 on the
input sequences with vector elements as a function SSMĀ,B̄,C (·)2.
Different from S4 which uses same parameters to process each
element, Mamba changes its parameters into input-dependent by
employing several trainable linear layers to map input into B̄, C
and Δ. The system is evolving as it processes different elements in
the input sequence, making Mamba time-variant and suitable for
modeling temporal sequences.

1We use 𝜏 rather than 𝑡 to indicate time in a continuous system to distinguish from
the time in CTDGs.
2Input and output of SSMĀ,B̄,C (·) are matrices where each row is a vector correspond-
ing to an element. See App. I for more details of SISO and the function.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

DyGMamba TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

Figure 1: Model overview of DyGMamba.

3 DyGMamba
Fig. 1 illustrates the overview of DyGMamba. Given a potential
interaction (𝑢, 𝑣, 𝑡), CTDG models are asked to predict whether it
exists or not. DyGMamba extracts the historical one-hop interac-
tions of node 𝑢 and 𝑣 before timestamp 𝑡 from the CTDG G and
gets two interaction sequences S𝑡

𝑢 = {(𝑢,𝑢′, 𝑡 ′) |𝑡 ′ < 𝑡, (𝑢,𝑢′, 𝑡 ′) ∈
G} ∪ {(𝑢′, 𝑢, 𝑡 ′) |𝑡 ′ < 𝑡, (𝑢′, 𝑢, 𝑡 ′) ∈ G} and S𝑡

𝑣 = {(𝑣, 𝑣 ′, 𝑡 ′) |𝑡 ′ <

𝑡, (𝑣, 𝑣 ′, 𝑡 ′) ∈ G} ∪ {(𝑣 ′, 𝑣, 𝑡 ′) |𝑡 ′ < 𝑡, (𝑣 ′, 𝑣, 𝑡 ′) ∈ G} containing 𝑢’s
and 𝑣 ’s one-hop temporal neighbors Nei𝑡𝑢 = {(𝑢′, 𝑡 ′) | (𝑢,𝑢′, 𝑡 ′) or
(𝑢′, 𝑢, 𝑡 ′) ∈ G, 𝑡 ′ < 𝑡} and Nei𝑡𝑣 = {(𝑣 ′, 𝑡 ′) | (𝑣, 𝑣 ′, 𝑡 ′) or (𝑣 ′, 𝑣, 𝑡 ′) ∈
G} (link features are omitted for clarity). Then it encodes the neigh-
bors in Nei𝑡𝑢 and Nei𝑡𝑣 to get two sequences of encoded neighbor
representations for 𝑢 and 𝑣 . To learn the edge-specific temporal
pattern of (𝑢, 𝑣, 𝑡), we find the interactions between 𝑢 and 𝑣 be-
fore 𝑡 , compute the time difference between each pair of neigh-
boring interactions, and build a sequence of time differences S𝑡

𝑢,𝑣 .
Finally, DyGMamba dynamically selects critical information by
assigning different weights to different encoded neighbors based
on the learned temporal pattern, and uses the selected information
to achieve link prediction.

3.1 Learning One-Hop Temporal Neighbors
Encode Neighbor Features. Given one-hop temporal neighbors

Nei𝑡𝑢 of the source node 𝑢, we sort them in the chronological order
and append (𝑢, 𝑡) at the end to form a sequence of Nei𝑡𝑢 +1 temporal
nodes. We take their node features from the dataset and stack them
into a feature matrix X̃𝑡

𝑢 ∈ R(|Nei𝑡𝑢 |+1)×𝑑𝑁 . Similarly, we build a link
feature matrix Ẽ𝑡𝑢 ∈ R(|Nei𝑡𝑢 |+1)×𝑑𝐸 . To incorporate temporal infor-
mation, we encode the time difference between 𝑢 and each one-hop
temporal neighbor (𝑢′, 𝑡 ′) using the time encoding function intro-
duced in TGAT [33]:

√︁
1/𝑑𝑇 [𝑐𝑜𝑠 (𝜔1 (𝑡 − 𝑡 ′) + 𝜙1), . . . , 𝑐𝑜𝑠 (𝜔𝑑 (𝑡 −

𝑡 ′) + 𝜙𝑑𝑇)]. 𝑑𝑇 is the dimension of time representation. 𝜔1 . . . 𝜔𝑑𝑇
and 𝜙1 . . . 𝜙𝑑𝑇 are trainable parameters. The time feature of 𝑢’s
temporal neighbors are denoted as T̃𝑡𝑢 ∈ R(|Nei𝑡𝑢 |+1)×𝑑𝑇 . We fol-
low the same way to get X̃𝑡

𝑣 ∈ R(|Nei𝑡𝑣 |+1)×𝑑𝑁 , Ẽ𝑡𝑣 ∈ R(|Nei𝑡𝑣 |+1)×𝑑𝐸

and T̃𝑡𝑣 ∈ R(|Nei𝑡𝑣 |+1)×𝑑𝑇 for 𝑣 ’s temporal neighbors. Following
Tian et al. [25], we also consider the historical node interaction
frequencies in the interaction sequences S𝑡

𝑢 and S𝑡
𝑣 of source 𝑢

and destination 𝑣 . For example, assume the interacted nodes of 𝑢
and 𝑣 (arranged in chronological order) are {𝑎, 𝑣, 𝑎} and {𝑏, 𝑏,𝑢, 𝑎},
the appearing frequencies of 𝑎, 𝑏 in 𝑢/𝑣 ’s historical interactions
are 2/1, 0/2, respectively. And the frequency of the interaction in-
volving 𝑢 and 𝑣 is 1. Thus, the node interaction frequency features

of 𝑢 and 𝑣 are written as 𝐹 𝑡𝑢 = [[2, 1], [1, 1], [2, 1], [0, 1]]⊤ and
𝐹 𝑡𝑣 = [[0, 2], [0, 2], [1, 1], [2, 1], [0, 1]]⊤, respectively. Note that the
last elements ([0, 1] and [0, 1]) in 𝐹 𝑡𝑢 and 𝐹 𝑡𝑣 correspond to the ap-
pended (𝑢, 𝑡) and (𝑣, 𝑡) not existing in the observed histories. We ini-
tialize them with [0, number of historical interactions between 𝑢, 𝑣].
An encoding multilayer perceptron (MLP) 𝑓 (·) : R → R𝑑𝐹 is em-
ployed to encode these features into representations: F̃𝑡𝑢 = 𝑓 (𝐹 𝑡𝑢 [:
, 0]) + 𝑓 (𝐹 𝑡𝑢 [:, 1]) ∈ R(|Nei𝑡𝑢 |+1)×𝑑𝐹 , F̃𝑡𝑣 = 𝑓 (𝐹 𝑡𝑣 [:, 0]) + 𝑓 (𝐹 𝑡𝑣 [:, 1]) ∈
R(|Nei𝑡𝑣 |+1)×𝑑𝐹 .

Patching Neighbors. We employ the patching technique proposed
by [35] to save computational resources when dealing with a large
number of temporal neighbors. We treat 𝑝 temporally adjacent
neighbors as a patch and flatten their features. For example, with
patching, X̃𝑡

𝑢 ∈ R(|Nei𝑡𝑢 |+1)×𝑑𝑁 results in a new patched feature
matrix X𝑡

𝑢 ∈ R⌈ (|Nei𝑡𝑢 |+1)/𝑝 ⌉×(𝑝 ·𝑑𝑁) (we pad X̃𝑡
𝑢 with zero-valued

features when |Nei𝑡𝑢 | + 1 cannot be divided by 𝑝). Similarly, we
get E𝑡

𝜃
∈ R⌈ (|Nei𝑡

𝜃
|+1)/𝑝 ⌉×(𝑝 ·𝑑𝐸) , T𝑡

𝜃
∈ R⌈ (|Nei𝑡

𝜃
|+1)/𝑝 ⌉×(𝑝 ·𝑑𝑇) and

F𝑡
𝜃
∈ R⌈ (|Nei𝑡

𝜃
|+1)/𝑝 ⌉×(𝑝 ·𝑑𝐹) (𝜃 is either𝑢 or 𝑣). Each row of a feature

matrix corresponds to an element of the input sequence sent into
an SSM later. Recall that SSMs process sequences in a recurrent way.
Patching decreases the length of the sequence by roughly 𝑝 times,
making great contribution in saving computational resources.

Node-Level SSM Block. We first map the padded features of 𝑢’s
and 𝑣 ’s one-hop temporal neighbors to the same dimension 𝑑 ,
i.e., X𝑡

𝜃
:= 𝑓𝑁 (X𝑡

𝜃
), E𝑡

𝜃
:= 𝑓𝐸 (E𝑡𝜃), T

𝑡
𝜃

:= 𝑓𝑇 (T𝑡𝜃), F
𝑡
𝜃

:= 𝑓𝐹 (F𝑡𝜃).
𝑓𝑁 (·) : R𝑝 ·𝑑𝑁 → R𝑑 , 𝑓𝐸 (·) : R𝑝 ·𝑑𝐸 → R𝑑 , 𝑓𝑇 (·) : R𝑝 ·𝑑𝑇 → R𝑑 ,
𝑓𝐹 (·) : R𝑝 ·𝑑𝐹 → R𝑑 are four MLPs for different types of neighbor
features. We take the concatenation of them as the encoded repre-
sentations of the temporal neighbors, i.e., H𝑡

𝜃
= X𝑡

𝜃
∥E𝑡

𝜃
∥T𝑡

𝜃
∥F𝑡

𝜃
∈

R⌈ (|Nei𝑡
𝜃
|+1)/𝑝 ⌉×4𝑑 . We input H𝑡

𝑢 and H𝑡
𝑣 separately into a node-

level SSM block to learn the temporal dependencies of temporal
neighbors. The node-level SSM block consists of 𝑙𝑁 layers, where
each layer is defined as follows (Eq. 3-4). First, we input H𝑡

𝜃
into a

Mamba SSM

B1 = H𝑡
𝜃
WB1 ∈ R⌈ (|Nei𝑡

𝜃
|+1)/𝑝 ⌉×𝑑SSM , (3a)

C1 = H𝑡
𝜃
WC1 ∈ R⌈ (|Nei𝑡

𝜃
|+1)/𝑝 ⌉×𝑑SSM ; (3b)

Δ1 = 𝜎 (Broad4𝑑 (H𝑡
𝜃
WΔ1) + ParΔ1) ∈ R⌈ (|Nei𝑡

𝜃
|+1)/𝑝 ⌉×4𝑑 ; (3c)

Ā1 = exp(Δ1A1), B̄1 = (Δ1A1)−1 (exp(Δ1A1) − I)Δ1B1; (3d)

H𝑡
𝜃

:= H𝑡
𝜃
+ SSMĀ1,B̄1,C1

(H𝑡
𝜃
) . (3e)

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Ā1, B̄1 ∈ R⌈ (|Nei𝑡
𝜃
|+1)/𝑝 ⌉×4𝑑×𝑑SSM are discretized parameters. WB1 ,

WC1 ∈ R4𝑑×𝑑SSM and WΔ1 ∈ R4𝑑×1. ParΔ1 ∈ R⌈ (|Nei𝑡
𝜃
|+1)/𝑝 ⌉×4𝑑 is

a parameter defined by Gu and Dao [6]. Broad4𝑑 (·) is a function
that copies its vector input for 4𝑑 times to form a matrix with
4𝑑 identical columns (following the definition in [6]). 𝜎 (·) is the
Softplus function. I is an identity matrix. Then we use an MLP
𝑓node (·) : R4𝑑 → R4𝑑 on SSM’s output

H𝑡
𝜃

:= H𝑡
𝜃
+ 𝑓node

(
LayerNorm(H𝑡

𝜃
)
)
. (4)

After 𝑙𝑁 layers, we have H𝑡
𝑢 and H𝑡

𝑣 that contain the encoded infor-
mation of all one-hop temporal neighbors for the entities 𝑢 and 𝑣
as well as the information of themselves. Since we sort temporal
neighbors chronologically, our node-level SSM block can directly
learn the temporal dynamics for graph forecasting.

3.2 Learning from Temporal Patterns
Time-Level SSM Block. To capture edge-specific temporal pat-

terns, we use another time-level SSM block consisting of 𝑙𝑇 layers.
We first find out 𝑘 temporally nearest historical interactions be-
tween 𝑢 and 𝑣 before 𝑡 and sort them in the chronological order, i.e.,
{(𝑢, 𝑣, 𝑡0), ..., (𝑢, 𝑣, 𝑡𝑘−1) |𝑡0 < ... < 𝑡𝑘−1 < 𝑡}. Then we construct a
timestamp sequence {𝑡0, 𝑡1, ..., 𝑡𝑘−1, 𝑡} based on these interactions
and the prediction timestamp 𝑡 . We compute the time difference
between each neighboring pair of them and further get a time differ-
ence sequence {𝑡1 − 𝑡0, 𝑡2 − 𝑡1, ..., 𝑡 − 𝑡𝑘−1}, representing the change
of time interval between two identical interactions. Each element in
this sequence is input into the time encoding function stated above
to get a edge-specific (specific to the edge (𝑢, 𝑣, 𝑡)) time feature.
The features are stacked into a feature matrix H𝑡

𝑢,𝑣 ∈ R𝑘×𝑑𝑇 and
mapped by an MLP 𝑓map1 (·) : R𝑑𝑇 → R𝛾𝑑 (𝛾 ∈ [0, 1] is a hyper-
parameter), i.e., H𝑡

𝑢,𝑣 := 𝑓map1 (H𝑡
𝑢,𝑣). A time-level SSM layer takes

H𝑡
𝑢,𝑣 as input and computes

B2 = H𝑡
𝑢,𝑣WB2 ∈ R𝑘×𝑑SSM , C2 = H𝑡

𝑢,𝑣WC2 ∈ R𝑘×𝑑SSM ; (5a)

Δ2 = Softplus(Broad𝛾𝑑 (H𝑡
𝑢,𝑣WΔ2) + ParΔ2) ∈ R𝑘×𝛾𝑑 ; (5b)

Ā2 = exp(Δ2A2), B̄2 = (Δ2A2)−1 (exp(Δ2A2) − I)Δ2B2; (5c)

H𝑡
𝑢,𝑣 := H𝑡

𝑢,𝑣 + SSMĀ2,B̄2,C2
(H𝑡

𝑢,𝑣). (5d)

WB2 ,WC2 ∈ R𝛾𝑑×𝑑SSM and WΔ2 ∈ R𝛾𝑑×1. Ā2, B̄2 ∈ R𝑘×𝛾𝑑×𝑑SSM

are discretized parameters. ParΔ2 ∈ R𝑘×𝛾𝑑 is a parameter defined
as same as ParΔ1 . In practice, we set 𝑘 to a number much smaller
than |Nei𝑡

𝜃
|, e.g., 10. This ensures that time-level SSM will not incur

huge computational burden and the model focuses more on the
recent histories. Note that we cannot always find 𝑘 recent historical
interactions between each pair of nodes, leading to varying lengths
of time difference sequences for different (𝑢, 𝑣, 𝑡) in a batch of data.
To enable batch processing, we set the time difference without
a found historical interaction to a very large number 1010. For
example, if 𝑘 = 2, and for (𝑢, 𝑣, 𝑡) we can only find (𝑢, 𝑣, 𝑡0). The
time difference sequence will be {1010, 𝑡 − 𝑡0}. 1010 is much larger
than 𝑡 − 𝑡0, indicating that 𝑢 and 𝑣 have not had an interaction for
an extremely long time, same as existing no historical interaction.
We further explain why we use SSM to learn temporal patterns in
App. J.

Dynamic Information Selection with Temporal Patterns. After the
time-level SSM block, we compute a compressed representation
to represent the edge-specific temporal pattern by averaging over
𝑘 encoded time intervals: h𝑡𝑢,𝑣 = MeanPooling(H𝑡

𝑢,𝑣). As a result,
we have h𝑡𝑢,𝑣 ∈ R𝛾𝑑 to represent the temporal pattern specific to
the edge (𝑢, 𝑣, 𝑡). To leverage learned temporal pattern, we use it
to dynamically select the information from the encoded temporal
neighbors H𝑡

𝜃

ĥ𝑡𝑢,𝑣 = 𝑓map2 (h𝑡𝑢,𝑣) ∈ R4𝑑 ; (6a)

ĥ𝑡
𝜃
= wagg

⊤H𝑡
𝜃
∈ R4𝑑 ;wagg = 𝑓map3 (H𝑡

𝜃
) ∈ R⌈ (|Nei𝑡

𝜃
|+1)/𝑝 ⌉ ; (6b)

𝛼𝑢 = 𝑓 ′ (ĥ𝑡𝑣) ∗ ĥ𝑡𝑢,𝑣 ∈ R4𝑑 , 𝛼𝑣 = 𝑓 ′ (ĥ𝑡𝑢) ∗ ĥ𝑡𝑢,𝑣 ∈ R4𝑑 ; (6c)

h𝑡
𝜃
= 𝛽𝜃

⊤H𝑡
𝜃

; 𝛽𝜃 = Softmax(H𝑡
𝜃
𝛼𝜃) ∈ R⌈ (|Nei𝑡

𝜃
|+1)/𝑝 ⌉ . (6d)

𝑓map2 (·) : R𝛾𝑑 → R4𝑑 and 𝑓map3 (·) : R4𝑑 → R1 are two mapping
MLPs. 𝑓 ′ (·) : R4𝑑 → R4𝑑 is another MLP introducing training
parameters. Note that 𝛼𝑢 /𝛼𝑣 is computed by considering both the
edge-specific temporal pattern and the opposite node 𝑣/𝑢. In the
node-level SSM block, we separately model the one-hop temporal
neighbors of each node 𝜃 , making it hard to connect 𝑢 and 𝑣 . Com-
puting 𝛼𝜃 as Eq. 6c helps to strengthen the connection between
both nodes and meanwhile incorporates the learned temporal pat-
tern. 𝛽𝜃 is derived by transforming the queried results based on
𝛼𝜃 into weights. It is then used to compute a weighted-sum of all
temporal neighbors for representing 𝜃 at 𝑡 , i.e., h𝑡

𝜃
. The neighbors

assigned with greater weights from 𝛽𝜃 are selected as more critical
and will contribute more to h𝑡

𝜃
. Finally, we output the representa-

tions of 𝑢, 𝑣 and the edge-specific temporal pattern by employing
two output MLPs 𝑓out1 (·) : R4𝑑 → R𝑑𝑁 and 𝑓out2 (·) : R𝛾𝑑 → R𝑑𝑁 ,
i.e., h𝑡

𝜃
:= 𝑓out1 (h𝑡𝜃) ∈ R𝑑𝑁 , h𝑡𝑢,𝑣 := 𝑓out2 (h𝑡𝑢,𝑣) ∈ R𝑑𝑁 .

3.3 Leveraging Learned Representations for
Link Prediction

We leverage h𝑡
𝜃
and h𝑡𝑢,𝑣 for dynamic link prediction. We employ

a prediction MLP, i.e., 𝑓LP (·) : R3𝑑𝑁 → R, as the predictor. The
probability of existing a link (𝑢, 𝑣, 𝑡) is computed as 𝑦′ (𝑢, 𝑣, 𝑡) =

Sigmoid(𝑓LP (h𝑡𝑢 ∥h𝑡𝑣 ∥h𝑡𝑢,𝑣)). For model parameter learning, we use
the following loss function

L = − 1
2𝑀

∑︁
2𝑀

(
𝑦 (𝑢, 𝑣, 𝑡) log(𝑦′ (𝑢, 𝑣, 𝑡))

+ (1 − 𝑦 (𝑢, 𝑣, 𝑡)) log(1 − 𝑦′ (𝑢, 𝑣, 𝑡))
)
.

(7)

𝑦 (𝑢, 𝑣, 𝑡) is the ground truth label denoting the existence of (𝑢, 𝑣, 𝑡)
(1/0 means existing/non-existing).𝑀 is the total number of edges
existing in the training data (positive edges). We follow previous
work [35] and randomly sample one negative edge for each pos-
itive edge during training. Therefore, in total we have 2𝑀 edges
considered in our loss L.

4 Experiments
In Sec. 4.2.1, we validate DyGMamba’s ability in CTDG representa-
tion learning by comparing it with baseline methods on dynamic

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

DyGMamba TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Table 1: AP of transductive dynamic link prediction. The best and the second best results are marked as bold and underlined,
respectively. CTAN cannot be trained before 120 hours timeout on Social Evo. so is ranked bottom on this dataset.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 70.95 ± 2.94 71.85 ± 2.44 73.30 ± 0.18 75.31 ± 5.62 86.60 ± 0.11 79.29 ± 0.00 76.62 ± 1.83 75.56 ± 0.19 92.95 ± 0.14 86.44 ± 0.80 93.35 ± 0.20
Enron 84.85 ± 3.13 79.80 ± 2.28 70.76 ± 1.05 86.98 ± 1.05 89.50 ± 0.10 83.53 ± 0.00 85.41 ± 0.71 82.13 ± 0.30 92.42 ± 0.11 92.52 ± 1.20 92.65 ± 0.12
MOOC 81.04 ± 0.83 81.50 ± 0.77 85.71 ± 0.20 89.15 ± 1.69 80.30 ± 0.43 57.97 ± 0.00 83.89 ± 0.86 82.80 ± 0.15 87.66 ± 0.48 84.71 ± 2.85 89.21 ± 0.08
Reddit 98.31 ± 0.06 98.18 ± 0.03 98.57 ± 0.01 98.65 ± 0.04 99.11 ± 0.01 94.86 ± 0.00 97.78 ± 0.02 97.31 ± 0.01 99.22 ± 0.01 97.21 ± 0.84 99.32 ± 0.01

Wikipedia 96.51 ± 0.22 94.88 ± 0.29 96.88 ± 0.06 98.45 ± 0.10 98.77 ± 0.01 90.37 ± 0.00 97.75 ± 0.04 97.22 ± 0.02 99.03 ± 0.03 96.61 ± 0.79 99.15 ± 0.02
UCI 89.28 ± 1.02 66.11 ± 2.75 79.40 ± 0.61 92.33 ± 0.64 95.13 ± 0.23 76.20 ± 0.00 86.63 ± 1.30 93.15 ± 0.41 95.74 ± 0.17 76.64 ± 4.11 95.91 ± 0.15

Social Evo. 89.88 ± 0.40 88.39 ± 0.69 93.33 ± 0.06 93.45 ± 0.29 84.90 ± 0.11 74.95 ± 0.00 93.82 ± 0.19 93.36 ± 0.06 94.63 ± 0.07 Timeout 94.77 ± 0.01

Avg. Rank 8.29 9.29 7.00 4.29 6.00 9.43 5.57 6.43 2.43 6.29 1.00

H
is
to
ri
ca
l

LastFM 74.38 ± 6.27 71.85 ± 2.91 71.60 ± 0.36 75.03 ± 6.90 69.93 ± 0.33 73.03 ± 0.00 71.02 ± 2.07 72.28 ± 0.37 81.51 ± 0.14 82.29 ± 0.94 83.02 ± 0.16
Enron 69.13 ± 1.66 72.58 ± 1.83 64.24 ± 1.24 74.31 ± 0.99 65.40 ± 0.36 76.53 ± 0.00 72.39 ± 0.61 77.35 ± 1.22 76.93 ± 0.76 77.24 ± 1.53 77.77 ± 1.32
MOOC 78.62 ± 2.43 75.14 ± 2.86 82.83 ± 0.71 85.46 ± 2.32 74.46 ± 0.53 60.71 ± 0.00 78.51 ± 1.24 77.09 ± 0.83 85.65 ± 0.89 67.73 ± 2.08 85.89 ± 0.94
Reddit 79.96 ± 0.30 79.40 ± 0.30 79.78 ± 0.25 81.05 ± 0.32 80.96 ± 0.28 73.59 ± 0.00 77.38 ± 0.20 78.39 ± 0.40 81.63 ± 1.08 89.77 ± 2.28 81.80 ± 1.52

Wikipedia 81.16 ± 0.73 79.46 ± 0.95 87.31 ± 0.36 87.31 ± 0.25 66.77 ± 6.62 73.35 ± 0.00 86.12 ± 1.69 90.74 ± 0.06 70.13 ± 11.02 95.91 ± 0.10 81.77 ± 1.20
UCI 74.77 ± 5.35 55.89 ± 2.83 66.78 ± 0.77 81.32 ± 1.26 64.69 ± 1.78 65.50 ± 0.00 74.62 ± 2.70 83.88 ± 1.06 80.44 ± 1.16 76.62 ± 0.33 81.03 ± 1.09

Social Evo. 91.26 ± 2.47 92.86 ± 0.90 95.31 ± 0.30 93.84 ± 1.68 85.65 ± 0.11 80.57 ± 0.00 95.93 ± 0.63 95.30 ± 0.34 97.05 ± 0.16 Timeout 97.35 ± 0.52

Avg. Rank 6.57 8.14 6.57 4.14 9.29 8.71 7.00 4.71 4.00 4.71 2.14

In
du

ct
iv
e

LastFM 62.63 ± 6.89 62.49 ± 3.04 71.16 ± 0.33 65.09 ± 7.05 67.38 ± 0.57 75.49 ± 0.00 62.76 ± 0.81 67.87 ± 0.37 72.60 ± 0.06 80.06 ± 0.85 73.63 ± 0.54
Enron 69.51 ± 1.06 66.78 ± 2.21 63.16 ± 0.59 73.27 ± 0.58 75.08 ± 0.81 73.89 ± 0.00 70.98 ± 0.96 74.12 ± 0.65 78.22 ± 0.80 72.02 ± 2.64 80.86 ± 1.24
MOOC 66.56 ± 1.49 61.48 ± 0.96 76.96 ± 0.89 77.59 ± 1.83 73.55 ± 0.36 49.43 ± 0.00 76.35 ± 1.41 74.24 ± 0.75 80.99 ± 0.88 64.93 ± 3.31 81.11 ± 0.63
Reddit 86.93 ± 0.21 86.06 ± 0.36 89.93 ± 0.10 88.12 ± 0.13 91.89 ± 0.18 85.48 ± 0.00 86.97 ± 0.26 85.37 ± 0.26 91.06 ± 0.60 90.99 ± 2.19 91.15 ± 0.54

Wikipedia 74.78 ± 0.56 70.55 ± 1.22 86.77 ± 0.29 85.80 ± 0.15 69.27 ± 7.07 80.63 ± 0.00 72.54 ± 4.69 88.54 ± 0.20 62.00 ± 14.00 94.15 ± 0.08 79.86 ± 2.18
UCI 66.02 ± 1.28 54.64 ± 2.52 67.63 ± 0.51 70.34 ± 0.72 64.08 ± 1.06 57.43 ± 0.00 73.49 ± 2.21 79.57 ± 0.61 70.51 ± 1.83 66.25 ± 0.51 71.95 ± 2.51

Social Evo. 91.08 ± 3.29 92.84 ± 0.98 95.20 ± 0.30 94.58 ± 1.52 88.50 ± 0.13 83.69 ± 0.00 96.14 ± 0.63 95.11 ± 0.32 97.62 ± 0.12 Timeout 97.68 ± 0.42

Avg. Rank 8.29 9.57 5.43 5.43 6.57 7.57 6.00 5.00 4.00 5.71 2.43

link prediction3. We show the effectiveness of model components
by conducting ablation studies (Sec. 4.2.2) and analysis on syn-
thetic datasets (Sec. 4.2.3). In Sec. 4.3.1, we show DyGMamba’s
efficiency against various baselines. We also show that it achieves
much stronger scalability in modeling long-term temporal informa-
tion compared with the current state-of-the-art DyGFormer (Sec.
4.3.2 and Sec. 4.3.3).

4.1 Experimental Setting
CTDG Datasets and Baselines. We consider seven real-world

CTDG datasets collected by [20], i.e., LastFM, Enron, MOOC, Red-
dit, Wikipedia, UCI and Social Evo.. Dataset statistics are presented
in App. A.1. Among them, we take LastFM, Enron and MOOC as
long-range temporal dependent datasets because according to Yu
et al. [35], much longer histories are needed for optimal represen-
tation learning on them. We compare DyGMamba with ten recent
CTDG baseline models, i.e., JODIE [12], DyRep [27], TGAT [33],
TGN [21], CAWN [32], EdgeBank [20], TCL [30], GraphMixer [2],
DyGFormer [35] and CTAN [5]. Among them, only DyGFormer
and CTAN are designed for long-range temporal information prop-
agation. Detailed descriptions of baseline methods are presented
in App. B. We also implemented FreeDyG [25] by using its official
code repository, however, on LastFM, we find that FreeDyG’s loss
cannot converge and the reported results are not reproducible. So
we do not report its performance in our paper.

3To supplement, we also validate on the dynamic node classification task. Since current
mainstream datasets of this task requires no long-term temporal reasoning, we put
the discussion in App. F. Additionally, we also benchmark DyGMamba on DTDGs in
App. L. This serves as supplementary experiment and does not directly connect to our
main focus.

Implementation Details and Evaluation Settings. We use the im-
plementations and the best hyperparameters provided by Yu et al.
[35] for all baseline models except CTAN. For CTAN, we use its
official implementation, fixing the number of layers to 5. All models
are trained with a batch size of 200 for fair efficiency analysis. For
DyGMamba, we report the number of sampled one-hop temporal
neighbors 𝜌 and the patch size 𝑝 here. On Wikipedia, Social Evo.,
and UCI, 𝜌 & 𝑝 = 32 & 1. On Reddit, 𝜌 & 𝑝 = 64 & 2. On MOOC,
𝜌 & 𝑝 = 128 & 4. On Enron, 𝜌 & 𝑝 =256 & 8. On LastFM, 𝜌 & 𝑝 =

512 & 16. Note that to fairly compare DyGMamba’s efficiency with
DyGFormer, we keep the sequence length 𝜌/𝑝 input into the SSM
as same as the length input into Transformer in Yu et al. [35], i.e.,
𝜌/𝑝 = 32. All experiments are implemented with PyTorch [18] on a
server equipped with an AMD EPYC 7513 32-Core Processor and a
single NVIDIA A40 with 45GB memory. We run each experiment
for five times with five random seeds and report the mean results
together with error bars. Further implementation details including
complete hyperparameter configurations are presented in App. C.
We employ two evaluation settings following previous works: the
transductive and inductive settings. As suggested in [20], we do
link prediction evaluation using three negative sampling strategies
(NSSs): random, historical and inductive. Historical NSS is only
considered under the transductive setting. See App. D for detailed
explanations. We employ two metrics, i.e., average precision (AP)
and area under the receiver operating characteristic curve (AUC-
ROC)

4.2 Performance Analysis
4.2.1 Comparative Study on Benchmark Datasets. We report the
AP of transductive and inductive link prediction in Table 1 and 2
(AUC-ROC reported in Table 12 and 13 in App. E). We find that: (1)

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 2: AP of inductive dynamic link prediction. EdgeBank cannot do inductive link prediction so is not reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 83.13 ± 1.19 83.47 ± 1.06 78.40 ± 0.30 81.18 ± 3.27 89.33 ± 0.06 81.38 ± 1.53 82.07 ± 0.31 94.17 ± 0.10 60.40 ± 3.01 94.42 ± 0.21
Enron 78.97 ± 1.59 73.97 ± 3.00 66.67 ± 1.07 78.76 ± 1.69 86.30 ± 0.56 82.61 ± 0.61 75.55 ± 0.81 89.62 ± 0.27 74.61 ± 1.64 89.67 ± 0.27
MOOC 80.57 ± 0.52 80.50 ± 0.68 85.28 ± 0.30 88.01 ± 1.48 81.32 ± 0.42 82.28 ± 0.99 81.38 ± 0.17 87.05 ± 0.51 64.99 ± 2.24 88.64 ± 0.08
Reddit 96.43 ± 0.16 95.89 ± 0.26 97.13 ± 0.04 97.41 ± 0.12 98.62 ± 0.01 95.01 ± 0.10 95.24 ± 0.08 98.83 ± 0.02 80.07 ± 2.53 98.97 ± 0.01

Wikipedia 94.91 ± 0.32 92.21 ± 0.29 96.26 ± 0.12 97.81 ± 0.18 98.27 ± 0.02 97.48 ± 0.06 96.61 ± 0.04 98.58 ± 0.01 93.58 ± 0.65 98.77 ± 0.03
UCI 79.73 ± 1.48 58.39 ± 2.38 79.10 ± 0.49 87.81 ± 1.32 92.61 ± 0.35 84.19 ± 1.37 91.17 ± 0.29 94.45 ± 0.13 49.78 ± 5.02 94.76 ± 0.19

Social Evo. 91.72 ± 0.66 89.10 ± 1.90 91.47 ± 0.10 90.74 ± 1.40 79.83 ± 0.14 92.51 ± 0.11 91.89 ± 0.05 93.05 ± 0.10 Timeout 93.13 ± 0.05

Avg. Rank 6.29 8.00 7.00 5.14 4.43 5.57 5.86 2.14 9.57 1.00

In
du

ct
iv
e

LastFM 71.37 ± 3.45 69.75 ± 2.73 76.26 ± 0.34 68.47 ± 6.07 71.28 ± 0.43 68.79 ± 0.93 76.27 ± 0.37 75.07 ± 1.45 55.60 ± 3.91 76.76 ± 0.43
Enron 66.99 ± 1.15 62.64 ± 2.33 59.95 ± 1.00 64.51 ± 1.66 60.61 ± 0.63 68.93 ± 1.34 71.71 ± 1.33 67.21 ± 0.72 68.66 ± 2.31 68.77 ± 0.60
MOOC 64.67 ± 1.18 62.05 ± 2.11 77.43 ± 0.81 76.81 ± 2.83 74.36 ± 0.78 75.95 ± 1.46 73.87 ± 0.99 80.66 ± 0.94 57.49 ± 1.34 80.75 ± 1.00
Reddit 62.54 ± 0.52 61.07 ± 0.86 63.96 ± 0.25 65.27 ± 0.57 64.10 ± 0.22 61.45 ± 0.25 64.82 ± 0.30 65.03 ± 1.20 78.35 ± 5.03 65.30 ± 1.05

Wikipedia 68.22 ± 0.36 61.07 ± 0.82 84.19 ± 0.96 81.96 ± 0.62 62.34 ± 6.79 71.46 ± 4.95 87.47 ± 0.25 57.90 ± 11.05 92.61 ± 0.90 71.14 ± 2.44
UCI 63.57 ± 2.15 52.63 ± 1.87 69.77 ± 0.43 69.94 ± 0.50 63.44 ± 1.52 74.39 ± 1.81 81.40 ± 0.52 70.25 ± 2.02 52.31 ± 2.67 72.17 ± 2.20

Social Evo. 89.06 ± 1.23 87.30 ± 1.55 94.24 ± 0.36 90.67 ± 2.41 80.30 ± 0.21 95.94 ± 0.37 94.56 ± 0.24 96.73 ± 0.11 Timeout 96.83 ± 0.56

Avg. Rank 6.86 8.57 5.29 5.43 7.43 4.86 3.14 4.43 6.57 2.43

Table 3: Ablation studies under transductive setting. R/H/I means random/historical/inductive NSS. Metric is AP.

Datasets LastFM Enron MOOC Reddit Wikipedia UCI Social Evo.

Models R H I R H I R H I R H I R H I R H I R H I

Variant A 93.14 80.30 71.29 91.35 70.07 75.44 87.78 83.25 77.04 99.19 81.60 90.70 98.99 80.99 79.26 94.88 79.37 70.43 94.59 96.97 97.42
Variant B 93.07 82.53 72.97 92.46 76.88 78.87 86.95 83.78 75.81 97.97 73.47 84.16 94.17 81.37 79.24 91.69 71.13 60.45 92.90 96.61 97.14

DyGMamba 93.35 83.02 73.63 92.65 77.77 80.86 89.21 85.89 81.11 99.32 81.80 91.15 99.15 81.77 79.86 95.91 81.03 71.95 94.77 97.35 97.68

Table 4: Ablation studies under inductive setting. R/I means random/inductive NSS. Metric is AP.

Datasets LastFM Enron MOOC Reddit Wikipedia UCI Social Evo.

Models R I R I R I R I R I R I R I

Variant A 94.12 73.03 85.97 61.43 84.25 76.16 98.84 65.19 98.49 70.98 93.23 70.84 92.99 96.54
Variant B 94.25 75.26 89.13 67.87 86.21 75.08 97.32 58.22 92.41 70.76 90.42 60.43 91.11 96.32

DyGMamba 94.42 76.76 89.67 68.77 88.64 80.75 98.97 65.30 98.77 71.14 94.76 72.17 93.13 96.83

DyGMamba constantly ranks top 1 under the randomNSS, showing
a superior performance; (2) Under the historical and inductive NSS,
DyGMamba can achieve the best average rank compared with
all baselines. More importantly, it shows more superiority on the
datasets where encoding longer-term temporal dependencies is
necessary, e.g., on LastFM, Enron andMOOC. (3) Among themodels
that can do long range propagation of information over time (i.e.,
DyGFormer, CTAN and DyGMamba), DyGMamba achieves the
best average rank under any NSS setting in both transductive and
inductive link prediction. On the long-range temporal dependent
datasets, DyGMamba outperforms DyGFormer and CTAN in most
cases; (4) CTAN achieves much better results in transductive than in
inductive link prediction. This is because CTAN requires multi-hop
temporal neighbors to learn node representations, which is difficult
for unseen nodes. By contrast, DyGMamba and DyGFormer require
only one-hop temporal neighbors, thus performing much better in
inductive link prediction.

4.2.2 Ablation Study. We conduct four ablation studies to study
the effectiveness of model components. In study A, we make a
model variant (Variant A) by removing the time-level SSM block
and restrain our model from learning temporal patterns (informa-
tion selection is substituted by mean pooling over the output of Eq.

4). In study B, we make a model variant (Variant B) by removing
the Mamba SSM layers (Eq. 3) in the node-level SSM block. From
Table 3 and 4, we find that: (1) Variant A is constantly beaten by
DyGMamba, showing the effectiveness of dynamic information
selection based on edge-specific temporal patterns; (2) DyGMamba
always outperforms Variant B, indicating the importance of encod-
ing the one-hop temporal neighbors with SSM layers for capturing
graph dynamics. See App. G for more ablation studies.

4.2.3 A Closer Look into Temporal Pattern Modeling with Synthetic
Datasets. We observe from ablation studies that dynamic infor-
mation selection based on temporal patterns contributes to bet-
ter model performance on real-world datasets. To better quantify
its benefits, we construct three synthetic datasets, i.e., S1, S2 and
S3, that follow different patterns and compare our model with
DyGFormer, CTAN as well as Variant A, C, D on them. Each syn-
thetic dataset contains 7 nodes, where the interactions of each
pair of two nodes follow a certain pattern along time. And for
each node, we generate interactions with all the other nodes. As-
sume we have a pair of node 𝑢 and 𝑣 and they have interactions at
{𝑡𝑖 }𝑁𝑖=0, in S1, the time intervals between neighboring interactions
{𝑡1 − 𝑡0, ..., 𝑡𝑁 − 𝑡𝑁−1} follow an increasing trend with a constant
velocity of 0.05, i.e., (𝑡𝑖+2 − 𝑡𝑖+1) − (𝑡𝑖+1 − 𝑡𝑖) = 0.05 . In S2, we

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

DyGMamba TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Table 5: Performance (Random NSS) on synthetic datasets.

(a) AP on synthetic datasets.

Datasets DyGFormer CTAN Variant A Variant C Variant D DyGMamba

S1 55.19 ± 0.98 51.25 ± 2.11 53.72 ± 0.04 55.45 ± 0.32 54.52 ± 0.71 81.58 ± 1.31
S2 57.80 ± 4.61 51.17 ± 0.93 60.16 ± 2.20 64.71 ± 2.33 61.51 ± 3.00 85.36 ± 2.55
S3 79.20 ± 0.60 51.46 ± 0.19 77.61 ± 2.31 77.61 ± 2.31 79.41 ± 2.13 86.59 ± 0.09

(b) AUC-ROC on synthetic datasets.

Datasets DyGFormer CTAN Variant A Variant C Variant D DyGMamba

S1 56.27 ± 0.54 51.25 ± 2.38 53.16 ± 0.39 57.41 ± 0.04 55.83 ± 1.03 86.61 ± 1.30
S2 59.06 ± 6.07 51.46 ± 0.91 62.50 ± 2.28 64.93 ± 2.59 62.06 ± 3.40 89.94 ± 2.70
S3 82.89 ± 1.34 52.12 ± 0.44 81.78 ± 0.40 82.73 ± 1.97 84.20 ± 3.57 91.72 ± 0.11

Figure 2: Efficiency comparison on four datasets among DyGMamba and five baselines in terms of number (#) of parameters,
training time per epoch and GPU memory. The performance metric here is AP of transductive link prediction under random
NSS. The greener, the better performance/efficiency. In contrast to other methods, DyGMamba consistently shows strong
overall capability across different datasets. More explanations in Sec. 4.3.1. Further comparison on Reddit and Social Evo. is
presented in App. H.1

set the time intervals to a decreasing trend with the same velocity,
i.e., (𝑡𝑖+1 − 𝑡𝑖) − (𝑡𝑖+2 − 𝑡𝑖+1) = 0.05. And in S3, we modify S1 by
repeating several periods of increasing patterns taken from S1 to
form a periodic dataset. In this way, we have three datasets demon-
strating diverse temporal patterns: increasing/decreasing/periodic
time intervals between neighboring interactions. Details of dataset
construction and statistics are provided in App. A.2. From Table
5, we observe that DyGMamba greatly outperforms DyGFormer
and CTAN. More importantly, Variant A, C and D show similar
performance to DyGFormer, meaning that our time-level SSM block
is able to capture temporal patterns and modeling such patterns
for dynamic information selection is important in CTDG reasoning.
For more implementation details on synthetic datasets, please refer
to App. C.2.

4.3 Efficiency Analysis
We evaluate the models’ efficiency based on the following aspects:
model size (number of trainable parameters), per-epoch training
time, and GPU memory consumption during training. Since DyG-
Mamba shares similarities with DyGFormer, i.e., both of themmodel
large sequences of one-hop temporal neighbors and use patching
to enhance scalability, we further analyze the impact of patch size
on their scalability and performance. We also compare the com-
plexity of DyGMamba and DyGFormer to highlight DyGMamba’s
efficiency.

4.3.1 Model Size, Per Epoch Training Time and GPU Memory Com-
parison Across Various Models. Fig. 2 compares DyGMamba with
five baselines in terms of number of parameters (model size), per

epoch training time, and GPU memory consumption during train-
ing4. We find that: (1) DyGMamba uses very few parameters while
maintaining the best performance, showing a strong parameter
efficiency. Only CTAN constantly uses fewer parameters than DyG-
Mamba, however, its performance is significantly worse with the
only exception of Enron; (2) DyGMamba is always more efficient
than DyGFormer with the same length of input sequence (𝜌/𝑝 =32)
while achieving the same performance; (3) Although DyGMamba
generally consumes more GPU memory and takes more time to
train per epoch compared with most baselines, the gap of consump-
tion is modest. To model more temporal neighbors for long-range
temporal dependent datasets, DyGMamba naturally requires more
computational resources, thus enlarging the consumption gap. DyG-
Former shows the same trend as DyGMamba since it also captures
long-term temporal dependencies but at a higher cost; (4) CTAN re-
quires very few computational resources. However, on long-range
temporal dependent datasets, it is beaten by DyGFormer and DyG-
Mamba by a large margin, e.g., on LastFM and Enron. Besides,
CTAN is also hard to converge. Although it takes little time to train
a single epoch, it needs more epochs to reach the best performance,
leading to a long total training time. See App. H.2 for a total train-
ing time comparison among DyGFormer, CTAN and DyGMamba.
To supplement, we also present in App. H.3 another experiment
to compare DyGMamba with baselines in modeling an increasing
number of temporal neighbors on Enron with limited total training
time.

4The baselines not included here are either extremely inefficient (e.g., CAWN) or infe-
rior in performance (e.g., DyRep). Complete statistics of all baseline models presented
in App. H.1

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

(a) Enron performance. (b) Enron # params. (c) Enron GPU memory. (d) Enron train time/epoch.

Figure 3: Impact of patch size on DyGFormer, DyGMamba and Variant A, given a fixed number of sampled temporal neighbors
𝜌 on Enron. Patch size 𝑝 varies from 8, 4, 2, 1. Sequence length 𝜌/𝑝 increases as patch size decreases. Performance is the
transductive AP under random NSS.

4.3.2 Impact of Patch Size on Scalability and Performance. Patch-
ing treats 𝑝 temporal neighbors as one patch and thus decreases
the sequence length by 𝑝 times. This is very helpful in cutting the
consumption of GPU memory and training/evaluation time. How-
ever, patching introduces excessive parameters because it is done
through 𝑓𝑁 , 𝑓𝐸 , 𝑓𝑇 and 𝑓𝐹 whose sizes increase as the patch size
grows. Fig. 3b shows the numbers of parameters of DyGFormer
and DyGmamba with different patch sizes on a long-term tempo-
ral dependent dataset Enron. We find that patching greatly affects
model sizes. To further study how patching affects DyGMamba,
we decrease the patch size gradually from 8 to 1 and track DyG-
Mamba’s performance (Fig. 3a) as well as efficiency (Fig. 3b to 3d)
on Enron. Meanwhile, we also keep track on DyGFormer under
the same patch size for comparison. We have several findings: (1)
Whatever the patch size is, DyGMamba always consumes fewer pa-
rameters, less GPU memory and per epoch training time, showing
its high efficiency; (2) While both models require increasing compu-
tational budgets as the patch size decreases, the speed of increase
is much lower for DyGMamba, demonstrating its strong scalability
in modeling longer sequences; (3) Different trends in performance
change are observed between two models. While DyGFormer per-
forms worse, DyGMamba can benefit from a smaller patch size,
indicating its strong ability to capture nuanced temporal details
even if the sequence becomes much longer. Note that the models
use fewer parameters under smaller patch size. This also shows
that DyGMamba can achieve much stronger parameter efficiency
by reducing patch sizes. To further study the reason for finding
(3), we plot the performance of Variant A under different patch
sizes in Fig. 3a. We find that Variant A’s performance degrades
when sequence length is more than 64. This means that dynamic
information selection based on edge-specific temporal patterns is
essential for DyGMamba to optimally process long sequences. To
supplement, we provide additional analysis on MOOC in App. K.

4.3.3 Complexity: DyGMamba vs. DyGFormer. DyGMamba fol-
lows the current state-of-the-art DyGFormer by learning from
one-hop temporal neighbors for temporal reasoning. We analyze
the complexity of both models to show DyGMamba’s efficiency.
Sequence length is the key factor affecting the consumption of com-
putational resources in DyGFormer and DyGMamba. Following

the computation of previous work [36], the complexity of Trans-
former and Mamba in DyGFormer and DyGMamba can be written
as𝑂 (T) = 4(𝜌/𝑝) (4𝑑)2 +2(𝜌/𝑝)2 (4𝑑) = 64(𝜌/𝑝)𝑑2 +8𝑑 (𝜌/𝑝)2 and
𝑂 (M) = 3(𝜌/𝑝) (4𝑑)𝑑SSM + (𝜌/𝑝) (4𝑑)𝑑SSM = 16𝑑SSM𝑑 (𝜌/𝑝). This
means that DyGMamba holds a computational complexity linear
to 𝜌/𝑝 , while DyGFormer’s complexity is quadratic to 𝜌/𝑝 . As a
result, as the sequence length grows (either 𝜌 increases or 𝑝 de-
creases), DyGFormer is less scalable compared with DyGMamba5.
Some may argue that increasing the patch size 𝑝 to a large enough
value can offset the negative influence of the higher complexity of
Transformer. However, as discussed in Sec. 4.3.2, increasing patch
size will substantially increase model parameters, causing burden in
parameter optimization, and meanwhile lose temporal details. This
indicates that patching is not always beneficial and DyGMamba’s
low complexity provides an alternative way to maintain great ef-
ficiency while considering more temporal information. With the
same number of sampled temporal neighbors and equivalent com-
putational resources, DyGMamba can leverage a smaller patch size,
mitigating the negative effects of lost temporal details and simpli-
fying parameter optimization, as implied in Sec. 4.3.2.

5 Conclusion
We propose DyGMamba, an efficient CTDG representation learning
model that can capture long-term temporal dependencies. DyG-
Mamba first leverages a node-level SSM to encode long sequences
of historical node interactions. It then employs a time-level SSM
to learn edge-specific temporal patterns. The learned patterns are
used to select the critical part of the encoded temporal information.
DyGMamba achieves superior performance on dynamic link predic-
tion, and moreover, it shows high efficiency and strong scalability
compared with previous CTDGmethods, implying a great potential
in modeling huge amounts of temporal information with a limited
computational budget.

5As we set 𝑘 (number of edge-specific historical interactions discussed in Sec. 3.2) to
a number much smaller than the number of sampled one-hop temporal neighbors,
i.e., sequence length 𝜌/𝑝 , we omit here the contribution of the time-level SSM in
complexity analysis.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

DyGMamba TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References
[1] Xiaofu Chang, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song,

and Yuan Qi. 2020. Continuous-Time Dynamic Graph Learning via Neural
Interaction Processes. In CIKM ’20: The 29th ACM International Conference on
Information and Knowledge Management, Virtual Event, Ireland, October 19-23,
2020, Mathieu d’Aquin, Stefan Dietze, Claudia Hauff, Edward Curry, and Philippe
Cudré-Mauroux (Eds.). ACM, 145–154. doi:10.1145/3340531.3411946

[2] Weilin Cong, Si Zhang, Jian Kang, Baichuan Yuan, Hao Wu, Xin Zhou, Hang-
hang Tong, and Mehrdad Mahdavi. 2023. Do We Really Need Complicated
Model Architectures For Temporal Networks?. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net. https://openreview.net/pdf?id=ayPPc0SyLv1

[3] Feyza Duman Keles, Pruthuvi Mahesakya Wijewardena, and Chinmay Hegde.
2023. On The Computational Complexity of Self-Attention. In Proceedings of
The 34th International Conference on Algorithmic Learning Theory (Proceedings of
Machine Learning Research, Vol. 201), Shipra Agrawal and Francesco Orabona
(Eds.). PMLR, 597–619. https://proceedings.mlr.press/v201/duman-keles23a.html

[4] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2020. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning.
Knowl. Based Syst. 187 (2020). doi:10.1016/J.KNOSYS.2019.06.024

[5] Alessio Gravina, Giulio Lovisotto, Claudio Gallicchio, Davide Bacciu, and Claas
Grohnfeldt. 2024. Long Range Propagation onContinuous-TimeDynamic Graphs.
In Forty-first International Conference on Machine Learning. https://openreview.
net/forum?id=gVg8V9isul

[6] Albert Gu and Tri Dao. 2023. Mamba: Linear-Time Sequence Modeling with
Selective State Spaces. CoRR abs/2312.00752 (2023). doi:10.48550/ARXIV.2312.
00752 arXiv:2312.00752

[7] Albert Gu, Karan Goel, Ankit Gupta, and Christopher Ré. 2022. On the Param-
eterization and Initialization of Diagonal State Space Models. In Advances in
Neural Information Processing Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 -
December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/
e9a32fade47b906de908431991440f7c-Abstract-Conference.html

[8] Albert Gu, Karan Goel, and Christopher Ré. 2022. Efficiently Modeling Long
Sequences with Structured State Spaces. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net. https://openreview.net/forum?id=uYLFoz1vlAC

[9] Albert Gu, Isys Johnson, Karan Goel, Khaled Saab, Tri Dao, Atri Rudra, and
Christopher Ré. 2021. Combining Recurrent, Convolutional, and Continuous-
time Models with Linear State Space Layers. In Advances in Neural Informa-
tion Processing Systems 34: Annual Conference on Neural Information Process-
ing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio Ran-
zato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wort-
man Vaughan (Eds.). 572–585. https://proceedings.neurips.cc/paper/2021/hash/
05546b0e38ab9175cd905eebcc6ebb76-Abstract.html

[10] Ming Jin, Yuan-Fang Li, and Shirui Pan. 2022. Neural Temporal Walks: Motif-
Aware Representation Learning on Continuous-Time Dynamic Graphs. In Ad-
vances in Neural Information Processing Systems 35: Annual Conference on Neural
Information Processing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, No-
vember 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle
Belgrave, K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/
hash/7dadc855cef7494d5d956a8d28add871-Abstract-Conference.html

[11] Seyed Mehran Kazemi, Rishab Goel, Kshitij Jain, Ivan Kobyzev, Akshay Sethi,
Peter Forsyth, and Pascal Poupart. 2020. Representation Learning for Dynamic
Graphs: A Survey. J. Mach. Learn. Res. 21 (2020), 70:1–70:73. http://jmlr.org/
papers/v21/19-447.html

[12] Srijan Kumar, Xikun Zhang, and Jure Leskovec. 2019. Predicting Dynamic
Embedding Trajectory in Temporal Interaction Networks. In Proceedings of the
25th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, KDD 2019, Anchorage, AK, USA, August 4-8, 2019, Ankur Teredesai, Vipin
Kumar, Ying Li, Rómer Rosales, Evimaria Terzi, and George Karypis (Eds.). ACM,
1269–1278. doi:10.1145/3292500.3330895

[13] Jintang Li, Ruofan Wu, Xinzhou Jin, Boqun Ma, Liang Chen, and Zibin Zheng.
2024. State Space Models on Temporal Graphs: A First-Principles Study. arXiv
preprint arXiv:2406.00943 (2024).

[14] Yunyu Liu, JianzhuMa, and Pan Li. 2022. Neural Predicting Higher-order Patterns
in Temporal Networks. In WWW ’22: The ACM Web Conference 2022, Virtual
Event, Lyon, France, April 25 - 29, 2022, Frédérique Laforest, Raphaël Troncy, Elena
Simperl, Deepak Agarwal, Aristides Gionis, Ivan Herman, and Lionel Médini
(Eds.). ACM, 1340–1351. doi:10.1145/3485447.3512181

[15] Xuezhe Ma, Chunting Zhou, Xiang Kong, Junxian He, Liangke Gui, Graham
Neubig, Jonathan May, and Luke Zettlemoyer. 2023. Mega: Moving Average
Equipped Gated Attention. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net. https:
//openreview.net/pdf?id=qNLe3iq2El

[16] Yao Ma, Ziyi Guo, Zhaochun Ren, Jiliang Tang, and Dawei Yin. 2020. Streaming
Graph Neural Networks. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, SIGIR 2020,
Virtual Event, China, July 25-30, 2020, Jimmy X. Huang, Yi Chang, Xueqi Cheng,
Jaap Kamps, Vanessa Murdock, Ji-RongWen, and Yiqun Liu (Eds.). ACM, 719–728.
doi:10.1145/3397271.3401092

[17] Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei Ma, Toyotaro Suzumura,
Hiroki Kanezashi, Tim Kaler, Tao B. Schardl, and Charles E. Leiserson. 2020.
EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs. In
The Thirty-Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelligence Conference, IAAI
2020, The Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,
EAAI 2020, New York, NY, USA, February 7-12, 2020. AAAI Press, 5363–5370.
doi:10.1609/AAAI.V34I04.5984

[18] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
Alban Desmaison, Andreas Köpf, Edward Z. Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai,
and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In Advances in Neural Information Processing Systems
32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC, Canada, Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman
Garnett (Eds.). 8024–8035. https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html

[19] Bo Peng, Eric Alcaide, Quentin Anthony, Alon Albalak, Samuel Arcadinho, Stella
Biderman, Huanqi Cao, Xin Cheng, Michael Chung, Leon Derczynski, Xingjian
Du, Matteo Grella, Kranthi Kiran GV, Xuzheng He, Haowen Hou, Przemyslaw
Kazienko, Jan Kocon, Jiaming Kong, Bartlomiej Koptyra, Hayden Lau, Jiaju Lin,
Krishna Sri Ipsit Mantri, Ferdinand Mom, Atsushi Saito, Guangyu Song, Xiangru
Tang, Johan S. Wind, Stanislaw Wozniak, Zhenyuan Zhang, Qinghua Zhou, Jian
Zhu, and Rui-Jie Zhu. 2023. RWKV: Reinventing RNNs for the Transformer
Era. In Findings of the Association for Computational Linguistics: EMNLP 2023,
Singapore, December 6-10, 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.).
Association for Computational Linguistics, 14048–14077. doi:10.18653/V1/2023.
FINDINGS-EMNLP.936

[20] Farimah Poursafaei, Shenyang Huang, Kellin Pelrine, and Reihaneh Rab-
bany. 2022. Towards Better Evaluation for Dynamic Link Prediction. In
Advances in Neural Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS 2022, New Orleans,
LA, USA, November 28 - December 9, 2022, Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (Eds.). http://papers.nips.
cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-
Datasets_and_Benchmarks.html

[21] Emanuele Rossi, Ben Chamberlain, Fabrizio Frasca, Davide Eynard, Federico
Monti, and Michael M. Bronstein. 2020. Temporal Graph Networks for Deep
Learning on Dynamic Graphs. CoRR abs/2006.10637 (2020). arXiv:2006.10637
https://arxiv.org/abs/2006.10637

[22] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-
Attention Networks. In WSDM ’20: The Thirteenth ACM International Conference
on Web Search and Data Mining, Houston, TX, USA, February 3-7, 2020, James
Caverlee, Xia (Ben) Hu, Mounia Lalmas, and Wei Wang (Eds.). ACM, 519–527.
doi:10.1145/3336191.3371845

[23] Razieh Shirzadkhani, Shenyang Huang, Elahe Kooshafar, Reihaneh Rabbany, and
Farimah Poursafaei. 2024. Temporal Graph Analysis with TGX. In Proceedings of
the 17th ACM International Conference on Web Search and Data Mining (Merida,
Mexico) (WSDM ’24). Association for Computing Machinery, New York, NY, USA,
1086–1089. doi:10.1145/3616855.3635694

[24] Jimmy T. H. Smith, Andrew Warrington, and Scott W. Linderman. 2023. Sim-
plified State Space Layers for Sequence Modeling. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net. https://openreview.net/pdf?id=Ai8Hw3AXqks

[25] Yuxing Tian, Yiyan Qi, and Fan Guo. 2024. FreeDyG: Frequency Enhanced
Continuous-Time Dynamic Graph Model for Link Prediction. In The Twelfth
International Conference on Learning Representations. https://openreview.net/
forum?id=82Mc5ilInM

[26] Ilya O. Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiao-
hua Zhai, Thomas Unterthiner, Jessica Yung, Andreas Steiner, Daniel Key-
sers, Jakob Uszkoreit, Mario Lucic, and Alexey Dosovitskiy. 2021. MLP-Mixer:
An all-MLP Architecture for Vision. In Advances in Neural Information Pro-
cessing Systems 34: Annual Conference on Neural Information Processing Sys-
tems 2021, NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio Ranzato,
Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (Eds.). 24261–24272. https://proceedings.neurips.cc/paper/2021/hash/
cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html

[27] Rakshit Trivedi, Mehrdad Farajtabar, Prasenjeet Biswal, and Hongyuan Zha. 2019.
DyRep: Learning Representations over Dynamic Graphs. In 7th International

9

https://doi.org/10.1145/3340531.3411946
https://openreview.net/pdf?id=ayPPc0SyLv1
https://proceedings.mlr.press/v201/duman-keles23a.html
https://doi.org/10.1016/J.KNOSYS.2019.06.024
https://openreview.net/forum?id=gVg8V9isul
https://openreview.net/forum?id=gVg8V9isul
https://doi.org/10.48550/ARXIV.2312.00752
https://doi.org/10.48550/ARXIV.2312.00752
https://arxiv.org/abs/2312.00752
http://papers.nips.cc/paper_files/paper/2022/hash/e9a32fade47b906de908431991440f7c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/e9a32fade47b906de908431991440f7c-Abstract-Conference.html
https://openreview.net/forum?id=uYLFoz1vlAC
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/05546b0e38ab9175cd905eebcc6ebb76-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/7dadc855cef7494d5d956a8d28add871-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/7dadc855cef7494d5d956a8d28add871-Abstract-Conference.html
http://jmlr.org/papers/v21/19-447.html
http://jmlr.org/papers/v21/19-447.html
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/3485447.3512181
https://openreview.net/pdf?id=qNLe3iq2El
https://openreview.net/pdf?id=qNLe3iq2El
https://doi.org/10.1145/3397271.3401092
https://doi.org/10.1609/AAAI.V34I04.5984
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.936
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.936
http://papers.nips.cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_Benchmarks.html
http://papers.nips.cc/paper_files/paper/2022/hash/d49042a5d49818711c401d34172f9900-Abstract-Datasets_and_Benchmarks.html
https://arxiv.org/abs/2006.10637
https://arxiv.org/abs/2006.10637
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1145/3616855.3635694
https://openreview.net/pdf?id=Ai8Hw3AXqks
https://openreview.net/forum?id=82Mc5ilInM
https://openreview.net/forum?id=82Mc5ilInM
https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/cba0a4ee5ccd02fda0fe3f9a3e7b89fe-Abstract.html

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net. https://openreview.net/forum?id=HyePrhR5KX

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In Advances in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 5998–6008. https://proceedings.neurips.cc/paper/2017/hash/
3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[29] Roger Waleffe, Wonmin Byeon, Duncan Riach, Brandon Norick, Vijay Ko-
rthikanti, Tri Dao, Albert Gu, Ali Hatamizadeh, Sudhakar Singh, Deepak
Narayanan, Garvit Kulshreshtha, Vartika Singh, Jared Casper, Jan Kautz, Moham-
mad Shoeybi, and Bryan Catanzaro. 2024. An Empirical Study of Mamba-based
Language Models. CoRR abs/2406.07887 (2024). doi:10.48550/ARXIV.2406.07887
arXiv:2406.07887

[30] Lu Wang, Xiaofu Chang, Shuang Li, Yunfei Chu, Hui Li, Wei Zhang, Xiaofeng
He, Le Song, Jingren Zhou, and Hongxia Yang. 2021. TCL: Transformer-based
Dynamic GraphModelling via Contrastive Learning. CoRR abs/2105.07944 (2021).
arXiv:2105.07944 https://arxiv.org/abs/2105.07944

[31] Xuhong Wang, Ding Lyu, Mengjian Li, Yang Xia, Qi Yang, Xinwen Wang, Xin-
guang Wang, Ping Cui, Yupu Yang, Bowen Sun, and Zhenyu Guo. 2021. APAN:
Asynchronous Propagation Attention Network for Real-time Temporal Graph
Embedding. In SIGMOD ’21: International Conference on Management of Data,
Virtual Event, China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos,
and Divesh Srivastava (Eds.). ACM, 2628–2638. doi:10.1145/3448016.3457564

[32] Yanbang Wang, Yen-Yu Chang, Yunyu Liu, Jure Leskovec, and Pan Li. 2021.
Inductive Representation Learning in Temporal Networks via Causal Anonymous
Walks. In 9th International Conference on Learning Representations, ICLR 2021,
Virtual Event, Austria, May 3-7, 2021. OpenReview.net. https://openreview.net/
forum?id=KYPz4YsCPj

[33] Da Xu, Chuanwei Ruan, Evren Körpeoglu, Sushant Kumar, and Kannan Achan.
2020. Inductive representation learning on temporal graphs. In 8th International
Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net. https://openreview.net/forum?id=rJeW1yHYwH

[34] Jiaxuan You, Tianyu Du, and Jure Leskovec. 2022. ROLAND: Graph Learning
Framework for Dynamic Graphs. In KDD ’22: The 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, Washington, DC, USA, August 14 - 18,
2022, Aidong Zhang and Huzefa Rangwala (Eds.). ACM, 2358–2366. doi:10.1145/
3534678.3539300

[35] Le Yu, Leilei Sun, Bowen Du, and Weifeng Lv. 2023. Towards Better Dynamic
Graph Learning: New Architecture and Unified Library. In Advances in Neural
Information Processing Systems 36: Annual Conference on Neural Information
Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt,
and Sergey Levine (Eds.). http://papers.nips.cc/paper_files/paper/2023/hash/
d611019afba70d547bd595e8a4158f55-Abstract-Conference.html

[36] Lianghui Zhu, Bencheng Liao, Qian Zhang, Xinlong Wang, Wenyu Liu, and
Xinggang Wang. 2024. Vision Mamba: Efficient Visual Representation Learning
with Bidirectional State Space Model. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net.
https://openreview.net/forum?id=YbHCqn4qF4

A CTDG Dataset Details
A.1 Real-World Benchmark Datasets
We present the dataset statistics of all considered CTDG datasets
in Table 6. All the datasets in our experiments are taken from Yu
et al. [35]. We chronologically split each dataset with the ratio of
70%/15%/15% for training/validation/testing. Please refer to it for
detailed dataset descriptions.

A.2 Synthetic Datasets
For all of our three synthetic datasets, node and link features are
not involved during dataset construction. The construction details
are as follows:

• S1: For each interaction pair 𝑢 and 𝑣 , their first interaction
is at timestamp 0 and the second interaction is generated
randomly. Thus, the first time interval is also determined.
Starting from the second interval, they follow an increasing

trend with a constant velocity of 0.05, i.e., (𝑡𝑖+2 − 𝑡𝑖+1) −
(𝑡𝑖+1 − 𝑡𝑖)= 0.05. The number of interactions for each node
pair is randomly determined and the interaction numbers
of all node pairs sum up to 100000.

• S2: For each interaction pair 𝑢 and 𝑣 , their first interaction
is at timestamp 0 and the second interaction is generated
randomly. However, it should be large enough so that the
interval will not drop to zero or negative afterwards. Start-
ing from the second interval, they follow a decreasing trend
with a constant velocity of 0.05, i.e., (𝑡𝑖+1−𝑡𝑖)−(𝑡𝑖+2−𝑡𝑖+1) =
0.05. The number of interactions for each node pair is ran-
domly determined and the interaction numbers of all node
pairs sum up to 100000.

• S3: S3 contains 8 periods. In each period, the interactions
of each node pair 𝑢 and 𝑣 are generated following the same
pattern in S1. The number of interactions for each node
pair is randomly determined and the interaction numbers
of all node pairs sum up to 12000 in the period.

We present the statistics of all synthetic datasets in Table 7. We
chronologically split each dataset with the ratio of 70%/15%/15%
for training/validation/testing. To better visualize the temporal
patterns in each dataset, we pick one pair of interacting nodes and
plot the time intervals between neighboring interactions in each
dataset in Figure 4. Note that for the periodic dataset S3 (Figure 4c),
each of the train, validation and test sets contains at least one start
of a new period. This ensures that models have to capture periodic
temporal patterns in order to achieve good performance during
evaluation, rather than only learning the increasing time intervals
as specified in S1.

Furthermore, we provide the information about the numbers of
interactions regarding interacting node pairs in Table 8. We show
that each node pair is equipped with a substantial number of inter-
actions, meaning that temporal patterns in our synthetic datasets
span across long time periods. This encourages models to consider
long-term temporal dependencies for better graph reasoning.

B Baseline Details
We provide the detailed descriptions of all baselines here. The base-
lines can be split into two groups: the methods designed/not de-
signed for long-range temporal information propagation.

B.1 Baselines Not Designed for Long-Range
Temporal Information Propagation

• JODIE [12]: JODIE employs a recurrent neural network
(RNN) for each node and uses a projection operation to
learn the future representation trajectory of each node.

• DyRep [27]: DyRep updates node representations as events
appear. It designs a two-time scale deep temporal point
process approach for source and destination nodes and
couples the structural and temporal components with a
temporal-attentive aggregation module.

• TGAT [33]: TGAT computes the node representations by
aggregating each node’s temporal neighbors based on a self-
attention module. A time encoding function is proposed to
learn functional representations of time.

10

https://openreview.net/forum?id=HyePrhR5KX
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://doi.org/10.48550/ARXIV.2406.07887
https://arxiv.org/abs/2406.07887
https://arxiv.org/abs/2105.07944
https://arxiv.org/abs/2105.07944
https://doi.org/10.1145/3448016.3457564
https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=KYPz4YsCPj
https://openreview.net/forum?id=rJeW1yHYwH
https://doi.org/10.1145/3534678.3539300
https://doi.org/10.1145/3534678.3539300
http://papers.nips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/d611019afba70d547bd595e8a4158f55-Abstract-Conference.html
https://openreview.net/forum?id=YbHCqn4qF4

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

DyGMamba TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 6: Dataset statistics. # N&E Feat means the numbers of node and edge features.

Datasets # Nodes # Edges # N&E Feat Bipartite Duration # Timestamps Time Granularity

LastFM 1,980 1,293,103 0 & 0 True 1 month 1,283,614 Unix timestamps
Enron 184 125,235 0 & 0 False 3 years 22,632 Unix timestamps
MOOC 7,144 411,749 0 & 4 True 17 months 345,600 Unix timestamps
Reddit 10,984 672,447 0 & 172 True 1 month 669,065 Unix timestamps

Wikipedia 9,227 157,474 0 & 172 True 1 month 152,757 Unix timestamps
UCI 1,899 59,835 0 & 0 False 196 days 58,911 Unix timestamps

Social Evo. 74 2,099,519 0 & 2 False 8 months 565,932 Unix timestamps

(a) Synthetic dataset S1. (b) Synthetic dataset S2. (c) Synthetic dataset S3.

Figure 4: Time intervals of a node pair 𝑢, 𝑣 in synthetic datasets S1, S2 and S3.

Table 7: Synthetic dataset statistics.

Datasets # Nodes # Edges # Timestamps Time Range

S1 7 100,000 96,869 0 - 163241.65
S2 7 100,000 98,004 0 - 1573561.52
S3 7 95,657 95,370 0 - 1771300.40

Table 8: Interaction information of node pairs in synthetic
datasets. Complete Dataset includes the numbers of interac-
tions across thewhole datasets, including training, validation
and testing.

Datasets Avg. # Interactions Min # Interactions Max # Interactions

Training Set
S1 1,428.57 1,205 1,663
S2 1,428.57 1,424 1,433
S3 1,367.91 1,364 1,372

Complete Dataset

S1 2,010.20 1,879 2,150
S2 2,010.20 1,921 2,097
S3 1,952.18 1,721 2,193

S3 (each period) 244.02 215 274

• TGN [21]: TGN leverages an evolving memory for each
node and updates the memory when a node-relevant in-
teraction occurs by using a message function, a message

aggregator, and a memory updater. An embedding module
is used to generate the temporal representations of nodes.

• CAWN [32]: CAWN is a random walk-based method. It
does multiple causal anonymous walks for each node and
extracts relative node identities from the walk results. RNNs
are then introduced to encode the anonymous walks. The
aggregated walk information forms the final node repre-
sentation.

• EdgeBank [20]: EdgeBank is a non-parametric method
purely based on memory. It stores the observed interactions
in its memory and updates the memory through various
strategies. An interaction, i.e., link, will be predicted as
existing if it is stored in the memory, and non-existing
otherwise. EdgeBank uses four memory update strategies:
(1) EdgeBank∞, where all the observed edges are stored
in the memory; (2) EdgeBanktw-ts, where only the edges
within the duration of the test set from the immediate past
are kept in the memory; (3) EdgeBanktw-re, where only
the edges within the average time intervals of repeated
edges from the immediate past are kept in the memory;
(4) EdgeBankth, where the edges with appearing counts
higher than a threshold are stored in the memory. The
results reported in our paper correspond to the best results
achieved among the four memory update strategies.

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

• TCL [30]: TCL first extracts temporal dependency interac-
tion sub-graphs for source and interaction nodes and then
presents a graph transformer to aggregate node information
from the sub-graphs. A cross-attention operation is imple-
mented to enable information communication between two
source and destination nodes.

• GraphMixer [2]: GraphMixer designs a link-encoder based
on MLP-Mixer [26] to learn from the temporal interactions.
A mean pooling-based node-encoder is used to aggregate
the node features. Link prediction is done with a link clas-
sifier that leverages the representations output by link-
encoder and node-encoder.

Note that TGN uses a memory network to store the whole graph
history, making it able to preserve long-range temporal information.
However, as discussed in Yu et al. [35], it faces a problem of van-
ishing/exploding gradients, preventing it from optimally capturing
long-term temporal dependencies. EdgeBank can also preserve a
very long graph history, but we can observe from the experimental
results (Table 1, 12) that without learnable parameters, it is not
strong enough on long-range temporal dependent datasets.

B.2 Baselines Designed for Long-Range
Temporal Information Propagation

• DyGFormer [35]: DyGFormer is a Transformer-based CTDG
model. It takes the long-term one-hop temporal interactions
of source and destination nodes and uses a Transformer
to encode them. A patching technique is developed to cut
the computational consumption and a node co-occurrence
encoding scheme is used to exploit the correlations of nodes
in each interaction. DyGFormer achieves long-range tem-
poral information propagation by increasing the number of
sampled one-hop historical interactions. The patching tech-
nique ensures that even with a huge number of sampled
interactions, the length of the sequence input into Trans-
former will not be too long, making it possible to implement
DyGFormer with a limited computational budget.

• CTAN [5]: CTAN is deep graph network for learning CT-
DGs based on non-dissipative ordinary differential equa-
tions. CTAN’s formulation allows for a scalable long-range
temporal information propagation in CTDGs because its
non-dissipative layer can retain the information from a spe-
cific event indefinitely, ensuring that the historical context
of a node is preserved despite the occurrence of additional
events involving this node.

C Implementation Details
We train every CTDG model except for CTAN for a maximum
number of 200 epochs. Maximum epochs for CTAN training is 1000.
We evaluate each model on the validation set at the end of every
training epoch and adopt an early stopping strategy with a patience
of 20. We take the model that achieves the best validation result
for testing. We use the implementations6 provided by Yu et al. [35]
for all baseline models except CTAN. For CTAN, we use its official
implementation7. All models are trained with a batch size of 200
6https://github.com/yule-BUAA/DyGLib
7https://github.com/gravins/non-dissipative-propagation-CTDGs

for fair efficiency analysis. All experiments are implemented with
PyTorch [18] on a server equipped with an AMD EPYC 7513 32-
Core Processor and a single NVIDIA A40 with 45GB memory. We
run each experiment for five times with five random seeds and
report the mean results together with error bars.

C.1 Hyperparameter Configurations on
Real-World Datasets

For all the baselines except CTAN, please refer to Yu et al. [35]
for the hyperparameter configurations on real-world datasets. For
CTAN, we present its hyperparameter configurations in Table 9.
We keep its hyperparameters unchanged for all real-world datasets.
Note that we set the number of graph convolution layers (GCLs) in
CTAN to its maximum, i.e., 5, in order to maximize its performance
in capturing long-term temporal dependencies.

Table 9: Hyperparameter configurations of CTAN on all real-
world datasets. 𝛾 here denotes the discretization step size
introduced in [5], different from the one in DyGMamba.

Model # GCL 𝜖 𝛾 Embedding Dim

CTAN 5 0.5 0.5 128

We report the hyperparameter searching strategy of DyGMamba
on real-world datasets and the best hyperparameters in Table 10.
To achieve fair efficiency comparison with DyGFormer, we fix the
length of the input sequence into the node-level SSM to 32, i.e.,
𝜌 & 𝑝 = 32. The results reported in Table 1, 2, 12, 13 are all achieved
by DyGMamba with 𝜌 & 𝑝 = 32. In practice, we can decrease 𝑝
to have a better performance given more computational resources
(as discussed in Sec. 4.3). DyGMamba keeps the embedding size
as same as DyGFormer on all real-world datasets, i.e., 𝑑𝑁 = 𝑑𝐸 =

172, 𝑑𝑇 = 100, 𝑑𝐹 = 50. We also set 𝛾 = 0.5 for all experiments of
DyGMamba. The dimension of SSMs 𝑑SSM = 16 remains the default
value of mamba SSM’s official repository8. For all experiments, we
set the numbers of layers in both node-level and time-level SSMs
as 2. We also set 𝛾 to 0.5 for all datasets. A smaller 𝛾 lowers the
computational resource consumption in time-level SSM, potentially
at the cost of performance. Raising 𝛾 ’s value does not necessarily
lead to better performance but will lower efficiency. We search 𝛾 ’s
value in {0.1, 0.5, 0.7, 1} and find that 0.5 brings a good balance
between performance and efficiency.

C.2 Hyperparameter Configurations on
Synthetic Datasets

We use the same settings of CTAN on real-world datasets when
we experiment it on synthetic datasets. For DyGFormer and DyG-
Mamba, we fix the length of the input sequence into the Trans-
former and the node-level SSM to 32, i.e., 𝜌/𝑝 = 32. For DyGFormer,
we set the hyperparameters except 𝜌 and 𝑝 to the same default
values as on real-world datasets, and search for the best 𝜌 & 𝑝

within {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1}. For DyGMamba,
we search for the best 𝜌 & 𝑝 within the same search range and

8https://github.com/state-spaces/mamba

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

DyGMamba TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

Table 10: DyGMamba hyperparameter searching strategy on
real-world datasets. The best settings are marked as bold.

Datasets Dropout 𝜌 & 𝑝 𝑘

LastFM {0.0, 0.1, 0.2} {1024 & 32, 512 & 16, 256 & 8} {30, 10, 5}
Enron {0.0, 0.1, 0.2} {512 & 16, 256 & 8, 128 & 4} {30, 10, 5}
MOOC {0.0, 0.1, 0.2} {512 & 16, 256 & 8, 128 & 4} {30, 10, 5}
Reddit {0.0, 0.1, 0.2} {128 & 4, 64 & 2, 32 & 1} {30, 10, 5}
Wikipedia {0.0, 0.1, 0.2} {64 & 2, 32 & 1} {30, 10, 5}
UCI {0.0, 0.1, 0.2} {64 & 2, 32 & 1} {30, 10, 5}
Social Evo. {0.0, 0.1, 0.2} {64 & 2, 32 & 1} {30, 10, 5}

further search for the best 𝑘 . All the other hyperparameters are set
as same as the setting on LastFM. We report the hyperparameter
searching strategy as well as the best settings of DyGFormer and
DyGMamba on synthetic datasets in Table 11. For all experiments
with DyGMamba, we set the numbers of layers in both node-level
and time-level SSMs as 2.

D Negative Edge Sampling Strategies during
Evaluation

We justify why we do not do historical NSS for inductive link
prediction. As described in Poursafaei et al. [20], historical NSS
focuses on sampling negative edges from the set of edges that have
been observed during previous timestamps but are absent in the
current step. In the setting of inductive link prediction, models are
asked to predict the links between the nodes unseen in the training
dataset. This means when doing historical NSS, models only need
to care about the previously observed edges in the test set (or
validation set during validation) for choosing negative edges. This
makes historical NSS the same as inductive NSS in the inductive link
prediction, where inductive NSS samples negative edges that have
been observed only in the test set, but not training set. Empirical
results shown in Appendix C.2 Table 13 and 14 of Yu et al. [35] also
prove that there is no difference between historical and inductive
NSS in inductive link prediction. So we omit the results of historical
NSS in our paper.

E AUC-ROC Results on Real-World Datasets
Table 12 and 13 presents the AUC-ROC results of all baselines and
DyGMamba on real-world datasets. We have similar observations
as the AP results shown in Table 1 and 2. DyGMamba still demon-
strates superior performance and can achieve the best average
rank under any NSS setting in both transductive and inductive link
prediction.

F Dynamic Node Classification
We first give the definition of the dynamic node classification task.

Definition 3 (Dynamic Node Classification). Given a CTDG
G, a source node𝑢 ∈ N , a destination node 𝑣 ∈ N , a timestamp 𝑡 ∈ T ,
and all the interactions before 𝑡 , i.e., {(𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) |𝑡𝑖 < 𝑡, (𝑢𝑖 , 𝑣𝑖 , 𝑡𝑖) ∈
G}, dynamic node classification aims to predict the state (e.g., dynamic
node label) of 𝑢 or 𝑣 at 𝑡 in the condition that the interaction (𝑢, 𝑣, 𝑡)
exists.

We follow Rossi et al. [21], Xu et al. [33], Yu et al. [35] to conduct
dynamic node classification by estimating the state of a node in a
given interaction at a specific timestamp. A classification MLP is
employed to map the node representations as well as the learned
temporal patterns to the labels. AUC-ROC is used as the evalua-
tion metric and we follow the dataset splits introduced in Yu et al.
[35] (70%15%/15% for training/validation/testing in chronological
order) for node classification. Table 14 shows the node classifica-
tion results on Wikipedia and Reddit (the only two CTDG datasets
for dynamic node classfication), we observe that DyGMamba can
achieve the best average rank, showing its strong performance.
Note that both Wikipedia and Reddit are not long-range temporal
dependent datasets, therefore we do not include this part into the
main body of the paper. Nonetheless, DyGMamba’s great results
on these datasets further prove its strength in CTDG modeling,
regardless of the type of the dataset (whether long-range temporal
dependent or not).

G Further Ablation Study
We do further ablation studies here. In study C, we switch how we
compute 𝛽𝜃 in Eq. 6d to 𝛽𝜃 = Softmax(𝑓sel (H𝑡

𝜃
)) (𝑓sel (·) : R4𝑑 →

R4𝑑) to create Variant C. In study D, we base on Variant C and de-
velop Variant D that further enables information selection from op-
posite nodes, i.e., 𝛽𝑢 = Softmax(𝑓sel (H𝑡

𝑣))/ 𝛽𝑣 = Softmax(𝑓sel (H𝑡
𝑢)).

Both ablation C and D do information selection without learning
temporal patterns. In study E and F, we devise Variant E and Variant
F by removing the time features and the node interaction frequency
features, respectively, during neighbor encoding. From Table 15
and 16 we find that: (1) Variant C and D perform better than Variant
A in most cases, implying that selecting temporal information is
generally contributive; (2) Variant C generally lags behind Variant
D, meaning that information selection from opposite node is ben-
eficial; (3) DyGMamba performs better than both Variant C and
D in almost all cases, proving that information selection based on
temporal patterns is more effective; (4) Variant E and F in general
achieve worse results than DyGMamba, validating the contribution
of both time and node interaction frequency features.

H Efficieny Analysis Complete Results
We first provide the efficiency analysis results of all baselines in
this section. We then provide a comparison of total training time
among DyGFormer, CTAN and DyGMamba.

H.1 Efficiency Statistics for all baselines
We provide the efficiency statistics for all baselines in Table 17. To
supplement, in Figure 5, we further plot the comparison of model
size, per epoch training time and GPU Memory across models
on Reddit and Social Evo., analogous to the analysis in Sec. 4.3.1.
CTAN cannot be trained on Social Evo. before timeout and therefore
does not appear in the plot of Social Evo.. The complete statistics
including the numbers in the plots can be found in Table 17.

13

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

Table 11: DyGFormer and DyGMamba hyperparameter searching strategy on synthetic datasets. The best settings are marked
as bold.

Models DyGFormer DyGMamba

Datasets 𝜌 & 𝑝 𝜌 & 𝑝 𝑘

S1 {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {30, 10, 5}
S2 {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {30, 10, 5}
S3 {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {512 & 16, 256 & 8, 128 & 4, 64 & 2, 32 & 1} {30, 10, 5}

Table 12: AUC-ROC of transductive dynamic link prediction.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 70.89 ± 1.97 71.40 ± 2.12 71.47 ± 0.14 76.64 ± 4.66 85.92 ± 0.16 83.77 ± 0.00 71.09 ± 1.48 73.51 ± 0.14 93.03 ± 0.11 85.12 ± 0.77 93.31 ± 0.18
Enron 87.77 ± 2.43 83.09 ± 2.20 68.57 ± 1.46 88.72 ± 0.95 90.34 ± 0.23 87.05 ± 0.00 83.33 ± 0.93 84.16 ± 0.34 93.20 ± 0.12 87.09 ± 1.51 93.34 ± 0.23
MOOC 84.50 ± 0.60 84.50 ± 0.87 87.01 ± 0.16 91.91 ± 0.82 80.48 ± 0.41 60.86 ± 0.00 84.02 ± 0.59 84.04 ± 0.12 88.08 ± 0.50 85.40 ± 2.67 89.58 ± 0.12
Reddit 98.29 ± 0.05 98.13 ± 0.04 98.50 ± 0.01 98.61 ± 0.05 99.02 ± 0.00 95.37 ± 0.00 97.67 ± 0.01 97.17 ± 0.02 99.15 ± 0.01 97.24 ± 0.75 99.27 ± 0.01

Wikipedia 96.36 ± 0.14 94.43 ± 0.32 96.60 ± 0.07 98.37 ± 0.10 98.54 ± 0.01 90.78 ± 0.00 97.27 ± 0.06 96.89 ± 0.04 98.92 ± 0.03 97.00 ± 0.21 99.08 ± 0.02
UCI 90.35 ± 0.51 69.46 ± 2.66 78.76 ± 1.10 92.03 ± 0.69 93.81 ± 0.23 77.30 ± 0.00 85.49 ± 0.82 91.62 ± 0.52 94.45 ± 0.22 76.25 ± 2.83 94.77 ± 0.18

Social Evo. 92.13 ± 0.20 90.37 ± 0.52 94.93 ± 0.06 95.31 ± 0.27 87.34 ± 0.10 81.60 ± 0.00 95.45 ± 0.21 95.21 ± 0.07 96.25 ± 0.04 Timeout 96.38 ± 0.02

Avg. Rank 7.14 8.86 7.14 3.86 4.86 9.14 7.29 7.14 2.14 7.29 1.14

H
is
to
ri
ca
l

LastFM 75.65 ± 4.43 70.63 ± 2.56 64.23 ± 0.45 78.00 ± 2.97 67.92 ± 0.32 78.09 ± 0.00 60.53 ± 2.54 64.06 ± 0.34 78.80 ± 0.02 79.50 ± 0.82 79.82 ± 0.27
Enron 75.21 ± 1.27 76.36 ± 1.42 62.36 ± 1.07 76.75 ± 1.40 65.62 ± 0.49 79.59 ± 0.00 71.72 ± 1.24 74.82 ± 2.04 77.35 ± 0.64 81.95 ± 1.64 77.73 ± 0.61
MOOC 82.38 ± 1.75 80.71 ± 2.08 81.53 ± 0.79 86.59 ± 2.03 71.74 ± 0.88 61.90 ± 0.00 73.22 ± 1.21 77.09 ± 0.83 87.26 ± 0.83 73.87 ± 2.77 87.91 ± 0.93
Reddit 80.70 ± 0.20 79.96 ± 0.23 79.60 ± 0.09 81.04 ± 0.23 80.42 ± 0.20 78.58 ± 0.00 76.83 ± 0.12 77.83 ± 0.33 80.61 ± 0.48 90.63 ± 2.28 81.71 ± 0.49

Wikipedia 80.71 ± 0.64 77.49 ± 0.72 82.83 ± 0.27 83.28 ± 0.26 65.74 ± 3.46 77.27 ± 0.00 85.55 ± 0.47 87.47 ± 0.20 72.78 ± 6.65 95.43 ± 0.07 78.99 ± 1.24
UCI 78.21 ± 3.18 58.65 ± 3.58 57.12 ± 0.98 78.48 ± 1.79 57.67 ± 1.11 69.56 ± 0.00 65.42 ± 2.62 77.46 ± 1.63 75.71 ± 0.57 75.05 ± 0.13 75.43 ± 1.99

Social Evo. 91.83 ± 1.52 92.81 ± 0.60 93.63 ± 0.48 94.27 ± 1.33 87.61 ± 0.06 85.81 ± 0.00 95.03 ± 0.82 94.65 ± 0.28 97.16 ± 0.06 Timeout 97.27 ± 0.30

Avg. Rank 5.29 7.14 7.86 3.71 9.14 7.43 7.71 6.29 4.29 4.29 2.86

In
du

ct
iv
e

LastFM 61.59 ± 5.72 60.62 ± 2.20 63.96 ± 0.41 65.48 ± 4.13 67.90 ± 0.44 77.37 ± 0.00 54.75 ± 1.31 59.98 ± 0.20 67.87 ± 0.53 78.70 ± 0.87 68.74 ± 0.55
Enron 70.75 ± 0.69 67.37 ± 2.21 59.78 ± 1.12 73.22 ± 0.42 75.29 ± 0.66 75.00 ± 0.00 69.74 ± 1.19 70.72 ± 1.08 74.67 ± 0.80 75.40 ± 1.92 75.47 ± 1.41
MOOC 67.53 ± 1.76 62.60 ± 1.27 74.44 ± 0.81 76.89 ± 2.13 70.08 ± 0.33 48.18 ± 0.00 71.80 ± 1.09 72.25 ± 0.57 80.78 ± 0.89 68.17 ± 3.73 81.08 ± 0.82
Reddit 83.40 ± 0.33 82.75 ± 0.36 87.46 ± 0.10 84.57 ± 0.19 88.19 ± 0.20 85.93 ± 0.00 84.41 ± 0.18 82.24 ± 0.24 86.25 ± 0.64 91.42 ± 2.18 86.35 ± 0.52

Wikipedia 70.41 ± 0.39 67.57 ± 0.94 81.54 ± 0.31 81.21 ± 0.30 68.48 ± 3.64 81.73 ± 0.00 73.51 ± 1.88 84.20 ± 0.36 64.09 ± 9.75 93.67 ± 0.11 75.64 ± 2.42
UCI 64.14 ± 1.25 54.10 ± 2.74 59.60 ± 0.61 63.76 ± 0.99 57.85 ± 0.59 58.03 ± 0.00 65.46 ± 2.07 74.25 ± 0.71 64.92 ± 0.83 66.51 ± 0.25 66.83 ± 2.83

Social Evo. 91.81 ± 1.69 92.77 ± 0.64 93.54 ± 0.48 94.86 ± 1.25 90.10 ± 0.11 87.88 ± 0.00 95.13 ± 0.83 94.50 ± 0.26 95.01 ± 0.15 Timeout 97.37 ± 0.26

Avg. Rank 7.86 9.57 6.14 5.43 6.29 6.43 6.71 6.00 5.14 3.86 2.57

Table 13: AUC-ROC of inductive dynamic link prediction. EdgeBank cannot do inductive link prediction so is not reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

LastFM 82.49 ± 0.94 82.82 ± 1.17 76.76 ± 0.22 82.61 ± 2.62 87.92 ± 0.15 76.95 ± 1.34 80.34 ± 0.14 94.10 ± 0.09 61.49 ± 2.78 94.37 ± 0.13
Enron 80.16 ± 1.50 75.82 ± 3.14 64.25 ± 1.29 79.40 ± 1.77 86.84 ± 0.89 81.03 ± 0.93 76.08 ± 0.92 89.59 ± 0.10 75.23 ± 2.24 89.76 ± 0.21
MOOC 83.82 ± 0.30 83.42 ± 0.77 86.67 ± 0.24 91.58 ± 0.74 81.76 ± 0.46 82.42 ± 0.71 82.76 ± 0.13 87.75 ± 0.42 66.38 ± 1.59 89.34 ± 0.12
Reddit 96.42 ± 0.13 95.87 ± 0.21 97.02 ± 0.04 97.30 ± 0.12 98.42 ± 0.01 94.63 ± 0.08 94.95 ± 0.08 98.70 ± 0.02 82.35 ± 4.03 98.88 ± 0.01

Wikipedia 94.43 ± 0.28 91.31 ± 0.40 95.93 ± 0.19 97.71 ± 0.19 98.05 ± 0.03 97.03 ± 0.08 96.26 ± 0.04 98.49 ± 0.02 92.59 ± 0.70 98.72 ± 0.03
UCI 78.78 ± 1.11 58.84 ± 2.54 77.41 ± 0.65 86.27 ± 1.49 90.27 ± 0.40 81.67 ± 1.01 89.26 ± 0.42 92.43 ± 0.20 48.58 ± 6.02 92.70 ± 0.19

Social Evo. 93.62 ± 0.36 90.20 ± 2.05 93.52 ± 0.05 93.21 ± 0.90 84.73 ± 0.20 94.63 ± 0.06 94.09 ± 0.03 95.30 ± 0.05 Timeout 95.36 ± 0.04

Avg. Rank 6.00 7.43 7.00 4.57 4.71 6.14 6.14 2.14 9.71 1.14

In
du

ct
iv
e

LastFM 69.85 ± 1.70 68.14 ± 1.61 69.89 ± 0.41 67.01 ± 5.77 67.72 ± 0.20 63.15 ± 1.17 69.93 ± 0.17 69.86 ± 0.80 57.85 ± 3.67 70.59 ± 0.57
Enron 65.95 ± 1.27 62.20 ± 2.15 56.52 ± 0.84 64.21 ± 0.94 62.07 ± 0.72 67.56 ± 1.34 67.39 ± 1.33 66.07 ± 0.65 68.70 ± 1.82 68.98 ± 1.00
MOOC 65.37 ± 0.96 62.97 ± 2.05 74.94 ± 0.80 76.36 ± 2.91 71.18 ± 0.54 71.30 ± 1.21 72.15 ± 0.65 80.42 ± 0.72 58.06 ± 0.89 81.12 ± 0.63
Reddit 61.84 ± 0.44 60.35 ± 0.53 64.92 ± 0.08 65.24 ± 0.08 65.37 ± 0.12 61.85 ± 0.11 64.56 ± 0.26 64.80 ± 0.53 81.70 ± 4.71 64.93 ± 0.89

Wikipedia 61.66 ± 0.30 56.34 ± 0.67 78.40 ± 0.77 75.86 ± 0.50 59.00 ± 4.33 71.45 ± 2.23 82.76 ± 0.11 58.21 ± 8.78 91.12 ± 0.13 67.92 ± 2.23
UCI 60.66 ± 1.82 51.50 ± 2.08 61.27 ± 0.78 62.07 ± 0.67 55.60 ± 1.22 65.87 ± 1.90 75.72 ± 0.70 64.37 ± 0.98 51.68 ± 2.60 66.95 ± 2.22

Social Evo. 88.98 ± 0.81 86.43 ± 1.48 92.37 ± 0.50 91.66 ± 2.14 83.84 ± 0.21 95.50 ± 0.31 93.88 ± 0.22 94.97 ± 0.36 Timeout 96.65 ± 0.29

Avg. Rank 7.00 8.71 5.14 5.14 7.14 5.14 3.57 4.71 6.14 2.29

H.2 Total Training Time Comparison among
DyGFormer, CTAN and DyGMamba

We present the per epoch training time, number of epochs until
the best performance and the total training time in Table 18. Total

14

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

DyGMamba TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728

1729

1730

1731

1732

1733

1734

1735

1736

1737

1738

1739

1740

Table 14: AUC-ROC of dynamic node classification.

Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

Wikipedia 88.10 ± 1.57 87.41 ± 1.94 83.42 ± 2.92 85.51 ± 3.28 84.59 ± 1.16 79.03 ± 1.18 85.60 ± 1.73 86.35 ± 2.19 87.38 ± 0.14 87.44 ± 0.82
Reddit 59.53 ± 3.18 63.12 ± 0.51 69.31 ± 2.18 63.21 ± 3.00 65.22 ± 0.79 68.04 ± 2.00 64.42 ± 1.15 67.67 ± 1.39 67.29 ± 0.15 67.70 ± 1.32

Avg. Rank 5.50 6.00 5.00 7.50 7.00 6.00 6.50 4.50 4.50 2.50

Table 15: Ablation studies under transductive setting. R/H/I means random/historical/inductive NSS. Metric is AP.

Datasets LastFM Enron MOOC Reddit Wikipedia UCI Social Evo.

Models R H I R H I R H I R H I R H I R H I R H I

Variant C 92.71 82.85 72.36 92.49 76.99 78.64 88.80 85.23 81.02 99.27 81.74 91.05 99.06 79.14 73.49 95.85 81.00 71.86 94.71 96.71 97.25
Variant D 92.74 82.87 72.68 92.52 77.07 78.05 88.71 85.76 81.09 99.27 82.10 91.07 99.08 81.75 79.79 95.87 82.35 72.98 94.74 97.17 97.60
Variant E 85.80 63.98 70.09 89.09 70.85 85.42 83.25 82.18 75.06 99.00 82.21 91.02 98.92 81.21 76.62 95.12 82.11 70.04 94.18 96.97 97.50
Variant F 87.47 67.11 64.10 88.32 69.16 83.98 82.42 76.18 74.12 99.08 76.09 88.75 98.76 72.41 70.03 94.74 63.94 63.56 94.17 96.15 96.29

DyGMamba 93.35 83.02 73.63 92.65 77.77 80.86 89.21 85.89 81.11 99.32 81.80 91.15 99.15 81.77 79.86 95.91 81.03 71.95 94.77 97.35 97.68

Table 16: Ablation studies under inductive setting. R/I means random/inductive NSS. Metric is AP.

Datasets LastFM Enron MOOC Reddit Wikipedia UCI Social Evo.

Models R I R I R I R I R I R I R I

Variant C 94.18 76.44 89.40 68.33 88.59 80.39 98.90 64.07 98.65 69.82 94.47 72.05 93.07 96.20
Variant D 94.21 76.64 89.44 67.91 88.29 80.86 98.91 65.10 98.69 71.10 94.51 73.50 93.10 96.75
Variant E 88.36 55.95 89.08 68.05 82.24 74.72 98.70 65.20 98.40 70.99 93.47 74.64 92.76 96.50
Variant F 87.71 66.45 84.02 66.85 81.13 73.85 98.54 61.74 98.37 67.59 92.81 64.59 92.42 95.38

DyGMamba 94.42 76.76 89.67 68.77 88.64 80.75 98.97 65.30 98.77 71.14 94.76 72.17 93.13 96.83

Table 17: Efficiency statistics for all baselines. EdgeBank is non-parameterized and not a machine learning model so we omit it
here. # Params means number of parameters (MB). Time and Mem denote per epoch training time (min) and GPU memory
(GB), respectively. The numbers in this table are the average results of five runs with different random seeds.

Datasets LastFM Enron MOOC UCI Reddit Social Evo.

Models # Params Time Mem # Params Time Mem # Params Time Mem # Params Time Mem # Params Time Mem # Params Time Mem

JODIE 0.75 4.4 2.28 0.75 0.07 1.30 0.75 0.78 2.36 0.75 0.03 1.44 0.75 3.95 1.10 0.75 4.70 1.71
DyRep 2.64 6.6 2.29 2.64 0.10 1.34 2.64 0.88 2.38 2.64 0.05 1.51 2.64 5.75 1.21 2.64 7.55 1.76
TGAT 4.02 22.75 4.15 4.02 1.28 3.46 4.02 4.08 3.64 4.02 0.60 3.42 4.02 16.33 2.98 4.02 25.50 3.89
TGN 3.68 12.14 2.21 3.68 0.15 1.45 3.68 1.03 2.54 3.68 0.08 1.51 3.67 2.05 1.67 3.67 3.83 1.78
CAWN 15.35 99.00 14.92 15.35 2.62 4.03 15.35 13.45 8.02 15.35 1.95 9.40 15.35 20.16 5.89 15.35 85.66 8.14
TCL 3.37 6.23 3.04 3.37 0.30 2.51 3.37 1.00 2.49 3.37 0.13 2.00 3.37 2.25 1.82 3.37 5.05 2.48

GraphMixer 2.45 16.35 2.78 2.45 1.20 2.23 2.45 4.02 2.40 2.45 0.73 2.19 2.44 4.92 1.57 2.45 15.50 2.71
DyGFormer 5.56 47.00 7.57 4.80 2.73 3.23 4.80 8.32 3.35 4.15 0.62 2.30 4.24 7.00 2.42 4.14 20.00 2.77

CTAN 0.45 3.33 1.44 0.47 0.50 1.33 0.68 3.22 2.30 0.50 0.38 1.30 0.53 0.86 1.54 0.45 2.41 0.63
DyGMamba 2.78 28.45 4.17 2.03 2.05 2.74 1.65 4.88 2.48 1.37 0.60 1.93 3.32 6.30 2.07 3.22 17.80 2.59

training time computes the total amount of time a model requires to
reach its maximum performance, without considering the patience
during training. We observe that CTAN requires much more epochs
to converge, e.g., on LastFM it uses almost 54 times of epochs than
DyGMamba to reach its best performance.

H.3 Modeling an Increasing Number of
Temporal Neighbors with Limited Total
Training Time

To further show DyGMamba’s superior efficiency against baseline
methods, we do the following experiments. We train five best per-
forming models (as shown in Table 1) on Enron with a gradually

increasing number of temporal neighbors9 and report their per-
formance. The number of sampled neighbors spans from 8, 16, 32,
64, 128 to 256 (Note that these numbers are different from the best
hyperparameters reported in Yu et al. [35]). We fix the patch size
𝑝 of DyGFormer and DyGMamba to 1 in order to maximize their
input sequence lengths. We set a time limit of 120 minutes for the
total training time. We let all the experiments finish the complete
training process and note down the ones that exceed the time limit.
In this way, we not only care about the per epoch training time,
but also pay attention to how long it takes for models to converge.
The experimental results are reported in Fig. 6. The points marked
with crosses (×) mean that the training process cannot finish within

9For CTAN, by number of temporal neighbors we mean the sampler size in each graph
convolutional layer, i.e., the size of the sampled temporal neighborhood for each node
at a timestamp.

15

1741

1742

1743

1744

1745

1746

1747

1748

1749

1750

1751

1752

1753

1754

1755

1756

1757

1758

1759

1760

1761

1762

1763

1764

1765

1766

1767

1768

1769

1770

1771

1772

1773

1774

1775

1776

1777

1778

1779

1780

1781

1782

1783

1784

1785

1786

1787

1788

1789

1790

1791

1792

1793

1794

1795

1796

1797

1798

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

1799

1800

1801

1802

1803

1804

1805

1806

1807

1808

1809

1810

1811

1812

1813

1814

1815

1816

1817

1818

1819

1820

1821

1822

1823

1824

1825

1826

1827

1828

1829

1830

1831

1832

1833

1834

1835

1836

1837

1838

1839

1840

1841

1842

1843

1844

1845

1846

1847

1848

1849

1850

1851

1852

1853

1854

1855

1856

Table 18: Comparison among DyGFormer, CTAN and DyGMamba on per epoch training time (Tep (min)), number of epochs
until the best performance (# Epoch) and the total training time (Ttot (min)). Ttot = Tep× # Epoch. The numbers in this table are
the average results of five runs with different random seeds. CTAN cannot be trained on Social Evo. before timeout and thus
without # Epoch and Ttot.

Datasets LastFM Enron MOOC UCI Reddit Social Evo.

Models Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot Tep # Epoch Ttot
DyGFormer 47.00 49.60 2331.20 2.73 32.80 89.54 8.32 64.20 534.14 0.62 34.80 21.58 4.24 24.60 104.30 20.00 30.22 604.40

CTAN 3.33 635.00 2114.55 0.50 173.00 86.50 3.22 138.00 444.36 0.38 236.00 89.68 0.53 327.18 173.41 0.45 Timeout Timeout
DyGMamba 28.45 11.80 335.71 2.05 33.00 67.65 4.88 38.00 185.44 0.60 28.00 16.80 3.32 26.80 88.98 17.80 24.40 434.32

Figure 5: Efficiency comparison on Reddit and Social Evo.
among DyGMamba and five baselines in terms of number (#)
of parameters, training time per epoch and GPU memory.

the time limit (although we still plot their corresponding perfor-
mance). We find that only TGN and DyGMamba can successfully
converge within the time limit when the number of considered
neighbors increases to 256. DyGMamba can constantly achieve per-
formance gain from modeling more temporal neighbors while TGN
cannot. CAWN is extremely time consuming so it cannot finish
training within the time limit even when it is asked to model 16
temporal neighbors. As for the methods designed for long-range
temporal information propagation, DyGFormer and CTAN con-
sume much longer total training time than DyGMamba. They fail
to converge within 120 minutes when the number of considered
neighbors reaches 128 and 256, respectively. We also observe that
CTAN’s performance fluctuates greatly with the increasing tem-
poral neighbors, indicating that it is not stable to model a large
number of temporal neighbors. This also implies that increasing
the amount of historical information will gradually make CTAN
harder to converge, which might cause trouble in modeling long
range temporal dependent datasets.

I Details of S4 and Mamba Operations
Single-Input Single-Output. Given a sequence of vector elements

as input, SISO means that the SSM processes each input dimension
in parallel with the same set of parameters. For example, a sequence
of 𝑑2-dimensional vectors will be split into 𝑑2 1-dimensional se-
quences with the same sequence length. Each of them will be com-
puted in parallel as in Eq. 2 with a shared set of SSM parameters.

Figure 6: Performance comparison among TGN, CAWN, DyG-
Former, CTAN and DyGMamba on Enron, with an increasing
number of encoded temporal neighbors. The metric is AP
under random NSS on transductive link prediction. The time
limit for training is 120 min. If a model fails to complete
training within this limit, a cross × is used to mark the data
point. Dashed lines indicate that models start to exceed time
limit as neighbor number increases.

After computation, all these 𝑑2 sequences will be rearranged back
into a sequence of 𝑑2-dimensional vectors. SISO fails to mix the
information across dimensions of each vector. To address this, S4
and Mamba employs a mixing linear layer 𝑓mix (·) : R𝑑2 → R𝑑2

on each 𝑑2-dimensional vector to mix the information across 𝑑2
dimensions. For more details, please refer to [8], [24] and [6].

SSM Function. SSMĀ,B̄,C (·) takes a matrix as input. The input
matrix can be considered as a sequence of vector elements, where
each row of the matrix corresponds to an element. The output of
SSMĀ,B̄,C (·) is also a matrix, where each row of the output matrix is
the output of its corresponding input vector element. SSMĀ,B̄,C (·)
can be viewed as using S4 or Mamba to process a sequence of
vectors in the SISO fashion, based on their parameters Ā, B̄,C.

16

1857

1858

1859

1860

1861

1862

1863

1864

1865

1866

1867

1868

1869

1870

1871

1872

1873

1874

1875

1876

1877

1878

1879

1880

1881

1882

1883

1884

1885

1886

1887

1888

1889

1890

1891

1892

1893

1894

1895

1896

1897

1898

1899

1900

1901

1902

1903

1904

1905

1906

1907

1908

1909

1910

1911

1912

1913

1914

DyGMamba TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

1915

1916

1917

1918

1919

1920

1921

1922

1923

1924

1925

1926

1927

1928

1929

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

J Motivation of Using SSM for Temporal Pattern
Modeling

The biggest motivation of using SSM for temporal pattern modeling
is that it helps to maintain good efficiency. If in the future we want
to deploy DyGMamba on larger datasets that require much longer
historical histories for modeling, the value of 𝑘 will also increase
accordingly and the time difference sequence will not be short
anymore. Besides, as we have chosen SSM to model historical one-
hop temporal neighbors in the node-level SSM, it is natural to
employ another SSM for temporal pattern modeling.

K Impact of Patch Size on MOOC
Apart from the analysis on Enron, we further analyze the impact
of patch size on another long-term temporal dependent dataset
MOOC. Fig. 7b shows the numbers of parameters of DyGFormer
and DyGmamba with different patch sizes on MOOC. We confirm
that patching greatly affects model sizes. We decrease the patch size
gradually from 4 to 1 (the optimal value of DyGMamba’s hyperpa-
rameter 𝜌 & 𝑝 is 128 & 4) and track DyGMamba’s performance (Fig.
7a) as well as efficiency (Fig. 7b to 7d) on MOOC. Meanwhile, we
also keep track on DyGFormer under the same patch size for com-
parison. Same as our analysis on Enron, we plot the performance
of Variant A under different patch sizes in Fig. 7a as well.We can
draw the same conclusions as in our analysis on Enron.

L Performance of DyGMamba on Discrete-Time
Dynamic Graphs

To better benchmark DyGMamba, we test the performance of DyG-
Mamba on 6 DTDG datasets collected in [35] (i.e., Flights, Can. Parl,
US Legis., UN Trade, UN Vote and Contact) and compare it with
the 10 recent baselines discussed in Sec. 4.1 (i.e., JODIE, DyRep,
TGAT, TGN, CAWN, EdgeBank, TCL, GraphMixer, DyGFormer,
CTAN)10. The value of the hyperparameter 𝜌 & 𝑝 of DyGMamba
is set as same as the one for DyGFormer. The optimal 𝜌 & 𝑝 for
Flights, Can. Parl, US Legis., UN Trade, UN Vote and Contact is
{256 & 8, 2048 & 64, 256 & 8, 256 & 8, 256 & 8, 128 & 4, 32 & 1}. We
report the best hyperparameter 𝑘 of DyGMamba for each dataset
in Table 19. We use the implementations and the best hyperparame-
ters provided by Yu et al. [35] for all baseline models except CTAN.
For CTAN, we use its official implementation, fixing the number
of layers to 5. All models are trained with a batch size of 200 for
fair efficiency analysis. We report the AP of both models on DTDG
datasets in the transductive and inductive settings in Table 20 and
Table 21, respectively. In addition, Table 22 and Table 23 present
the AUC-ROC of both models in the transductive and inductive
settings, respectively.

We find that DyGMamba achieves strong overall performance
(Avg. Rank) on DTDGs in both transductive and inductive link pre-
diction tasks. However, compared to its performance on CTDGs,
DyGMamba’s performance on DTDGs is not always highly compet-
itive. This is expected, as DyGMamba is not originally designed for
DTDGs and lacks the ability to optimally handle concurrent edges.

10Although we have discussed in Sec. ?? that DyGMamba is not suitable to reason
over DTDGs, we still benchmark our model on them to show its effectiveness.

One interesting finding is that on the long-range temporal de-
pendent dataset Can. Parl which requires sampling 2048 neighbors
for modeling, DyGMamba can benefit from such long neighbor
sequence and achieve the best performance among all models, indi-
cating the importance of modeling long-term temporal information
as well as the strong capability of our model in capturing it. More
importantly, we find that DyGMamba can benefit from greater
value of 𝑘 as the number of the sampled neighbors 𝜌 increases. For
example, on Can. Parl, as shown in Table 19, the optimal value of𝑘 is
100. This makes our selection of using Mamba for temporal pattern
modeling more reasonable since Mamba can better demonstrate
its advantage in efficiency when there is a growing time difference
sequence corresponding to the temporal pattern.

Table 19: DyGMamba hyperparameter searching strategy on
DTDG datasets. The best settings are marked as bold.

Datasets 𝑘

Flights {30, 10, 5}
Can. Parl. {200, 100, 30}
US Legis. {30, 10, 5}
UN Trade {30, 10, 5}
UN Vote {30, 10, 5}
Contact {30, 10, 5}

M Detailed Discussion of Motivation
The goal of this work is to introduce amodel capable of effective and
efficient reasoning over CTDGs using extensive historical informa-
tion. Our motivation is supported by the following considerations:

Abundant Historical Information in Real-World Datasets. Wequan-
tify the availability of historical neighbors across various datasets
for transductive and inductive link prediction tasks under random,
historical, and inductive NSS settings, as shown in Table 24. Obser-
vations indicate that real-world CTDG datasets, such as LastFM and
Enron, typically possess extensive one-hop historical information.
Although it is feasible to perform predictions based solely on recent
interactions, we posit that effectively leveraging longer historical
contexts can further enhance model performance.

Limitations of Existing Models in Handling Extensive Historical
Information. Two recent state-of-the-art methods, DyGFormer and
CTAN, explicitly designed to capture long-range historical depen-
dencies, have been considered in our study. Our experimental re-
sults reveal distinct limitations: DyGFormer suffers from high com-
putational complexity, while CTAN exhibits comparatively weaker
predictive performance. Consequently, neither model achieves an
optimal balance between effectiveness and computational efficiency.
Our proposed model, DyGMamba, overcomes these limitations by
demonstrating superior predictive capability and efficiency. Exten-
sive experiments position DyGMamba as the top ranked method
across multiple benchmark datasets.

17

1973

1974

1975

1976

1977

1978

1979

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

2052

2053

2054

2055

2056

2057

2058

2059

2060

2061

2062

2063

2064

2065

2066

2067

2068

2069

2070

2071

2072

2073

2074

2075

2076

2077

2078

2079

2080

2081

2082

2083

2084

2085

2086

2087

2088

(a) MOOC performance. (b) MOOC # params. (c) MOOC GPU memory. (d) MOOC train time/epoch.

Figure 7: Impact of patch size on DyGFormer, DyGMamba and Variant A, given a fixed number of sampled temporal neighbors 𝜌
onMOOC. Patch size 𝑝 varies from 4, 2, 1. Sequence length 𝜌/𝑝 increases as patch size decreases. Performance is the transductive
AP under random NSS.

Table 20: AP of transductive dynamic link prediction on DTDGs. The best and the second best results are marked as bold and
underlined, respectively.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

Can. Parl. 69.58 ± 0.28 68.94 ± 3.55 71.57 ± 0.68 69.37 ± 1.86 69.07 ± 3.01 64.55 ± 0.00 71.49 ± 0.46 77.49 ± 0.62 97.63 ± 0.21 87.01 ± 1.10 99.57 ± 0.08
Contact 94.75 ± 0.82 95.97 ± 0.16 96.55 ± 0.11 97.21 ± 0.44 90.65 ± 0.16 92.58 ± 0.00 94.67 ± 0.11 91.88 ± 0.07 98.30 ± 0.00 98.53 ± 0.09 98.43 ± 0.12
Flights 96.03 ± 1.17 95.49 ± 0.49 93.92 ± 0.04 98.01 ± 0.39 98.50 ± 0.01 89.35 ± 0.00 91.30 ± 0.05 91.02 ± 0.04 98.92 ± 0.01 93.64 ± 0.54 98.95 ± 0.05

UN Trade 64.43 ± 0.25 62.58 ± 0.93 61.53 ± 0.18 64.03 ± 0.69 65.41 ± 0.04 60.41 ± 0.00 62.19 ± 0.07 62.87 ± 0.12 66.69 ± 0.33 69.01 ± 0.38 67.50 ± 0.24
UN Vote 63.35 ± 0.99 63.90 ± 0.08 52.89 ± 0.28 65.18 ± 0.61 52.77 ± 0.07 58.49 ± 0.00 51.89 ± 0.18 52.18 ± 0.13 55.90 ± 0.24 70.19 ± 1.26 56.39 ± 0.18
US Legis. 74.29 ± 0.68 73.81 ± 2.29 67.85 ± 2.80 76.46 ± 0.37 70.60 ± 0.25 58.39 ± 0.00 70.99 ± 0.25 72.44 ± 0.29 71.06 ± 1.06 79.44 ± 2.28 71.75 ± 0.26

Avg. Rank 5.17 6.17 7.50 4.33 7.50 9.67 8.50 7.67 4.00 2.50 3.00

H
is
to
ri
ca
l

Can. Parl. 51.66 ± 0.51 62.46 ± 2.73 68.87 ± 0.96 66.49 ± 0.47 65.58 ± 3.34 63.76 ± 0.00 68.92 ± 2.04 74.58 ± 1.42 95.72 ± 1.84 89.28 ± 1.24 99.77 ± 0.12
Contact 94.33 ± 1.77 96.27 ± 0.17 96.75 ± 0.72 96.39 ± 0.47 84.61 ± 0.52 88.83 ± 0.00 95.26 ± 0.19 93.29 ± 0.47 97.59 ± 0.18 97.86 ± 0.15 97.61 ± 0.04
Flights 66.56 ± 1.39 67.53 ± 1.79 72.60 ± 0.33 67.77 ± 1.08 64.60 ± 0.64 70.53 ± 0.00 71.13 ± 0.19 71.40 ± 0.32 65.63 ± 0.21 75.75 ± 8.04 67.80 ± 2.17

UN Trade 61.38 ± 1.27 58.56 ± 1.04 54.64 ± 0.22 56.64 ± 3.43 57.09 ± 1.80 81.08 ± 0.00 56.80 ± 1.20 57.91 ± 0.81 62.86 ± 1.66 67.38 ± 1.08 65.10 ± 0.02
UN Vote 71.11 ± 1.00 70.33 ± 1.21 53.67 ± 2.31 69.16 ± 1.82 51.29 ± 0.41 84.76 ± 0.00 53.78 ± 2.16 54.17 ± 1.08 60.59 ± 0.94 74.75 ± 1.81 61.07 ± 0.39
US Legis. 47.20 ± 1.72 81.60 ± 7.14 76.28 ± 4.16 67.45 ± 6.79 73.25 ± 14.99 63.31 ± 0.00 83.27 ± 0.88 86.05 ± 1.77 63.99 ± 11.58 84.20 ± 0.95 82.15 ± 1.02

Avg. Rank 7.83 6.50 6.50 7.00 9.33 6.00 6.17 5.33 5.83 1.83 3.67

In
du

ct
iv
e

Can. Parl. 48.13 ± 0.42 57.90 ± 2.61 69.54 ± 0.66 63.58 ± 1.59 66.94 ± 1.60 62.20 ± 0.00 68.23 ± 1.42 70.00 ± 0.57 95.01 ± 0.80 87.42 ± 0.71 98.32 ± 0.34
Contact 92.34 ± 1.91 93.99 ± 0.24 95.14 ± 1.19 94.36 ± 0.88 89.61 ± 0.36 85.19 ± 0.00 92.08 ± 0.32 90.64 ± 0.56 94.93 ± 0.54 97.31 ± 0.19 95.43 ± 0.17
Flights 69.39 ± 2.19 71.32 ± 2.44 75.68 ± 0.37 72.27 ± 1.33 69.01 ± 0.35 81.07 ± 0.00 75.10 ± 0.08 74.68 ± 0.35 70.31 ± 1.00 76.20 ± 7.96 73.79 ± 5.69

UN Trade 60.55 ± 1.20 60.15 ± 0.52 58.86 ± 0.38 59.52 ± 3.79 63.37 ± 2.14 73.00 ± 0.00 61.86 ± 1.42 62.03 ± 0.63 53.53 ± 0.27 68.98 ± 0.73 58.89 ± 0.98
UN Vote 67.81 ± 0.75 68.69 ± 0.24 52.66 ± 1.18 67.58 ± 1.51 51.90 ± 1.40 66.31 ± 0.00 49.17 ± 4.04 51.28 ± 1.25 53.06 ± 0.23 72.85 ± 1.36 52.24 ± 0.95
US Legis. 46.58 ± 1.19 79.16 ± 7.11 76.09 ± 4.00 61.85 ± 7.02 71.78 ± 14.33 64.83 ± 0.00 74.33 ± 2.79 83.71 ± 0.69 62.01 ± 10.94 79.13 ± 2.03 81.67 ± 2.16

Avg. Rank 8.00 6.00 5.50 7.00 7.83 5.83 6.67 5.50 6.83 2.17 4.67

Table 21: AP of inductive dynamic link prediction on DTDGs. EdgeBank cannot do inductive link prediction so is not reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

Can. Parl. 53.69 ± 1.27 54.28 ± 1.84 55.60 ± 0.57 53.47 ± 1.04 55.33 ± 0.98 55.06 ± 0.67 56.69 ± 0.04 87.14 ± 1.40 62.97 ± 0.34 93.46 ± 2.62
Contact 95.20 ± 0.34 92.32 ± 0.20 96.18 ± 0.21 92.74 ± 2.86 89.98 ± 0.36 93.93 ± 0.14 90.51 ± 0.03 98.04 ± 0.02 76.19 ± 5.71 98.16 ± 0.03
Flights 94.45 ± 0.89 92.85 ± 0.55 88.70 ± 0.02 95.03 ± 1.04 97.07 ± 0.02 83.54 ± 0.10 83.03 ± 0.10 97.79 ± 0.04 75.12 ± 5.52 97.85 ± 0.22

UN Trade 58.94 ± 0.28 56.46 ± 0.60 61.20 ± 0.21 56.97 ± 1.53 65.30 ± 0.14 62.24 ± 0.27 62.55 ± 0.11 64.62 ± 0.58 53.83 ± 0.20 70.55 ± 0.04
UN Vote 55.65 ± 1.32 55.53 ± 1.43 52.38 ± 0.92 57.86 ± 1.72 49.66 ± 0.77 53.38 ± 0.60 51.94 ± 1.32 56.40 ± 0.16 55.02 ± 3.04 56.61 ± 0.13
US Legis. 54.36 ± 1.90 57.54 ± 1.43 50.21 ± 1.77 59.39 ± 2.30 52.79 ± 0.41 57.12 ± 0.22 54.68 ± 2.07 54.39 ± 1.63 52.55 ± 3.42 55.95 ± 1.16

Avg. Rank 6.00 6.17 6.50 6.00 6.33 5.83 6.50 3.00 8.00 1.67

In
du

ct
iv
e

Can. Parl. 51.91 ± 1.35 52.52 ± 1.85 57.42 ± 0.57 53.55 ± 1.36 57.56 ± 0.81 56.59 ± 1.22 56.91 ± 0.55 84.72 ± 2.58 63.27 ± 1.07 92.68 ± 0.97
Contact 91.22 ± 0.18 89.18 ± 0.48 94.93 ± 0.97 88.74 ± 2.60 74.88 ± 0.81 91.41 ± 0.40 89.67 ± 0.66 93.78 ± 0.88 70.10 ± 5.03 94.05 ± 0.32
Flights 60.79 ± 1.25 62.54 ± 1.73 65.23 ± 0.42 59.58 ± 1.56 56.76 ± 0.11 65.12 ± 0.09 65.26 ± 0.44 56.45 ± 0.17 66.53 ± 2.41 57.76 ± 2.06

UN Trade 55.33 ± 0.88 54.52 ± 0.52 54.21 ± 0.24 51.84 ± 1.57 56.29 ± 1.86 55.82 ± 1.21 55.73 ± 0.20 51.92 ± 0.13 51.91 ± 0.57 52.81 ± 0.18
UN Vote 59.24 ± 1.60 61.97 ± 1.82 52.52 ± 2.93 66.41 ± 1.80 47.35 ± 0.75 56.34 ± 2.25 48.15 ± 0.58 52.79 ± 0.84 55.49 ± 0.78 53.70 ± 2.40
US Legis. 55.59 ± 2.38 59.60 ± 1.64 50.85 ± 2.59 60.19 ± 2.60 55.15 ± 1.55 58.56 ± 0.99 55.15 ± 0.27 54.76 ± 2.35 52.65 ± 1.99 57.85 ± 0.23

Avg. Rank 5.50 5.00 5.50 5.83 6.50 4.00 5.33 6.33 6.17 4.67

18

2089

2090

2091

2092

2093

2094

2095

2096

2097

2098

2099

2100

2101

2102

2103

2104

2105

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

2139

2140

2141

2142

2143

2144

2145

2146

DyGMamba TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

2160

2161

2162

2163

2164

2165

2166

2167

2168

2169

2170

2171

2172

2173

2174

2175

2176

2177

2178

2179

2180

2181

2182

2183

2184

2185

2186

2187

2188

2189

2190

2191

2192

2193

2194

2195

2196

2197

2198

2199

2200

2201

2202

2203

2204

Table 22: AUC-ROC of transductive dynamic link prediction on DTDGs.

NSS Datasets JODIE DyRep TGAT TGN CAWN EdgeBank TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

Can. Parl. 78.34 ± 0.24 76.69 ± 4.51 76.36 ± 0.95 75.66 ± 1.62 74.24 ± 3.64 64.14 ± 0.00 76.64 ± 0.39 83.22 ± 0.84 98.00 ± 0.22 86.77 ± 1.17 99.69 ± 0.06
Contact 96.36 ± 0.48 96.46 ± 0.14 97.18 ± 0.09 97.76 ± 0.35 90.45 ± 0.24 94.34 ± 0.00 95.53 ± 0.06 93.92 ± 0.01 98.52 ± 0.00 98.88 ± 0.06 98.68 ± 0.02
Flights 96.48 ± 1.17 96.10 ± 0.50 94.05 ± 0.08 98.26 ± 0.36 98.45 ± 0.01 90.23 ± 0.00 91.26 ± 0.03 91.14 ± 0.03 98.93 ± 0.01 94.57 ± 0.57 98.98 ± 0.05

UN Trade 69.10 ± 0.45 66.92 ± 0.53 63.99 ± 0.18 67.80 ± 0.81 68.57 ± 0.14 66.75 ± 0.00 64.72 ± 0.01 65.97 ± 0.10 70.53 ± 0.34 72.00 ± 0.24 71.41 ± 0.21
UN Vote 68.26 ± 1.19 68.72 ± 0.08 53.68 ± 0.37 68.92 ± 0.72 53.15 ± 0.03 62.97 ± 0.00 51.73 ± 0.25 52.60 ± 0.09 57.65 ± 0.48 73.91 ± 1.08 58.48 ± 0.12
US Legis. 82.13 ± 0.30 80.98 ± 1.92 75.00 ± 2.19 83.65 ± 0.27 77.10 ± 0.14 62.57 ± 0.00 77.11 ± 0.59 79.19 ± 0.23 77.65 ± 0.95 86.01 ± 1.68 79.03 ± 0.26

Avg. Rank 4.83 5.33 8.00 5.67 8.83 9.83 9.00 7.83 3.00 2.67 2.00

H
is
to
ri
ca
l

Can. Parl. 62.08 ± 0.96 70.62 ± 3.57 72.11 ± 0.93 71.43 ± 0.99 70.44 ± 3.69 62.94 ± 0.00 74.07 ± 1.60 78.55 ± 0.72 96.46 ± 1.93 89.06 ± 1.14 99.82 ± 0.10
Contact 96.23 ± 0.67 95.89 ± 0.14 96.01 ± 0.61 96.34 ± 0.24 83.63 ± 0.49 92.18 ± 0.00 94.70 ± 0.18 92.98 ± 0.39 97.20 ± 0.13 98.37 ± 0.10 97.27 ± 0.06
Flights 68.84 ± 0.70 69.23 ± 1.44 72.33 ± 0.23 69.12 ± 0.81 65.93 ± 0.46 74.64 ± 0.00 70.81 ± 0.07 70.78 ± 0.32 67.50 ± 0.66 78.87 ± 7.94 68.98 ± 0.81

UN Trade 68.89 ± 1.20 63.54 ± 1.02 59.33 ± 0.58 61.61 ± 2.98 64.74 ± 2.21 86.44 ± 0.00 62.11 ± 1.03 64.50 ± 0.17 72.17 ± 1.68 69.75 ± 0.90 71.41 ± 0.21
UN Vote 77.54 ± 1.09 76.32 ± 1.04 55.61 ± 2.41 73.31 ± 1.65 50.95 ± 0.72 89.53 ± 0.00 54.70 ± 1.78 56.29 ± 1.46 64.79 ± 1.13 78.62 ± 1.36 65.17 ± 1.24
US Legis. 54.26 ± 3.67 88.47 ± 4.92 83.49 ± 4.72 79.29 ± 4.52 80.85 ± 9.96 67.50 ± 0.00 86.20 ± 0.84 90.38 ± 0.73 75.60 ± 9.12 89.88 ± 0.54 88.36 ± 1.78

Avg. Rank 7.33 6.00 6.83 6.83 9.17 5.67 6.83 5.67 5.50 2.17 4.00

In
du

ct
iv
e

Can. Parl. 52.09 ± 0.28 63.40 ± 3.74 72.42 ± 0.82 67.47 ± 1.82 71.66 ± 1.91 61.25 ± 0.00 72.29 ± 1.43 71.25 ± 0.46 95.78 ± 0.85 85.99 ± 0.95 99.56 ± 0.21
Contact 94.24 ± 0.24 94.11 ± 0.17 94.76 ± 0.98 94.70 ± 0.39 88.26 ± 0.29 85.86 ± 0.00 92.28 ± 0.24 90.71 ± 0.43 95.12 ± 0.28 97.93 ± 0.12 95.68 ± 0.20
Flights 70.09 ± 1.39 71.38 ± 1.84 73.56 ± 0.22 72.41 ± 0.71 69.61 ± 0.26 81.10 ± 0.00 72.77 ± 0.04 72.03 ± 0.35 69.33 ± 0.56 79.82 ± 7.80 71.16 ± 3.24

UN Trade 66.91 ± 1.17 65.40 ± 0.56 64.50 ± 0.93 64.50 ± 3.18 72.63 ± 2.17 74.25 ± 0.00 68.28 ± 0.85 68.58 ± 0.13 59.98 ± 0.40 69.74 ± 1.54 67.60 ± 0.64
UN Vote 73.82 ± 1.05 74.67 ± 0.22 52.88 ± 1.86 72.60 ± 1.62 52.05 ± 1.65 72.87 ± 0.00 50.25 ± 7.46 51.37 ± 1.05 55.36 ± 0.30 76.64 ± 1.02 54.09 ± 0.06
US Legis. 53.13 ± 2.57 86.74 ± 5.01 83.16 ± 3.65 73.50 ± 5.46 79.80 ± 10.61 68.72 ± 0.00 80.53 ± 3.50 88.82 ± 0.32 73.31 ± 9.22 86.09 ± 1.11 86.06 ± 2.27

Avg. Rank 7.83 5.83 5.50 6.67 7.33 6.17 6.50 6.17 7.00 2.17 4.67

Table 23: AUC-ROC of inductive dynamic link prediction on DTDGs. EdgeBank cannot do inductive link prediction so is not
reported.

NSS Datasets JODIE DyRep TGAT TGN CAWN TCL GraphMixer DyGFormer CTAN DyGMamba

R
an

do
m

Can. Parl. 53.62 ± 1.28 55.89 ± 1.77 56.67 ± 0.60 55.38 ± 2.11 57.91 ± 0.84 56.92 ± 0.97 59.29 ± 0.04 89.06 ± 0.39 59.13 ± 0.36 94.02 ± 3.02
Contact 95.96 ± 0.20 92.00 ± 0.16 96.78 ± 0.17 94.04 ± 2.09 89.60 ± 0.32 94.82 ± 0.09 92.81 ± 0.02 98.30 ± 0.00 80.41 ± 4.30 98.44 ± 0.05
Flights 94.82 ± 0.85 93.64 ± 0.44 88.61 ± 0.12 95.81 ± 0.87 96.87 ± 0.02 82.56 ± 0.13 82.28 ± 0.08 97.80 ± 0.05 79.41 ± 3.79 97.98 ± 0.25

UN Trade 61.34 ± 0.38 58.41 ± 0.54 62.68 ± 0.21 58.71 ± 1.69 67.21 ± 0.15 63.83 ± 0.16 63.90 ± 0.02 67.28 ± 0.54 54.62 ± 0.93 68.26 ± 0.26
UN Vote 56.24 ± 1.56 56.72 ± 1.90 52.44 ± 1.09 59.42 ± 2.12 47.92 ± 1.19 51.94 ± 0.69 51.65 ± 1.10 57.47 ± 0.27 53.40 ± 3.51 56.91 ± 0.12
US Legis. 57.23 ± 1.92 60.86 ± 1.59 46.86 ± 3.44 62.36 ± 2.04 50.81 ± 1.02 58.02 ± 1.37 54.98 ± 2.39 52.96 ± 1.71 53.89 ± 3.55 57.17 ± 0.20

Avg. Rank 5.83 6.17 6.67 4.83 6.50 5.83 6.33 3.00 7.83 2.00

In
du

ct
iv
e

Can. Parl. 50.56 ± 2.02 52.07 ± 1.53 58.91 ± 0.48 54.61 ± 2.40 60.17 ± 0.46 58.37 ± 1.15 58.59 ± 0.77 86.13 ± 2.37 59.68 ± 1.05 92.37 ± 0.18
Contact 91.20 ± 0.17 88.90 ± 0.26 94.44 ± 0.86 89.78 ± 2.06 75.38 ± 0.50 91.78 ± 0.28 89.82 ± 0.51 94.31 ± 0.43 74.41 ± 3.94 94.35 ± 0.29
Flights 60.58 ± 0.50 61.64 ± 1.60 63.61 ± 0.32 59.28 ± 0.95 56.51 ± 0.03 63.64 ± 0.11 63.07 ± 0.35 55.67 ± 0.48 71.35 ± 1.86 56.58 ± 2.12

UN Trade 58.51 ± 1.05 56.96 ± 0.44 58.71 ± 0.43 54.45 ± 1.33 62.65 ± 2.62 61.14 ± 1.09 61.00 ± 0.35 55.80 ± 0.11 52.05 ± 0.59 57.58 ± 0.20
UN Vote 62.88 ± 1.52 65.80 ± 2.47 51.79 ± 3.30 71.29 ± 2.01 46.61 ± 1.35 57.35 ± 2.24 45.75 ± 1.04 54.62 ± 0.50 54.31 ± 1.14 54.83 ± 2.17
US Legis. 59.83 ± 2.06 65.54 ± 1.42 47.15 ± 4.26 63.95 ± 2.30 53.14 ± 2.15 59.73 ± 1.06 56.22 ± 2.36 53.57 ± 2.73 53.64 ± 2.12 57.91 ± 3.41

Avg. Rank 5.33 5.33 5.17 5.67 6.67 3.83 5.83 6.17 6.50 4.50

Proven Performance Enhancement with Increased Historical Infor-
mation. In Appendix H.3, we have included an experiment showing
different models’ performance with a varying number of tempo-
ral neighbors. From Figure 6, we observe that, for datasets with
long-range temporal dependencies (such as Enron), an increase in
sampled neighbors positively impacts model performance, particu-
larly for DyGMamba and DyGFormer. We also find that for other
baseline models, increasing the number of sampled neighbors does
not consistently lead to performance improvements. This suggests
that the key issue is not whether increasing sampled neighbors is
always beneficial for dynamic graph modeling, but rather whether
a model is robust enough to effectively process larger amounts
of historical information. To further support this, we conducted
additional experiments on Can. Parl11 using DyGMamba with an

11Although Can. Parl is a DTDG, it requires huge number of sampled historical neigh-
bors for optimal modeling. Therefore, it is considered here to prove the performance
enhancement with increased historical information.

increasing number of sampled temporal neighbors (64, 128, 256, 512,
1024 and 2048). The results, presented in Table 25, confirm that DyG-
Mamba consistently benefits from an increasing neighbor count
until reaching the large number of 2048, further demonstrating its
ability to leverage long-range temporal dependencies.

Temporal Pattern Modeling is Game Changer. As mentioned in
introduction, we wish to capture edge-specific temporal patterns
for better CTDG modeling. The motivation can be well supported
with the following experiment. We provide a comparison between
DyGMamba, DyGFormer, and a modified version of DyGFormer
where Transformer is replaced with Mamba (referred to as Variant
G). Our results in Table 26 show a performance drop for Variant G
across all datasets compared to DyGFormer. Additionally, Variant
G performs significantly worse than DyGMamba, with particu-
larly notable declines on the synthetic datasets S1, S2, and S3. We
attribute this to two reasons:

19

2205

2206

2207

2208

2209

2210

2211

2212

2213

2214

2215

2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

TGL Workshop, KDD 2025, August 03-07, 2025, Toronto, Canada Anon.

2263

2264

2265

2266

2267

2268

2269

2270

2271

2272

2273

2274

2275

2276

2277

2278

2279

2280

2281

2282

2283

2284

2285

2286

2287

2288

2289

2290

2291

2292

2293

2294

2295

2296

2297

2298

2299

2300

2301

2302

2303

2304

2305

2306

2307

2308

2309

2310

2311

2312

2313

2314

2315

2316

2317

2318

2319

2320

• Intrinsic Limitations of Mamba: Previous study [29] has
shown that Mamba is generally less effective than Trans-
former in tasks requiring strong copying or in-context learn-
ing abilities. In CTDG modeling, strong copying ability is
crucial, as many predictions are based on recalling repeated
edges. Consequently, replacing Transformer withMamba in
DyGFormer inevitably leads to a performance drop, despite
the gains in efficiency.

• The Importance of Temporal Pattern Modeling: Our dy-
namic information selection module plays a crucial role in
enabling aMamba-basedmodel to outperform a Transformer-
based model in CTDG modeling, especially when clear tem-
poral patterns exist. This suggests that effectively capturing
temporal patterns can significantly enhance the competi-
tiveness of Mamba-based models in this context, further
validating the novelty and the contribution of our work.

To summarize, the design our DyGMamba achieves a good balance
between efficiency and effectiveness, thanks to temporal pattern
modeling.

Table 24: Number of available historical neighbors for all
datasets on both transductive and inductive link prediction
under random/historical/inductive NSS settings. Trans LP
and Ind LP denote transductive and inductive link prediction,
respectively.

NSS Random NSS Historical NSS Inductive NSS

Trans LP Ind LP Trans LP Trans LP Ind LP
Datasets Avg. Max Avg. Max Avg. Max Avg. Max Avg. Max

LastFM 2,253.03 51,767 2,333.75 51,767 2,393.71 51,767 2,237.29 51,767 2,309.49 51,767
Enron 1,681.80 21,512 1,693.40 21,511 1,734.19 21,512 1,675.21 21,512 1,670.65 21,511
MOOC 2,304.04 19,473 2,312.62 19,473 3,265.62 19,473 2,293.64 19,473 2,275.23 19,473
Reddit 4,129.77 58,726 4,196.20 58,726 4,604.99 58,726 4,128.88 58,726 4,186.38 58,726
Wikipedia 144.39 1,937 149.67 1,937 164.49 1,937 144.17 1,937 149.22 1,937
UCI 172.82 1,546 193.87 1,546 261.31 1,546 173.08 1,546 192.72 1,546
Social Evo. 63,962.35 124,565 68,701.32 124,565 60,403.62 124,565 60,395.83 124,565 65,191.24 124,565

Table 25: DyGMamba’s performancewith increasing sampled
neighbors on transductive link prediction under randomNSS.

Can. Parl 64 128 256 512 1024 2048

DyGMamba 72.58 74.46 76.85 82.67 94.88 99.57

Table 26: Comparison among Variant G, DyGFormer and
DyGMamba on transductive link prediction under random
NSS.

Models LastFM Enron MOOC Reddit Wikipedia UCI Social Evo. S1 S2 S3

Variant G 92.69 92.24 87.13 98.89 98.70 95.32 94.29 54.40 55.13 72.53
DyGFormer 92.95 92.42 87.66 99.22 99.03 95.74 94.63 55.19 57.80 79.20

DyGMmaba 93.35 92.65 89.21 99.32 99.15 95.91 94.77 81.85 85.36 86.59

20

	Abstract
	1 Introduction
	2 Related Work and Preliminaries
	2.1 Related Work
	2.2 Preliminaries

	3 DyGMamba
	3.1 Learning One-Hop Temporal Neighbors
	3.2 Learning from Temporal Patterns
	3.3 Leveraging Learned Representations for Link Prediction

	4 Experiments
	4.1 Experimental Setting
	4.2 Performance Analysis
	4.3 Efficiency Analysis

	5 Conclusion
	References
	A CTDG Dataset Details
	A.1 Real-World Benchmark Datasets
	A.2 Synthetic Datasets

	B Baseline Details
	B.1 Baselines Not Designed for Long-Range Temporal Information Propagation
	B.2 Baselines Designed for Long-Range Temporal Information Propagation

	C Implementation Details
	C.1 Hyperparameter Configurations on Real-World Datasets
	C.2 Hyperparameter Configurations on Synthetic Datasets

	D Negative Edge Sampling Strategies during Evaluation
	E AUC-ROC Results on Real-World Datasets
	F Dynamic Node Classification
	G Further Ablation Study
	H Efficieny Analysis Complete Results
	H.1 Efficiency Statistics for all baselines
	H.2 Total Training Time Comparison among DyGFormer, CTAN and DyGMamba
	H.3 Modeling an Increasing Number of Temporal Neighbors with Limited Total Training Time

	I Details of S4 and Mamba Operations
	J Motivation of Using SSM for Temporal Pattern Modeling
	K Impact of Patch Size on MOOC
	L Performance of DyGMamba on Discrete-Time Dynamic Graphs
	M Detailed Discussion of Motivation

